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Abstract—Although memory is an important constraint in
embedded sensor nodes, existing sensor applications and systems
are typically designed to work under the memory constraints
of a single platform and do not consider the interplay between
memory and flash storage. In this paper, we present the design
of a memory-adaptive flash-based sensor system that allows an
application to exploit the presence of flash and adapt to different
amounts of RAM on the embedded device. We describe how
such a system can be exploited by sensor data management
applications. Our design involves several novel features: flash
and memory-efficient storage and indexing, techniques for ef-
ficient storage reclamation, and intelligent buffer management
to maximize write coalescing. Our results show that our system
is highly energy-efficient under different workloads, and can be
configured for sensor platforms with memory constraints ranging
from a few kilobytes to hundreds of kilobytes.

I. INTRODUCTION

Sensor networks have become popular in recent years
for applications such as habitat monitoring, environmental
monitoring and surveillance. Sensor network deployments
typically employ battery-powered embedded nodes with wire-
less networking capabilities. Typically such embedded nodes,
exemplified by the Mote and iMote2 platforms, consist of a
low-power microprocessor, a low-power radio, a small amount
of RAM and some flash storage. While significant research
attention has been focused on optimizing embedded sensor
applications for computation and communication, there has
been less emphasis on the interplay between memory and
flash-based storage. Presently a sensor application must be
optimized for the memory footprint of the embedded node;
since the memory on such nodes can vary from a few kilobytes
to a few megabytes, the same application needs to be de-
signed differently to yield a kilobyte- or a megabyte footprint.
This increases application design complexity, since it is non-
trivial to design a particular application to run on a range
of embedded devices with a range of memory constraints.
At the same time, since flash memories are relative cheap
and energy-efficient, most devices can be easily equipped
with relatively large amount of flash storage[9], [20]. This
trends opens up new opportunities for optimizing the interplay
between memory and flash, in particular for trading abundant
flash for scarce memory. Our work focuses on the design
of a memory-adaptive flash-based sensor system that allows
an application to exploit the presence of flash and adapt to
different amounts of RAM on the embedded device.

Specifically, we present the design of a memory-adaptive,

energy-efficient flash-based system that is tailored for data
management sensor applications. We argue that the design of
such a system requires an in-depth understanding of the inter-
action between memory constraints and flash constraints. As a
storage medium, flash has fundamentally different read/write
characteristics from other non-volatile media such as magnetic
disks. In particular, flash writes are immutable and one-time—
once written, a data page must be erased before it can be
written again. Moreover, the unit of erase often spans multiple
pages, further complicating storage management. Both flash
and memory constraints fundamentally impact the energy
consumption of a storage system: the idiosyncrasies of flash
lead to a high update cost, and the constrained memory
exacerbates the number of flash accesses.

In addition to being influenced by memory and flash charac-
teristics, a storage system should also be informed by the data
management needs of typical sensor applications. Unlike a
general purpose system, a sensor-specific data storage system
needs to be optimized for the particular characteristics and
needs of sensor data, namely that archived data is generated
as a continuous stream of observations, that may need to be
indexed for efficiently answering queries. While data storage
on flash is straightforward, design of indexes has to deal with
the lack of in-place updates on flash, often necessitating new
techniques. Further, the finite capacity of flash storage and
the need to deploy sensor networks in remote areas for long
periods without human intervention implies storage may need
to be reclaimed, especially for high-data rate sensors.

The goal of our work is to design a flash-based storage layer
that is optimized for the flash and memory constraints imposed
by sensor devices, while efficiently meeting the archiving,
indexing, and aging needs of sensor data. We show that flash
and memory constraints interact in many intricate ways, and
necessitate new design paradigms for a storage system.

A. Relation to Previous Work

While many recent efforts have targeted flash memory stor-
age management, both for sensor networks [8], [20], [30] and
for other embedded systems [2], our work is fundamentally
different in two ways. First, much of the existing work on
flash storage systems has been tailored to work under the
memory constraints of a specific target sensor platform. For
example, FlashDB is designed for Windows mobile [23],
whereas Capsule, MicroHash, and Elf are all designed for
Motes [8], [20], [30]. This makes these systems less portable
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to platforms that have less memory, and not as efficient on
platforms that have more memory. In contrast, our work seeks
to design a memory-adaptive storage system that works within
the memory constraints of a device, and can also be easily
adapted to use more (or less) memory. Second, existing work
has only peripherally addressed the problem of deletion and
garbage collection of data from flash. We tackle this problem
in detail in this paper, and provide an in-depth understanding
of how deletion impacts the costs of maintaining data on flash
as well as the mechanisms to minimize this cost.

B. Research Contributions

In this paper, we present a novel flash storage and memory
management system for sensor databases that optimizes energy
consumption under flash and memory constraints. Our work
has four major contributions.

• Storage and Index Layer Primitives and Optimiza-
tions: Our system provides: (a) storage-layer primitives
that are designed to mask the idiosyncrasies of flash, but
at the same time enable efficient index construction, and
(b) index-layer optimizations that enable design of flash
and memory-efficient index structures.

• Memory-Adaptive Data Structures: In our storage sys-
tem, all the data structures used for book-keeping are: (a)
flash-based to minimize memory footprint, (b) energy-
optimized by minimizing reads, writes and erases on
flash, and (c) memory-aware to be able to adapt to sensor
platforms with diverse memory constraints.

• Efficient Storage Reclamation: Our storage system is
designed to support diverse reclamation strategies for
indexes and data, while minimizing the energy overhead
of aging by eliminating expensive movement of data.

• Energy-Optimized Buffer Manager: Since limited
memory on sensor nodes needs to be shared by numerous
flash-based components, we present an energy optimized
buffer manager that allocates memory buffers across dif-
ferent flash-based storage components while considering
the interactions between them.

We have implemented our storage and memory manage-
ment system on the iMote2 platform running Linux and
have conducted a detailed evaluation using different sensor
workloads and memory constraints. Our results show that
our system can scale across a wide spectrum of memory
constraints from a few KB to 100s of KB, while optimizing
energy consumption given these constraints. We also show
that our buffer allocation strategy performs better than other
allocation strategies like equal allocation and application rate-
based allocation by upto 50% and 33.33% respectively, and
adapts to different sensor workloads. We provide a number of
optimizations that enable the construction of indexes tailored
to flash and memory constraints, and evaluate them for B-
trees, interval trees, and inverted indexes. We also provide the
ability to tradeoff construction cost for querying cost, thereby
adapting to the application workload. Finally, we provide two
case studies and demonstrate that our system can be used

to design an efficient image search engine, and an efficient
temperature monitoring system.

II. INTERACTION OF MEMORY AND FLASH CONSTRAINTS

Why does memory matter for the design of a flash-based
storage system for sensor platforms? To answer this question,
we start with a brief background on flash constraints. We
then take a simple example of a tree-based structure on
flash, and discuss how different design tradeoffs are impacted
by memory constraints. Finally, we articulate several design
principles that result from these constraints.

A. Background

We focus on raw NAND flash memories in this paper since
they are the most energy-efficient flash media [10]. While
many other types of flashes or flash packagings are available
(e.g. NOR flashes, SD cards), we defer a discussion on how
to handle these flash types to Section III-E.

Although NAND flash is an energy-efficient non-volatile
storage medium, it is fundamentally different from other
devices such as disks due to its no-overwrite nature—once a
data page is written to flash, it can not be updated or rewritten
and must be erased before being written again. Thus, a read-
modify-write cycle on traditional storage devices becomes a
read-modify-erase-write operation on flash. The smallest unit
that can be erased on flash, termed an erase-block, typically
spans a few tens of pages. The mismatch between flash write
and erase granularities makes a read-modify-write-operation
prohibitively expensive since it requires copying all valid
pages within the erase block, then erasing the block, and finally
copying the valid pages and updated page back to the block.
Therefore, it is preferable to write the updated data page to
a different location, rather than erasing and rewriting the old
block; thus updates result in a read-modify-write elsewhere
operation, requiring a different set of storage optimizations
from traditional devices that support in-place updates.

B. Index Case study

The no-overwrite nature of flash is well-suited for archiving
streaming sensor data, since such data is written to flash in an
append-only fashion (and is typically not updated after being
archived). However, it is particularly ill-suited for maintaining
mutable data structures such as indexes (trees, lists, tables,
etc). This is because each index must be constantly rewritten
to flash when it is updated.

Consider, for instance, a canonical multi-level tree-based
index. Such a basic index can be used to build an array, B-
tree, and other structures, and is fundamental to our storage
system. Each internal tree node maintains pointers to all its
children nodes (each child node is a data page on flash), and
the leaf nodes of the tree contain keys. Since sensor devices
are memory-constrained, only a subset of the tree nodes can be
maintained in memory at any given time. Memory constraints
impact the cost of such a tree-based index in many ways:

Cascading Updates and FTLs: Consider the case when a
leaf node in the tree is updated. A leaf node update involves
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reading the node from flash, updating it, and writing it to a new
location (to avoid a costly erase operation). Since the physical
location of the leaf node has changed, the corresponding
pointer in its parent node must be updated to point to the new
location. This triggers an update to the parent node, requiring
it to also be written to a new location, and so on, all the way to
the root node of the tree. Thus, a single update can potentially
trigger up to k writes in a k-level tree.

In many existing flash systems, such “cascading updates”
are avoided by employing a flash translation layer (FTL) that
hides the complexity of such updates by exporting logical
page numbers and internally changing the logical to physical
mapping upon each update to a logical page. In this case,
pointers to child nodes of the tree point to logical page
numbers that do not change even through the physical page
number changes after an update. However, the FTL is a very
large data structure since it has a logical-physical mapping
for each page (e.g. ranging from 128KB to 2MB depending
on the size of flash and the allocation granularity [15]). This
overhead exceeds the total memory on most sensor devices.
Of course, one could maintain an FTL on flash, but since the
FTL is itself a logical-to-physical index that is also maintained
on flash, update of the FTL on flash incurs additional cost. 1.

Thus, the first challenge is how to obtain the benefits of
FTLs for storing mutable data on flash while not incurring
the overhead of maintaining a large FTL on flash.

Caching: Given the “no-overwrite” constraint imposed by
flash, judicious use of memory can vastly improve the energy-
efficiency of a storage system, especially when there are
multiple mutable flash-based data structures. In particular, the
greater the amount of memory used to cache dirty pages
of such a structure, the greater are the opportunities for
write coalescing, i.e. updating the memory buffer rather than
triggering out-of-place updates on flash. In practice, we have
observed that, for some flash-based data structures, even a
small increase in the amount of memory given to a flash-
based index can have a large benefit in energy consumption
(for example, about 2× reduction when memory is increased
from 1.5 KB to 2.5 KB). While caching is important for all
mutable structures that use flash, different components in the
system can benefit to different extents by using more caching.
Thus, on low-memory embedded platforms, it is important to
allocate memory to components that benefit most from it.

Thus, a second challenge is allocating memory for caching
across various components to minimize overall energy use.

Storage Reclamation: When flash space runs low, the system
needs to “garbage-collect” itself, i.e. to purge out the old
invalidated copies of its nodes on the flash similar to segment
cleaning in log-structured filesystems [25]. However, storage
reclamation can be expensive since in each erase block, a few
pages might be invalidated whereas others contain valid data.
To free an erase block worth of data, valid data from the erase

1SD cards have an on-board micro-controller which maintains an FTL,
however, this comes at higher energy cost. (The difference between raw
NAND and SD card energy consumption is more than an order of magnitude
[9])

block needs to be copied out to a different location, before
erasing the block, thereby incurring significant overhead.

Thus, a third challenge is optimizing the flash-based storage
substrate to limit the overhead of out-of-place updates and
consequent storage reclamation.

C. Design Principles

The flash and memory constraints articulated above yield
the following design principles for our storage system:

Principle 1: Support multiple storage allocation units and
align them to erase block boundaries whenever possible.
To minimize reclamation costs, the storage layer enables
applications to specify the appropriate granularity of alloca-
tion/deallocation units, thereby providing a balance between
energy-efficiency and application needs. For example, the
sensor data can have a large allocation unit that is aligned to
erase block boundaries to minimize reclamation cost, whereas
indexes can use a smaller unit aligned to the node size.
The storage layer also provides a number of mechanisms to
facilitate the use of large allocation/deallocation units.

Principle 2: Implement smaller localized FTLs only when
mutable data is stored.
Although a flash translation layer provides a key benefit by
hiding the changes to a physical page location every time
a page is updated, maintaining an FTL for the entire flash
imposes high overhead for memory constrained devices. To
preserve the benefits of an FTL without incurring its high over-
heads, we maintain smaller FTLs for regions of flash where
mutable data is stored (sensor data is immutable whereas
indexes are mutable). Such “localized” FTLs are inexpensive
to maintain on flash, or may fit completely in memory.

Principle 3: Design all data structures in the system to
be tunable memory-wise and apportion memory across data
structures to minimize overall energy consumption.
Scalability across memory constraints (1KB - 1MB) requires
that different data structures used by the storage layer be tun-
able to memory-size by configuring the number of buffers that
they use. In addition, there needs to be judicious apportioning
of limited memory resources across different data structures
that use flash memory in order to extract maximum savings
via write coalescing—a particularly important issue for no-
overwrite devices such as flash.

Principle 4: Provide storage-layer primitives and index-
layer optimizations to design flash and memory-optimized
index structures.
The design of indexes tailored to flash and memory constraints
is a complex task. To facilitate such design, we provide
storage-layer primitives that transparently optimize indexes
that have not been designed for such constrained systems. We
also provide specific index-layer techniques that can enable
indexes to be tailored for flash and memory constraints.

III. SYSTEM ARCHITECTURE

Our storage system has three key components: the Storage
Layer, the Index Layer, and the Buffer Manager (as depicted
in Fig. 1) that provide the following services: (i) storage
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allocation across application needs, (ii) index management to
facilitate indexing of data on flash, (iii) storage reclamation
to handle deletions and reclamation of storage space, and
(iv) buffer management to allocate memory buffers across all
active streams and key system-maintained data structures. Our
system maintains several metadata structures on flash, which
are summarized in Table I.

A. Storage Allocation

The storage allocator allocates storage space, upon request,
to each active sensor stream. At the highest level, flash is
divided into fixed size volumes, each of which can be allocated
to different active streams. Volumes can be of two types: user
volumes and system volumes. A user volume is used to store
one or more sensor streams and/or indexes. A system volume
is used to store internal system data structures, and is not
directly accessible by applications.

Within a volume, storage is allocated at the granularity of a
partition. While partitions can be of any size, the choice has
a significant impact on overall performance when reclamation
is needed. A small allocation unit that is significantly smaller
than an erase block (e.g. a flash page or sub-page granularity)
greatly increases reclamation costs. In each erase block, a few
pages might be invalidated whereas others contain valid data.
This will incur a high cost of copying valid data when an erase
block worth of data needs to be freed, as explained above. In
contrast, if the application is designed to use an erase block
as the unit of allocation, storage reclamation is inexpensive
since the invalidated erase blocks can be erased to make space.
However, a large partition is inconvenient for index structures
such as a B-tree, which use nodes that are much smaller than
an erase block. In this case, a page or sub-page partition may
be more convenient. Note that although storage is allocated
and reclaimed at the granularity of a partition, it is different
from the read/write granularity, which can be done at the
granularity of an individual page or sub-page (if the flash
allows multiple writes to a page). This helps reduce memory
overheads (smaller I/Os imply smaller memory buffers).

A free partition list is maintained on flash for each volume,
to track free partitions. In addition, storage reclamation is

Module Structure Description Construction
Storage Free partition track free partitions array on flash (impl.
Allocation list in volume as an n-ary tree)
Index FTL FTL for requested in-memory table
Management (agnostic) volume/partition (small FTL) or array

on flash (large FTL)
FTL FTL with deltas in-memory table if
(delta-based) and consolidation small or array on

flash if large
Storage
Reclamation

Invalidation
table

stores whether par-
tition is valid or not

array on flash

Priority table stores the priority
level of partition

bitmap index

Temporal log stores time of parti-
tion creation

simple log on flash

Partition map stores owner of par-
tition for callback

array on flash

TABLE I
SYSTEM METADATA STRUCTURES
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Fig. 2. Flash optimized index illustration.

invoked to free space if no free space is available in the
volume. All storage allocation requests are handled through
an API exposed to upper layers. Each allocation request must
indicate whether the partition/volume is mutable or not; if
mutable, an FTL is created for the appropriate allocation unit.

B. Index Management

The index management module provides a variety of prim-
itives, both at the storage and indexing layers, to facilitate the
construction of indexes under flash and memory constraints.

1) Storage-Layer Optimizations: We support two ap-
proaches to allow a generic index structure to deal with the
lack of in-place updates on flash.

Flash-agnostic structures: The first primitive enables in-
dexes to update pages on flash in a manner oblivious to the no-
overwrite constraint of flash. This is achieved through the use
of a flash translation layer (implemented in software) which
exports logical page numbers to upper layers and maintains
a mapping of logical page numbers to their actual physical
locations. While FTLs are commonly used in flash storage
systems, a unique aspect in our system is that it employs FTLs
only for partitions/volumes where it is requested.

Flash-optimized structures: FTLs simplify the design of
upper layers by hiding flash idiosyncrasies, but they incur high
energy cost since each update, regardless of its size, triggers
an out-of-place page rewrite. This is especially wasteful when
only a small fraction of page is modified (e.g., insert of a
single key in a B-tree node), causing the entire page to be
rewritten. To optimize for small updates, we support the notion
of a delta. A delta is a self-describing structure that compactly



5

represents an incremental update to a page. For instance, while
inserting keys to a B-tree node, the index layer can specify the
key and inserted position as a delta. Fig. 2 illustrates a B-Tree
implemented using a FTL with a delta list.

If a node has many updates, the list of deltas can be very
long, resulting in significant overhead for reads. To balance the
read and write costs, we use a consolidation scheme (similar
in spirit to FlashDB [23]). The key idea is to keep growing
the “delta chain” until the overhead incurred for reads exceeds
the savings obtained from reducing the number of writes. At
this point, the delta chain is merged with the original node,
and a consolidated node is written to flash.

2) Index-Layer Optimizations: Despite the storage layer
optimizations, the cost of building an index on flash is often
too expensive on low-memory platforms due to a large number
of out-of-place updates. Next, we describe how indexes can
often be re-designed to minimize out-of-place updates so that
they are more efficient under memory and flash constraints.
We describe our approach in the context of two data types —
temperature and images. In the case of temperature trace, we
assume that each reading is being indexed, and in the case of
an image, features within each image are indexed.

For the temperature data type, we construct an interval B-
tree, where the index entries in the leaves of a tree are modified
from a single value to a value interval. Fig. 3(a) illustrates such
a structure. The top layer is a tree search structure over the
intervals. Intervals are stored in the leaf pages of the tree, as
shown in layer (2). Each interval points to a list of pages that
contain readings (more precisely, addresses of those readings
on flash) belonging to this interval, as shown in layer (3).
In our system, the list for each interval is implemented as a
reverse linked list of pages, i.e., the most recent page is at the
head of the list. The interval bins can be determined using a
dynamic construction approach similar to Microhash [30]; we
do not discuss this procedure in detail.

This structure has two key benefits. First, the interval bins
can be adapted such that the tree search structure can be
maintained in memory, while only the tail of each list needs
to be stored on flash. Since the tail is append-only, it does not
result in out-of-place updates, unlike a generic B-tree. Second,
interval bins are particularly effective when data is temporally
correlated (e.g. weather readings), since consecutive readings
often fall into the same interval, leading to good caching
behavior in index construction.

The technique that we outlined above can be used for
other index structures as well. We use a similar approach
to design an inverted index that is used for image search.
Image applications usually extract a subset of distinct features
(identified by their feature IDs) from each image, index the
features in each image, and later retrieve those images with a
particular feature. An inverted index is a common index for
image features, where each unique feature has a list of image
IDs. Constructing a generic inverted index on flash is very
costly, because there are many thousands of distinct features
in the index, resulting in numerous out-of-place updates of
their Image ID lists. Our system adapts an inverted index by

(1) B-tree 
index over 
intervals

(2) Intervals 
in leaf pages

(3) Reverse 
linked lists

[l1,u1] [l2,u2] [l3,u3] [l4,u4] [l8,u8] [l9,u9]

G1 G2 G3 ... GK

feature ID h( )key value (1) 
Hash 
function

(2) Groups

(3) Reverse 
linked lists

(a) Interval-based B-tree (b) Group-based Inverted Lists

Fig. 3. Optimizing Index structures for flash.

hashing each feature to a group and building an inverted list
only for each group, as shown in Fig. 3(b).

3) Granularity of Index Construction: A key question in
index management is: what should be the granularity of index
construction? In particular, should a single global index be
constructed over all the sensor data, or are there benefits of
constructing smaller indexes over a contiguous subsets of the
stream (e.g. over a partition or over a sequence of K values)?
We discuss the tradeoffs in the context of the above-described
interval tree over temperature data. Building an index for
each partition may allow cheap index construction. Since a
per-partition index deals with a smaller data set and often a
smaller range of distinct values to index, it is possible to have
a compact representation of the per-partition index so that it
(almost) entirely fits in memory. However, the downside of
per-partition indexing is that querying cost can be high since a
query may have to scan across multiple per-partition indexes,
instead of just looking up a single global index. Therefore,
such an approach is more appropriate for applications where
the query load is low or where queries only need to retrieve
data from a few partitions. Details of these techniques and
how the per-partition indexes compare with global indexes are
described more in the case studies in Section V.

C. Storage Reclamation

Our system deletes partitions to reclaim storage space
whenever the free space in the system falls below a pre-
defined threshold. We support multiple mechanisms to reclaim
partitions. The “default” approach is one where upper layers
invalidate partitions that they no longer use, and the storage
system reclaims these partitions when storage space is low. For
example, when a B-tree is maintained on flash, this approach
invalidates old copies of rewritten nodes. In addition to this,
we provide two specialized mechanisms that are tailored to
typical sensor data deletion needs:

Priority-based Aging: Here, each partition is assigned a
“priority” that captures how important the data in the partition
is to the user. (For example, a partition with event data might
be considered more valuable than one without event data.) We
assume that there are a small number of priority levels (e.g. 8
levels). For each of these priority levels, we maintain a bitmap
index [24], where each partition is represented by a single bit
that represents whether the partition is of the specified priority.
For reclamation, the partitions of lowest priority are found by
scanning the bitvectors in the descending order of priorities.
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The bitmap index is highly packed, and hence requires very
few operations to access.

Time-based Aging: Our system also supports temporal
aging of sensor data. The age of the partition is its creation
time, which causes the oldest partitions to be reclaimed first.
This is implemented by a simple log of partition numbers on
flash. Each time a partition is closed (or timestamped), we add
its partition number to the tail of this log. During reclamation,
we delete partitions from the head of the log.

When the automatic aging methods decide to delete a parti-
tion, the owner of the partition (e.g. a data stream) is notified
of its impending deletion via an up-call; such notifications
allow the owner to perform any book-keeping operations as
needed. To efficiently determine the owner of each partition
that is being deleted, we maintain a partition map on flash;
the map contains metadata for each partition, including its
owner. Upon deletion, the partition is inserted into the free
partition list for subsequent allocation. The partition version
number, also maintained in the partition map, is incremented
to protect higher layer structures from stale references to a
partition after it has been deleted.

All data structures in our system, with the exception of
the temporal log, are implemented as multi-level N-ary trees
(which allows for efficient implementation of an array or table
on flash). The leaf pages constitute an array of entries and the
non-leaf pages serve to guide the path to the appropriate leaf
page containing the entry of interest. Each data structure is
assigned a volume on flash (in the system area) and is designed
to garbage collect itself. Each update to a tree page causes it to
be written to a new location on flash and old invalid pages are
periodically garbage collected by moving valid pages within
the reclaimed erase blocks to new locations.

D. Buffer Management

In this section we consider the problem of allocating the
total system memory among different system components to
minimize the total energy cost. The buffer manager provides
a buffer cache to every component in our system that uses
the flash2. The buffer cache lowers flash I/O cost for each
component by increasing cache hits for flash read requests
and yields write coalescing benefits, thereby reducing rewrite
costs. The allocation of buffers across different components is
done based on the results of an a priori analysis using training
data, as detailed below.

Since typical sensor platforms do not efficiently support
dynamic memory allocation[18], our current design focusses
on apriori allocation of memory among different components.
Assume that we have M buffers of available memory, where
M is governed by the hardware platform and the memory
already used up by application and OS code pages. The buffer
allocation problem can be formally stated as: How can we
apportion M among each active stream and system structures
to minimize the total energy costs of storage operations. In
order to solve this, we proceed in two steps. We first determine

2We use an LRU eviction policy in our current implementation.

the energy cost/benefit of allocating a certain amount of mem-
ory to each component. Then, we partition the total memory
based on these individual costs so as to minimize overall
system-wide energy consumption. Based on this analysis, we
determine how many buffers to allocate to each component.

Energy-Memory Profiles: For each active stream or system
structure, the first step is to quantify the total I/O energy costs
incurred for different memory allocations. This relationship
between different memory allocations and the corresponding
I/O cost for each allocation is referred to as the energy-
memory profile of that stream or data structure. We assume that
such energy-memory profiles are derived offline for each data
structure/stream and specified a priori to the buffer manager.
The profile may be derived by offline profiling, where a trace
of I/O requests is gathered, one for each possible memory
allocation while keeping the workload and other parameters
fixed. These empirical traces then yield the total I/O costs for
different memory allocations.

Buffer allocation: Once the energy-memory profiles are
obtained, the buffer allocation can be done as follows. The
energy consumed by the storage system is the sum of costs of
updating storage system metadata structures during partition
allocation, as well as erase and data movement operations
during storage reclamation. Note that storage reclamation is
not required the first time that the flash is being filled. The
energy consumed by the data management module has two
parts: (a) writing data as well as indexes to flash, and (b)
reading index pages from flash during both index construction
(reads of prematurely evicted pages, if any) and querying.
The cumulative energy cost includes the storage cost and
the data management layer cost. Given the energy-memory
profiles of each data structure, the overall buffer allocation
problem simply involves minimizing this cost function, given
the constraints of the minimum amount of memory that each
data structure needs. This can be easily computed using a
standard optimization package.

Inter-component interactions: The above buffer allocation
may not be optimal since it assumes independence and ig-
nores interactions between components. For example, if an
application index structure is allocated less number of buffers,
it may write more often to flash, since it evicts more dirty
pages. This can result in reclamation being triggered more
often since the volume/partition fills up sooner, which in
turn can result in more accesses to system data structures
maintained for reclamation, thereby increasing its energy cost.
Such interactions often depend on a number of parameters
including the type of index and its cache behavior, data/index
layout on flash (per-partition vs global index), etc.

We observe two common types of interactions. First, for a
per-partition index that is co-located with data, less memory
for the index can result in a data+index partition filling up
sooner, thereby triggering more storage allocation/reclamation.
The second case is when a global index in a separate volume
uses a large FTL that needs to be maintained on flash. Here,
the number of buffers allocated to the index impacts its flash
access pattern, and hence FTL cost. In both cases, we jointly
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construct the energy-memory profiles for the interacting com-
ponents, and use them to solve buffer allocation. For example,
in the co-located partition case, we use the energy-memory
profile of the index to determine the rate at which the index
writes to flash as a function of memory, and use this trace to
determine how it impacts storage allocation/reclamation costs.

E. Handling SD cards and NOR flashes

While we have focused on NAND flash in our discussion,
sensor nodes are often equipped with SD cards and NOR
flashes. On a device with an SD card flash, it is not possible to
directly control where the data resides on flash since the on-
board microcontroller handles them. This makes it difficult
to align partitions to erase blocks to simplify reclamation.
However, the use of large partitions has the secondary benefit
that data is written to flash in a more serialized manner,
hence it can indirectly reduce energy overhead incurred by the
card. Many techniques that we have proposed are, however,
useful even for SD card-based sensor systems, including: (a)
storage/memory allocation across applications, (b) optimized
index construction schemes, and (c) priority/temporal aging
capability. In contrast to NAND flashes and SD cards, NOR
flashes tend to be smaller in size (e.g. the Telos mote NOR
flash has only two erase blocks), hence block-sized partitions
or reclamation may not be possible. In this case, the primary
benefit of our system is optimized index construction.

IV. IMPLEMENTATION

We have implemented a prototype of our storage system
on the iMote2 [7] platform running Linux. Our system is
written in C++, and consists of a few thousand lines of code
that implement the storage allocator, indexing module, and the
buffer manager. Currently, the iMote2 platform only supports
SD cards with onboard hardware flash controllers and lacks
support for raw NAND flash storage. Consequently we wrote a
“pseudo driver” to emulate a raw NAND flash store comprising
a 1Gb (128 MB) Toshiba TC58DVG02A1FT00 NAND flash
chip [27]. The emulated storage device has a page size 512
bytes, and an erase block size of 32 pages. This flash chip
has been accurately measured and profiled in a recent work
[20], and we use the results from this measurement study
for accurate emulation—a page read, write and a block erase
consume 57.83 µJ , 73.79 µJ and 65.54 µJ respectively. Each
buffer cache had a buffer size of 512 bytes, to match the page-
write granularity of the underlying flash.

The index layer has an in-memory FTL and on-flash FTLs
(non-delta based and delta-based). We have also implemented
three types of flash-based indexes including a B-tree, an
inverted index, and an interval tree. (Due to time constraints,
the inverted index and the interval B-tree are implemented as
a stand-alone emulator, and not integrated with the rest of
our system.) For all the above indexes, we have implemented
a per-partition as well as a global variant as discussed in
Section III-B. In addition to these complex indexes, we also
support simple data structures like logs and queues, in a
manner similar to that described in [20].

V. EXPERIMENTAL EVALUATION

In our evaluation, we used three types of data and index
workloads for micro-benchmarking and use case studies: The
Uniform stream has uniformly distributed keys. We used this
workload primarily to micro-benchmark our system (§ V-A).
The Temperature stream contains temperature readings ob-
tained every 15 minutes, since Jan. 1, 2007, from a local
weather station. We use this trace both for our memory
allocation benchmarks (§ V-A5) and for a storage and indexing
case study using the interval tree (§ V-C). The Image stream
contains 1985 images from the Oxford buildings dataset [31].
Each image has roughly 1000 features, and there are 1 million
unique features across all images. The features extracted from
those images are indexed using an inverted index. We use this
trace in our image storage and indexing case study (§ V-B).

A. Microbenchmarks

Our first set of experiments evaluates individual components
of our storage system. Unless otherwise mentioned, we use the
B-tree index and the Uniform trace in these microbenchmarks.

1) Impact of Partition Size: How should partition sizes be
chosen to minimize energy consumption?. We consider three
partition allocation strategies: sub-page allocation, i.e. smaller
than a page; equal to a page; and aligned to an erase block.
For this experiment we wrote 256 MB of data over a 128 MB
sized flash. We used priority based aging, where the priorities
were randomly chosen by the application. Fig. 4 shows that
for partition sizes less than a block, the cost of accessing
the storage layer(SL) metadata increases greatly, primarily
because of the larger size of the SL structures. In addition,
for partitions smaller than an erase block, there is considerable
data movement before an erase to move valid pages from erase
blocks that are intended for deletion. In contrast, the block
based allocation has zero data moving cost and a very low
metadata maintenance overhead.

In summary, aligning partitions to erase block boundaries
is highly efficient, and should be adopted when possible.

2) Flash-Agnostic vs Flash-Optimized Indexes: We now
evaluate the relative merits of a flash-optimized (delta-based)
versus a flash-agnostic B-tree index. For the flash-optimized
index, three types of deltas were used for: (a) insertion of a
new key, (b) movement of a key from one node to another, and
(c) update of a child pointer. In this experiment, we inserted
5000 keys chosen from a uniform distribution into the index,
and queried all the keys back. This was done for different
choices of memory allocated to the index. We assumed that
the buffers used for construction and querying were not shared,
hence there were no caching effects to distort the results.

Fig. 5(a) shows that the flash-optimized index has consid-
erably lower construction cost, per value inserted, than the
flash-agnostic index (more than 3x improvement for 6 KB
memory). This is mainly because the flash optimized B-Tree
avoids rewriting nodes for small updates and thereby lowers
the construction cost. However, this increases the read cost for
some nodes, as a long delta chain might need to be read to
reconstruct them. Fig. 5(b) shows that this increases the query
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Fig. 5. Flash-agnostic vs Flash-optimized indexes.

Structure Min (B)
4*Storage Priority Table 184 + 1 buffer
Layer (SL) Free partition list 105 + 1 buffer

Partition Map 356 + 1 buffer
3*Index Buffer pool (size k) 64 + 4*k + k buffers
Layer (IL) In-mem FTL 6 * #elements + 28

In-mem FTL+Deltachain 10 * #elements + 24
On flash FTL 116 + 2 buffers

TABLE II
STORAGE AND INDEX MANAGEMENT LAYER MEMORY CONSUMPTION

BREAKUP IN BYTES

cost (per value queried) of the flash-optimized index (by about
10% for 1.5 KB memory).

Since the improvement in construction cost far outweighs
the reduced query performance, a flash-optimized index is
generally more efficient than a flash-agnostic one, with the
exception of query-heavy workloads.

3) Storage Reclamation: We now evaluate the efficiency of
storage reclamation. In particular, we look at the benefits of
using a bitmap index for priority-based deletion as opposed to
keeping it as an array on flash. The priority based bitvector is
a collection of 8 bitvectors, one for each priority (as explained
in section III-C). We assume that each reclamation operation
involves locating a single partition that has the lowest priority
and deleting it. Since the reclamation index is exercised
whenever a partition is reclaimed, its energy cost is measured
per partition reclamation.

Fig. 6 shows the performance of the two implementations
versus the amount of memory given to them. An array-based
implementation would typically require a full scan of the
priority table to locate the lowest priority partition. In contrast,
the bitmap index is already sorted on priority and the 8
bitvectors are simply walked in descending order to locate
the lowest priority partition. The sharp dip in the both the
curves is because, beyond 4 KB, the memory allocation in
either structure is sufficient to minimize flash accesses.

Thus, we observe that the bitmap index is an efficient storage
reclamation data structure.

4) System Memory Overhead: Table II shows the breakup
of minimum and maximum memory required for different

components of our system in the case of a 128MB flash with
1 erase block partition size. The memory for each component
includes metadata, and buffers. Buffers are required due to
restrictions on the granularity of flash writes. It can be seen
that for a buffer size of 512 bytes, our storage layer can easily
fit within about 2KB of RAM. Note that this overhead can be
easily reduced by reducing the buffer size. For example if a
flash allows 2 writes to a page, we only need a buffer size of
256 bytes, thereby reducing the SL memory consumption to
just above 1 KB.

Our Index layer is equally memory efficient. For example,
the size of the in memory FTLs depend on the number of
elements (i.e. the number of nodes in the index). For example,
for a per-partition index having 32 pages, the FTL has at at
most 32 entries (assuming the size of the node equals a page).
The flash optimized FTLs only require an additional 4 bytes
for each entry. Similarly, our global FTL is implemented as a
multi-level tree and only requires two buffers to maintain an
entire FTL for 256K nodes.

These results demonstrate that our system is memory-
optimized and can scale from low memory sensor platforms
(few KB) to larger memory platforms (100s of KB)

5) Buffer Management Evaluation: Next, we evaluate the
performance of the energy-optimized memory manager. We
consider the Uniform and Temperature traces in this study,
and a per-partition flash-agnostic B-tree index constructed over
these traces. A partition size of one erase block (16KB) is
assumed, which can store a few thousand data records. The
index is assumed to be co-located with data within the partition
for easy reclamation. For this experiment, we inserted one
million records into the system. Our evaluation is in two parts.
First we show the energy-memory profile of the B-tree index,
as an example, and then we compare our memory allocation
scheme against other alternatives.

Energy-memory profile: Fig. 7(a) shows the energy con-
sumed by the B-tree index for each value inserted, for the
Temperature and Uniform streams. The energy consumed by
the index is a function of the number of premature evictions
experienced by it, which reduces as the amount of memory
increases. Since the Temperature data is temporally correlated,
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Fig. 7. Performance of memory allocation.

its index exhibits better locality than the Uniform stream,
hence it is able to exploit available memory better. The
increased locality translates to fewer premature evictions and
hence lower energy consumption (by more than 4x for 1 KB).

As described in Section III-D, the memory allocation also
needs to capture cross-layer interactions between data man-
agement and storage layers. As the memory given to the
per-partition index reduces, it wastes more pages and hence
allocates more partitions, thereby increasing the cost of the
storage layer. We capture such interactions in a joint manner,
by using the rate of partition allocation for the data + index to
guide the energy-memory profile of the storage data structures
in our system. We first express the rate of partition allocation
as a function of the index memory, and then use that to derive
an expression for the total (index + storage layers) energy cost.
The detailed derivation is omitted due to lack of space.

Memory allocation: We now evaluate the overall perfor-
mance of the memory allocation strategy. This experiment has
two input streams, Temperature and Uniform. The write rate
of the Temperature stream is twice that of the Uniform stream.
We compare our strategy with two other approaches: (a) Equal
allocation is a baseline strategy that is completely blind to the
system parameters and allocates equal amounts of memory to
each system component, (b) Rate-Min is a rate-based strategy
that allocates the minimum amount of memory necessary to
the storage layer data structures (1 buffer each for the three
structures), and splits the rest of the memory across the two
streams in proportion to the rate of the streams (i.e. 2:1 with
higher memory to the Temperature stream).

Fig. 7(b) shows that Equal allocation does the worst as it is
completely agnostic of the system behavior. Since the rate of
updates to the storage layer is far lower than that to the index,
the Rate-Min policy correctly gives the lion’s share of memory
to the application indexes to reduce index construction costs.
However, it performs worse than our approach since it does
not take into account the actual energy-memory profiles of the
different structures. In contrast, our scheme is able to reduce
the total system energy consumption compared to the Rate-
Min and Equal allocation schemes, by upto 33.33% and 50%
respectively.

Thus, our memory allocation policy is able to allocate mem-
ory in an energy-optimized manner by taking into account the
energy-memory profiles of each component and by accurately
capturing cross-component interactions.

B. Case Study: Image Storage and Indexing

In this case study, we consider an image retrieval application
that needs to store images on flash, and answer queries of
the form: “Find all images that match a given target image”
[32]. We use the Image stream trace in this case study. We
assume that this application needs to be designed using sensor
platforms similar to Yale XYZ [33], which has about 256KB
of memory in total, of which we assume that 64KB is available
to our system (the rest is used by the OS and image processing
software). We consider a 2 GB flash, with a 512 bytes page
size and a 16 KB block size, for use by the application.

Configurations of our storage and indexing system: Our
system stores image features using the group-based inverted
index as described in Section III-B, which maintains a list
of image Ids for each group of features. This index is used
to support queries that retrieve images containing a specific
feature. Images are aged in order of priority, captured by
their tf-idf scores; that is, images with lower scores are aged
earlier than those with higher values. We consider two system
configurations for storage, indexing, and reclamation:

Global Index: In this configuration, a single large data
volume contains all the images, and a separate index volume
contains an inverted index over all images. The data volume
uses a partition size of 4 erase blocks (64KB) to enable
reclamation at a single image granularity, yielding about 32K
partitions to be managed by the storage layer. Hence each of
the SL data structures has at most three levels.

We prioritize memory allocation to the index over the SL,
because the SL data structures are only activated for each
partition allocation, whereas the index is updated thousands
of time for each image (as there are thousands of features for
each image). Thus we give each SL structure 1 KB of memory.
The other system metadata fits in about 2KB of RAM. The
global index is given the remaining 59KB memory. As Fig.3(b)
shows, this index has a table that, for each group, maintains
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Fig. 8. Global vs per-partition indexes for Image trace

a pointer to the last page of its linked list. We restrict the
number of groups to be ≤2048 so that we can assign 8KB
of RAM to keep this table in memory. That leaves the global
index 51 KB free to cache at most 102 of the 2048 last pages
in memory.

Per-Partition Indexes: In the second configuration, we con-
struct a small inverted index over a sequence of 16 consecutive
images (64 KB each). We can compactly represent each list
of Fig. 3 by a small 2 byte bitvector, wherein a bit is set if
the corresponding image has a feature belonging to the group.
The 16 images and the index are packed into a single 1 MB
partition to facilitate aging. This yields 2K partitions and thus
the SL structures are at most 2 levels deep.

Memory allocation is similar to that for the global index.
Each SL structure is given the minimum 0.5 KB memory it
needs, and 60 KB RAM is assigned to the per-partition index.
We make the per-partition index completely fit in memory to
minimize its construction cost. Thus, the per-partition index
has 30K groups (each requiring a 2 byte bitvector).

Fig. 8 shows a comparison between these two approaches.
The workload in this experiment consists of inserting all 1985
images for index construction followed by Q queries. When
using bitvector-based per-partition indexes, the construction
cost includes writing both the indexes and the features in
each image to flash. This figure shows per query cost on a
logarithmic scale, which is the total cost of construction and
querying amortized by Q (hence always decreasing with Q).
For the global index, we varied the number of feature groups
but observed only small differences because the total number
of distinct features is very large (around 1 million).

The most important trend is that as Q increases, the per-
partition index approach outperforms the global index ap-
proach until Q=5000 and performs worse afterwards. This is
because the construction cost of per-partition indexes is low (a
total of 3J), whereas the construction cost of a global index is
very high (e.g., 281 to 363J) due to excessive page swapping
by the buffer manager. In fact, the construction cost of a global
index is higher than executing 1 million queries. On the other
hand, the query cost using per-partition indexes is more than
60 times the cost using a global index due to accesses to all
partitions. Combining both factors, the benefit of per-partition
indexes outweighs the shortcomings when Q is small, and
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otherwise when Q is large.
In summary, we use an image case study to explore different

storage and indexing layer configurations of our system, and
make appropriate tradeoffs based on the workload.

C. Case Study: A Temperature Data Store

In our second case study, we consider storage and indexing
of the Temperature stream. This study is targeted at a low-end
TelosB mote platform with 10KB RAM and 1GB flash. In the
interest of space, we highlight the key aspects of this study
and omit the details. We again configured our system using a
global index and per-partition indexes based on the interval
B-tree described in Section III-B. The performance of the
global index was sensitive to the number of intervals used and
we found the optimal number of intervals empirically (whose
result is labeled using ‘Global∗’). The per-partition index
achieves minimum construction cost by setting the number
of intervals such that the tree, interval table, and last page of
each interval’s list all fit in memory.

Fig. 9 shows the results obtained by varying the number
(Q) of queries that cover roughly a 5-degree temperature
range. Different from the image data, the per-partition curve
crosses the global curve at a much smaller value of Q (the
top two curves). A main reason is that temperature data is
temporally correlated so a global interval B-tree has good
caching behavior and hence a small index construction cost
(0.01J). The need to access all partitions makes the per-
partition index less suitable for frequent querying. We then
added a temporal range [t1, t2] to each query as in most
temperature searches, covering 5% of all data and skewed
toward recent data. The bottom two curves show that the
per-partition index overcomes its high query cost by skipping
irrelevant partitions and, combined with very low construction
cost, outperforms the global index across the spectrum.

In summary, our interval B-tree, a flash and memory opti-
mized version of standard B-trees, works well for temperature
data given 10KB RAM. Per-partition indexes offer better
efficiency when queries concern data in a temporal range.

VI. RELATED WORK

Sensor Storage: A few recent efforts such as ELF [8],
Capsule [20], Matchbox [13]and Microhash [30] have targeted
storage management for sensor devices on mote-class sensor
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platforms. Matchbox is a simple file system that allows only
file appends and reads; ELF uses a chain of deltas to avoid
in-place updates on flash; Capsule offers a library of simple
data structures over flash to hide flash idiosyncrasies from a
developer; and Microhash is a specialized flash-based hash
table index structure for indexing sensor streams. None of
these systems are memory-adaptive, and all of them are
optimized only for the lowest end sensor devices. In addition,
all these techniques use a log-structured write pattern [25],
hence they would incur huge overhead for value-based aging
due to the cost of moving data.

Flash Memory: There has also been significant recent work
on FTLs and flash storage systems [12]. Although there have
been efforts targeting the development of memory-efficient
FTL mechanisms [15], all existing FTL implementations re-
quire at least an erase block map to be maintained in memory
(either on-chip or off-chip), which can be anywhere between
128KB to 4MB in size. Commercial and open source flash
file systems (e.g.: YAFFS [6]) are not suited for our system
since: (a) they write to flash in a log structured manner making
it inefficient for aging, and (b) they consume considerable
memory resources; for instance, YAFFS needs about 512KB
of RAM for a 128 MB flash [6].

Databases: Related work in database literature relates to
many aspects of our system design. The notion of splitting the
data stream into multiple components, where each component
has an associated index has been proposed in LHAM [22],
although it focuses on improving write throughput rather
than energy-efficiency. There is also a wealth of research on
database buffer allocation and buffer replacement algorithms
[11], the most related being work on static memory allocation
based on query access paths [4], [26]. While relevant to our
work, these efforts are not designed for energy-efficiency. Also
related are databases that have been designed for embedded
smart cards such as PicoDBMS[2] but their focus is not on
energy efficiency.

Memory allocation in Operating systems: While the
OS memory management literature is replete with techniques
for dynamically profiling an application’s memory behavior
and using these statistics to optimize memory allocations
[5], [29], those techniques are not directly applicable to our
context because of two reasons: 1) these techniques assume
that the application’s reference pattern is independent of its
actual memory allocation, which is not the case due to the
interactions between modules, and 2) current techniques trap
a substantial number of memory references to update their
histograms, which could potentially waste many cycles on
CPU constrained sensor platforms.

VII. CONCLUSION

In this paper, we focused on the design and implementation
of an energy-optimized flash storage substrate and adaptive
memory management system for sensor network databases.
Our system has a number of novel contributions including:
(a) primitives and optimizations for easy yet memory/energy
efficient implementation of flash-based index structures, (b)

support for efficient storage allocation and reclamation, (c)
energy-optimized memory-aware data structures for book-
keeping, and (d) an intelligent buffer allocator that takes into
account the energy-memory profiles of storage structures and
interactions between them. We instantiated this architecture on
the iMote2 Linux-based sensor platform, and showed that our
system can scale across a range of devices while minimizing
energy consumption for given memory resources. While our
current implementation is Linux-based, and hence cannot
directly be used on low-memory platforms, we believe that
our architecture is general and can be instantiated on other
operating systems. We are currently porting our system to
TinyOS [18].
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