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ABSTRACT
We investigate the scalability of a class of algorithms that
exploit the dynamics of wireless fading channels to achieve
secret communication in a large wireless network of n ran-
domly located nodes. We describe a construction in which
nodes transmit artificial noise to suppress eavesdroppers
and ensure secrecy of messages transported across the net-
work. Under a model in which eavesdroppers operate in-
dependently, we show that for some constant c such that

0 < c < 1, the network can tolerate Ω

„

“

1√
n Ψ(n)

”2c
«

eaves-

droppers while ensuring that the aggregate rate at which
eavesdroppers intercept packets goes to 0, where Ψ(n) de-
notes the achievable per-node throughput and lies in the in-
terval (1/n, 1/

√
n). The result clearly establishes a trade-off

between the achievable throughput and the allowable num-
ber of eavesdroppers. Under a collaborating eavesdropper
model and a similar constraint on the eavesdropper through-
put, we show that the network can tolerate a single eaves-

dropper with Ω

„

“

ln
“

1√
n Ψ(n)

””1−ǫ
«

antennas, ∀ǫ > 0. We

also establish sufficient conditions on the number of eaves-
droppers to achieve a non-zero throughput.

1. INTRODUCTION
The idea of keyless secrecy (also called, physical layer

secrecy) has attracted considerable attention recently as a
method for key distribution in systems based on traditional
computational cryptography, or as an alternative that, in
contrast to the computational approach, assumes that eaves-
droppers have infinite computational power. In wireless
systems, for instance, a number of recent proposals exploit
differences in the received signal across different nodes to
achieve secret communication. Examples of such schemes
include [7, 8], which exploit common information in fad-
ing channel characteristics, and, [19] which exploits inde-
pendent packet loss of Eve and Bob. Other schemes [3, 17]
use artificial noise generation to ensure that the eaves-
dropper(s) receives a degraded version of the signal received
by a legitimate receiver so as to ensure a positive rate of
secure bits [18]. The scheme proposed in [3], for instance,
uses beamforming and interference cancellation, while the
scheme in [17] exploits multi-user diversity to generate noise
and confuse the eavesdroppers.

In this paper, we study the scalability of keyless secrecy
in large wireless networks, as opposed to the two hop set-
ting generally considered in prior literature. Similar to [17],
we use artificial noise generation to ensure secrecy of pack-

ets. In particular, for each packet hop, we select nearby
nodes to generate noise that ensures maximal ambiguity at
the eavesdroppers, while allowing the packet to be decoded
by a legitimate receiver. Intuitively, the greater the number
of nodes generating noise, the greater the number of eaves-
droppers that can be tolerated at the cost of reducing the
source-destination throughput. Thus, there is an inherent
trade-off between the achievable throughput of a node and
the security of a wireless system.

We therefore pose the fundamental question: for a de-
sired source-destination throughput, what is the number of
eavesdroppers that can be tolerated, while ensuring that with
high probability (w.h.p) the aggregate rate at which eaves-
droppers intercept packets (henceforth referred to as the com-
bined eavesdropper throughput) goes to 0? In this paper, we
study the security versus capacity trade-offs for a class of
algorithms that artificially generate noise to ensure message
secrecy. The results obtained in this paper can be employed
for network design in wireless systems that wish to guarantee
a given secrecy rate per session (w.h.p), hence addressing the
difficult problem of secrecy rate selection when eavesdropper
locations are unknown. The results can also be used under-
neath network-level approaches that, for example, split a
message into several smaller messages each of which is en-
coded and transmitted along different routes to avoid their
capture.

The efficient use of artificial noise generation for secrecy
has been considered in two-hop relay networks in [3, 17] and
for arbitrary (but known) finite network topologies in [14].
Only a few works have considered secrecy in large networks.
Reference [9] considers the density of eavesdroppers that can
be tolerated while maintaining the per-node throughput of
[2], and [6] considers the connectivity graph of large wireless
networks when insecure links are removed. However, the
results of [9] and [6] are for networks where eavesdropper
locations are known to system nodes, and, hence, the net-
work is able to route around eavesdroppers. The security of
large mobile networks without delay or buffer constraints,
where the mobility simplifies the problem by reducing it to
a two-phase construction as in [4], has been considered in
[10]. Hence, we are unaware of any prior work that has con-
sidered the achievable security of asymptotically large static
networks where eavesdropper locations are unknown.

1.1 Main Results
We consider a large wireless network, in which nodes are

distributed according to a 2D Poisson point process of unit
intensity over a square of area n. Also present in the net-
work are a collection of eavesdroppers placed according to a



Poisson process with intensity λe(n).
In this setting, we propose a construction in which nodes

transmit artificial noise to ensure the secrecy of messages
from the eavesdroppers. Our construction can achieve any
desired per-node throughput Ψ(n) inside the interval
(1/n, 1/

√
n), while yielding the following scaling laws for

the number of eavesdroppers:

1. When eavesdroppers operate independently i.e. do
not collude with each other, the network can tolerate

Ω

„

“

1√
n Ψ(n)

”2c1
«

eavesdroppers, where 0 < c1 < 1,

while ensuring that the combined eavesdropper through-
put, denoted as ΨE(n), goes to 0 as n → ∞.

An identical scaling law is derived, even when eaves-
droppers have multiple (but, a fixed number of) an-
tennas.

2. We also consider a collaborating eavesdropper model
in which a single eavesdropper is allowed to have a
number of antennas that scales with n. Under this
model, we show that ∀ǫ > 0, an eavesdropper with

Ω

„

“

ln
“

1√
n Ψ(n)

””1−ǫ
«

antennas can be tolerated while

ensuring that ΨE(n) goes to 0.

3. Finally, we derive sufficient conditions for the num-
ber of eavesdroppers to achieve a non-zero ΨE(n). In
particular, we show that when eavesdroppers operate

independently, then O

„

“

1√
n Ψ(n)

”2c2
«

eavesdroppers

suffice to achieve a non-zero ΨE(n), for some constant

c2 > 1. Also, an eavesdropper with O
“

ln
“

1√
n Ψ(n)

””

antennas suffices to achieve a non-zero ΨE(n).

Thus, our results imply that there is an inherent trade-off be-
tween the per-node throughput and achievable secrecy. Our
results show, for instance, that when a per-node throughput
of Ψ(n) = Ω((n ln n)−1/2) is desired, we can tolerate up to
Ω((ln n)c1) independent eavesdroppers or a single eavesdrop-
per with Ω((ln ln n)1−ǫ) antennas. Higher node through-
puts can be achieved while reducing the allowable number
of eavesdroppers. At the other extreme, we can tolerate up
to Ω(nc1) independent eavesdroppers while achieving only a
per-node throughput guarantee of ω(1/n). Finally, we note
that the scaling laws for the sufficient number of eavesdrop-
pers to achieve a non-zerp ΨE(n) show that the bounds for
allowable number of eavesdroppers are tight up to a polyno-
mial factor.

The rest of the paper is organized as follows. Section 2
presents the system assumptions. In Section 3, we describe
our construction for achievable node throughput in presence
of artificial noise. In Section 4, we analyze the number of
independent eavesdroppers that can be tolerated in the net-
work. In Section 5, we carry out a similar analysis for the
case of collaborating eavesdroppers. Section 6 carries a dis-
cussion of our results while Section 7 presents our conclu-
sions.

2. SYSTEM MODEL AND ASSUMPTIONS

1. We consider a collection of static nodes placed accord-
ing to a Poisson point process of unit intensity over a
square Bn = [0,

√
n] × [0,

√
n].

2. Also present in the 2D plane is a set E of passive eaves-
droppers distributed according to a Poisson process of
intensity λe(n).

3. We choose uniformly at random a matching of source-
destination pairs, so that each node is the destination
of exactly one source.

4. All links experience frequency-nonselective Rayleigh
fading. The fading is assumed to be quasi-static, which
is defined here as being constant over the transmission
of a single secure message. The fading across different
links and between transmissions on the same link are
assumed independent.

5. Let T be the subset of nodes transmitting at a given
time instant. Let dij denote the distance between an
arbitrary pair of nodes i and j. Then, a transmission
from node i is successfully received by node j only if the
signal to interference plus noise ratio (SINR) at node
j (denoted as Sj) exceeds a fixed decoding threshold
γ i.e.

Sj =
P |hij |2dij

−α

N0 +
P

k∈T \{i}
P |hkj |2dkj

−α ≥ γ, γ > 1

where P denotes the transmit power and |hij |2 denotes
the fading gain, a non-negative random variable that
models fading on link i → j. N0 is the ambient noise
power at the receiver.

6. Throughout this paper, we assume channel reciprocity
i.e. |hij |2 = |hji|2, for any two nodes i and j. Fur-
ther, the Rayleigh fading assumption implies that the
fading gain |hij |2 follows an exponential distribution
for all node pairs i, j. We also assume that node i can
perfectly estimate the channel to another node j, as
is commonly done in commercial systems using pilot
signals [16, pg. 53]. Without loss of generality, we take
E[|hij |2] = 1.

3. ACHIEVABLE PER-NODE THROUGHPUT
In this section, we describe a construction which yields a

per-node throughput Ψ(n) = Ω
“

(nf(n))−1/2
”

, where f(n)

is any arbitrary function satisfying:

ω(1) ≤ f(n) ≤ o(n) (1)

The conditions for f(n) thus allow us to achieve any desired
throughput in the interval (1/n, 1/

√
n). On the flip side,

it is easy to note that the same conditions forbid us from
achieving the per-node throughput of Ω(n−1/2), as obtained
in [2, 13]. But as we will see later, the asymptotic reduction
in throughput allows us to tolerate an asymptotically large
number of eavesdroppers.

Similar to [2, 13], our construction uses percolation theory
to show the achievability result. However, our construction
differs from those in [2, 13] in two crucial aspects:

• Our construction allows system nodes to artificially
transmit noise to ensure secrecy of messages trans-
ported across the network. Hence, the construction
needs to ensure successful delivery of messages to le-
gitimate nodes in presence of this added interference.



• As we will see later, the fact that links experience time
varying fading in our model necessitates a substantially
different relay selection algorithm from those described
in [2, 13].

Our result implies that as f(n) grows, the per-node through-
put decreases. However, we will see later that this results in
a greater number eavesdroppers being allowed. Expressing
the per-node throughput in terms of f(n) therefore provides
us a better understanding of the trade-offs between security
and the achievable throughput.

Our capacity construction involves three major steps:

1. Construction of a highway system,

2. Specification of a routing protocol, and

3. Specification of a transmission scheduling scheme

Figure 1: Construction of the bond percolation
model. The figure on the left hand side corresponds
to division of the unit square into smaller cells. The
figure on the right hand side is obtained by associat-
ing an edge with each cell, traversing it diagonally.

3.1 Highway Construction
As shown in the left side of Figure 1, we divide the square

Bn into cells of dimensions c(n) × c(n) where

c(n) =
p

f(n) (2)

The number of nodes inside a given cell is therefore a Poisson
random variable with parameter f(n).

As shown in Figure 2, for each cell, we define eight regions
H1−H8, each having an area f(n)/2. The reason for defining
these regions will become apparent when we discuss relay
selection in Section 3.2. For now, we show that each cell has

Figure 2: Regions H1 −H8 associated with each cell
ĉi.

a large number of nodes inside each of its regions H1 −H8.

Lemma 3.1. Let Nij be the number of nodes in region
Hj , j = 1, . . . , 8 of a given cell ĉi. Let Ei denote the event
{f(n)/4 ≤ Nij ≤ f(n), ∀j}. Then,

p(n) ≡ P (Ei) > 1 − 16

„

2

e

«f(n)/4

Proof. Let Ei denote the event:
n

f(n)/4 ≤ N j
i ≤ f(n), ∀j

o

Then, Ec
i denotes the event:
n

∃j : {Nij < f(n)/4}
[

{Nij > f(n)}
o

From Theorem A.1, for a fixed j,

P (Nij < f(n)/4) ≤ e−f(n)/2(2e)f(n)/4 =

„

2

e

«f(n)/4

Similarly,

P (Nij > f(n)) ≤
“ e

4

”f(n)/2

≤
„

2

e

«f(n)/4

Using the union bound twice,

P (Ec
i ) ≤ 16

„

2

e

«f(n)/4

Lemma 3.1 now follows immediately.

We declare a cell ĉi open, if Ei holds, and closed otherwise.
From Lemma 3.1, it is easy to see that the probability p(n)
that a given cell is open goes to 1 as n → ∞.

Similar to [2], we map the constructed lattice to a bond
percolation model. As shown on the right side of Figure 1,
we draw a horizontal edge traversing a cell diagonally across
half of the cells and a vertical edge across the remaining half.
In this way, we obtain a grid of horizontal and vertical edges,
each edge being open with probability p(n), independently
of all other edges.

For convenience of exposition, we introduce a quantity
m(n) that denotes the number of (horizontal or vertical)
edges composing the side length of the box Bn. Then,

m(n) =

√
n√

2c(n)
(3)

Notice that m(n) → ∞ as n → ∞.
We divide the box Bn into rectangular slabs of dimensions√
n ×

√
2c(n)(κ ln m(n) − ǫn), where κ > 0. Let Ri

n denote

the i-th slab, where i ≤ m(n)
κ ln m(n)−ǫn

. We choose ǫn > 0

as the smallest value such that the number of rectangular

slabs m(n)
κ ln m(n)−ǫn

is an integer. As noted in [2], ǫn = o(1)

as n → ∞. Let Ci
n denote the maximal number of edge-

disjoint left-to-right crossing paths of rectangle Ri
n and let

Nn = mini Ci
n.

We then have the following theorem which shows the ex-
istence of a large number of crossing paths in each of the
rectangular slabs of Bn.

Theorem 3.2. For all κ > 0, there exists a δ satisfying
0 < δ < κ such that

lim
n→∞

P (Nn ≤ δ ln m(n)) = 0

Proof. The proof follows from Theorem 5 in [2] by not-
ing that p(n) > 5/6 for large enough n. Taking limits
as n → ∞, the inequality (16) in [2] yields the condition
0 < δ < κ.

Thus, Theorem 3.2 shows not only that each rectangular
slab has a large number of crossing paths but also that each



node is at most κ ln m(n) away from a crossing path. Simi-
larly, by dividing Bn into vertical rectangular slabs of sides√

2c(n)(κ ln m(n) − ǫn) ×√
n, we can show that there exist

δ ln m(n) top-to-bottom crossing paths inside each vertical
slab. Using the union bound, we conclude that there ex-
ist Ω(m(n)) left-to-right and top-to-bottom crossing paths
(also called highways) of Bn w.h.p.

We conclude the discussion on highway construction by
deriving a uniform bound on the probability that a cell is
open, for a sufficiently large f(n). This is in contrast to
Lemma 3.1, which only bounds the probability that a given
cell is open. Once again, let Nij denote the number of nodes
in the region Hj of cell ĉi.

Lemma 3.3. When f(n) ≥ k ln n, where k = 4 loge/2 e

lim
n→∞

P (f(n)/4 ≤ Nij ≤ f(n) ∀i, j) = 1

Proof. Applying Lemma 3.1 and the union bound, we
get

P (f(n)/4 ≤ Nij ≤ f(n) ∀i, j) ≥ 1 − 16n

f(n)

„

2

e

«f(n)/4

≥ 1 − 16n

f(n)

„

1

e/2

«log e
2

n

≥ 1 − 16

f(n)
→ 1

as n → ∞.

Thus, when f(n) ≥ k ln n, all cells are open w.h.p. In other
words, each node is located on a highway w.h.p.

Finally, we uniformly bound the number of nodes per cell
when f(n) < k ln n, where k = 4 loge/2 e. Let Ni denote the
number of nodes in cell ĉi. Then,

Lemma 3.4.

lim
n→∞

P (Ni ≤ 2k ln n ∀i) = 1

Proof. The proof follows from an application of the Cher-
noff and union bounds.

P (Ni ≤ 2k ln n ∀i) ≥ 1 − n

f(n)
P (Ni > 2k ln n)

≥ 1 − n

f(n)
e−f(n)

„

ef(n)

2k ln n

«2k ln n

≥ 1 − n

f(n)
e−f(n)

 

e

8 loge/2 e

!2k ln n

≥ 1 − n

f(n)
e−f(n)

„

1

e

«2k ln n

→ 1

as n → ∞.

3.2 Routing Protocol
Similar to [2, 13], our routing protocol involves three phases:

1. The draining phase in which a source transmits a packet
to a nearby“entry point”situated on a horizontal cross-
ing path.

2. The highway phase in which the packet is moved first
along a horizontal crossing path and then along a ver-
tical crossing path until it arrives at an “exit point”,
which is suitably close to the destination node.

Figure 3: Relay selection for each of cell containing
horizontal edge and vertical edge. Only nodes inside
the shaded area are eligible for relay selection. The
shaded regions correspond to the regions H1 − H8

defined earlier.

3. The delivery phase in which the packet is transmit-
ted from the exit point to the destination node via an
intermediate relay node.

Note that the draining and delivery phases are employed
only when f(n) < k ln n, where k = 4 loge/2 e. When f(n) ≥
k ln n, we know from Lemma 3.3 that each node is located
on a highway w.h.p and hence, the routing protocol involves
only the highway phase.

In contrast to the routing strategy in [2, 13] where the
nodes on a routing path are fixed over the entire set up, we
opportunistically choose a relay node at each hop and with
a sufficiently large fading gain. As a result, for the same
source-destination pair, the routing paths may vary from
one packet transmission to the next.

3.2.1 Relay Selection in Highway Phase
As shown in Figure 3, in the highway phase, a packet is

forwarded from a node i in an open cell ĉi to another node
j in an adjacent open cell ĉj which is chosen as follows:

1. Node i broadcasts a pilot signal and announces the co-
ordinates of its cell ĉi as well as those of its adjacent
cell ĉj to which the packet is next destined.

2. Depending on ĉi and ĉj ’s co-ordinates, only nodes in-
side one of the eight regions H1 − H8 of ĉj (see Fig-
ure 3), are eligible to participate in relay selection.
Each eligible node j then measures its fading gain,
|hij |2, from i’s pilot.

3. Let n̂ = f(n)/4. Then, a node j announces itself the
relay if |hij |2 > ln n̂.

4. In case no relay is chosen, in keeping with the quasi-
static Rayleigh fading assumption, node i once again
broadcasts a pilot signal and steps 1-3 are repeated.

The probability that exactly one node announces itself as
the relay is therefore

ps = Nr
1

n̂

„

1 − 1

n̂

«Nr−1

≥ n̂
1

n̂

„

1 − 1

n̂

«8n̂

=
1

e8
> 0

where Nr is the number of eligible relay nodes and from
Lemma 3.1 lies in the range [n̂, 8n̂]. Thus, the probability of
a successful relay selection is a constant bounded away from
0. In other words, a relay j is chosen in a finite expected
time (equal to e8) such that |hij |2 > ln(f(n)/4).

We note that the lower bound on ps can be significantly
improved by employing more time slots for relay selection.
However, these improvements do not change the asymptotic
results obtained in this paper.

When f(n) ≥ k ln n, where k = loge/2 e, we note that
each packet is routed along the highways until it reaches



the destination cell ĉd. The packet is then delivered to the
destination d in two steps via an intermediate relay node r.
This relay r is chosen from one of the adjacent cells of ĉd

and is at least c(n)/2 away from d. The relay selection is
discussed in detail in Section3.2.4.

3.2.2 Draining Phase
As mentioned earlier, the draining phase is employed only

when f(n) < k ln n, where k = 4 loge/2 e. The objective
of the draining phase is for a source node to determine an
entry point situated on a horizontal crossing path to which it
can transmit directly. Before choosing an entry point, each
source node is mapped to a horizontal crossing path and a
set of eligible entry points chosen as follows.

Source Entry Point

w

Slices

Figure 4: Entry Point Selection. Only nodes in cells
with a horizontal edge and which are located at least
κ ln m

2
and at most κ ln m from the cell containing the

source (i.e. shaded cells) are eligible for selection.

1. Division of Bn into rectangular slabs: We divide
the square Bn into an integer number of rectangu-
lar slabs of size m × κ ln m(n) − ǫn, where m(n) =√

n/(
√

2c(n)). Figure 4 shows a portion of a rectan-
gular slab. We choose a κ such that there are at least
⌈δ ln m(n)⌉ crossing paths inside each rectangular slab.
These crossing paths are numbered 1, . . . , Nn.

2. Mapping source node to a horizontal crossing
path: We next divide each rectangular slab into ⌈δ ln m(n)⌉
smaller slices, each of dimensions n×w

√
2c(n), where

w is a constant. Figure 4 depicts the case where w = 2.
Each source node in the i-th slice is then mapped to
the i-th horizontal crossing path and therefore, chooses
an entry point located along the i-th path. Note that
as depicted in Figure 4, a crossing path could poten-
tially traverse multiple slices. Further, even though a
source node may be located on a crossing path, the
mapping scheme can potentially lead the source node
to access an entry point on an entirely different cross-
ing path. The main goal of our mapping scheme is to
achieve “load-balancing” by distributing source nodes
across different crossing paths in a rectangular slab. In
fact, we next prove Lemma 3.5 which shows that each
crossing path has a bounded number of source nodes
accessing it.

Lemma 3.5 uniformly bound the number of streams
carried by a highway. We know that the number of
streams carried by a highway is bounded by the num-
ber of nodes, Ns, in a rectanglular slice s of dimensions√

n × w
√

2c(n). There are w
p

nf(n) slices in total,

each of which has an area
√

n×
√

2c(n)w = w
p

2nf(n).
Then,

Lemma 3.5.

lim
n→∞

P (Ns ≤ 2w
p

2nf(n), ∀s) = 1

Proof. Using the Chernoff and union bounds, we
get

P (Ns ≤ 2w
p

2nf(n), ∀s) ≥ 1−w
p

nf(n)
“ e

4

”w
√

2nf(n)

→ 1

as n tends to infinity.

3. Determining eligible entry points: Once the
source nodes are mapped to crossing paths, the set of
eligible entry points for each source are determined as
follows: Only nodes located inside open cells at a hori-
zontal distance is in the range [(κ ln m(n))/2, κ ln m(n)]
from the cell containing the source node are eligible for
selection. Further, the entry points are chosen from
only those open cells containing a horizontal edge. For
instance, in Figure 4, only nodes in the shaded cells
are eligible to function as entry points.

Thus, the number of eligible cells (i.e. shaded cells in
Figure 4) is at least (κ ln m(n))/2 − 1 (occurs when
a source is on the boundary of a slab) and at most
κ ln m(n). From Lemma 3.1, we therefore conclude
that the number of eligible entry points is in the range
[(κ ln m(n) − 2)f(n)/4, 2f(n)κ ln m(n)].

Note that steps 1-3 are performed only once and not re-
peated every time a source needs to transmit a packet.
Finally, we are ready to choose an entry point for a
source node i.

4. Entry point selection: An entry point j is chosen
from the set of eligible points using the scheme de-
scribed in Section 3.2.1 by setting n̂ = (κ ln m(n) −
2)f(n)/4 in Step 2 of the relay selection scheme. Once
again, it can be easily verified that the probability of
successful entry point selection is at least 1/e9 i.e. a
constant bounded away from 0. Further, the chosen
entry point j has a fading gain |hij |2 > ln n̂ to the
source i.

3.2.3 Delivery Phase
Once gain, the delivery phase is employed only when f(n) <

k ln n, where k = 4 loge/2 e. The mapping of destinations to
vertical crossing paths is analogous to the mapping described
in Section 3.2.2. In this section, we therefore focus only on
exit point selection and the subsequent delivery of packets
to destination nodes.

Exit Point Selection: A packet destined for a node
d located in cell ĉd is forwarded along a vertical crossing
path, until it arrives at a node p located in cell ĉp whose
vertical distance to ĉd is κ ln m(n). Node p then becomes
the exit point for destination d. For illustration, one can
rotate Figure 4 clockwise by 90o and treat the node labeled
“Source” as the destination node d instead. Assuming that
the packet for d is moving from left to right in Figure 4 (or
top-to-bottom in the rotated figure), the leftmost shaded
cell in Figure 4 is the cell ĉp.



Eligible Relay Nodes: Once an exit point p is chosen,
the packet is delivered to node d by p via an intermediate
relay node from a set of eligible relay nodes. A node r lo-
cated in cell ĉr is eligible for relay selection if it satisfies the
following conditions:

1. The cell ĉr must lie between ĉp and ĉd i.e. its y-
coordinate must lie between those of ĉp and ĉd.

2. The cell ĉr must contain a vertical edge

3. The vertical distance between cells ĉr and ĉp must be

at least κ ln m(n)
4

, and

4. The vertical distance between cells ĉr and ĉd must also
be at least κ ln m(n)

4
.

It is easy to see that there are κ ln m(n)
2

cells satisfying the
above criteria. From Lemma 3.1, we conclude that the num-

ber of eligible relay nodes Nr satisfies f(n)κ ln m(n)
4

≤ Nr ≤
f(n)κ ln m(n).

Relay Selection: Finally, the relay r∗ is chosen as
follows:

1. p transmits a pilot signal. Each eligible node r mea-
sures its fading gain, |hrp|2 to p.

2. Next, d transmits a pilot signal and once again, each
eligible node r measures its fading gain |hrd|2 to node
d.

3. Finally, a node r∗ satisfying min(|hr∗p|2, |hr∗d|2) >

(ln n̂)/2, where n̂ = f(n)κ ln m(n)
4

, announces itself as
the relay.

Since the minimum of 2 iid exponential random variables
with mean 1 is also an exponential random variable with
mean 1/2, it is easy to check that the probability that a
node r∗ announces itself as the relay is 1/n̂. proceeding as
before, the probability of a successful relay selection is

ps = Nr
1

n̂

„

1 − 1

n̂

«Nr−1

≥ n̂
1

n̂

„

1 − 1

n̂

«4n̂

≥ 1

e4
> 0

Once again, ps is a constant bounded away from 0. Fur-
ther, the selected relay r∗ satisfies: min(|hrp|2, |hrd|2) >

(ln n̂)/2 = ln
“

f(n)κ ln m(n)
4

”

‹

2.

3.2.4 Delivery to Destination
When f(n) ≥ k ln n, where k = 4 loge/2 e, we know from

Lemma 3.3 that each cell is open w.h.p and each node is
located along a highway. As mentioned earlier, we there-
fore do not employ the draining and delivery phases in our
routing algorithm and each packet destined for a node d is
routed first along a horizontal crossing path and then along
a vertical crossing path until it reaches a node t inside the
destination cell ĉd. The node is then delivered from t to
d in two steps via an intermediate relay node, chosen in a
manner similar to that described in Section 3.2.3.

The process of delivering the packet from node t to node
d is illustrated in Figure 5. The relay selection algorithm
operates as follows:

1. Node t broadcasts a pilot signal and the co-ordinates
of the cell ĉd. Each node r in a cell adjacent to ĉd and
located inside the corresponding shaded area as shown
in Figure 5, measures its fading gain |htr|2.

d

t

Figure 5: Delivery to Destination. The cell in the
middle is the destination cell. The packet is cur-
rently at node t and needs to be delivered to node d.
This is accomplished via a relay node chosen from
the shaded areas of the adjacent cells.

2. Next, the destination node d broadcasts a pilot signal
and once again, each node r in the shaded areas of the
adjacent cells measure |hdr|2.

3. Let n̂ = 3f(n)
4

. Then, an eligible relay node r∗ an-

nounces itself as the relay node only if min(|htr∗ |2, |hdr∗ |2) >
ln n̂/2.

4. If no relay is chosen, then steps 1-3 are repeated all
over again.

Since the number of eligible relay nodes Nr lies in the range
[n̂, 8n̂], once again, it follows that the probability of a suc-
cessful relay selection is at least 1

e8 , and is thus, bounded
away from 0. Finally, we note that a relay r∗ with a fading
gain at least (ln n̂)/2 to each of nodes t and r is chosen in a
finte expected time.

3.3 Transmission Scheduling Scheme
We finally describe our transmission scheduling scheme il-

lustrated in Figure 6. The key idea as in [2, 13] is to space
simultaneous transmissions sufficiently far apart such that
each transmission succeeds w.h.p. Unique to our transmis-
sion scheme, however, is a mechanism for choosing noise-
generating nodes and is discussed next.

Let the simultaneous transmissions be spaced 2d cells apart,
where the value of d will be determined for each of the
phases. Further, each node in our construction transmits
with a power Pn(d) ∝ (dc(n))α. As we will see, the value of
d varies between the highway and draining/delivery phases,
and hence, nodes employ separate transmit powers for the
different phases.

Remark: Notice from the expression for Pn(d) that we in-
crease the density of the network (number of nodes per cell)
by increasing the transmit power of nodes, as opposed to in-
creasing the number of nodes per unit area [5]. As we will see
in Section 6, increasing network density by increasing trans-
mit powers avoids the near-field effects of electromagnetic
propagation and results in a realistic model. If near-field
effects can be neglected and independent fading can be as-
sumed, as is done in the dense network models of [5, 15],
we note that our construction would also employ a constant
power setting and identical results would be obtained.

3.3.1 Artificial Noise Generation
Unlike the constructions in [2, 13], the primary objective

in our work is to achieve message secrecy in the presence
of eavesdroppers. To guard against the message being suc-
cesfully decoded by an eavesdropper, we require a subset



Figure 6: Transmission Scheduling. Simultaneous
transmissions (by nodes in shaded cells) are at least
2d cells apart. In the figure, d = 1.

of system nodes to generate noise simultaneously with the
message transmissions.

Regardless of which phase a transmission occurs in, we
observe that greater the number of noise-generating nodes
the greater will be the number of eavesdroppers that are
unable to decode a given transmission. At the same time,
the chance that a legitimate node decodes the transmission
is also reduced. Ideally, we want to maximize the amount
of generated noise, while ensuring that a legitimate receiver
decodes a transmission w.h.p.

Consider a transmission from a node Ri in cell ĉi to a
next hop node Rj . Regardless of the phase, the set of noise-
generating nodes are chosen according to the following rule:
Nodes inside cell ĉi within a radius

r(n) = ln

„

f(n)

4

«ν/2

(4)

from Ri transmit noise, where ν = 1/(23+5α/2πγ).
The rationale behind the choice of r(n) will become clear,

when we show that the receive SINR Sj at node Rj ex-
ceeds γ, for both the highway and the draining/delivery
phases. Intuitively, choosing noise-generating nodes close
to Ri serves two purposes: (i) noise-generating nodes are
far away from the receiving node Rj , and (ii) eavesdroppers
close to Ri receive sufficient interference to keep them from
decoding Ri’s transmission.

3.3.2 Receive SINR in Highway Phase
Consider a transmission from a node Ri to another node

Rj and let Sj be Rj ’s received SINR. Then,

Sj =
Pn(d)|hij |2/dα

ij

N0 + Pn(d)Inear + Pn(d)Ifar

where Pn(d) denotes Ri’s transmit power, Inear denotes
the “near-cell” interference at Rj caused by noise-generating
nodes in cell ĉ and Ifar denotes the interference from the rest
of the network. From Section 3.2.1, we know that |hij |2 >

ln
“

f(n)
4

”

. Further, in the highway phase dij ≤ 2
√

2c(n).

Hence,

Sj ≥
Pn(d) ln

“

f(n)
4

”

/(2
√

2c(n))α

N0 + Pn(d)Inear + Pn(d)Ifar
(5)

Inear is upper bounded as

Inear ≤
X

Rk∈R

|hkj |2
(c(n)/2)α

where R denotes the set of noise-generating nodes inside
ĉ. The term in the denominator follows immediately by
observing Figure 3 and by imagining Rj located inside one
of the shaded areas.

The area over which noise-generating nodes are located is
upper bounded by πr2(n). Hence, P (|R| > a) ≤ P (N >
a), ∀a, where N ∼ Poisson(σ(n)). Here, σ(n) = πr2(n) =

ln
“

f(n)
4

”π/ν

. From Theorem A.1, we conclude

P (|R| > 2σ(n)) < (e/4)σ(n)

The right hand side goes to 0 as n → ∞. Hence, w.h.p.,
the sum

P

Rk∈R |hkj |2 is upper bounded by a sum of 2σ(n)
iid exponential random variables. Noting that the sum of
iid exponential random variables is an Erlang random vari-
able and employing Chernoff bounds for the same (see Ap-
pendix A.2), we obtain

P

0

@

X

Rk∈R
|hkj |2 > 4σ(n)

1

A < (2/e)2σ(n)

Thus,

Inear ≤ 4σ(n) =
ln
“

f(n)
4

”

2γ(2
√

2c(n))α
(6)

with probability at least

1 − (e/4)σ(n) − (2/e)2σ(n)

which goes to 1 as n → ∞, since σ(n) → ∞.
We next derive an upper bound for Ifar. We first note

that relative to node Rj , the transmitters in the eight clos-
est cells (i.e. the shaded cells in Figure 6) from Rj are at
Euclidean distance at least dc(n), where d is a constant and
will be determined later. The transmitters in the 16 next
closest cells are at Euclidean distance at least 3dc(n) and
so on. In other words, relative to Rj , the other transmit-
ters are located along the boundaries of concentric squares
of increasing size. Therefore,

Ifar ≤
∞
X

t=1

X

Rk∈R(t)

|hkj |2
((2t − 1)dc(n))α

where R(t) denotes the set of noise-generating nodes located
along the boundary of the t-th concentric square from Ri.
Once again, it is easy to see that P (|R(t)| > a) ≤ P (N >
a), ∀a where N ∼ Poisson (8tσ(n)). From Theorem A.1, we
conclude

Ifar ≤ 32σ(n)

(dc(n))α

∞
X

t=1

t

(2t − 1)α

Notice that the sum converges for α > 2. A trite calculation
shows that this sum can be upper bounded by β = 1 +
1/(2(α − 2)) and hence,

Ifar ≤
4β ln

“

f(n)
4

”

(2
√

2dc(n))α
(7)



Letting A denote the event



Ifar >
4Pn(d)β ln

f(n)
4

(2
√

2dc(n))α

ff

and

using the union bound, we get

P (A) <

∞
X

t=1

“

(e/4)8tσ(n) + (2/e)16tσ(n)
”

=
(e/4)8σ(n)

1 − (e/4)8σ(n)
+

(2/e)16σ(n)

1 − (2/e)16σ(n)
→ 0

as n → ∞.
Substituting from (6) and (7) into (5) and further simpli-

fication yields:

Sj ≥ 1

N0
(2

√
2c(n))α

Pn(d) ln
“

f(n)
4

” + 1
2γ

+ 4β
dα

w.h.p

Noting that Pn(d) ∝ (dc(n))α and setting d ≥ (8βγ)1/α, we
get

lim
n→∞

Sj ≥ γ w.h.p

3.3.3 Receive SINR in Draining and Delivery Phases
Using an analysis very similar to the one in previous sec-

tion, we show that the receive SINR in the draining and
delivery phases exceeds γ. The following analysis applies to
both draining and delivery phases.

From Section 3.2.2 and Section 3.2.3, we know that any
transmitter-receiver pair is separated by a Euclidean dis-
tance at most 2

√
2κc(n) ln m. Further, the fading again on

each transmitter-receiver link is at least
“

ln
“

κf(n) ln m
4

””

/2.

Consider a node Ri transmitting to another node Rj . Let
Sj denote the SINR at Rj . Then,

Sj ≥
Pn(d) ln

“

κf(n) ln m
4

”

/(2
√

2κc(n) ln m)α

2N0 + 2Pn(d)Inear + 2Pn(d)Ifar

Further, the distance from noise-generating nodes to Rj in

each phase is guaranteed to be at least κc(n) ln m
8

. Proceeding
exactly as in Section 3.3.2, we obtain

Inear ≤
22α ln

“

f(n)
4

”

2γ(2
√

2κc(n) ln m)α
w.h.p

and

Ifar ≤
4β ln

“

f(n)
4

”

(2
√

2dc(n))α
w.h.p

where β is as defined in Section 3.3.2. Letting d = κ ln m
and noting that m = (n/f(n))1/2, it can easily be checked
that

lim
n→∞

Sj ≥ lim
n→∞

ln
“

κf(n) ln m
4

”

ln
“

f(n)
4

” 22α

γ
+ ln

“

f(n)
4

”
4β

2α/2

→ ∞ w.h.p

Note that the above choice of d ensures that simultaneous
transmissions are 2d = 2κ ln m cells apart, which is suffi-
cient to ensure a 1:1 mapping between a source node and
its eligible entry points and also between an exit point and
eligible relay nodes, as discussed in Sections 3.2.2 and 3.2.3
respectively.

Remark: Note that unlike [2, 13], we require that a given
rate R and thus corresponding SINR γ be achieved on each

link. Hence, our construction employs separate transmit
powers for the highway and draining/delivery phases, as
would the construction in [2, 13] under a similar constraint
(as noted in [2, 13]).

3.4 Time Division Multiplexing Scheme
Finally, we achieve a per-node throughput of

Ω((nf(n))−1/2) using the following TDM scheme:

1. We divide time into frames, each frame comprising one
or more time slots. When f(n) > k ≥ n, where k =
loge/2 e, we allocate a fraction 1/3 of total time frames
to each of draining, highway and delivery phases. Else,
all slots are allocated for the highway phase. Each
frame consists of 4d2 time slots, where d varies depend-
ing on the phase. Each time slot in turn includes the
time for relay selection followed by data transmission.

2. The draining and delivery phases are employed only
when f(n) < k ln n. Each cell transmits in at least one
out of 4d2 = Θ(ln2 m(n)) = O(ln2 n) time slots. From
Lemma 3.3, we know that each cell has fewer than ln n
nodes w.h.p. Hence, the per-node throughput during
each of draining and delivery phases is Ω(ln−3 n) w.h.p.

3. As shown in Lemma 3.5, each highway is accessed by at
most 2

p

nf(n) nodes. This yields a per-node through-

put of Ω
“

(nf(n))−1/2
”

in the highway phase.

From the above it is clear that the highway phase is the
bottleneck phase, and hence, the per-node achievable through-

put is Ω
“

(nf(n))−1/2
”

.

4. INDEPENDENT EAVESDROPPERS
We next derive conditions on the allowable number of

eavesdroppers while ensuring that the combined eavesdrop-
per throughput goes to 0. We start with the case where
eavesdroppers are independent and consider the case of col-
laborating eavesdroppers in Section 5.

4.1 Eavesdropping Model
We make the following assumptions about eavesdropper

capabilities.

1. Each eavesdropper has infinite computational power
and can potentially decode messages anywhere in the
network. Further, each eavesdropper can decode mul-
tiple messages at the same time.

2. An eavesdropper cannot use looks from multiple hops
to jointly decode a message, but rather has to obtain a
received SINR greater than γ for some hop of a given
message. One mechanism for ensuring this is described
in [9].

4.2 Upper Bound on Eavesdropper Through-
put

Our approach towards deriving an upper bound on the
combined eavesdropper throughput, ΨE(n), is to first deter-
mine the probability that an individual eavesdropper e can
decode a given transmission. The sum of these probabilities
over all transmissions in the network in a given time slot
yields an upper bound on the throughput of the eavesdrop-
per, denoted as Ψe(n). The product of Ψe(n) and the total



number of eavesdroppers, therefore, yields an upper bound
on ΨE(n). We note that the upper bound on ΨE(n) is the
same across all time slots.

Let Se denote the received SINR at an eavesdropper e due
to transmission by a node i located inside cell ĉi. Then,

Se =
Pn(d)|hie|2/dα

ie

N0 + Pn(d)
P

k∈R |hke|2/dα
ke

≤ |hie|2/dα
ie

P

k∈R |hke|2/dα
ke

where R denotes the set of noise-generating nodes in the
entire network. In order to derive an upper bound on Se, we
need to derive a lower bound for the sum in the denominator.

We next derive P (Se > γ) i.e. the probability that e de-
codes i’s transmission. We will see that the bound we derive
for P (Se > γ) is independent of the phase of operation. We
consider the following two cases separately:

C1 i is located at a Euclidean distance at most 2
√

2dc(n)
from e, where c(n) is the side length of a cell and is de-
fined in (2). We call i’s transmission a near transmis-
sion and the denote the receive SINR at e to be Snear

e

and the corresponding outage probability as P (Snear
e >

γ).

C2 i is located at a Euclidean distance greater than 2
√

2dc(n)
from e.

We begin with the analysis of case C1.

Snear
e ≤ |hie|2/dα

ie
P

k∈R(i) |hke|2/dα
ke

where R(i) denotes only the noise-generating nodes inside
cell ĉi. For any two events A and B, we know that P (B) =
P (B|A)P (A) + P (B|Ac)P (Ac) ≤ P (A) + P (B|Ac). Letting
A denote the event {die ≤ r(n)} and B denote the event
{Snear

e > γ},

P (Snear
e > γ) = P (die ≤ r(n)) + P (Snear

e > γ|die > r(n))

where r(n) is defined in (4). P (die ≤ r(n)) is upper bounded
as

P (die ≤ r(n)) ≤ πr2(n)

c2(n)
=

ln
“

f(n)
4

”

23+5α/2γf(n)

Thus,

P (Snear
e > γ) ≤

ln
“

f(n)
4

”

23+5α/2γf(n)
+ P (Snear

e > γ|die > r(n))

(8)
We observe that when die > r(n), it follows that dke <

2die, ∀k ∈ R(i). Thus, conditioned on die > r(n),

Snear
e ≤ |hie|22α

P

k∈R(i) |hke|2
(9)

We now derive a lower bound for the sum
P

k∈R(i) |hke|2.
Recall from Section 3.3.1 that the noise-generating nodes in-
side cell ĉi are located within a distance of r(n) from node
i. Further, the actual number of noise-generating nodes de-
pends on node i’s location. In the worst-case, i could be
located at one of the corners of ĉi, yielding the smallest
number of noise-generating nodes (in expectation). Clearly,

P
“

|R(i)| > a
”

> P (N > a) ∀a, where N ∼ Poisson(πr2(n)/4).

Similar to the analysis in Section 3.3.2, we can show using
Chernoff bounds that

X

k∈R(i)

|hke|2 ≥ πr2(n)

16
= ln

„

f(n)

4

«ν1

(10)

with probability at least

1 −
„

4

f(n)

«ν2

−
„

4

f(n)

«ν3

where ν1 = 1/(27+5α/2γ), ν2 = 4ν1 ln(e/2) and ν3 = 2ν1 ln(2/
√

e).
It is easy to see that this probability goes to 1 as n → ∞.
From (9) and (10), we conclude that

P (Snear
e > γ|die > r(n)) ≤

„

4

f(n)

«ν4

where ν4 = 1/(27+7α/2). Substituting into (8) yields

P (Snear
e > γ) ≤

ln
“

f(n)
4

”16ν1

f(n)
+

„

4

f(n)

«ν4

Noting that 16ν1 < 1, we can upper bound the right hand
side of the above as

P (Snear
e > γ) ≤

ln
“

f(n)
4

”16ν1

f(n)16ν1f(n)1−16ν1
+

„

4

f(n)

«ν4

≤ 1

f(n)1−16ν1
+

„

4

f(n)

«ν4

Noting that 1 − 16ν1 > ν4 is satisfied for all γ > 1, we
conclude that

P (Snear
e > γ) ≤

„

5

f(n)

«ν4

(11)

We now proceed to analyze case C2. We observe that ex-
cluding the 8 nearest transmissions from e, the next 16 trans-
mitters are located at Euclidean distance at least 2dc(n), the
next 32 transmitters at Euclidean distance at least 4dc(n)
and so on. Thus, relative to e the transmitters are placed
along boundaries of concentric squares of increasing size,
such that the transmitters on the boundary of the t-th (t >
1) square have distance at least 2(t − 1)dc(n) from e.

Hence, the receive SINR at e due to a transmission from a
node i located on the boundary of the t-th concentric square
(t > 1) is upper bounded as

S(t)
e ≤ |hie|2/(2(t − 1)dc(n))α

P

k∈R |hke|2/dα
ke

Noting that there is at least one transmitting cell ĉj within
Euclidean distance at most 2

√
2dc(n) from e and letting R(j)

denote the noise generating nodes inside ĉj , we get

S(t)
e ≤ |hie|2/(2(t − 1)dc(n))α

P

k∈R(j) |hke|2/(2
√

2dc(n))α

≤ |hie|22α

(t − 1)α
P

k∈R(j) |hke|2

Once again the sum in the denominator can be bounded
by (10) yielding

S(t)
e ≤ |hie|22α

(t − 1)α ln
“

f(n)
4

”ν1
, and



P
“

S(t)
e > γ

”

≤ 1

(f(n))ν4(t−1)α ≤ 1

(f(n))ν4(t−1)2

Hence, the aggregate rate at which e intercepts packets (for
each of the phases) is upper bounded (w.h.p) as

Ψe(n) ≤ 8P (Snear
e > γ) +

∞
X

t=1

8(t + 1)

(f(n))ν4t2
≤ 8ν4+1

ν4(f(n))ν4

≤ 8

„

5

f(n)

«ν4

+
16

(f(n))ν4
+

Z ∞

t=1

8(t + 1)dt

(f(n))ν4t2

≤ 8

„

5

f(n)

«ν4

+
16

(f(n))ν4
+

8

ν4(f(n))ν4

≤ 8ν4+1

ν4(f(n))ν4

where the second inequality follows from (11) and using in-
tegration to bound the sum.

From the weak law of large numbers, we know that the
number of eavesdroppers E(n) ≤ (1 + ǫ)nλe(n), ∀ǫ > 0
w.h.p. Hence, the combined eavesdropper throughput ΨE(n)
is upper bounded (w.h.p) as

ΨE(n) ≤ 8(1 + ǫ)nλe(n)

ν4

„

8

f(n)

«ν4

, ∀ǫ > 0 (12)

4.3 Scaling Laws for Allowable Number of Eaves-
droppers

We now derive scaling laws for E(n) under various con-
straints on the total eavesdropper throughput ΨE(n).

We first obtain the following theorem that follows imme-
diately from (12).

Theorem 4.1. When λe(n) = o((f(n))ν4/n), ΨE(n) = 0
w.h.p., where 0 < ν4 < 1.

Theorem 4.1 in turn yields the following relationship that di-
rectly captures the trade-off between the per-node through-
put Ψ(n) and the allowable number of eavesdroppers E(n).

Corollary 4.2. When E(n) = Ω

„

“

1√
n Ψ(n)

”2c1
«

,

where c1 < ν4, it follows that ΨE(n) = 0 w.h.p.

We can similarly derive a sufficient condition for E(n)
under a more lenient metric than the one considered above
and which allows ΨE(n) to be bounded by a constant µ > 0.
Once again, we obtain the following result directly from (12).

Theorem 4.3. When E(n) ≤
“

K√
n Ψ(n)

”2ν4

, it follows

that ΨE(n) ≤ µ w.h.p., for some constant µ > 0.

where K =
`

ν4/(1 + ǫ)8ν4+1
´1/2ν4 and ǫ > 0.

Finally, we consider an even more lenient metric than
the one above and only restrict ΨE(n) to grow more slowly
than ΨS(n), where ΨS(n) =

P

i Ψi(n) denotes the overall

network capacity and is equal to Ω
“

n × (nf(n))−1/2
”

=

Ω
“

(n/f(n))1/2
”

.

Once gain, from (12), we get the following result.

Theorem 4.4. When E(n) = Ω

„

“

n1/2c1−1/2

Ψ(n)1−1/2c1

”2c1
«

, it

follows that ΨE(n)/ΨS(n) = 0 w.h.p., for some constant
c1 < ν4.

4.4 Eavesdroppers With Multiple Antennas
We next allow the eavesdropper e to have more than one

receive antenna. In particular, we let each eavesdropper
have access to a fixed number of, say q, antennas. Similar
to Section 4.2, we define the events A = {die ≤ r(n)} and
B = {Snear

E > γ}. Then,

P (B) ≤ P (A) + P (B|Ac)

≤ 1

(f(n))ν4
+ P (B|Ac)

Similar to (11) in Section 4.2, we obtain by conditioning
on Ac that

Snear
e ≤

Pq
l=1 |hil|22α

ln
“

f(n)
4

”ν1

where |hil|2 denotes the fading gain from node i to the l-th
antenna of e. Noting that sum of q iid exponential random
variables is a q-stage Erlang random variable and applying
Chernoff bounds for the same (see Appendix A.2), we obtain

P (B|Ac) ≤

0

B

@

e ln
“

f(n)
4

”

ν1γ
2αq

(f(n))
ν1γ
2αq

1

C

A

q

≤ eq

(f(n))ν5

where ν5 = ν1γ/2α+1 and the second inequality follows from
the fact [11] that

ln x

x
≤ 1√

x
, ∀x > 0

Hence,

P (Snear
E > γ) ≤ 1

(f(n))ν4
+

eq

(f(n))ν5

≤ eq + 1

(f(n))ν5

Once again, the analysis in Section 4.2 can be trivially ex-
tended to show that, for t > 1

S(t)
e ≤

Pq
l=1 |hil|22α

(t − 1)α ln
“

f(n)
4

”ν1

Therefore,

P
“

S(t)
e > γ

”

≤ 1

(f(n))ν5(t−1)α ≤ 1

(f(n))ν5(t−1)2

and

Ψe(n) ≤ 8(eq + 4)

ν5(f(n))ν5

Therefore the combined eavesdropper throughput ΨE(n) is
upper bounded (w.h.p) as:

ΨE(n) ≤ 8(1 + ǫ)λe(n)(eq + 4)

ν5(f(n))ν5
, ∀ǫ > 0

From the above expression, it is adequately clear that apart
from a change in constants, the scaling laws derived in Sec-
tion 4.3 trivially extend to the case when nodes have q an-
tennas.



4.5 Lower Bound on Eavesdropper Through-
put

So far, we focused on deriving conditions for E(n) that
guarantee the secrecy of the system as per the various se-
crecy metrics considered. We next derive conditions on E(n)
that is sufficient to “break” the secrecy of the system.

In particular, we obtain sufficient conditions for E(n) such
that:

lim
n→∞

P (ΨE(n) = µ) = 1

for some constant µ > 0.
Once again, we will see that ΨE(n) is independent of d

and hence the phase of operation. Notice that regardless
of e’s position, at every time slot there exists at least one
transmitting node, i, such that die ≤ 2

√
2dc(n). A lower

bound for ΨE(n) immediately follows from a lower bound on
the probability that e decodes i’s transmission i.e P (Se > γ),
where

Sj =
Pn(d)|hij |2/dα

ij

N0 + Pn(d)Inear + Pn(d)Ifar
(13)

where

Inear =
X

Rk∈R(d)

|hkj |2
dα

kj

Ifar =
X

Rk∈R

|hkj |2
dα

kj

R(d) and R denote the set of noise-generating nodes at Eu-
clidean distance at most 2

√
2dc(n) and the rest of the net-

work respectively.

Letting A denote the event
n

dj,e > 2r(n), ∀j ∈ T (d)
o

,

where r(n) is defined in (4) and T (d) denotes the set of all
the transmitting nodes j such that dje ≤ 2

√
2dc(n), we can

write

P (Se > γ) ≥ P (Se > γ|A)P (A) (14)

We thus consider only the event when e is sufficiently far
away from each of the “near transmitters”. We thus avoid
having to derive an upper bound on the interference at e,
when e is very close to any of the transmitting (and hence, to
the noise-generating) nodes, by assuming outage (i.e. Se <
γ), when Ac is true.

Noting that |T | ≤ 8 and applying the union bound, we
get

P (A) ≥ 1 − 8
4πr2(n)

c(n)2
= 1 −

ln
“

f(n)
4

”

25α/2−2f(n)
>

7

8
(15)

We next derive P (Sj > γ|A) by obtaining a lower bound
on Sj under the condition that the event A holds. When A
holds, it is easy to see that dkj > dij/2, ∀R ∈ R(d). Hence,

Inear ≤ 2α+3

dα
ij

X

Rk∈R(d)

|hkj |2

Similar to the analysis in Section 4.2, we can show that the
sum

X

Rk∈R(d)

|hkj |2 ≤ 32πr2(n) = ln

„

f(n)

4

«ν6

with probability at least

1 −
„

4

f(n)

«ν7

−
„

4

f(n)

«ν8

where ν6 = 1/(25α/2−2γ), ν7 = (ν6 ln(4/e))/4 and ν8 =
(ν6 ln(e/2))/2. Therefore,

Inear ≤ 2α+3

dα
ij

ln

„

f(n)

4

«ν6

(16)

We next derive an upper bound on Ifar. Once again, we ob-
serve that relative to Ej , the transmitting nodes are placed
along the boundaries of concentric squares of inreasing size.

Let I
(t)
far denote the interference due to nodes located along

the t-th square. Letting R(t) represent the set of these nodes,
we get

I
(t)
far ≤

X

Rk∈R(t)

|hkj |2/dα
kj

The transmission scheme described in Section 3.3 ensures
that there are at most 8t transmitting nodes along the t-
th concentric square, each of which is at a distance at least
(t− 1)dc(n) from Ej . Applying Chernoff bounds, we obtain

I
(t)
far ≤ 32tπr2(n)

((t − 1)dc(n))α
=

t ln
“

f(n)
4

”ν6

((t − 1)dc(n))α

with probability at least

1 −
„

4

f(n)

«tν7

−
„

4

f(n)

«tν8

Hence,

Ifar ≤
∞
X

t=1

(t + 1) ln
“

f(n)
4

”ν6

(tdc(n))α
=

ln
“

f(n)
4

”ν6

ζ

(dc(n))α
(17)

for some constant ζ. The equality follows from the fact that
the sum

P

t (t + 1)/tα converges for α > 2.
The upper bound on Ifar holds with probability at least

1 −
∞
X

t=1

 

„

4

f(n)

«tν7

+

„

4

f(n)

«tν8
!

Noting that each of the summands above is a geometric se-
ries and upon further simplification, it is easy to see that
the above probability goes to 1 as n → ∞.

Substituting from (16) and (17) into (13) and further sim-
plification yields:

Sj ≥ |hij |2
N0dα

ij

Pn(d)
+ 2α+3 ln

“

f(n)
4

”ν6

+
dα

ij ln
“

f(n)
4

”ν6ζ

(dc(n))α

≥ |hij |2

N0(
√

2)α + 2α+1(ζ + 8) ln
“

f(n)
4

”ν6

We thus see that the lower bound of Sj is independent of d.
Therefore,

P (Sj > γ|A) ≥ e−γN0(
√

2)α
„

4

f(n)

«ν9

(18)



where ν9 = (ζ+8)/23α/2−2. Substituting from (18) and (15)
into (14), we get

P (Sj > γ) ≥ 7e−γN0(
√

2)α

8

„

4

f(n)

«ν9

From the above, we immediately obtain the following theo-
rem.

Theorem 4.5. When λe(n) = O ((f(n))ν9/n), it follows
that ΨE(n) ≥ µ w.h.p, for some constant µ > 0.

In terms of the number of eavesdroppers E(n) and the per-
node throughput Ψ(n), it can be easily verified that the
above theorem leads to the following result.

Corollary 4.6. When E(n) = O

„

“

1√
n Ψ(n)

”2ν9
«

, it

follows that ΨE(n) ≥ µ w.h.p, for some constant µ > 0.

5. COLLABORATING EAVESDROPPERS
A natural extension of our analysis in Section 4 is to

consider the case of collaborating eavesdroppers. In this
paper, we consider the special case of a single eavesdrop-
per e with Γ(n) antennas and assume that the eavesdrop-
per employs maximum ratio combining [16] to maximize the
signal-to-noise ratio at the combiner output, hence ignoring
the correlation in the chatter observed across the antennas.
The consideration of other receiver approaches and spatially-
distributed eavesdroppers are interesting open problems.

5.1 Upper Bound on Combined Eavesdropper
Throughput

Consider a transmission by a node i. Let Se denote the
combined SINR at all eavesdroppers and is expressed thus:

Se =

Γ(n)
X

j=1

Pn(d)|hi,j |2/dα
i,e

N0 + Pn(d)
P

k∈R |hk,j |2/dα
k,e

≤
Γ(n)
X

j=1

|hi,j |2/dα
i,e

P

k∈R(d) |hk,j |2/dα
k,e

where |hi,j |2 denotes the fading gain from i to the j-th an-

tenna of eavesdropper e and R(d) denotes the set of noise-
generating nodes at a distance at most 2

√
2dc(n).

Proceeding exactly in Section 4.2, we uniformly bound the
total interference at each of the Γ(n) antennas of eavesdrop-
per e. More formally, from (10) and the union bound we
get

X

k∈R(d)

|hke|2 ≥ πr2(n)

16
= ln

„

f(n)

4

«ν1

, ∀j = 1, . . . , Γ(n)

with probability at least

1 − Γ(n)

„

4

f(n)

«ν2

− Γ(n)

„

4

f(n)

«ν3

P (Snear
e > γ) ≤ 1

(f(n))ν4
+ P

0

B

@

PΓ(n)
j=1 |hi,j |22α

ln
“

f(n)
4

”k1
> γ

1

C

A

Applying Markov Inequality to bound the probability on the
right hand side, we get

P (Snear
e > γ) ≤ 1

(f(n))ν4
+

Γ(n)

ln
“

f(n)
4

”ν4
≃ Γ(n)

ln
“

f(n)
4

”ν4

Similarly, we can show that

P
“

S(t)
e > γ

”

≤ Γ(n)

ln
“

f(n)
4

”ν4(t−1)α

Similar to our analyses in Section 4, we note that the upper
bounds on the probability that e decodes a message is in-
dependent of the phase of operation. Hence, the aggregate
rate at which e intercepts packets (for each of the phases) is
upper bounded (w.h.p) as

Ψe(n) ≤ 8P (Snear
e > γ) +

∞
X

t=1

8(t + 1)P
“

S(t+1)
e > γ

”

≤ 24Γ(n)

ln
“

f(n)
4

”ν4
+

8Γ(n)

ν4 ln
“

f(n)
4

”ν4

≤ 32Γ(n)

ν4 ln
“

f(n)
4

”ν4

5.1.1 Scaling Laws For Allowable Number of Anten-
nas

Based on the analysis in Section 5.1, we can easily derive
the following scaling laws for Γ(n).

Theorem 5.1. When Γ(n) = Ω
`

(ln f(n))1−ǫ
´

, ∀ǫ > 0, it
follows that ΨE(n) = 0 w.h.p.

In terms of Γ(n) and Ψ(n) the above theorem implies the
following result

Corollary 5.2. When Γ(n) = Ω

„

“

ln
“

1√
n Ψ(n)

””1−ǫ
«

,

it follows that ΨE(n) = 0 w.h.p.

Theorem 5.3. When Γ(n) ≤ ν2
4µ

32
ln
“

f(n)
4

”

, it follows

that
lim

n→∞
ΨE(n) ≤ µ w.h.p, for some constant µ > 0.

In terms of Γ(n) and Ψ(n), we obtain the following result

Corollary 5.4. When Γ(n) =
ν2
4µ

32

“

ln
“

1
4
√

n Ψ(n)

””

, it

follows that ΨE(n) = 0 w.h.p.

Theorem 5.5. When Γ(n) = Ω

„

“

n
f(n)

”1/2

ln f(n)

«

, it

follows that ΨE(n)
ΨS(n)

= 0 w.h.p.

Once again, in terms of Γ(n) and Ψ(n), the above theorem
implies the following result.

Corollary 5.6. When Γ(n) = Ω

„

“

ln
“

1√
n Ψ(n)

””1−ǫ

nΨ(n)

«

,

it follows that ΨE(n)
ΨS(n)

= 0 w.h.p.



5.2 Lower Bound on Eavesdropper Through-
put

Similar to Section 4.5, we again derive sufficient conditions
on Γ(n) to achieve a desired eavesdropper throughput. Once
again, we know that at every time slot there is a transmitting
node i within a distance of

√
2dc(n) from e. Rewriting (13)

for the case of an eavesdropper with Γ(n) antennas, we get

Se =

Γ(n)
X

j=1

Pn(d)|hi,j |2/dα
i,e

N0 + Pn(d)
P

k∈R(d)

|hk,j |2
dα

k,e
+ Pn(d)

P

k∈R

|hk,j |2
dα

k,e

where R(d) and R denote the interference from noise-generating
nodes at Euclidean distance at most 2

√
2dc(n) and the rest

of the network respectively.
Once again from (16) and the union bound, we uniformly

bound the near interference for all antennas j thus

X

k∈R(d)

|hk,j |2/dα
k,e ≤ ln

„

f(n)

4

«ν6

, ∀j = 1, . . . , Γ(n)

with probability at least

1 − Γ(n)

„

4

f(n)

«ν7

−
„

4

f(n)

«ν8

Similarly from (17) and the union bound, we uniformly bound
the far interference for all antennas j thus

X

k∈R
|hk,j |2/dα

k,e ≤
ln
“

f(n)
4

”ν6

ζ

(dc(n))α

with probability at least

1 − Γ(n)
∞
X

t=1

 

„

4

f(n)

«tν7

+

„

4

f(n)

«tν8
!

Notice that the uniform bounds on the near and far inter-
ference go to 1, so long as Γ(n) = o(f(n)).

Se ≥
PΓ(n)

j=1 |hi,j |2
N0dα

i,e

Pn(d)
+ 2α(β + 8) ln

“

f(n)
4

”ν5
w.h.p

Noting that the numerator is a Γ(n)-stage Erlang random
variable and applying Chernoff bounds for the same, we see
that

Se ≥ Γ(n)/2
N0dα

i,e

Pn(d)
+ 2α(β + 8) ln

“

f(n)
4

”ν5
w.h.p

≥ Γ(n)

2α+2(β + 8) ln
“

f(n)
4

”ν5
w.h.p

where the second inequality follows from observing that the
first summand in the denominator is smaller than the sec-
ond. We note that if Se > γ w.h.p is sufficient to enable e
to achieve a constant throughput.

We thus conclude from the lower bound for Se that

Theorem 5.7. When Γ(n) = O(ln f(n)), then ΨE(n) =
µ w.h.p, for some constant µ > 0.

In terms of Ψ(n), we can re-write the above theorem as

Theorem 5.8. When Γ(n) = O
“

ln
“

1√
n Ψ(n)

””

, it fol-

lows that ΨE(n) = µ w.h.p., for some µ > 0 w.h.p.

6. DISCUSSION

6.1 Other Eavesdropping Models
Since we assume a powerful eavesdropper in our analysis,

it might be tempting to ask if the scaling laws improve under
weaker adversarial models, for instance, when an eavesdrop-
per can only intercept transmissions a fixed distance away.
From our analysis,we note that the probability of an eaves-
dropper intercepting a message is dominated by the near
transmissions and hence, the results do not change even un-
der this weaker model.

Assuming a jamming eavesdropper will likely not change
the results because of only a small number of eavesdroppers
relative to the legitimate nodes in the network. We also ex-
pect no change in our results when we allow eavesdroppers
to jointly decode messages across multiple hops. This can be
established when there are at least ln n nodes per cell, yield-
ing straight line routing paths and causing the message to
move farther away from an eavesdropper at each hop. Show-
ing this result in the case of winding paths is an interesting
open problem.

6.2 Other Secrecy Metrics
Our analysis begs the question of whether we could achieve

improvements in the scaling laws under a less stringent met-
ric than the one considered in this paper. An example in-
cludes a metric which constrains ΨE(n) to grow more slowly

than the aggregate network capacity ΨS(n) = Ω(n/f(n)1/2).
It is easy to see that under this metric we can improve the
allowable number of eavesdroppers by a factor of ΨS(n).

6.3 Other Fading Models
Although we assume a Rayleigh fading model in our anal-

ysis, it is easy to see that our analysis only requires an ex-
ponentially decaying tail for the fading gains, a condition
that is also satisfied by the Nakagami and Ricean fading
models [15].

6.4 Receive Power vs Transmit Power
The traditional dense network model [5], in which nodes

are placed in a disk of unit area, ignores the near-field ef-
fects and also allows the transmit power to exceed receive
power. Assuming independent fading [15] across links in
such a model is not realistic since inter-node distances shrink
to 0. In contrast, we keep the the number of nodes per
unit area fixed while only increasing the density by growing
the transmit power with n. This allows us to ignore near-
field effects and also to assume independent fading across
links. Further, by noting that distances between directly
communicating neighbors grows as

p

f(n) and the fading
gain between them is (a.s.) smaller than ln f(n) [1][pp.176],
it is easy to see that the receive power (a.s.) never exceeds
transmit power.

6.5 Achievable Secrecy in Limiting Cases
One natural question that stems from our results is can

any secrecy be achieved when operating the network at a
per-node throughput of Ω(n−1/2) (i.e. when f(n) = c2, for
some constant c). Unfortunately, in this case, we cannot
employ w.h.p arguments as done in Sections 4 and 5. We
however conjecture that for a large enough choice of the
constant c, the scaling laws apply with as large as a prob-
ability as desired. This implies that a constant number of



eavesdroppers can be tolerated with a probability as large as
desired. At the other extreme, when f(n) = n, the network
consists of a single cell and the problem reduces to a two-hop
setting studied in [17]. While [17] assumes equal path-losses
between nodes, we conjecture that an analysis accounting
for path-losses yields Ω(n1−ǫ) allowable independent eaves-
droppers.

6.6 Secrecy using Power Control
One concern with the artificial noise-generation is the en-

ergy consumption of the legitimate nodes. Indeed, it might
seem that the fading gain due to multi-user diversity can be
exploited to decrease node transmit power by a factor pro-
portional to the gain, and not employ noise-generation at all.
In this case, however, the only interference an eavesdropper
experiences is from the transmitting nodes. A straightfor-
ward calculation reveals that this interference is smaller than
that resulting from our noise-generating algorithm by a fac-
tor of ln f(n). Thus, it indicates that noise-generation is
essential to allow a number of eavesdroppers growing with
n.

6.7 Secrecy Capacity Based Formulation
Although we have adopted a packet loss/interception ap-

proach in this paper, the results are easily extended to guar-
antee a secrecy rate for each link (and, hence, for each
source-destination pair[9]). In particular, conditioned on the
fading gains, the effective transmitter-receiver-eavesdropper
channel for each link is a Gaussian wiretap channel. Hence,
one can select SINR thresholds for the receiver and eaves-
dropper at which a constant secrecy rate R is obtained. It
is then straightforward to show that identical scaling results
to what have been demonstrated here can be obtained.

7. CONCLUSIONS
This paper presented the first work studying the scalabil-

ity of keyless secrecy in a generalized network setting when
the eavesdropper locations are unknown. We described a
construction allowing nodes to generate artificial noise to
overcome eavesdroppers and yet achieving a throughput of

Ω
“

(nf(n))−1/2
”

w.h.p., where ω(1) ≤ f(n) ≤ o(n). We

showed that Ω(f(n)c) and Ω((ln f(n))1−ǫ) independent and
collaborating eavesdroppers can be tolerated while ensuring
that the eavesdropper throughput goes to 0. We also de-
rived sufficient conditions on the number of eavesdroppers
in order to achieve a non-zero throughput. As ongoing work,
we seek to improve the constants in the exponent of scaling
laws.
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APPENDIX

A. CHERNOFF BOUNDS FOR POISSON AND
ERLANG RANDOM VARIABLE

We first state the Chernoff bounds for a Poisson random
variable, which are proved in [12][pp.97-98].

Theorem A.1. Let X be a Poisson random variable with
parameter λ.

1. If x > λ, then P (X ≥ x) ≤ e−λ(eλ)x/xx

2. If x < λ, then P (X ≤ x) ≤ e−λ(eλ)x/xx

Similarly, we can also obtain Chernoff bounds for an Erlang
random variable.



Theorem A.2. Let X be an Erlang random variable with
mean k and let ε > 1. Then,

1. P (X > εk) ≤
`

ε/eε−1
´k

2. P (X < k/ε) ≤
“

e1− 1
ε /ε
”k

Proof. We derive a probability bound on the lower tail of
a k-stage Erlang random variable X. Using Chernoff bounds
for a non-negative random variable,

P (X < a) ≤ inf
t<0

e−taMX(t) (19)

where MX(t) = E[etX ] denotes the moment generating func-
tion of the random variable X. For a k-stage Erlang random
variable X with rate λ:

MX(t) =

„

λ

λ − t

«k

Using elementary calculus, the value of t that minimizes the
right hand side of (19) can be obtained as:

t∗ = λ − n

a

Therefore,

P (X < a) ≤ e−(aλ−n)

„

aλ

k

«k

Setting a = E[X]/ε = k/ελ, where ε > 1, yields:

P (X <
E[X]

ε
) ≤

 

e1− 1
ε

ε

!k

Since e1−1/ε/ε < 1 ∀ε > 1, the right hand side in the above
inequality goes to 0 as n → ∞.

The probability bound for the upper tail can be derived
similarly. In particular, for a non-negative random variable
X and a > 0, we have

P (X > a) ≤ inf
t>0

e−taMX(t)

Proceeding exactly in the same manner as before, it can be
easily shown that

P (X > εE[X]) ≤
“ ε

eε−1

”k

For ε > 1, the right hand side goes to 0 as k → ∞.


