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Abstract. Computational agents are often utilized by human processes. So the requirements
for the computational agents, such as a medical device, must take into account the overall process,
such as a medical procedure, and the requirements that process must satisfy. But, the computa-
tional agent developers may not fully know the behavior of the overall process and even if they
do it is challenging to reason about all potential behavior of the process since it is usually large
and complex. Therefore, it is difficult to gather all of the requirements of a computational agent
that must be satisfied for the process to satisfy its requirements. Thus, we investigated an auto-
mated requirement derivation approach that inputs a process model and a process requirement,
exhaustively considers all potential behavior of the process, and outputs a derived requirement of
the computational agent that is sufficient to prevent any violations of the process requirement. We
extended an assumption derivation algorithm, developed to support assume-guarantee reasoning
techniques, to automate the derivation of the computational agent requirements. The approach
iteratively derives the requirements by employing a learning algorithm in combination with a fi-
nite state verification tool. We implemented the automated requirement derivation approach and
evaluated it by applying it to two case studies in the medical domain. This preliminary evalu-
ation showed that the approach could be successfully applied to abstract models of portions of
real processes and requirements of those processes that involve safety and security. For computa-
tional agent developers, such as software engineers and security analysts, the derived requirements
appeared useful and understandable.

1 Introduction

Human-intensive processes (HIPs) manage important tasks such as banking, elections, and health
care. HIPs are often large and complex, involving features such as concurrency, synchronization,
and exceptional control flow, which makes them error-prone. A HIP’s requirements describe how
that HIP should behave, addressing critical aspects such as safety, security, and privacy. When a
HIP satisfies its requirements, we gain assurance that the HIP performs its task correctly. If a HIP
fails to satisfy its requirements, it could cause significant harm.

A HIP can be viewed as being composed of a process coordinator component, which is responsi-
ble for the ordering of and communication among subtasks, and agent components, which perform
those subtasks. The agent components can be human agent components or computational agent
components (e.g. hardware devices, software applications). For brevity, the HIP component names
will be hereafter shortened to process coordinator and agents. A HIP satisfies its requirements only
if the composition of the process coordinator’s behavior and the agents’ behaviors satisfies that
HIP’s requirements.

A new computational agent (e.g., bank security module, voting machine, implantable medical
device) is developed to satisfy certain computational agent requirements. But often those compu-



tational agent requirements are determined in isolation, without taking into account the process
coordinator or the HIP’s safety, security, and privacy requirements. If the computational agent
requirements are not adequate, then when the released computational agent is composed with the
process coordinator to form a HIP, some or all of the HIP’s safety, security, and privacy requirements
may be violated. But even when the process coordinator’s behavior and the HIP’s requirements
are known, determining computational agent requirements that are adequate is challenging. Since
the coordination is often complex, it is easy for some crucial computational agent requirement to
be missed or inaccurately specified, but this may not be discovered until late in the computational
agent development cycle, perhaps only after the released computational agent is deployed in a HIP.
The usual computational agent development cycle is design, implement, test, and release. The fur-
ther along the development cycle any requirement violations are discovered, the more expensive it
is to fix them. Therefore, we also want the computational agent requirements to become adequate
as early in the development cycle as possible to reduce the development costs.

To illustrate, consider a hospital care HIP that manages an in-patient surgery. The hospital care
HIP is composed of a process coordinator responsible for the ordering and communication among the
in-patient surgery subtasks (e.g. the operation itself, post-operative care, administration of fluids
and medications) and a computational agent such as a “smart” infusion pump, which is responsible
for intravenously administering fluids and medications (i.e. drugs). For brevity, a “smart” infusion
pump will hereafter be shortened to a pump. For such pumps, each primary care area is associated
with a drug library that enumerates the drugs in use in that area. Each drug in use is associated
with the usual dosing parameters such as concentrations, dosing units, and dosing limits. Within
the operating room, the pump is commonly configured with a drug library that allows a wider
range of dosing limits. But within the intensive care unit, the pump is usually configured with a
drug library that allows a more restrictive range of dosing limits. One possible HIP requirement is
that a patient is never administered a drug over/under dose (i.e. a dose that exceeds the allowable
dosing limits in a particular primary care area). So if the health care practitioners move a pump
from the operating room to the intensive care unit without reconfiguring the pump (or vice versa),
then the HIP requirement regarding never giving an over/under dose could be violated. If the
pump developers do not consider a HIP where a pump is moved from one primary care area to
a different primary care area, then they could miss requirements of the pump. In this case, the
pump developers could miss the requirement of the pump that captures that the pump must be
reconfigured when it is moved into a primary care area with a more restrictive range of dosing
limits.

Computational agent developers, both software engineers and security/privacy analysts, have
generally found that checking for safety/security/privacy violations “is complicated by the fact
that they often exist in hard-to-reach states or crop up in unusual circumstances” [11]. In par-
ticular, the computational agent developers could miss possible safety/security/privacy violations
by not considering the hard-to-reach states or the unusual circumstances. Thus, an automated
requirement derivation approach that inputs a process coordinator and a HIP safety, security, or
privacy requirement and exhaustively checks for safety/security/privacy violations, including the
hard-to-reach states or the unusual circumstances, would be of assistance. Additionally, if such an
automated requirement derivation approach discovered a safety/security/privacy violation, then
such an automated approach could output a derived requirement of the computational agent that
would be sufficient to prevent the violation. That is, if the computational agent were modified
to satisfy this derived requirement, the HIP composed of the given coordinator and the modified
computational agent would not violate the HIP requirement. Such an automated requirement
derivation approach would be an automated assistant that checks for safety/security/privacy vio-
lations and outputs if any violations are discovered and if so also outputs a derived requirement of
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the computational agent. But, the computational agent developers would still be responsible for
specifying the HIP requirements and deciding how to modify the computational agent to satisfy
the derived requirement.

To illustrate consider the case where the process coordinator allows the pump to be moved
from the operating room to the intensive care unit and the requirement that the pump prevent
administration of a drug over/under dose. Such an approach might derive the requirement that,
after the pump is moved to a new primary care area, it must be reset before any medications can
be infused. In general, if such an automated requirement derivation approach outputs that the HIP
satisfies the HIP requirement, then the computational agent’s behavior can remain as is. Otherwise
if the HIP violates the HIP requirement then the computational agent’s behavior can be modified
based on the derived requirement of the computational agent.

For this project, we investigated such an automated requirement derivation approach that
inputs an existing process coordinator and a HIP safety, security, or privacy requirement and then
outputs whether the HIP satisfies the HIP requirement and additionally a derived requirement
of the computational agent. We hypothesized that assumption learning algorithms developed to
support assume-guarantee reasoning techniques could be extended to automate the derivation of the
computational agent requirements. To the best of our knowledge, such an automated requirement
derivation approach has not been evaluated for HIPs and their requirements. Additionally, we know
of no automated requirement derivation approach that applies to requirements involving safety,
security, and privacy. Existing requirement derivation approaches either consider only safety or
only security and privacy. Further, some of the existing requirement derivation approaches are only
semi-automated since they expect the user to incrementally provide more input as the derivation
proceeds.

Our contributions are the automated requirement derivation approach, a requirement derivation
toolset that implements that approach, and a preliminary evaluation of the approach by applying
the toolset to two case studies. For the case studies, the process coordinator is written in a
process modeling language, specifically the Little-JIL process definition language [36]. The HIP
requirements are specified in a requirement specification language, specifically finite state automata
(FSAs). The derived computational agent requirements are also represented as FSAs. For the
preliminary evaluation, we primarily investigated and evaluated whether or not the automated
requirement derivation approach:

1. can be applied to “real” HIPs (i.e. what is the performance in terms of space and time)

2. can be applied to safety, security, and privacy requirements and, if possible, whether it is
useful to do so

3. can derive requirements of the computational agent that are readily understandable and useful
to computational agent developers (i.e. fill in missed or correct inaccurate requirements of
the computational agent)

Overall, the automated requirement derivation approach shows promise with regards to the above
evaluation criteria. But, further improvement and evaluation is needed.

Section 2 provides background on the assumption learning algorithms, Section 3 describes the
proposed automated requirement derivation approach, Section 4 describes the requirement deriva-
tion toolset that was developed to investigate the automated requirement derivation approach while
Section 5 describes the evaluation using that toolset. Section 6 discusses related work and Section
7 concludes and briefly discusses future work.

3



2 Background

Finite state verification (FSV) approaches were developed to verify whether or not a hardware
and/or software system satisfies a requirement. Specifically, FSV approaches verify algorithmically
that all potential executions of a finite-state model of a system satisfies a requirement. If so, then
the verification result is that the requirement is satisfied. If not, then the verification result is that
the requirement is violated and a counter example execution that demonstrates how the finite-
state model of the system violates the requirement is provided. The FSV approaches, however,
suffer from the state explosion problem where the size of the finite-state model or the cost of the
verification algorithm may grow exponentially with the size of the system. There exist various FSV
tools that implement the FSV approaches. Often the FSV tools incorporate many optimizations
to combat the state explosion problem.

Instead of verifying an entire system at once, compositional verification approaches tackle the
state explosion problem with a divide and conquer strategy. Intuitively, such approaches take
advantage of a system being composed of system components and verify each system component
separately. An individual system component, however, often satisfies a requirement only in certain
environments. Assume-guarantee reasoning (AGR) techniques have been developed to utilize a
provided assumption about the environments in which a system component is used. As described
in [14], the key idea is that if the given system component is part of a system that satisfies the
provided assumption, then the system also guarantees the requirement. Essentially, the provided
assumption restricts the environment’s behavior so that the system component’s behavior satisfies
the requirement. Thus, there exist compositional verification approaches that verify the overall
system by employing the AGR techniques to verify each system component separately.

For AGR techniques, the simplest case is when the system is composed of only two components:
a system component and a particular environment of that system component. The simplest AGR
proof rule consists of two steps. The first step verifies that the system component satisfies the
requirement when used in any environment that satisfies the provided assumption. The second
step verifies that the particular environment satisfies the provided assumption. If both steps are
true, then the entire system composed of the system component and the particular environment
satisfies the requirement. But, the assumptions are difficult to provide. As described in [14],
AGR techniques must be provided with assumptions “that are strong enough to eliminate false
violations, but that also reflect the remaining system appropriately.” If an assumption is too
weak (not restrictive enough) then the environment’s actual behavior is overapproximated so the
requirement is violated by environment behavior that is infeasible. Alternatively, if that assumption
is too strong (overly restrictive) then the requirement is satisfied but more of the environment’s
actual behavior could be allowed without the requirement being violated.

Since the assumptions are difficult to provide, assumption learning algorithms (e.g. [3, 9, 14])
were developed that perform the compositional verification by employing the AGR techniques
while learning the assumption. At a high-level on each iteration, an assumption learning algorithm
considers a learned assumption Ai. If the algorithm can determine the verification result with Ai,
then it stops iterating. If not, the algorithm continues learning the assumption by essentially first
making the assumption strong enough so that the requirement is satisfied and secondly making the
assumption weak enough so that the environment satisfies the assumption. In more detail on each
iteration, an assume learning algorithm performs two phases. In phase 1, the algorithm checks AGR
step 1 that verifies whether or not the system component satisfies the requirement when restricted
by assumption Ai. If the system component violates the requirement, then the assumption must
become stronger to satisfy the requirement. The provided counter example is used to modify
the assumption, specifically to disallow the counter example behavior of the environment. The
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algorithm continues iterating since the assumption may now be too strong so needs to be become
weaker. In phase 2, if the system component satisfies the requirement when restricted by assumption
Ai, then the algorithm checks AGR step 2 that verifies whether or not the environment satisfies
assumption Ai. If the environment satisfies the assumption, then the compositional verification
result is that the overall system satisfies the requirement. Otherwise if the environment violates
the assumption, then the algorithm must check whether or not the provided counter example
corresponds to an actual counter example in the overall system. For the actual counter example
execution check, if the provided counter example satisfies the requirement, then it is not an actual
counter example so the assumption must become weaker. The provided counter example is used
to modify the assumption, specifically to allow the counter example behavior of the environment.
The algorithm continues iterating since the assumption may now be too weak so needs to become
stronger. Otherwise if the provided counter example violated the requirement, then it is an actual
counter example so the compositional verification result is that the overall system violates the
requirement.

At a lower-level, the assumption learning algorithms employ the L* algorithm in combination
with an FSV tool to automatically learn the assumption represented as an automaton. The L*
algorithm, by Angluin [5] and improved by Rivest and Schapire [31], learns an unknown regular
language U over an alphabet Σ and returns a minimal deterministic FSA A such that L(A) is
equivalent to U . For the AGR techniques, U should correspond to an assumption that is strong
enough so that the requirement is satisfied (i.e. AGR step 1 is true). In addition, U should
ideally be weak enough so that the environment satisfies U (i.e. AGR step 2 is also true). The L*
algorithm learns by interacting with a “minimally adequate teacher” that is essentially an oracle
that is capable of answering queries about U . The teacher must be able to answer two types of
queries. Query type 1 is a membership query that inputs a string s from Σ∗ and checks whether
or not s is in U . When s is in U , it outputs true. Otherwise when s is not in U , it outputs false.
Query type 2 is an equivalence query that inputs a conjectured FSA Ai and checks whether or not
L(Ai) is equivalent to U . When L(Ai) is equivalent to U , it outputs true. Otherwise when L(Ai) is
not equivalent to U , it outputs false and a counter-example string from the set difference of L(Ai)
and U . We describe how the automated requirement derivation approach extends an assumption
learning algorithm in the next section.

3 Automated Requirement Derivation Approach

At a high-level, the automated requirement derivation approach inputs a HIP and a HIP require-
ment and outputs the derived requirement imposed on the computational agent. We create a HIP
composed of the existing process coordinator and a newly created pessimistic computational agent
that captures all potential behavior of the computational agent. In particular, the pessimistic com-
putational agent is allowed to perform its subtasks in any order or even not at all. We want the
pessimistic computational agent to capture all potential behaviors of the computational agent so
that the requirement derivation can learn what restrictions must be placed on these behaviors of
the computational agent so that the HIP satisfies its HIP requirement.

More formally, HIP P is composed of a process coordinator C and a set of agents D1, . . . , Dn.
The composition will be represented as P = C(D1, . . . , Dn). To simplify the problem, we made two
assumptions. The first assumption is that all human agents perform their subtasks correctly. The
second assumption is that there is a single pessimistic computational agent D. So this composition
will now be represented as P = C(D). The proposed automated requirement derivation approach
inputs a HIP P , composed of an existing process coordinator C and a pessimistic computational
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agent D, and a HIP requirement RP . It extends one of the assumption derivation algorithms so
that the output is a derived computational agent requirement that restricts the behavior of D so
that P = C(D) satisfies RP .

None of the assumption learning algorithms can be applied as is because the pessimistic com-
putational agent allows all potential behaviors which usually include violating behaviors. Thus,
the HIP requirement is almost always violated. Since the assumption learning algorithms stop
immediately when the verification detects a violation of a HIP requirement, such algorithms often
stop too soon for the learning to take place. This means that the learned assumption is strong
enough to ensure that the HIP requirement is satisfied but is usually too strong to be a useful
computational agent requirement. Therefore, we plan to extend one of the assumption learning
algorithms to make the learned assumption strong enough to ensure that the HIP requirement is
satisfied but weaker so that it can be used as a computational agent requirement.

At a high-level, the extension is to not stop immediately when a violation of a HIP requirement
is detected but instead to continue learning. Thus, the requirement imposed on the computational
agent now essentially allows all potential behaviors of the computational agent that satisfy the HIP
requirement and disallows the remaining potential behaviors that violate the HIP requirement.
Additionally, the user is permitted to provide initial requirements of the computational agent that
restrict the computational agent to more reasonable behavior (e.g. the computational agent must be
turned on before performing any other subtasks). The computational agent developers would then
be provided with the derived requirements of the computational agent and any initial requirements
of the computational agent. We describe the original assumption learning algorithms first and then
the extended assumption learning algorithm second.

3.1 Original Assumption Learning Algorithms

The assumption learning algorithms learn an assumption represented as an automaton. They
employ the L* algorithm where the teacher answers the membership and equivalence queries by
employing an FSV tool. The L* algorithm incrementally learns an unknown language U with
alphabet Σ and outputs an automaton C that accepts that language (i.e. L(C) = U). At a high-
level, L* stores a table that records whether or not strings from Σ∗ are contained in U . First, it
initializes the table using membership queries answered by the teacher. On each iteration i, L*
updates the table using membership queries answered by the teacher. Next, it uses the table to
conjecture an automaton Ci. L* checks whether L(Ci) is equal to U by using an equivalence query
answered by the teacher. If so, then L* stops iterating and outputs Ci. Otherwise L* continues
iterating after it updates the table based on the counter example returned by the teacher using
membership queries answered by the teacher.

L* algorithm Specifically, L* stores its information in an observation table (S,E,T) where con-
ceptually S is a set of prefixes represented as strings over Σ∗, E is a set of suffixes represented as a
set of strings over Σ∗, and T is which strings over Σ∗ are contained in U represented as a function
from (S ∪ S ·Σ) ·E to {true, false}. For L*, the function Learn(Σ) pseudo code is: //TODO: Fix
indentation below
1: S ← {λ};E ← {λ};
2: Update(T, S,E);
3: while (true) do
4: while ((snew ← CheckClosed(S,E, T )) 6= null) do
5: S ← S ∪ {snew}; // New prefix
6: foreach (a ∈ Σ), (e ∈ E) do
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7: T [snew · a, e]←MembershipQuery(snew · a · e);
8: Ci ←MakeConjecture(S,E, T );
9: if ((cex← EquivalenceQuery(Ci)) = null)
10: then return Ci;
11: else
12: enew ← FindSuffix(cex);E ← E ∪ {enew}; // New suffix
13: Update(T, S, {enew});

L* is responsible for the functions Update, CheckClosed, MakeConjecture, and FindSuffix. The
teacher is responsible for the functions MembershipQuery and EquivalenceQuery. We describe the
L* functions are first and the teacher functions second.

To begin, L* initializes the observation table. S and E are set to {λ} and T sets whether the
zero and one length strings over Σ∗ are in U (lines 1, 2). The function Update(T,S,E) pseudo code
is:
14: foreach (s ∈ S), (a ∈ Σ), (e ∈ E) do
15: T [s, e]←MembershipQuery(s · e);
16: T [s · a, e]←MembershipQuery(s · a · e);

Next, L* iterates (line 3). On each iteration, L* repeatedly updates the observation table (lines
4,5,6,7) until the table is closed. The function CheckClosed(S,E,T) checks whether the table meets
the condition for all s in S and a in Σ there exists an s’ in S such that T [s · a, e] equals T [s′, e] for
all e in E. If so, then it returns true. Otherwise, it returns false and the string s · a that did not
meet the condition. In more detail, L* first checks whether or not the table is closed (line 4). If the
table is not closed, then L* updates the table using the new prefix s · a (lines 5,6,7). If the table
is closed, then L* makes a conjectured automaton Ci based on the table (line 8). The function
MakeConjecture(S,E,T) creates an automaton with alphabet Σ where the states are created based
on S and the transitions are created based on T . Next, L* checks whether or not L(Ci) is equal
to U (line 9). If so, then it outputs Ci. Otherwise, L* finds a new suffix enew based on the
counter example string cex and adds that new suffix to E (line 12). The function FindSuffix(cex)
analyzes the counter example cex to “find a suffix e that witnesses a difference between L(Ci) and
U ; e must be such that adding it to E will cause the next conjectured automaton to reflect that
difference” [14]. The function FindSuffix(cex) described in more detail in [31]. Lastly, L* continues
to the next iteration after updating the table using that new suffix (line 13).

The L* algorithm provides two guarantees. The first guarantee is that it will terminate and the
second guarantee is that it will return a minimal deterministic FSA for the unknown language U .
The number of membership queries made is O(|Σ|n2 + n logm) where n is the number of states in
the returned FSA and m is the length of the longest counter-example output by any equivalence
query. The number of equivalence queries is at most n - 1.

Teacher that employs an FSV tool For the assumption learning algorithms, the teacher
inputs a software system and a requirement. It provides the functions MembershipQuery and
EquivalenceQuery. From Section 2, the software system is decomposed into a software component
and its environment. The teacher employs an FSV tool. Recall that an FSV tool checks that all
potential executions of a FSV model of a software system satisfy a requirement. If so, then the
FSV tool reports that the requirement is satisfied. If not, then the FSV tool reports that the
requirement is violated and provides a counter example execution that demonstrates the violation.
The assumption learning algorithms stop iterating as soon an actual counter example execution is
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discovered.
For the function MembershipQuery(s), the teacher basically checks whether or not string s is

contained in the language of the requirement. If so, then it outputs true. If not, then it outputs
false.

For the function EquivalenceQuery(Ci), the teacher employs the FSV tool to first check if the
assumption is strong enough (query type 2 a) and then to check if the assumption is weak enough
(query type 2b). For query type 2 a, the teacher employs the FSV tool to check whether or not
the system component satisfies the requirement when restricted by the conjectured FSA Ai. If the
FSV tool reports that the requirement is violated then the teacher outputs false and a counter
example string from L(Ai)\U where the counter example string is created from the counter example
execution provided by the FSV tool. If the FSV tool reports that the requirement is satisfied, then
the teacher continues on to query type 2 b.

For query type 2 b, the teacher employs the FSV tool to check whether or not the environment
satisfies the assumption. If the FSV tool reports that the environment satisfies the assumption,
then the teacher outputs true. If the environment violates the assumption, then the FSV tool is
employed to check if the counter example execution provided by the FSV tool is an actual counter
example.

To check the counter example, the teacher basically checks whether or not the provided counter
example execution is contained in the language of the requirement. If so, then the provided counter
example is an actual counter example so the teacher outputs true. If not, then the provided counter
example is not an actual counter example so the teacher outputs false and a counter example string
from U \ L(Ai) where the counter example string is created from the provided counter example
execution.

Cobleigh et al [13] performed the most extensive evaluation of an assumption learning algorithm
by applying it to concurrent software systems and their requirements. The evaluation showed that
the assumption learning performance varied greatly (e.g. time ranged from 20 seconds to being
stopped after a couple of hours) and also the complexity of the learned assumptions varied widely.
For sequential Java programs, Alur et al [4] and later Beyer et al [8] investigated an automated
requirement derivation approach that inputs an existing library class (e.g. File) that has already
been released and a safety requirement (e.g. IOException is not thrown) and then outputs the
requirement imposed on any clients of that library. The client requirement derivation approaches
also extended the assumption learning algorithms to automate the client requirement derivation.
For the client requirement derivation approaches, the evaluation was not as extensive but also
showed that the requirement derivation performance and the complexity of the derived requirements
could vary widely.

3.2 Extended Assumption Learning Algorithm

The proposed automated requirement derivation approach extends an assumption learning algo-
rithm similarly to what was done in [4,8]. At a lower-level, the requirement derivation algorithm is
the same as the assumption learning algorithm with regard to the L* functions Learn, CheckClosed,
Update, MakeConjecture, and FindSuffix. It is also the same with regards to the teacher function
MembershipQuery. But it extends the teacher function EquivalenceQuery. At a high-level, the
extension is to continue to iterate even after one or more actual counter examples are discovered
in an effort to weaken the assumption and make it a more useful derived requirement.

Teacher that employs an FSV tool The teacher now records the compositional verification
result as not yet determined, satisfied, or violated. Initially, it records the compositional verification
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result as not yet determined. For query type 1 a membership query, it remains unchanged. For
query type 2 an equivalence query, it is changed, specifically query type 2 (a) remains unchanged
while query type 2 (b) was extended as follows.

If the system component satisfies the requirement when restricted by assumption Ai, then the
teacher checks AGR step 2 by employing the FSV tool to verify whether or not the environment
satisfies assumption Ai. If the environment satisfies the assumption, then the overall system satisfies
the requirement so the teacher records the compositional verification result as satisfied and outputs
true. Otherwise the environment violated the assumption, so the teacher must check whether or
not the provided counter example corresponds to an actual counter example in the overall system.

For the actual counter example execution check, if the provided counter example satisfies the
requirement, then the assumption must become weaker. The teacher outputs false and also the
provided counter example. The provided counter example will be used to modify the assumption,
specifically to allow the counter example behavior of the environment. The L* algorithm continues
iterating since the assumption may now be too weak so needs to become stronger. Otherwise if the
provided counter example violates the requirement, then the overall system violates the requirement
so the teacher records the compositional verification result as violated.

The L* algorithm will stop iterating if no more counter examples are provided. Specifically to
weaken the assumption, we want a counter example execution where the assumption is violated
but the requirement is satisfied. Therefore, the teacher employs the FSV tool to verify whether
or not the environment satisfies the assumption when restricted by the requirement. If so, the
teacher outputs true and thus provides no more counter examples. Otherwise, the teacher outputs
false and also provides a counter example that is used to weaken the assumption as described
in the previous paragraph. In the next section, we describe a requirement derivation toolset that
implements automated requirement derivation approach described in this section.

4 Requirement Derivation Toolset

To evaluate the automated requirement derivation approach, the requirement derivation toolset
was applied to two case studies as described in Section 5.1. For the requirement derivation toolset,
we needed process models that are expressive enough to capture the HIPs and precise enough to be
formally analyzed by tools. Additionally, we needed requirements specifications that are expressive
enough to capture the HIP and computational agent requirements and also precise enough to be
formally analyzed by tools and readily understood by developers. For the requirement deriver tool,
we needed an assumption learning algorithm to extend to automate the requirement derivation. For
that assumption learning algorithm, we also needed an FSV tool to answer the teacher’s queries.

The HIP is defined in a process modeling language. Process modeling languages commonly
have language constructs that support nominal control flow and data flow but not as typically
have language constructs that support exceptional control flow and synchronization. The process
modeling languages sometimes are precise enough to be formally analyzed. We used the Little-JIL
process definition language [36], which is both expressive and precise. It has successfully been used
to define an election HIP and a health care HIP (e.g., [10, 33]). There exists a translation from a
Little-JIL process model to a finite-state model that is based on control flow graphs (CFGs). The
translation includes several optimizations. For the requirement derivation toolset, the translation
to a finite-state model was extended to be able to define the HIPs.

The HIP requirements and computational agent requirements (including any initial and the
derived) are described in a requirement specification language. Requirement specification languages
are often either a natural language, like English, or a mathematical formalism such as temporal
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logic or finite state automata (FSAs). We used FSAs, which are both expressive and precise.
Specifically, we used deterministic FSAs that are total. Therefore, for every state s in the FSA for
every event e in the alphabet of the FSA there exists one and only one transition where the source
state is s and the event is e.

For the requirement deriver tool, we used the assumption derivation algorithm from [14] so
that the learned assumptions are represented as FSAs. For the automated requirement derivation
approach, the assumption learning algorithm was extended as described in Section 3.2 so that the
learned assumption ensures that the HIP requirement is satisfied while placing fewer restrictions
on the computational agent. For the FSV tool, we used FLAVERS [16] for Little-JIL that verifies
whether or not a process model defined in Little-JIL satisfies a requirement represented as an FSA.
It incorporates various optimizations. In what follows, FLAVERS for Little-JIL will be called
FLAVERS/Little-JIL. It has successfully been applied to both an election HIP and a health care
HIP to verify that they satisfy requirements about their safety (e.g., [10,33]). For the requirement
derivation toolset, FLAVERS/Little-JIL also was extended to be able to capture the HIPs semantics
more accurately.

Section 4.1 provides a brief overview of Little-JIL, Section 4.2 provides a brief overview of
FLAVERS/Little-JIL, and Section 4.3 describes each requirement derivation tool in more detail.

4.1 Little-JIL Overview

A Little-JIL process definition precisely captures a process that manages a particular task where the
process is composed of agents that are responsible for performing the subtasks and the coordinator
that is responsible for the ordering among the subtasks and any communication among the agents.
From [10], “a Little-JIL process definition has three components, an artifact collection, a resource
repository, and a coordination specification.” In the following description, we focus on the aspects of
Little-JIL that are used by the case studies described in Section 5.1. The resource repository defines
which agents perform the subtasks. The artifact collection defines what artifacts are consumed
and/or produced by the subtasks. A coordination specification precisely defines how the agents
perform the subtasks that consume and/or produce the artifacts. It has a visual representation.
The Little-JIL language reference [36] contains a more detailed discussion.

Step Name

Exception Handler

Sequential
Parallel
Choice
Try

Continue

Complete

Restart

Rethrow

Figure 1: Little-JIL step bar with sequencing badges and continuation badges

The Little-JIL coordination specifications support high-level features such as abstraction, paral-
lelism, iteration, and exceptional control flow. Each coordination specification consists of a hierar-
chical decomposition of steps where each step represents a subtask to be performed by a particular
agent. A step is declared once but may be referenced multiple times. Figure 1 shows how a step
declaration is depicted within a coordination specification as a step bar with the step name above
the step bar. The resources/artifacts are depicted by the interface badge (i.e. the circle above
the step bar). A non-leaf step declares children steps depicted by the outgoing arcs from that
step. Additionally, a non-leaf step must specify the ordering among the children depicted by the
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sequencing badge (i.e. the symbol on the left hand side within the step bar). In Figure 1, the
sequencing badges are enumerated in the middle. For example, parallelism is depicted by an equal
sign on the left hand side within the step bar. A leaf step declares no children. The leaf steps are
executed by the agents. “A step is reasonably thought of as a procedure” [33].

As mentioned in the introduction, the agents can be human agents or computational agents.
We focus on the computational agents. The artifacts used in the case studies are channels, in/out
parameters, and exceptions. Two or more agents may communicate over a channel where a channel
is essentially a bounded buffer that stores data. The agents may communicate by either writing a
datum to a channel or taking a datum from a channel. A step may store data by declaring in/out
parameters. The parameters may be copied between a step and its children (i.e. defined and used).
“As steps can be thought of as procedures, this artifact passing is essentially a parameter passing
mechanism” [33]. Additionally, a step may throw exceptions. The exceptions are then propagated
through the step hierarchy and another step may catch one or more of those exceptions, handle
them, and specify where the control proceeds designated by the continuation badge. In Figure 1,
the continuation badges are enumerated on the right hand side.

Figure 2: Little-JIL step execution life-cycle represented as a UML state diagram

Within the coordination specification that defines a process, a single step must be defined as the
entry point to that process depicted by a northeast arrow to the right of the step name. When a
process is executed, the entry point step is executed first. A step is in one of the following execution
states: POSTED, STARTED, COMPLETED, TERMINATED, RETRACTED, or OPTEDOUT.
From [36], Figure 2 shows the step execution life-cycle represented as a UML (Unified Modeling
Language) state diagram. For the nominal control flow, the typical sequence of states is POSTED,
STARTED, COMPLETED while for the exceptional control flow, the usual sequence of states is
POSTED, STARTED, TERMINATED. The RETRACTED state is primarily relevant for choice
steps while the OPTEDOUT state is primarily relevant for steps that an agent elected to opt out
of performing.
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4.2 FLAVERS/Little-JIL Overview

Given a Little-JIL process and a user-defined property, FLAVERS/Little-JIL uses a data flow
algorithm to verify that the process satisfies the property. FLAVERS/Little-JIL is event-based.
Each event represents a process sub-task such as a step starting, a step throwing an exception, a
step defining a parameter, or a step communicating over a channel. FLAVERS is described in full
detail in [16].

The property captures the event sequences that should (or should not) occur on any execution
of the process. FLAVERS/Little-JIL internally represents the property as an FSA where the
transitions are annotated with the events. The Little-JIL process is represented as a trace flow
graph (TFG). Essentially, the TFG consists of a collection of Control Flow Graphs (CFGs) where
each CFG represents an in-lined thread and the nodes are labeled with the events. Extra nodes
and/or edges are also added to capture the thread synchronizations and inter-leavings. The paths
through the TFG are represented as sequences of the nodes and therefore correspond to event
sequences. These paths represent the potential executions of the process. Thus, the data flow
algorithm verifies that all paths through the TFG satisfy the property.

The TFG is a conservative but imprecise model of the process. In the TFG, there exist feasible
paths that do correspond to actual executions of the process. But in addition because the TFG
is imprecise, there may exist infeasible paths that do not correspond to actual executions of the
process. If the TFG model of the process is too imprecise to verify the property, then feasibility
constraints may be employed to model additional information about the process. Each constraint
captures the event sequences that must (or must not) occur on any potential execution of the
process. FLAVERS/Little-JIL internally represents each constraint as an FSA where the transi-
tions are annotated with the events. FLAVERS/Little-JIL provides support to automatically build
thread related constraints that capture a particular thread’s execution status [28] or that thread’s
program counter [16]. Additionally, it provides support to automatically build variable constraints
that capture a particular variable’s value where that variable may be defined (e.g. event ”pumpRe-
qChn=0”) and used (e.g. event ”pumpReqChn!=1”). Thus, the data flow algorithm verifies that
all paths through the TFG that adhere to the constraints satisfy the property.

The state propagation algorithm performs the data flow analysis. The TFG supports single-
entry/single-exit semantics where the single-entry point is represented by a unique initial node and
the single-exit point is represented by a unique final node. During the state propagation algorithm,
each TFG node is associated with a set of tuples where a tuple has a position for the property’s
state and for each constraint’s state. The TFG’s initial node is associated with the initial tuple that
has the property at its start state and each constraint at its start state. The data flow algorithm
propagates the tuples among the nodes until a fixed point is reached. The TFG’s final node is
associated with the final set of tuples. To determine the verification result, the final tuples are
considered. A final tuple adheres to the constraints when each constraint is at an accepting state.
If all final tuples that adhere to the constraints also have the property at an accepting state, then
the process satisfies the property. The state propagation algorithm has worst case complexity that
is O(N2 ·P ·C1 ·. . .·Cm) where N is the number of nodes in the TFG, P is the number of states in the
property automaton, m is the number of constraints, and Ci is the number of states in constraint
automaton i.

4.3 Requirement Derivation Tools

Figure 3 shows the proposed architecture of the requirement derivation toolset where each tool is
represented by a rectangle and the data flow among the tools is represented by the arrows. For now,
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Figure 3: Architecture of the Requirement Derivation Toolset

we manually built the process models. The implemented requirement derivation toolset automated
the FSV model building and the requirement derivation. First, the process model builder tool
inputs an existing HIP process coordinator model C written in Little-JIL and a safety, security,
or privacy HIP requirement RP represented as a property FSA and outputs a newly created HIP
process model P , composed of the existing HIP process coordinator model C and a newly created
pessimistic computational agent model D, written in Little-JIL. Second, the FSV model builder
inputs the HIP model process model P and the HIP requirement RP and outputs a HIP FSV model
P ′ represented as a TFG and also a set of one or more constraint FSAs. Lastly, the requirement
deriver implements the extended assumption learning algorithm described in Section 3.2. It inputs
the HIP FSV model P ′, the HIP requirement RP , and optionally any initial requirements of the
computational agent’s behavior represented as a set of constraint FSAs. It outputs whether or
not the HIP satisfies the safety, security, or privacy HIP requirement and additionally a derived
requirement of the computational agent RD represented as a property FSA.

For [10, 33], the FLAVERS/Little-JIL front-end input a HIP that contained only the process
coordinator and output the corresponding TFG. If within the process coordinator, there existed leaf
steps to be executed by a computational agent, then they were treated as remote procedure calls
(RPCs) to that computational agent. But, the computational agent was not explicitly represented
in the TFG and neither were the RPCs. For the automated requirement derivation approach, we
want to allow the user to provide any initial requirements on the computational agent’s behavior
so the computational agent must be explicitly represented in the TFG and so must the RPCs.
Therefore, a HIP is composed of a process coordinator and a computational agent so that the
corresponding TFG explicitly represents the computational agent’s behavior. Additionally, a HIP
must encode the RPCs for the corresponding TFG to represent them.

We elected to encode the RPCs with channels. For a particular computational agent, its RPCs
are encoded with two channels, a request channel and a response channel. First, a process coordi-
nator sends a request over the request channel where that request encodes the requested procedure
name and any in parameters. Second, the computational agent receives a request from the re-
quest channel and decodes that request. Next, it executes the named procedure on the given in
parameters. Third, the computational agent sends a response to the response channel where the
response encodes any out parameters or exceptions thrown. Fourth, the process coordinator re-
ceives a response from the response channel and decodes that response. Conceptually, the derived
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requirement of the computational agent partitions the sequences of RPCs to that computational
agent into the sequences that satisfy the HIP requirement and the remaining sequences that violate
the HIP requirement. In the following sections, we describe each requirement derivation tool in
more detail.

4.3.1 Process model builder tool

The following sketches out what a process model builder tool would do. A new HIP process
model is built by composing an existing process coordinator model and a newly created pessimistic
computational agent model. For now, we manually built the HIP process models. In the future, we
plan to implement a process model builder tool that automatically builds the HIP process models.
First, we describe the new HIP model. Second, we describe the process coordinator model. Lastly,
we describe the new pessimistic computational agent model.

Figure 4: Pump HIP written in Little-JIL

To illustrate for the motivating example from the introduction, we manually built a new pump
HIP model from an existing pump process coordinator model captured by the step PerformInPatientSurgery
and the newly created pump computational agent model that will be captured by a step IteratePumpAgent.
Figure 4 shows that new HIP model written in Little-JIL. Non-leaf step PumpHIP is the entry point
(designated by the northeast arrow to the right of the step name) that declares two sub-steps: a
step reference to step PerformInPatientSurgery and a step reference to step IteratePumpAgent.
The two sub-steps will be executed in parallel (designated by the equal sign in the left hand side
of the step bar) therefore their subtasks will be interleaved. The step PumpHIP allows the human
agents to communicate with the pump computational agent by declaring two channels pumpRe-
questChannel and pumpResponseChannel (designated by the filled in circle above the step bar).
In the following for brevity, the channel pumpRequestChannel will be called pumpReqChn and the
channel pumpResponseChannel will be called pumpRespChn.

Figure 5 shows the non-leaf step Configure PCA that captures how the pump coordinator
encodes an RPC to the procedure configurePCA of the pump computational agent. The non-leaf
step Configure PCA has two children Call configurePCA and Return configurePCA that are
executed sequentially (designated by the left arrow in the left hand side of the step bar). First,
it encodes the procedure name and in parameters as a request represented as an integer. Next
for the call, the first child Call configurePCA sends that request to the channel pumpReqChn.
Lastly for the return, the second step Return configurePCA receives a response from the channel
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Figure 5: Pump process coordinator’s step Configure PCA written in Little-JIL

pumpRespChn and decodes that response into either the out parameters or exceptions thrown.

Figure 6: Pump computational agent written in Little-JIL

As described in Section 3, a pessimistic computational agent essentially iterates repeatedly
where on each iteration it non-deterministically chooses to execute one of its leaf steps (i.e. pro-
cedures) or chooses to do nothing. To illustrate, we manually built the pessimistic pump compu-
tational agent model shown in Figure 6 that is written in Little-JIL. The iterations are captured
by the kleene star annotating the arc from step IteratePumpAgent to sub-step PumpAgent. Each
iteration is captured by the sub-step PumpAgent where the non-deterministically choosing among
executing one of its procedures or doing nothing is captured by the sub-step PumpAgent being a
try step that has optional substeps (designated by the ? annotating the arc from step PumpAgent
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to a sub-step). For the computational agent, a RPC is encoded as a receive from the channel
pumpReqChn paired with a send to channel pumpRespChn captured by the sub-step Call and the
sub-steps Return FAILURE and Return SUCCESS respectively. The pump computational agent may
chose to execute none of its procedures captured by the sub-step Choose to do nothing. Lastly,
the pump reporting an alert and not reporting an alert are captured by the two sub-steps Do alert
and Do not alert respectively.

4.3.2 FSV model builder tool

The Little-JIL front-end translates from a process model written in Little-JIL to a TFG. It must be
provided with event bindings that map the Little-JIL subtasks to the property/constraint events.
The supported event bindings are a:

• step state event binding that captures that a named step enters a particular state where
the state is one of POSTED, STARTED, COMPLETED, TERMINATED, OPTEDOUT, or
RETRACTED

• exception event binding that captures that a named step throws a particular exception where
the exceptions are enumerated in the artifact collection

• parameter event binding that captures that a named step accesses a named parameter where
the access is either DEFINED or USED

For the requirement derivation toolset, we extended the supported event bindings to include a
channel event binding that captures that a named channel is communicated over where the com-
munication is either a SEND (i.e. write) or a RECEIVE (i.e. take).

For the requirement derivation toolset, the Little-JIL front-end was also extended. It now
supports channel write with blocking semantics so that when the channel is empty then the write
completes immediately but when the channel is full then the write blocks (as opposed to overwrite
semantics). Iteration is now translated as a loop in the CFG (as opposed to unrolling the loop a
given number of times in the CFG). Integer ranges from a minimum value of 0 to a user-defined
maximum value greater than or equal to 0 are translated. Simple predicate expressions where
the relational operators (==, !=, >,>=, <,<=) are used to compare a named parameter with
a constant value (boolean or integer range) are translated. Constant bindings where a named
parameter is defined to a constant value (boolean or integer range) are also translated.

4.3.3 Requirement deriver tool

The requirement deriver tool inputs a derivation problem that consists of the HIP process model,
its decomposition into module 1 and module 2, the property to be verified, and the set of all
constraints to be applied.

The HIP process model is composes of a process coordinator model and a computational agent
model. In the HIP FSV model, the HIP, process coordinator, and computational agent are trans-
lated as CFGs (i.e. threads). In the HIP process model, the human agents communicate with the
computational agent by using RPCs. For a particular computational agent, the RPCs are modeled
using a pair of channels, a channel for requests and a channel for responses. In the HIP FSV
model, the channels are translated to global variables while the parameters are translated to local
variables. Additionally, any exceptions are translated as local variables. For the case studies, the
HIP model is always decomposed such that module 1 contains the computational agent model and
module 2 contains the process coordinator model.
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The set of all constraints were built as follows. FLAVERS/Little-JIL was employed to auto-
matically build the thread related constraints for the threads that correspond to the HIP, process
coordinator, and computational agent and to automatically build the variable constraints for the
artifacts, including the channels, parameters, and exceptions. For the RPCs, we manually built a
data dependency constraint that ensures that the data dependencies among the channels and pa-
rameters are represented in the TFG. Lastly, we manually built a computational agent’s behavior
constraint that encodes any initial requirements on the computational agent’s behavior.

The requirement deriver tool implements the extended assumption learning algorithm described
in Section 3.2 that combines the L* algorithm and the FLAVERS/Little-JIL FSV tool. It outputs
whether or not the HIP satisfies the HIP requirement and a derived requirement of the computa-
tional agent’s behavior represented as an FSA.Conceptually, the derived requirement of the com-
putational agent partitions the sequences of RPCs to that computational agent into the sequences
that satisfy the HIP requirement and the remaining sequences that violate the HIP requirement.
To evaluate the requirement derivation approach described in Section 3, we applied the requirement
derivation toolset described in this section to two case studies described in the next section.

5 Evaluation

We applied the requirement derivation toolset described in Section 4 to two case studies, a pump
case study and an ICD (implantable cardioverter-defibrillator) case study. The requirement deriva-
tion toolset is provided as input a HIP model composed of a computational agent model and a
process coordinator model written in Little-JIL, a HIP requirement represented as an FSA, and
any initial requirements on the computational agent’s behavior represented as an FSA. It outputs
a derived computational agent requirement represented as an FSA. Section 5.1 describes our inves-
tigation of how the requirement derivation approach’s inputs, a HIP and a HIP requirement, affect
the performance of the requirement derivation in terms of space and time and also the derived
requirement that is output. Section 5.2. describes our investigation of how the assumption learning
algorithm’s optimizations affect the requirement derivation’s performance in terms of space and
time.

In the introduction, the pump case study was used as the motivating example. In more detail,
a pump administers fluids or medications (i.e. drugs) usually intravenously. It typically is used to
administer a large set of drugs over a wide range of dosing parameters, often administered through
multiple channels. Because of this complexity, infusions lead to such reported medical errors as
administration of the wrong drug, administration of an over/under dose, and drug interactions.
The pump case study considers a pump HIP composed of a pessimistic computational agent for a
pump and a process coordinator for an in-patient surgery in a hospital based on scenarios described
in [6]. The pump HIP requirement was taken directly from the safety goals discussed in [6]. We
describe the pump case study in more detail in Section 5.1.1.

The second case study is the ICD case study. An ICD “is a device that monitors and responds to
heart activity. ICDs have modes for pacing, wherein the device periodically sends a small electrical
stimulus to the heart, and for defibrillation, wherein the device sends a larger shock to restore
normal heart rhythm” [24]. The ICD case study considers an ICD HIP composed of a pessimistic
computational agent for an ICD and a process coordinator for an ICD patient’s care. The ICD
computational agent model is based on [20, 24]. The ICD process coordinator model is primarily
based on the observations by Kevin Fu and his colleagues of an implantation of a new ICD and a
battery replacement for an existing ICD performed at a local area medical center [20]. The ICD
HIP requirement was taken directly from the security and privacy goals discussed in [23]. We
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describe the ICD case study in more detail in Section 5.1.2.
The requirement derivation toolset is implemented in Java 1.5. For each case study, we defined

one or more derivation problems as described in Section 4.3.3. The requirement derivation toolset
was run on each derivation problem to output whether the HIP satisfies the HIP requirement and
a derived computational agent requirement represented as an FSA. The runs were space bounded
(i.e. Java had its maximum heap size set to 2 GB) but not time bounded (i.e. ran to completion
when the derived requirement was output or ran to termination when an OutOfMemoryError was
thrown). For each run, we measured the requirement derivation toolset’s performance in terms of
both space and time.

The experimental platform is a MacBook Pro running Mac OS X version 10.5.8 with a 2.4
GHz Intel Core 2 Duo and 4 GB 667 MHz DDR2 SDRAM. The Java virtual machine (JVM)
was running the Java 2 Runtime Environment, Standard Edition (build 1.5.0 22-b03-333-9M3125)
where the JVM only supports a maximum heap size of a little over 2 GB (by trial and error around
2100MB). The derivation space was measured using the Java Runtime class, specifically we use the
totalMemory method and the freeMemory method. It was calculated as the difference between
the total and free memory. The Java Runtime class is known to report a very crude measure of
memory usage. The derivation time was measured using the Java Date class, specifically we used
the getTime method. We recorded the start Date before beginning the derivation and the finish
Date after ending the derivation. The derivation time was calculated as the difference between the
finish time and the start time.

5.1 How the requirement derivation approach’s inputs, a HIP and a HIP re-
quirement, affect the performance of the requirement derivation in terms
of space and time and also the derived requirement that is output

Our goal was to evaluate whether or not the automated requirement derivation approach:

1. can be applied to “real” HIPs (i.e. what is the performance in terms of space and time)

2. can be applied to safety, security, and privacy properties and, if possible, whether it is useful
to do so

3. can derive requirements of the computational agent that are readily understandable and useful
to computational agent developers (i.e. fill in missed or correct inaccurate requirements of
the computational agent)

The next two sections discuss the pump case study and the ICD case study.

5.1.1 Pump Case Study

The “smart” pumps typically load drug libraries where each drug library is associated with a
particular primary care area (PCA) and enumerates the drugs in use in that PCA. Further each
drug in use is associated with the usual dosing parameters such as concentrations, dosing units,
and dosing limits (specifically a minimum dosing limit and a maximum dosing limit). Before being
used, a pump is now configured to a particular drug library by selecting a PCA. This allows a pump
to check inputs (e.g. check that the drug may be used in that PCA, that the dose is within limits,
or that there is no drug interaction) and alert when those checks fail. But as mentioned in the
introduction, the pumps are used in different primary care areas such as the operation room and
the intensive care unit by various human agents such as anesthesiologists and nurses. Therefore,
it can be challenging to ascertain whether or not the pump is used correctly to help ensure the
patient’s safety.
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Pump HIP For the pump HIP model, the resource repository defines human agents (e.g. a
surgeon, nurse, clerk, and patient) and a computational agent for a pump. The artifact collection
defines artifacts such as patient identifier (ID) bracelets, medical records, and surgical tools. The
coordination specification for the HIP is composed of a computational agent model for a pump and
a process coordinator model that defines an in-patient surgery in a hospital. In general within the
coordination specifications, we elaborated those steps where the human agents communicated with
the pump computational agent. Overall, the pump HIP model written in Little-JIL contains 34
steps. The number of steps is defined to be all of the steps reachable from the entry point step of
the HIP model where each step reference is resolved to its step declaration. In the following, we
describe the pump computational agent first and the pump process coordinator model second.

Pump computational agent For the pump computational agent model, we made several sim-
plifying assumptions. There are only two drug libraries modeled: the OR’s drug library and the
ICU’s drug library. For each PCA’s drug library, there is a single drug modeled where the only
dosing parameters modeled are the dosing limits, specifically a minimum dosing limit and a maxi-
mum dosing limit. The drug doses are abstracted as either a lower dose or a higher dose. The API
for the pump computational agent model is:

• type PrimaryCareArea is enumerated (OR, ICU)

• type Dose is enumerated (LOWERDOSE, HIGHERDOSE)

• type ResponseCode is enumerated (SUCCESS, FAILURE)

• procedure configurePCA (pca: PrimaryCareArea) returns ResponseCode

• procedure enterDose (ds: Dose) returns ResponseCode

The pump computational agent model was described in Section 4.3.1. As written in Little-JIL, it
contains 10 steps.

Pump process coordinator The pump process coordinator model has as its entry point the
step PerformInPatientSurgery that captures the major stages of an in-patient surgery in a hospi-
tal at a high level of abstraction. It sequentially executes the sub-steps Check-in patien, Perform
operation, Administer ICU care, Administer post-operative care, Check-out patient. We
focus on the sub-steps Perform operation and Administer ICU care since they may communi-
cate with the pump computational agent, specifically they both contain a step reference to the
sub-step Perform infusion described in the next paragraph.

Figure 7 shows the step Perform infusion that sequentially executes the sub-steps Configure
PCA, Enter dose, and Administer infusion. The sub-step Configure PCA is optional (designated
by the ? annotating the incoming arc). The sub-step Enter dose may throw a DoseExceedsLimit
exception that is propagated to the step Perform infusion. The exception handler Respond to
dose exceeds limit alert (designated by the X in the right hand side of the step bar) catches
the DoseExceedsLimit exception and handles it by completing the step Perform infusion. This
ensures that if a health care practitioner entered a dose that exceeds the dosing limits then that
health care practitioner does not administer the over/under dose to the patient. In other words,
the exceptional control flow ensured that the sub-step Administer infusion was not executed.
For space considerations, the remainder of the pump process coordinator is now shown. Overall, it
contains 23 steps.
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Figure 7: The step Perform infusion written in Little-JIL

Pump Property The pump HIP requirement considers safety. Informally, it states that inside
the ICU if a health care practitioner enters a higher dose then the pump alerts that the entered
dose exceeds the dosing limits. For the pump HIP requirement, the alphabet contains the events
EnterICU, LeaveICU, HigherDose, PumpAlert, and NotPumpAlert. Figure 8 shows the pump HIP
requirement as an FSA. In the figure, each state is depicted as a circle. The start state, state 1,
is annotated with an arrow. An accepting state, e.g. state 3, is depicted as two concentric circles.
Each transition is depicted as an arc between a source state and a target state annotated with a list
of events from the alphabet. For example, there exists the self loop transition from source state 1
to target state 1 on the list of events HigherDose, PumpAlert, NotPumpAlert. Each FSA was made
total by adding a violation state that is a non-accepting state and also a sink state meaning that
all its transitions are self loops. For space considerations, the figure does not show the violation
state or its transitions. Therefore in the figure, if a given state explicitly does not have a transition
for a particular event in the alphabet that is shown, then that state implicitly has a transition for
that event to the violation state that is not shown. To illustrate, there exists an implicit transition
from the source state 1 on the event LeaveICU to the violation state that is not shown.

In Figure 8, the start state, state 1, represents being outside the ICU. State 1’s self loop
transitions represent that outside the ICU if a health care practitioner enters a higher dose then
the pump may or may not alert the health care practitioner. States 2 and 3 represent being inside
the ICU. The transition from state 1 on event EnterICU to state 2 represents moving from outside
the ICU to inside the ICU while the transition from state 2 on event LeaveICU to state 1 represents
moving from inside the ICU to outside the ICU. The transition from state 2 on event HigherDose to
state 3 represents that the health care practitioner entered a higher dose. The transition from state
3 on event PumpAlert to state 2 represents that the pump did alert the health care practitioner
about exceeding the dosing limits while the transition from state 3 on event NotPumpAlert to the
violation state represents that the pump did not alert the health care practitioner about exceeding
the dosing limits.

For FLAVERS/Little-JIL, the event EnterICU is bound to the process coordinator’s step
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Figure 8: Pump property as an FSA

Administer ICU care entering the STARTING state. The event LeaveICU is bound to the pro-
cess coordinator’s step Adminster ICU care entering the COMPLETING state. The event High-
erDose is bound to the process coordinator’s step Call enterDose(HIGHERDOSE) sending 3 to the
pumpReqChn channel. The event PumpAlert is bound to the agent’s step Do alert entering the
COMPLETING state. The event NotPumpAlert is bound to the agent’s step Do not alert en-
tering the COMPLETING state. Overall, the property is not satisfied if the property FSA reaches
the violation state.

Pump Requirement Derivation For the pump case study, the requirement derivation toolset
was given the pump HIP model composed of the pump computational agent model described in
Section 5.1.1 and the pump process coordinator model shown in Figure 22, the pump HIP property
shown in Figure 8, and no initial requirements on the pump computational agent’s behavior. The
requirement derivation toolset output that the pump HIP violates the safety HIP requirement
and a derived requirement of the pump computational agent. The pump HIP model violates the
HIP requirement because the pump computational agent model is too pessimistic. In particular,
if the pump process coordinator calls the procedure enterDose with higher dose then the pump
computational agent non-deteriministically chooses between reporting an alert and not reporting an
alert. The derived requirement of the pump computational agent was readily understandable since
it states that outside the ICU the pump can perform any of its procedures while inside the ICU
the pump cannot perform any of its procedures. But, the derived requirement was too strong to be
useful. A pump HIP where the pump computational agent satisfies the derived requirement would
vacuously satisfy the pump HIP requirement since the pump computational agent can perform
none of its procedures. Specifically, the pump computational agent cannot perform the procedure
enterDose given a higher dose and then not report an alert. So next, the requirement derivation
toolset was provided with initial requirements on the pump computational agent’s behavior in an
effort to make the derived requirement more useful.

Informally, the initial requirements on the pump computational agent are that the pump stores
the configured PCA (i.e. which PCA it was configured for last). Initially, the pump computa-
tional agent is configured with the ICU’s drug library. The procedure configurePCA(pca: Prima-
ryCareArea) updates the configured PCA to be the given PCA. Additionally for the configured
PCA’s drug library, the pump stores its dosing limits, specifically the minimum dose and the max-
imum dose. In the ICU’s drug library, the minimum/maximum dose is lower dose. But in the
OR’s drug library, the minimum dose is lower dose and the maximum dose is higher dose. The

21



Figure 9: The pump computational agent’s behavior constraint as an FSA

procedure enterDose(dose: Dose) checks whether the given dose exceeds the configured PCA’s
minimum or maximum dose. If so, then the pump does alert that the given dose exceeds the dos-
ing limits. If not, then the pump does not alert. Formally, the initial requirements on the pump
computational agent’s behavior were captured as a constraint. Since the initial requirements of the
pump computational agent primarily involved the pump’s procedures, the constraint encodes the
RPCs to the pump’s procedures as integer ranges. The channel pumpReqChn has an integer range
type from 0 to 3 inclusive where call configurePCA(ICU) is 0, call configurePCA(OR) is 1, call
enterDose(LOWERDOSE) is 2, call enterDose(HIGHERDOSE) is 3. The channel pumpRespChn has
an integer range type from 0 to 1 inclusive where return SUCCESS is 0 and return FAILURE is 1.

Figure 9 shows the pump computational agent’s behavior constraint as an FSA. Initially, the
pump is configured with the ICU’s drug library represented by the start state, state ’icu’. A call
to procedure configurePCA with the pca parameter set to ICU and returning a response code of
SUCCESS is represented by the transition from state ’icu’ on event pumpReqChn==0 to state
’icu succ’ and then the transition from state ’icu succ’ on event pumpRespChn=0 to state ’icu’. A
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call to procedure enterDose with the dose set to LOWERDOSE and returning a response code
of SUCCESS is represented by the transition from state ’icu’ on event pumpReqChn==2 to state
’icu succ’ and then the transition from state ’icu succ’ on event pumpRespChn=0 to state ’icu’. A
call to procedure enterDose with the dose set to HIGHERDOSE, alerting that the dose exceeds
limits, and then returning a response code of FAILURE is represented by the transition from state
’icu’ on event pumpReqChn==3 to state ’icu check’, the transition from state ’icu check’ on event
PumpAlert to state ’icu alert’, and the transition from state ’icu alert’ on event pumpRespChn=1
to state ’icu’.

When the pump is configured with the OR’s drug library, it is represented by state ’or’. A
call to procedure configurePCA with the pca parameter set to OR and returning a response code
of SUCCESS is represented by the transition from state ’icu’ on event pumpReqChn==1 to state
’or succ’ and then the transition from state ’or succ’ on event pumpRespChn=0 to state ’or’. For
the OR, the pump agent’s behavior is similar to the ICU with one key difference. That difference is
that a call to procedure enterDose with the dose set to HIGHERDOSE does not alert and returns a
response code of SUCCESS represented by the transition from state ’or’ on event pumpReqChn==3
to state ’or check’, the transition from state ’or check’ on event NotPumpAlert to state ’or notalert’,
and the transition from state ’or notalert’ on event pumpRespChn=0 to state ’or’.

For the pump case study, the requirement derivation toolset was given the pump HIP model
composed of the pump computational agent model described in Section 5.1.1 and the pump process
coordinator model shown in Figure 22, the pump HIP property shown in Figure 8, and the pump
computational agent’s behavior constraint shown in Figure 9. The requirement derivation toolset
output that the pump HIP violates the safety HIP requirement and a derived requirement of the
pump computational agent. The pump HIP model violates the HIP requirement because the health
care practitioners do not always configure the pump for a particular primary care area before they
administer infusions in that area. Informally, the derived requirement of the pump computational
agent states that after the pump is moved into the ICU that pump must be reconfigured for
the ICU before that pump is used to administer infusions. But for the requirement derivation
toolset, the derivation space needed was about 115 MB and the derivation time needed was over
an hour. Additionally since the derived requirement of the pump computational agent contains 46
states, it was not readily understandable. Figure 10 shows the derived requirement of the pump
computational agent as an FSA. The derived requirements represented as FSAs were visualized
using the Graphviz tool [21] primarily developed at AT&T Research. In the figures of the derived
requirements represented as FSAs, the start state is depicted as a rectangle and the remaining
states are depicted as circles. Each accepting state is depicted by being shaded. The violation state
is not shown.

When we investigated the requirement derivation toolset’s poor performance and the large
size of the derived requirement, we ascertained that the requirement derivation toolset considered
many infeasible paths. Specifically within the HIP FSV model the TFG and constraints capture
the RPC semantics with regards to the channel communications and the parameters that store the
requests/responses. But it does not capture the RPC semantics with regards to an RPC’s call and
return being paired. The infeasible paths impacted the performance negatively by increasing the
space and time used and made the derived requirement less understandable by increasing its size.
Thus, FLAVERS/Little-JIL was extended to remove such infeasible paths from consideration. We
provided RPC constraints that capture the RPC semantics with regard to the call/return pairs. To
illustrate, we consider the human agents that communicate with the pump computational agent over
the two channels pumpReqChn and pumpRespChn. The channel pumpReqChn contains requests
that range from 0 to 3 inclusive and the channel pumpRespChn contains responses that range from
0 to 1 inclusive.
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Figure 10: Derived requirement of the pump computational agent as an FSA

Figure 11 shows the pump process coordinator’s RPC constraint as an FSA that captures
the process coordinator’s side of the RPC. Initially, the pump process coordinator is at the start
state, state ’coord before call’. The pump process coordinator begins an RPC by calling a particular
procedure with given in parameters encoded as request X. This is represented by the transition from
state ’coord before call’ on event pumpReqChn=X to state ’coord before return’. Next, the pump
process coordinator waits for the pump computational agent to execute that procedure on those in
parameters represented by state ’coord before return’. Lastly, the pump process coordinator ends
the RPC for that procedure by accepting the return of the out parameters or exceptions thrown
encoded as response Y. This is represented by the transition from state ’coord before return’ on
event pumpRespChn==Y to state ’coord before call’.

Figure 12 shows the pump computational agent’s RPC constraint as an FSA that captures the
computational agent’s side of the RPC. Initially, the pump computational agent is at the start state,
state ’agent before call’. The pump computational agent begins an RPC by accepting a call with
given in parameters encoded as a request X. This is represented by the transition from state ’agent
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Figure 11: RPC constraint for the pump process coordinator as an FSA where the pump process
coordinator communicates over channels pumpReqChn and pumpRespChn

Figure 12: RPC constraint for the pump computational agent as an FSA where the pump compu-
tational agent communicates over channels pumpReqChn and pumpRespChn

before call’ on event pumpReqChn==X to state ’agent before return’. Next, the pump computa-
tional agent executes the procedure on the given in parameters that corresponds to request X. This
is represented by state ’agent before return’. After the requested procedure completes/terminates,
the pump computational agent ends the RPC for that procedure by returning the out parameters
or exceptions thrown encoded as response Y. This is represented by the transition from state ’agent
before return’ on event pumpRespChn=Y to state ’agent before call’.

Now for the pump case study, the derivation problem was changed by adding the RPC constraint
for the pump process coordinator and the RPC constraint for the pump computational agent. The
requirement derivation toolset was rerun and took 34 MB and 245 seconds. Figure 13 shows
the derived requirement of the computational agent represented as an FSA that now contains
12 states. So, the RPC constraints improved the requirement derivation’s performance and the
understandability of the derived requirement. But, the derived requirements could become even
more understandable if the complexity introduced by the RPCs was abstracted away. Conceptually,
we abstract an RPC for a particular procedure by pairing its call to that procedure and its return
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from that procedure (e.g. events pumpReqChn=0, pumpRespChn==0 ) and replacing that pair with
the step that corresponds to that procedure (e.g. pump configurePCA ICU succ).

Figure 13: Derived requirement of the pump computational agent as an FSA with initial require-
ments of the pump computational agent

We built a derived requirement abstraction tool that inputs a derived requirement represented
in the RPC view and outputs that derived requirement represented in the step view. At a high-
level, the derived requirement abstraction tool partitions the derived requirement’s alphabet into
the RPC related events (e.g. events pumpReqChn=0, pumpRespChn==0 ) and the other events
(e.g. EnterICU ). For now, the user provides a map from each RPC related event pair to a step
event (e.g. RPC related event pumpReqChn=0 paired with RPC related event pumpRespChn==0
maps to step event pump configurePCA ICU succ). The derived requirement is converted from the
RPC view to the step view using two patterns:

• RPC pattern: Input a transition from old state S1 on old event e1 to old state S2 and another
transition from old state S2 on old event e2 to old state S3; Output if (event pair e1,e2 maps
to step event e) then create a new transition from new state S1 on step event e to new state
S3

• Other pattern: Inputs a transition from old state S1 on old event e1 to old state S2; Output
if (other events contains e) then create a new transition from new state S1 on new event e1
to new state S2
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Figure 14: Derived requirement of the pump computational agent as an FSA

We describe the derived requirement abstraction tool’s algorithm in more detail in the Appendix.
Figure 14 shows the step view of the pump derived requirement where the RPC related event

pairs map to the step events as follows:

• event pumpRequestChannel=0 paired with event pumpResponseChannel==0 maps to event
pump configurePCA ICU succ

• event pumpRequestChannel=0 paired with event pumpResponseChannel==1 maps to event
pump configurePCA ICU fail

• event pumpRequestChannel=1 paired with event pumpResponseChannel==0 maps to event
pump configurePCA OR succ

• event pumpRequestChannel=1 paired with event pumpResponseChannel==1 maps to event
pump configurePCA OR fail

• event pumpRequestChannel=2 paired with event pumpResponseChannel==0 maps to event
pump enterDose LOWERDOSE succ

• event pumpRequestChannel=2 paired with event pumpResponseChannel==1 maps to event
pump enterDose LOWERDOSE fail

• event pumpRequestChannel=3 paired with event pumpResponseChannel==0 maps to event
pump enterDose HIGHERDOSE succ

27



• event pumpRequestChannel=3 paired with event pumpResponseChannel==1 (i.e. entering a
higher dose leads to a pump alert) maps to event pump enterDose HIGHERDOSE fail

Overall, the derived requirement is now more understandable. The pump computational agent
derived requirement highlights that a pump in a particular PCA must be configured for that PCA
before being used in that PCA to administer infusions. This is primarily captured by the event
sequence pump configurePCA OR succ,EnterICU, pump configurePCA ICU succ,
pump enterDose HIGHERDOSE fail, LeaveICU. Next, we consider whether or not the HIP require-
ment considering safety is useful and whether or not the requirement derivation toolset’s output is
useful.

The requirement derivation toolset outputs that the pump HIP violates its safety HIP require-
ment and also the pump computational agent derived requirement shown in Figure 14. For the
purpose of preventing medical safety errors, it is useful to know that the pump HIP violates the
pump HIP requirement. Specifically to prevent medical safety errors, the pump developers could
modify the pump to implement the pump derived requirement. For example, they could make the
pump be location sensitive (e.g. query a central computer in the hospital or employ radio-frequency
identification tags) so that it can ascertain which PCA it’s located in and then the pump could
configure itself for that PCA. This would help to ensure that more pump HIPs satisfy the pump
HIP requirement about a higher dose leading to a pump alert since the pump computational agent
satisfies the pump derived requirement.

To investigate whether the requirement derivation approach can be applied to “real” HIPs, we
compared the process coordinator described above with a more detailed version. For the more
detailed version, we elaborated the process coordinator by adding references to steps declared in
the verify patient identification (ID) process described in [12]. Specifically, the steps Check-in
patient and Perform operation were elaborated. The step Perform check-in has a child step
obtain new ID band that is a leaf step. The leaf step obtain new ID band was changed to be a
reference to the step obtain new ID band declared in the verify patient ID process. Non-leaf step
obtain new ID band involves a clerk verifying a patient’s ID and then placing an ID band on that
patient containing her or his identifying information such as name and data of birth. Also, the step
Perform operation has a child step verify patient ID band that is a leaf step. The leaf step
verify patient ID was changed to be a reference to the step verify patient ID band declared
in the verify patient ID process. Non-leaf step verify patient ID band involves a health care
practitioner verifying that a patient’s identifying information matches the ID band’s identifying
information. The pump process coordinator model that is more detailed contains 64 steps. For the
pump process coordinator model that is more detailed, the requirement derivation toolset output
exactly the same derived requirement of the pump computational agent as for the pump process
coordinator model that is less detailed. That derived requirement is shown in Figure 14.

For the requirement derivation toolset runs, we partitioned the measurements by the require-
ment derivation, the L* algorithm, and FLAVERS/Little-JIL. For the requirement derivation, we
measured the number of steps in the HIP written in Little-JIL (Little-JIL step count), the number
of states in the derived FSA (state count), the space in megabytes (MB) for the derivation (deriva-
tion space), and the time in seconds (sec) for the derivation (derivation time). For the L* algorithm,
we measured the number of events in the alphabet of the derived FSA (alphabet size), the number
of membership queries answered by the L* teacher (membership query count), and the number of
equivalence queries answered by the L* teacher (equivalence query count). For FLAVERS/Little-
JIL, we measured the number of nodes in the TFG (TFG node count), the number of constraints
applied (constraint count), the number of node-tuples stored while answering the last equivalence
query for the L* teacher (last node-tuple count), and the sum of all node-tuples ever stored while
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answering all of the queries for the L* teacher (sum node-tuple count). Since the automated deriva-
tion toolset decomposes each HIP into module 1 that contains the computational agent and module
2 that contains the process coordinator, all of the FLAVERS/Little-JIL measurements, except for
the sum, are broken into a module 1 component (M1) and a module 2 component (M2) displayed
as M1 / M2.

VARIABLE NAME Pump less detailed Pump more detailed
Requirement derivation
Little-JIL step count 34 75
State count 12 12
Derivation space (MB) 44 40
Derivation time (sec) 245 249
L* algorithm
Alphabet size 8 8
Member. query count 1168 1168
Equiv. query count 10 10
FLAVERS/Little-JIL
TFG node count 174 / 233 174 / 248
Constraint count 7 / 9 7 / 9
Last node-tuple count 138229 / 54893 138229 / 55326
Sum node-tuple count 6106459 6208842

Table 1: Data collected for the pump case study requirement derivation runs

Table 2 shows the the data collected for the pump case study requirement derivation toolset
runs. For both pump HIPs, the derivation space needed was less than 44 MB and the derivation
time needed was under 5 minutes. For the pump case study, the requirement derivation toolset
can be applied to HIPs that are defined at a high-level of abstraction. In addition, the HIP can be
further elaborated with regards to the subtasks that do not communicate with the computational
agent without adversely affecting the requirement derivation toolset’s performance and also without
affecting the derived requirement.

5.1.2 ICD Case Study

From [24], ICDs are being widely adopted. But since multiple human agents such as health care
practitioners and patients are coordinating the patients’ care with the ICDs in diverse settings such
as health care facilities, clinics, and homes, it is challenging to reason about whether the ICDs are
being used in a manner that ensures security and privacy. An additional challenge is introduced
by human agents such as attackers who may adversely affect the patients’ care with the ICDs by
intentionally causing the ICDs to fail.

ICD HIP For the ICD HIP model, the resource repository defines human agents such as a surgical
team (two cardiologists, three nurses), clerks, patients, attackers and computational agents such as
a fluoroscope, an external programmer, and an ICD. We primarily focus on the ICD computational
agent. The artifact collection defines artifacts such as patient ID bracelets, medical records, and
surgical tools. The coordination specification for the HIP is composed of an ICD computational
agent and an ICD process coordinator for the implantation of the ICD into the patient in the
hospital proceeded by either a follow up in the clinic or an attack from outside. In general within
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the coordination specifications, we elaborated those steps where the human agents communicated
with the ICD computational agent. Overall, the ICD HIP model written in Little-JIL contains
66 steps. In the following, we describe the ICD computational agent first and the ICD process
coordinator second.

ICD computational agent An ICD is implanted in the patient’s chest cavity and its connected
to the patient’s heart with electrical leads. Once the ICD is implanted, an external programmer
may be employed to wirelessly access and program the ICD by sending radio commands from the
programmer to the ICD. Initially, the ICD rejects all commands from the ICD programmer. A wand
is employed to send the command to activate the ICD so that it accepts all commands from the
external programmer. The wand may use a magnet or a radio signal for the activation. Additionally,
we consider the command to deactivate the ICD so that it rejects all commands. The command
readdata reads the ICD’s data including the patient’s telemetry (i.e. vital sign information) and
the ICD’s therapies where a therapy describes what telemetry triggers administration of pacing or
a shock to restart the heart. The command testmode administers a shock to stop the heart. The
API for the ICD computational agent model is:

• type ResponseCode is enumerated (SUCCESS,FAILURE)

• procedure activate() returns ResponseCode

• procedure deactivate() returns ResponseCode

• procedure readdata() returns ResponseCode

• procedure testmode() returns ResponseCode

The initial requirements on the ICD computational agent’s behavior are captured as a con-
straint. As for the pump case study, the initial requirements on the ICD computational agent
primarily involved the ICD’s procedures. So the constraint encoded the RPCs to those procedures
as integer ranges. The channel icdReqChn has an integer range type from 0 to 3 inclusive where
call activate() is 0, call deactivate() is 1 call readdata() is 2, call testmode() is 3. The channel
icdRespChn has an integer range type from 0 to 1 inclusive where return SUCCESS is 0 and return
FAILURE is 1. Figure 15 shows the ICD agent’s behavior constraint as an FSA. Initially, the ICD
rejects all commands represented by the start state, state ’notAct’. A call to procedure readdata,
testmode, or deactivate returns a response code of FAILURE represented by the transition from
state ’notAct’ on event icdReqChn==1, icdReqChn==2, icdReqChn==3 to state ’notAct reqOther’
and then the transition from state ’notAct reqOther’ on event icdRespChn=1 to state ’notAct’.
A call to procedure activate returns a response code of SUCCESS represented by the transition
from state ’notAct’ on event icdReqChn==0 to state ’notAct reqAct’ and then the transition from
state ’notAct reqAct’ on event icdRespChn=0 to state ’act’.

Now, the ICD accepts all commands represented by the state ’act’. A call to procedure activate
or readdata returns a response code of SUCCESS represented by the transition from state ’act’
on event icdReqChn==0 or icdReqChn==2 to state ’act reqOther’ and the transition from state
’act reqOther’ on event icdRespChn=0 to state ’act’. A call to procedure testmode, administering
the shock, and returning a response code of SUCCESS is represented by the transition from state
’act’ on event icdReqChn==3 to state ’act reqTM’, the transition from state ’act reqTM’ on event
TestMode to state ’act TM’, and the transition from state ’act TM’ on event icdRespChn=0 to state
’act’. Finally, a call to procedure deactivate returns a response code of SUCCESS represented
by the transition from state ’act’ on event icdReqChn==1 to state ’act reqDeact’ and then the
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Figure 15: The ICD computational agent’s behavior constraint as an FSA

transition from state ’act reqDeact’ on event icdRespChn=0 to state ’notAct’. As was initially the
case, the ICD once again rejects all commands.

The ICD computational agent model was created as described in Section 4.3.1. The ICD
computational agent model written in Little-JIL contains 9 steps. It is contained in the Appendix.

ICD process coordinator For the ICD process coordinator model, the major phases are the
implantation of the ICD in the patient in the hospital, a follow up in the clinic, or an attack
from outside. We focus on the sub-step Perform implantation that communicates with the ICD
computational agent. The sub-step Perform follow up behaves similarly to the sub-step Perform
implantation with regards to the communication with the ICD computational agent. Concep-
tually, the sub-step Iterate attack describes when an attacker has either gained access to an
external programmer or put together a device to mimic the external programmer and then attacks
the ICD by wirelessly sending all of the commands to the ICD in any order.

Figure 16 shows the step Perform implantation that captures the primary implantation of a
new ICD into a patient within the hospital at a high level of abstraction. For the primary implanta-
tion, the major stages are represented by the sub-steps Perform check-in to hospital, Perform
pre-implantation tasks, Perform implantation tasks, Perform post-implantation tasks,
and Perform check-out from hospital and those major stages are executed sequentially. We
further elaborated the sub-steps Perform implantation tasks and Perform post-implantation
tasks (designated by their being step references) since they both communicate with the ICD
agent while the remaining sub-steps were not further elaborated (designated by their being leaf
steps). The sub-step Perform implantation tasks sequentially executes its sub-steps Perform
implantation procedure, Perform programming, and Perform testing. The sub-step Perform

31



Figure 16: The step Perform implantation written in Little-JIL

implantation procedure involves physically implanting the leads and the ICD into the patient’s
chest cavity. After the patient’s chest has been closed up, the sub-step Perform programming
employs the wand to activate the ICD and then the external programmer to re-program the ICD’s
therapies as desired. For space considerations, the remainder of the ICD process coordinator model
written in Little-JIL is not shown. Overall, it contains 56 steps.

ICD Property The ICD HIP requirement considers security. From [23] on page 33, the authors
state the ICD HIP requirement as “an outsider should not be able to trigger an ICD’s test mode,
which could induce heart failure.” For the ICD HIP requirement, the alphabet contains the events
EnterHCFacility, LeaveHCFacility, and TestMode. Figure 17 shows the ICD HIP requirement as
an FSA.

Figure 17: ICD property as an FSA
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In Figure 17, the start state, state 1, represents being outside a health care facility. The
transition from state 1 on event TestMode to the violation state represents that an outsider (i.e.
attacker) should not be able to use the ICD’s test mode. State 2 represents being inside a health
care facility. The transition from state 1 on event EnterHCFacility to state 2 represents moving
from outside a health care facility to inside that health care facility while the transition from state 2
on event LeaveHCFacility to state 1 represents moving from inside a health care facility to outside
that health care facility. The transition from state 1 on event TestMode to the violation state
represents that an outsider (i.e. attacker) should not be able to use the ICD’s test mode. The
transition from state 2 on event TestMode to state 2 represents that an insider (i.e. health care
practitioner) should be able to use the ICD’s test mode.

For FLAVERS/Little-JIL, the event EnterHCFacility is bound to the process coordinator’s step
Perform implantation entering the STARTING state or the process coordinator’s step Perform
follow up entering the STARTING state. The event LeaveHCFacility is bound to the process
coordinator’s step Perform implantation entering the COMPLETING state or the process co-
ordinator’s step Perform follow up entering the COMPLETING state. The event TestMode is
bound to the agent’s step Administer shock for test mode entering the COMPLETING state. Over-
all, the property is satisfied when the violation state is not reached.

ICD Requirement Derivation First, we investigated whether the HIP requirement consider-
ing security is useful and whether or not the requirement derivation toolset’s output is useful. The
requirement derivation toolset was given the ICD HIP model composed of the ICD computational
agent model described in 5.1.2 and the ICD process coordinator model shown in Figure 24, the
ICD HIP property shown in Figure 17, and the ICD computational agent’s behavior constraint
shown in Figure 15. The requirement derivation toolset outputs the the ICD HIP violates the
security HIP requirement. Figure 18 shows the step view of the ICD derived requirement where the
alphabet contains the events EnterHCFacility, LeaveHCFacility, icd activate succ, icd activate fail,
icd deactivate succ, icd deactivate fail, icd readdata succ, icd readdata fail, icd testmode succ, icd testmode fail
and there are 5 states. In the figure, there are 4 states that are shown and the violation state that
is not shown.

Since the ICD HIP violated the security HIP requirement, we used the ICD derived requirement
to analyze the potential failures. We partitioned the potential failures into intentional failures due to
the attacker’s behavior and unintentional failures due to the health care practitioners’ behavior. The
intentional failures are due to the attacker activating the ICD. Specifically, the derived requirement
highlights two cases where the attacker activates the ICD: the first case is before the implantation
(represented by the event sequence icd activate succ) and the second case is after the implantation
(represented by the event sequence EnterHCFacility, LeaveHCFacility, icd activate succ). The
unintentional failure is due to a health care practitioner not deactivating the ICD before the patient
leaves the health care facility (represented by the event sequence EnterHCFacility, icd activate succ,
LeaveHCFacility).

To prevent the unintentional failures, we define the trusted computing base of the ICD compu-
tational agent to be the external programmer, specifically the magnet or radio signal that triggers
the procedure activate. Figure 19 shows the trusted computing base constraint represented as an
FSA. The start state, state 1, represents being outside a health care facility. The transition from
state 1 on event Activate to the violation state represents that an outsider (i.e. attacker) should not
be allowed to activate the ICD. Note that this transition is now shown in Figure 19 since for brevity
the violation state and its transitions are not shown. State 2 represents being inside a health care
facility. The transition from state 1 on event EnterHCFacility to state 2 represents moving from
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Figure 18: ICD derived requirement as an FSA

Figure 19: Trusted computing base constraint as an FSA

outside a health care facility to inside that health care facility while the transition from state 2
on event LeaveHCFacility to state 1 represents moving from inside a health care facility to outside
that health care facility. The transition from state 2 on event Activate to state 2 represents that
an insider (i.e. health care practitioner) should be allowed to activate the ICD.

Figure 20 shows the step view of the ICD derived requirement with the trusted computing
base constraint applied. For space considerations, the violation state and its transitions are not
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Figure 20: ICD derived requirement as an FSA when the trusted computing base constraint was
applied

shown. By taking into account the trusted computing base, the derived requirement now cap-
tures that the intentional failures are prevented designated by the transition from the state 1 on
event icd activate succ to the violation state (not explicitly shown) and also the transition from
state 3 on event icd activate succ to the violation state (not explicitly shown). But the uninten-
tional failure designated by the event sequence EnterHCFacility, icd activate succ, LeaveHCFacility,
icd testmode succ is not prevented.

To prevent both intentional and unintentional failures as suggested in [23], the ICD developers
could be provided with an ICD requirement that states that the ICD must deactivate itself after
a certain condition is met (e.g. if the patient sits up then deactivate, if the patient leaves the
operating/exam room then deactivate). In practice, we are told that such an ICD requirement
is implemented, specifically the condition is that after a short period of time elapses (i.e under
several minutes) then the ICD deactivates itself. It was implemented not to improve security but
to reduce power consumption but regardless both the intentional and unintentional failures would
be prevented.

To investigate whether the requirement derivation approach can be applied to “real” HIPs,
we compared the two ICD HIPs described above with an ICD HIP that was further elaborated
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by adding the ICD computational agent command writedata. The ICD HIP with the command
writedata was created by copying the ICD HIP. Next, it was changed so that the command
writedata was defined and used. The ICD agent defines the procedure writedata that allows the
external programmer to write either telemetry or therapies to the ICD. The ICD process coordinator
uses the procedure writedata within the hospital and clinic to program the ICD and also uses it
when attacking the ICD.

Figure 21: Derived requirement FSA for the ICD HIP with procedure writedata

For the ICD HIP with procedure writedata, Figure 21 shows the ICD computational derived
requirement as an FSA, which is different from the derived requirement of the computational
agent shown in Figure 18. Specifically, the alphabet contains two new events icd writedata fail and
icd writedata succ, there are no new states, and there are new transitions for the two new events
where the procedure writedata behaves like the procedure readdata.

Table 2 shows the the data collected for the ICD case study requirement derivation toolset
runs. For the first two ICD HIPs, the derivation space needed was less than 213 MB and the
derivation time needed was under 12 minutes. But for the ICD HIP with command writedata,
the derivation space needed was 700 MB and the derivation time needed was under 23 minutes.
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VARIABLE NAME ICD ICD w/ TCB ICD w/ writedata
Requirement derivation
Little-JIL step count 66 67 69
State count 12 13 12
Derivation space (MB) 191 166 700
Derivation time (sec) 497 594 1332
L* algorithm
Alphabet size 8 8 9
Member. query count 1582 1816 2532
Equiv. query count 10 11 10
FLAVERS/Little-JIL
TFG node count 148 / 419 149 / 419 178 / 521
Constraint count 7 / 13 7 / 14 7 / 15
Last node-tuple count 135383 / 608702 149160 / 610517 261100 / 2298105
Sum node-tuple count 88088823 91496963 981139329

Table 2: Data collected for the ICD case study requirement derivation runs

For the ICD case study, the ICD HIPs were further elaborated with regards to the subtasks that
do communicate with the computational agent. This adversely affected the requirement derivation
toolset’s performance in terms of space and time. Specifically, the space needed appears to be a
bottleneck. But, the derived requirements were useful and provided additional information such
as how the trusted computing base is defined affects the derived requirement. In an attempt to
improve the requirement derivation toolset’s performance in terms of space and time, we evaluated
two FSV tool optimizations as described in the next section.

5.2 How the assumption learning algorithm optimizations affect the perfor-
mance of the requirement derivation in terms of space and time

From Section 3, the automated requirement derivation toolset extends an assumption learning
algorithm. The assumption learning algorithm employs the L* algorithm to learn the derived
computational agent requirement represented as an FSA. The L* algorithm learns the FSA by
interacting with a teacher that must be able to answer membership and equivalence queries. The
teacher supplies those answers by using FLAVERS/Little-JIL that employs various optimizations.
For the assumption derivation algorithm, we evaluated two FSV tool optimizations.

The two FSV tool optimizations that we evaluated are an alphabet refinement optimization and
a partial order optimization. Both FSV tool optimizations attempt to reduce the size of the TFG
(i.e. node count and/or edge count) and also the node-tuple count. In the following, we describe
the alphabet refinement optimization first and the partial order reduction optimization second.

5.2.1 Alphabet refinement optimization

For FLAVERS/Little-JIL, the alphabet refinement optimization based on [16] removes parts of the
program that are not relevant to the property and constraints, specifically it removes TFG nodes
and local edges. The alphabet refinement optimization inputs a TFG, a property to be verified,
and a set of constraints to be applied. The relevant alphabet is defined to be the set union on
the property’s alphabet and each constraint’s alphabet. At a high level, it outputs a copy of the
input TFG where any TFG node annotated with an event not contained in the relevant alphabet
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is removed but all paths through that node are re-added. For each HIP process coordinator, we
elaborated those steps that interacted with the agent and often did not elaborate the remaining
steps. Conceptually, we manually performed alphabet refinement where the relevant alphabet
consisted of the property events and the channel/parameter related events.

We evaluated on six HIPs: the pump HIP where the pump process coordinator was less/more
detailed, the ICD HIP where the ICD process coordinator was less/more detailed, the ICD HIP
where the ICD process coordinator was more detailed with the trusted computing base (TCB), and
the ICD HIP where the ICD process coordinator was more detailed with command writedata.
For the ICD case study, the ICD process coordinator model that was more detailed elaborated
the non-leaf step Perform implantation procedure. The major subtasks involved are preparing
the ICD before implanting it, gaining access to the chest cavity, installing the electrical leads, and
closing the chest cavity. The ICD process coordinator model that was less detailed was created
by changing non-leaf step Perform implantation procedure into a leaf step. For each HIP, the
requirement derivation toolset was run as described in Section 5.

For the pump/ICD HIP with less/more detail, the derived requirements were the same. For
the ICD HIP with the trusted computing base, the derived requirement captured that the trusted
computing base prevented the intentional failures. For the ICD HIP with command writedata,
the derived requirement was the same as for the ICD HIP, except there were transitions added for
the command writedata that behaved similarly to the command readdata.

HIP name Step count Node count Constraint count Node-tuple sum Time (sec)
Pump w/ less 34 174 / 233 9 6106459 245
Pump w/ more 75 174 / 248 9 6208842 249
ICD w/ less 54 148 / 419 13 88088823 490
ICD 66 148 / 419 13 88088823 497
ICD w/ TCB 67 149 / 419 14 91496963 594
ICD w/ writedata 69 178 / 521 15 981139329 1332

Table 3: Data collected for the alphabet refinement optimization

Table 3 shows the data collected where the first column contains the HIP name, the second
column contains the detail level (either more or less), the third column contains the number of
Little-JIL steps, the fourth column contains the number of TFG nodes (module 1 / module 2),
the fifth column contains the memory usage as the node-tuple sum, and the sixth column contains
the run time in seconds (sec). For the pump case study, the alphabet refinement optimization
recognizes that the human agents communicating with the computational agent is relevant to the
HIP requirement but that the human agents’ other sub-tasks are not relevant so can be refined
away. But for the ICD case study, the elaboration involves additional communications with the
ICD computational agent that are relevant to the HIP requirement so those communications cannot
be refined away. Also, the elaboration needed additional constraints to be applied that adversely
affected the requirement derivation’s performance in terms of space and time. To preliminarily
investigate scalability, we evaluated a partial order reduction optimization described in the next
section.

5.2.2 Partial order reduction optimization

The partial order reduction optimization adapted from [30] reduces the number of thread-interleavings
that must be considered to verify whether or not the program satisfies the property. Within the
TFG, the extra edges that capture the thread inter-leavings are called MIP (may immediately
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precede) edges. A MIP edge captures that execution of an event in one thread may immediately
precede execution of an event in another thread. Thus, the partial order reduction optimization
actually removes MIP edges. For FLAVERS/Little-JIL, the MHP (may happen in parallel) algo-
rithm [29] uses data flow analysis to conservatively compute an approximation of the TFG node
pairs that may happen in parallel with eachother. We compare a basic MIP edge strategy that
adds MIP edges between all such pairs and a partial order MIP edge strategy that only adds MIP
edges between particular pairs as described in [30].

For the requirement derivation, we employed both MIP strategies to compare/contrast their
performance in terms of space and time. We evaluated on four HIPs: the pump HIP that was more
detailed, the ICD HIP, the ICD HIP with the trusted computing base (TCB), and the ICD HIP
with command writedata . For each HIP, the automated requirement derivation was run twice as
described in Section 5. The first run was with the basic MIP strategy and the second run was with
the partial order reduction (POR) MIP strategy.

HIP name MIP strategy MIP edge count Memory usage (MB) Derivation time (sec)
Pump basic 1474 / 3218 40 249
Pump POR 900 / 1885 32 130
ICD basic 1175 / 4765 191 497
ICD POR 755 / 2510 113 260
ICD w/ TCB basic 1269 / 4765 166 594
ICD w/ TCB POR 816 / 2510 109 311
ICD w/ writedata basic 1501 / 5794 700 1332
ICD w/ writedata POR 914 / 3249 526 659

Table 4: Data collected for the partial order reduction optimization

For each HIP, the derived computational agent requirement was the same for both runs. Table
4 shows the data collected where the first column contains the HIP name, the second column
contains the MIP strategy (either basic or POR), the third column contains the MIP edge count,
the fourth column contains the memory usage in megabytes (MB), and the fifth column contains
the derivation time in seconds (sec). Overall, the partial order reduction optimization improved
the performance of the requirement derivation. It decreased both the space and time used for the
requirement derivation. For the HIP models, the channels are shared among the human agents
and the computational agent while the parameters are local to either the human agents or the
computational agent. The partial order reduction optimization is benefitting from the parameters
being local. To attempt to improve the performance further, the requirement derivation approach
could employ additional FLAVERS/Little-JIL optimizations.

5.3 Discussion

From our experience putting together the HIP models, it would be helpful if Little-JIL supported
additional channel operations such as a synchronous send/receive and a selective receive (i.e. the
process writer provides the selective receive with a query that the received data must match). For
FLAVERS/Little-JIL, it may be beneficial to represent the channels at a higher-level of abstrac-
tion to attempt to improve the performance of the requirement derivation. For the security HIP
requirements, the case studies may suggest a common pattern that allows certain procedures to be
called within a particular setting (i.e. in a health care facility) but disallows those procedures to
be called outside that setting (i.e. attacker).
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From our observations, the derived computational requirements are understandable and ap-
pear to be useful to software engineers and security/privacy analysts. Initial requirements on the
behavior of the computational agent were necessary for the derived computational requirements
to be useful. The HIP requirement can consider safety and security. For the ICD case study, a
privacy HIP requirement that states that an outsider should not be able to read data from the
ICD would be quite similar to the security HIP requirement that we evaluated. The requirement
derivation approach can be applied to HIPs that are defined at a high-level of abstraction. For the
requirement derivation toolset runs, the derivation space needed was under 526 MB and the deriva-
tion time needed was under 23 minutes. The requirement derivation toolset that combines the L*
algorithm with FLAVERS/Little-JIL benefitted from the FLAVERS/Little-JIL optimizations. For
the performance, it appears that space is more of an issue than time as demonstrated by the ICD
HIP with the procedure writedata. For a better understanding of the automated requirement
derivation approach, a more extensive evaluation is needed.

6 Related Work

As mentioned in Section 2, the assumption learning algorithms, e.g. [3, 9, 14], employ the L* algo-
rithm in combination with an FSV tool to learn the assumptions that are represented as automata.
They differ with regards to the system FSV model, the requirement specification language, the FSV
tool employed, the optimizations applied, and the automata (e.g, regular, tree) that are output. In
contrast, the requirement derivation approach inputs a HIP composed of a process coordinator and
a computational agent and also a HIP requirement that may consider safety, security, or privacy.
It extends the assumption learning algorithm from [14] so the learned assumption is represented as
an FSA. The extension basically weakens the learned assumption in an effort to make the learned
assumption a useful computational agent requirement.

The interface synthesis algorithms, e.g. [4,8], input a software library written as a Java class and
a safety requirement. Such algorithms synthesize an interface of that software library represented as
an FSA where an interface is defined as “the most general way of invoking the methods in the class so
that the safety property is not violated” [4]. They also employ the L* algorithm in combination with
an FSV tool to synthesize the interfaces. But the interface synthesis algorithms differ with regards
to the FSV tool employed. The researchers involved in [3] developed, with another researcher,
the interface synthesis algorithm in [4]. For both projects, the researchers used an off-the-shelf
FSV tool. On the other hand, the interface synthesis algorithm based on learning in [8] used a
new FSV tool that was implemented specifically to support the learning algorithm. Additionally,
Beyer et al [8] consider two other interface synthesis algorithms, one based on game theory and one
based on counterexample guided abstraction refinement. For the requirement derivation approach,
the computational agent is being treated like the software library and additionally the process
coordinator is being taken into account. The requirement may consider safety but additionally
security or privacy. The requirement derivation approach is applied to the computational agent
design and not to a released computational agent. The requirement derivation approach extension
is very similar to how the interface synthesis algorithms employ the L* algorithm but differs in how
the teacher’s equivalence query is implemented and the FSV tool employed.

The black box checking approaches, e.g. [17, 22, 32], test a given software component imple-
mentation against a specified requirement. Specifically, the software component is treated as a
black box that consumes the inputs and produces the outputs but otherwise its implementation
is unknown. The test results are used to build a software component model represented as an
FSA. Such approaches employ the L* algorithm in combination with a testing tool to build the
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software component model. For [22], the black box checking approach may be provided with an
initial software component model and the test results are used to update that software component
model. For [17, 22], the requirement considers safety. For [32], the requirement considers security.
For the requirement derivation approach, a computational agent implementation is not provided
but initial requirements on its behavior may be. The requirement may consider safety, security, or
privacy. Another difference is that the L* teacher employs an FSV tool instead of a testing tool.

The interactive requirement learning techniques, e.g. [2, 25], input a set of initial requirements
represented as conditional actions and then iteratively refine those requirements. On each iteration,
such techniques interact with the user to guide the refinement. Specifically, the user is provided with
suggested refinements and must select from among those suggestions. The suggested refinements are
computed by employing a learning algorithm (not L*) in combination with an AI search algorithm.
For [2], the AI search algorithm is provided by an FSV tool. Similarly, the requirement derivation
approach inputs any initial requirements of the computational agent’s behavior and iteratively
refines them. But in contrast, the requirement derivation approach only interacts with the user on
input and final output while the interactive learning techniques additionally interact with the user
on each iteration.

For a given software system, a security/privacy policy basically captures what the authorized
flow of information through that system could be. Similar to the FSV approaches, the secu-
rity/privacy information flow analysis techniques, e.g. [26, 27], dynamically or statically check
whether a given software system adheres to a user-defined security/privacy policy. This cleanly
separates the software system’s application code from the security/privacy policy checking code.
The check is performed by using an information flow analysis [7,15]. Overall, the information flow
analysis techniques primarily focus on the data flow while the requirement derivation approach
primarily focuses on the control flow. But, the requirement derivation approach inputs a HIP and
a security/privacy HIP requirement and outputs a derived requirement that is essentially a secu-
rity/privacy policy. So in theory, the HIP and the derived requirement could then be provided to
the information flow analysis techniques to be checked.

Because the security/privacy policies are challenging to reason about, there has been work
on automated analysis of such policies, e.g. [19, 34]. In this work, one such automated policy
analysis inputs a set of user-defined security/privacy policies and support queries over those policies.
Another such automated policy analysis is a change-impact analysis that differences two versions
of the same policy. The security/privacy policy extraction technique described in [35] inputs a
software system written in C and employs a static analysis to extract a security/privacy policy
that captures the conditional information flow. Informally, conditional means that the control flow
dependencies are taken into consideration along with the data flow dependencies. Additionally, a
change-impact analysis algorithm is described. At a high-level, the requirement derivation approach
has a similar goal where it inputs a HIP and employs a static analysis to derive a computational
agent requirement. But, the requirement derivation approach takes the HIP into account and
additionally a HIP requirement into account.

7 Conclusions and Future Work

In this work, we investigated an automated requirement derivation approach. Specifically, the
automated requirement derivation approach inputs a HIP composed of a process coordinator and
a computational agent, a HIP requirement, and any initial requirements of the computational
agent’s behavior. It essentially uses a static analysis to output whether the HIP satisfies the
HIP requirement and additionally a computational agent requirement represented as an FSA. The

41



HIP requirements may consider safety, security, or privacy. The HIP model is composed of a
coordinator model and an explicit computational agent model. Additionally, the coordinator model
may explicitly define an attacker. In addition, the requirement derivation approach can be applied
during the design phase as opposed to the testing or released phase. This could help reduce
development costs.

The requirement derivation toolset implements the automated requirement derivation approach
except for the HIP model building. To preliminarily evaluate the approach, the toolset was ap-
plied to two case studies. From the preliminary evaluation, the automated requirement derivation
approach shows promise. The derived computational agent requirements are understandable and
appear to be useful to software engineers and security/privacy analysts. But, initial requirements
on the behavior of the computational agent were necessary for the derived computational agent
requirements to be useful. It appears that the approach can handle (at least some) safety and
security properties. It was applied to “real” HIPs that are defined at a high-level of abstraction.
For the requirement derivation toolset runs, the derivation space needed was under 526 MB and the
derivation time needed was under 23 minutes. The requirement derivation toolset that combines
the L* algorithm with FLAVERS/Little-JIL improved its performance in terms of space and time
by employing two of the FLAVERS/Little-JIL optimizations.

The proposed automated requirement derivation approach could be implemented for other pro-
cess modeling languages, requirement specification languages, assumption learning algorithms, and
FSV tools. As future work, the process model builder tool should be implemented as described in
Section 4.3.1. The requirement deriver tool should attempt to improve the performance in terms of
space and time by employing additional FLAVERS/Little-JIL optimizations. To further assist the
computational agent developers, the derived requirement FSAs could be used to generate positive
scenarios (i.e. sequences from the start state to an accepting state) and negative scenarios (i.e.
sequences from the start state to a non-accepting state).

We may investigate making the assumption learning algorithm interactive so that on each
iteration the user of the toolset is provided with the current assumption and is then allowed to
provide incremental requirements of the computational agent that further restrict the computational
agent’s behavior as suggested by [2, 25]. The automated requirement derivation approach is based
on a learning algorithm. Alternatively, it could be based on a game theoretic algorithm or a
counterexample guided abstraction refinement algorithm as was done in [8].

Additionally, the automated requirement derivation approach should be further evaluated. We
only considered two HIPs in the medical domain. It would be interesting to consider HIPs from
other domains such as the governance domain (i.e. elections). The evaluation should investigate
HIPs that are more elaborated and in general the requirement derivation’s scalability. Additional
HIP requirements should be gathered, especially privacy HIP requirements.

From a software engineering perspective, possible future directions are to investigate HIP mod-
els where the resource repository is explicitly modeled, HIP requirements that consider resources
(especially the agents), and information flow analysis. From a security/privacy perspective, possible
future directions are to investigate additional static analyses that take the HIP model into account
and perhaps to identify security/privacy patterns that commonly occur within the security/privacy
HIP requirements.
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8 Appendix

8.1 Requirement Derivation Toolset

8.1.1 Derived requirement abstraction tool algorithm

Within the case study derived requirements, the other pattern matches non-leaf steps while the RPC
pattern matches a pair of leaf steps. Additionally for the case study HIPs, the step sequencing used
in either sequential or try. So by the Little-JIL semantics, we can apply the derived requirement
abstraction since the other events will not be interleaved between the RPC related events. In more
detail, if the other pattern matches a:
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• non-leaf step that is an ancestor of a pair of RPC leaf steps, then by the step hierarchy
that non-leaf step’s execution states happen strictly before or after its predecessors execution
states

• non-leaf step that is not an ancestor of a pair of RPC leaf steps, then by the step sequencing
being either sequential or try that non-leaf step’s execution states happen strictly before or
after the RPC leaf step’s execution states

The derived requirement R is represented as a deterministic FSA that is total. Let R =
(Σ, S, δ, s0, A, strap) where:

• Σ is the alphabet that consists of the set of events of interest

• S is the set of states

• δ : S x Σ→ S is the transition function that is deterministic and total

• s0 ∈ S is the unique start state

• A ⊆ S is the set of accepting states

• strap ∈ S is the unique trap state that is a non-accepting state and a sink state

Additionally, the user provides the RPCDecoding, which is a map from an RPC related event pair
to a RPC related step event. Let Σsteps be the set of RPC related step events. Let RPCDecoding
be represented as a function from Σ x Σ to Σsteps.

The AbstractDerivedRequirement(R,RPCDecoding) algorithm pseudo code is:
0 states : S → S′

// Initialize R′ = (Σ′, S′, δ′, s′0, A
′, s′trap)

1 R′ ← CreateFSA(R, states)
// Create the new alphabet, the set of other events, and the set of RPC related events
2 Σother ← CreateAlphabet(A,A′)
3 ΣRPC ← ∅ ∪ Σ
4 ΣRPC ← ΣRPC \ Σother

// Create the remaining states and transitions
5 foreach (s ∈ S) do
// Match the other pattern
6 foreach (e ∈ Σother) do
7 t← δ(s, e)
8 s′ ← CreateState(s); t′ ← CreateState(t)
9 δ′(s′, e)← t′

endforeach
// Match the RPC pattern
10 foreach (e1 ∈ ΣRPC) do
11 t← δ(s, e1)
12 foreach (e2 ∈ ΣRPC) do
13 u← δ(t, e2)
14 e← RPCDecoding(e1, e2)
15 if (e 6= null) then
16 s′ ← CreateState(s); u′ ← CreateState(u)
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17 δ′(s′, e)← u′ endif
endforeach
endforeach
endforeach
18 DeleteDead(R′); DeleteUnreachable(R′) // As described by Aho, Sethi, Ullman in [1]
19 MakeTotal(R,R’);
20 return R′

The CreateFSA(R,states) function pseudo code is:
1 Σ′ ← ∅ // Create a new empty alphabet
2 S′ ← ∅ // Create a new empty set of states
3 s′0 ← CreateState(states, S′, s0, A,A′) // Copy the start state
4 A′ ← ∅ // Create a new empty set of accepting states
5 s′trap ← CreateState(states, S′, strap, A,A

′) // Copy the trap state
6 return R′

The CreateState(states,S’,s,A,A’) function pseudo code is:
1 s′ ← states(s) // Check if the given state has already been copied
2 if (s′ = null) then
// Allocate a new state
3 s′ ← new
4 S′ ← S′ ∪ {s′}
5 states(s)← s′

6 if (s ∈ A) then
7 A′ ← A′ ∪ {s′}
endif
endif
8 return s’

The CreateAlphabet(Σ,Σ′, RPCDecoding) function pseudo code is:
1 Σother ← ∅ ∪ Σ // The set of other events
2 foreach (e1 ∈ Σ) do
3 foreach (e2 ∈ Σ) do
4 e← RPCDecoding(e1, e2)
5 if (e 6= null) then
6 Σ′ ← Σ′ ∪ {e}
7 Σother ← Σother \ {e1, e2}
endif
endforeach
endforeach
13 Σ′ ← Σ′ ∪ Σother

14 return Σother

The MakeTotal(R,R’) function pseudo code is:
// Create the trap state and transitions
1 s′trap ← new;S′ ← S′ ∪ {s′trap};
2 foreach (s′ ∈ S′) do 3 foreach (e′ ∈ Σ′) do
4 t′ ← δ′(s′, e′)

47



5 if (t′ = null) then
6 δ′(s′, e′)← s′trap

endif
endforeach
endforeach

8.2 Evaluation

8.2.1 Case studies

Pump example Figure 22 shows the step ”Perform in-patient surgery” written in Little-JIL.

Figure 22: Step Perform in-patient surgery written in Little-JIL

ICD that was more detailed example Figure 23 shows the pessimistic ICD computational
agent model written in Little-JIL.

Figure 24 shows the ICD process coordinator model written in Little-JIL where the step
PerformICDPatientCare is the entry point (designated by the northeast arrow to the right of
the step name).

Figure 25 shows step Iterate attacker briefly described in Section 5.1.2.
Figure 26 shows step Perform implantation procedure described in Section 5.1.2.
After physically implanting the ICD, Figure 27 shows the step Perform testing that ensures

that the ICD performs its monitoring and therapies. The step Perform testing sequentially
executes its sub-steps Review telemetry and therapies and Test therapies. The step Review
telemetry and therapies executes sequentially so it first executes sub-step Perform read data
that reads the telemetry and therapies from the ICD and second executes sub-step Confirm read
data that confirms that the telemetry and therapies are appropriate before proceeding to testing the
therapies. The step Test therapies also executes sequentially so it first executes sub-step Perform
test mode and then sub-step Confirm therapies applied. For the nominal control flow, the test
mode administers a shock to the heart that stops the heart (i.e. enters cardiac ventriculation), the
ICD’s therapies are triggered to restart the heart, and the test completed successfully For the
exceptional control flow, the sub-step Perform test mode throws a TestFailedException when the
ICD does not administer the shock to the heart and the sub-step Confirm therapies applied
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Figure 23: Pessimistic ICD computational agent model written in Little-JIL

Figure 24: ICD process coordinator model written in Little-JIL

throws a TestFailedException when the ICD’s therapies are not triggered and therefore the heart
is not restarted. The TestFailedException is propagated to the step ”Test therapies” where the
exception handler Handle test failed catches the TestFailedException and afterwards completes
the step Test therapies.

For the ICD computational agent derived requirement, the step abstraction tool inputs the
following:
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Figure 25: Step Iterate attacker written in Little-JIL

Figure 26: Step Perform implantation procedure written in Little-JIL

• event icdRequestChannel=0 paired with event icdResponseChannel==0 maps to event icd activate succ

• event icdRequestChannel=0 paired with event icdResponseChannel==1 maps to event icd activate fail
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Figure 27: Step Perform testing written in Little-JIL

• event icdRequestChannel=1 paired with event icdResponseChannel==0 maps to event icd deactivate succ

• event icdRequestChannel=1 paired with event icdResponseChannel==1 maps to event icd deactivate fail

• event icdRequestChannel=2 paired with event icdResponseChannel==0 maps to event icd readdata succ

• event icdRequestChannel=2 paired with event icdResponseChannel==1 maps to event icd readdata fail

• event icdRequestChannel=3 paired with event icdResponseChannel==0 maps to event icd testmode succ

• event icdRequestChannel=3 paired with event icdResponseChannel==1 maps to event icd testmode fail

ICD that was more detailed with the trusted computing base example For the ICD
computational agent derived requirement, the step abstraction tool takes the inputs as described
in the previous paragraph.

ICD that was more detailed with procedure writedata example For the ICD computa-
tional agent derived requirement, the step abstraction tool inputs the following:

• event icdRequestChannel=0 paired with event icdResponseChannel==0 maps to event icd activate succ

• event icdRequestChannel=0 paired with event icdResponseChannel==1 maps to event icd activate fail

• event icdRequestChannel=1 paired with event icdResponseChannel==0 maps to event icd deactivate succ

• event icdRequestChannel=1 paired with event icdResponseChannel==1 maps to event icd deactivate fail

• event icdRequestChannel=2 paired with event icdResponseChannel==0 maps to event icd readdata succ

• event icdRequestChannel=2 paired with event icdResponseChannel==1 maps to event icd readdata fail

• event icdRequestChannel=3 paired with event icdResponseChannel==0 maps to event icd testmode succ
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• event icdRequestChannel=3 paired with event icdResponseChannel==1 maps to event icd testmode fail

• event icdRequestChannel=4 paired with event icdResponseChannel==0 maps to event icd writedata succ

• event icdRequestChannel=4 paired with event icdResponseChannel==1 maps to event icd writedata fail
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