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Abstract

Client-server networks are pervasive, fundamental, and include key
networks such as the Internet, power grids, and road networks. In a
client-server network, clients obtain a service by connecting to one of a
redundant set of servers. These networks are vulnerable to vertex and link
failures as some clients may become disconnected from the servers causing
them denial of service. We develop algorithms that quantity and bound
the inherent vulnerability of a client-server network using semidefinite
programming (SDP) and branch-and-cut techniques. Further, we develop
a divide-and-conquer algorithm that solves the problem for large graphs.
We use these techniques to show that: for the Philippine Power Grid
removing just over 6% of the transmission lines will disconnect at least
20% but not more than 50% of the substations from all generators; on a
large wireless mesh network disrupting 5% of wireless links between relays
removes Internet access for half the relays; even after any 16% of Tier
2 ASes are removed, more than 50% of the remaining Tier 2 ASes will
remain connected to the Tier 1 backbone; when 300 roadblocks are erected
in Michigan, it is possible to disconnect between 28-43% total population
from all airports.

1 Introduction

A client-server network consists of clients and servers where each client obtains
a critical service by connecting over the network to a server chosen from a
redundant set of servers. The key aspects of several real-world networks can
be modeled as client-server networks, with suitable definitions for clients and
servers. For instance, a wireless mesh consists of mobile users (i.e., clients)
accessing the wired Internet by connecting to one of the gateways (i.e., servers).
In the Internet context, Tier-2 autonomous systems (i.e., clients) connect to the
Internet backbone by peering with one of the Tier-1 autonomous systems (i.e.,
servers). In a power grid, each substation (i.e., client) connects to one of the
power generators (i.e., servers) to obtain electricity. And, people (i.e., clients)
travel to airports and other critical service infrastructure (i.e., servers) using the
road network.



Client-server networks are vulnerable to vertex and link failures as clients
that are unable to connect to any server are denied service. Failures may be
caused by both genuine malfunction and intentionally targeted attacks. Even
though servers are typically deployed in a distributed and redundant fashion to
enhance service availability, a targeted set of failures can cause serious denial of
service to clients. Network attacks and failures are common in a wide variety
of networks. Wireless networks are susceptible to numerous attacks including
DOS, spoofing attacks, and physical tampering [20,23,31,32]. In wired networks,
fiber optic cables and other media are conspicuously susceptible to intentional or
inadvertent destruction [8,16,24]. Internet Autonomous Systems are vulnerable
to BGP protocol exploits that have been documented by numerous researchers for
years [19,22,25 27]. Power grids are crucial to modern infrastructure as illustrated
by the major blackout in North America in 2003 and many point out targeted
(terrorist) attacks are a significant concern [6,7,29]. The industry consensus is a
need to identify attack and failure scenarios before they happen [6,28]. Finally,
there is significant concerned for the national highway system. A recent study
identified eight unrelated suspicious events that seemed to indicate terrorist
attention to major pieces of domestic highway infrastructure [18] via roadside
improvised explosive devices (IEDs) or vehicle-borne TEDs. To address these
concerns, the United States Government Accountability Office calls for individual
vulnerability assessments on the nationally critical Tier-2 structures list [10].

All of the above examples of real-world client-server networks underscore the
importance of studying the effect of failures and attacks on service availability
for clients. Our specific goal is to assess the intrinsic vulnerability of a client-
server network by computing a quantitative relationship between the number of
worst-case attacks and failures and the number of clients who are denied service.

1.1 Problem Statement

A client-server network can be modeled as a graph G = (S U C, E), where S is
a set of server vertices, C is a set of client vertices, and F is the set of edges.
Each server is equally capable of providing the required service and each client
accesses the service by connecting to any one of the servers in S. Taking the
power grid as an example, the set S consists of generator nodes that serve
electricity and the set C' consists of substation nodes that receive and distribute
it to customers. If any substation is disconnected from all generators, then it
and all of its customers will lose power. Wireless mesh networks can also be
modeled as client-server graphs where set S is the small number of gateways
that are directly connected to the Internet, while the set C' consists of the large
number of relays that connect to gateways or other relays. Internet connectivity
is established for any given relay only when there exists some path to a gateway.

Our problem can be formally defined as follows. We define a service path
for a client vertex v as any path in G that begins at v and ends at some server
vertex. Client v is said to be serviceable if and only if it has a service path. Let
Conn(G) be the number of serviceable clients in G. Let G © R be the graph G
with elements R C .S UC U FE removed, i.e., GS R is the graph that results when



the vertices and edges in R fail'. We focus on solving the following problem in
the context of real networks.

PROBLEM: MinConn(G,n,m)
e Given: client-server graph G = (SUC, E) and n,m € R.

e Find: minimum value of Conn(G © (AU B)), over all A, B, where A C
C,|Al =n,and B C E,|B| =m.

Note that MinConn(G,n,m) is simply the number of serviceable clients in G
in the worst scenario of n client vertex failures and m edge failures.

We also solve a weighted version of the above problem that we call Weight-
edMinConn(G,n, m) where each v € C is assigned a weight w[v]. The objective
is to minimize the weighted sum of the serviceable clients in G © (AU B), where
ACCand BCE, with ) . ,w[v] <n and |B| =m. The weighted variant of
the problem is useful in our road network analysis where each vertex represents
a geographical area and is weighted by its population density.

1.2 Our Results

Our main contributions are as follows. We formalize the notion of vulnerability
in client-server networks by defining the MinConn problem and its weighted
variant. Since solving the MinConn problem exactly is NP-Hard (see Section 4),
we develop algorithms that derive upper and lower bounds. We provide the
first efficient algorithms for bounding MinConn for both edge and client vertex
removal (separate or combined) using semidefinite programming and a branch-
and-cut technique. Further, we extend these techniques to large graphs using a
divide-and-conquer technique. Finally, we demonstrate the wide applicability of
our techniques on real-world data sets, providing quantitative results.

Our real-world analysis includes (i) a residential wireless mesh network, (i)
the power grid of the Philippines, (iii) the Internet AS level graph, and (iv)
the highway systems in Towa and Michigan. We chose these datasets for their
importance, diversity, and size. In particular, the AS and highway system graphs
are large at over 5,000 and 1,500 vertices, respectively.

For the mesh network, roughly half the relays are disconnected from all
gateways after removing just 12 links (< 5%). Direct relay removal is less
dramatic but more damaging for this mesh. We show that removing 12 relays
(< 18%) can disconnect more than 70% of the remaining relays. Similarly, for
the Philippine power grid, removing just over 6% of the transmission lines will
disconnect at least 20% but not more than 50% of the substations from all
generators. On the other hand, we also find that almost 50% of the substations
can be disconnected from all generators after strategically removing a certain 20
(approximately 5%) other substations.

I1We assume that failed vertices and links cannot be used for any purpose, and hence may
be removed.



To evaluate the two remaining data sets, we use our algorithm for large
graphs. The Autonomous Systems (AS) level graph of the Internet remains
resilient, as we show that even when 900 (> 16%) Tier-2 nodes are removed,
more than half the Internet remains connected via the Tier-1 backbone. We
also used this approach to analyze the number of people with highway access to
airports in the states of Iowa and Michigan. We show that when 200 roadblocks
are erected state-wide it is possible to disconnect between 500K and 1.7M people
(15-50% total population) from every airport in Towa. In Michigan we found
that only 2.8M to 4.3M people (28-43% total population) will maintain airport
connectivity after erecting 300 road blocks.

1.3 Related Work

A traditional approach to studying the vulnerability of a complex network is
to use graph partitioning techniques such as finding graph separators of small
width [26]. An a-separator of a graph G = (V, E) is a collection of either edges
or vertices whose removal separates a graph into two disconnected subgraphs,
each having size at most [(1 — «)|V|]. The number of edges or vertices in
the cut is called the separation width. Finding either an a-edge-separator or
a-vertex-separator of minimum width is NP-hard. Bui and Jones have shown it
is NP-hard even to find a good approximation to the a-separator problem [11].
The objective of graph separation is to completely partition the graph into
appropriately-sized pieces by removing vertices and edges. In contrast, our goal
is not to partition the graph completely, but to study the manner in which
service availability degrades as a function of the number of failed components.

Even though standard graph partitioning does not appear to be directly
applicable, some of the techniques developed in that context have been key to
our approach. Specifically, Wolkowicz and Zhao [30] developed techniques for
using semidefinite programming for graph partitioning. We utilize some of those
ideas in our algorithm, specifically the notion of a lift matrix to represent our
block decomposition of the client-server graph.

Numerous works attempt to experimentally evaluate the vulnerability of
specific networks or graph families. However, they do not consider a client-server
formulation with a focus on service availability as we do here. Neither do they
develop algorithms that analyze worst-case failure scenarios as in our work. Ding
et al. [14] used spectral techniques to decompose the web graph. Magoni and
Zhou et al. [21,33] independently analyzed the Internet AS graph and showed
that by removing approximately 3% of the ASes (including Tier-1’s and Tier-2’s)
the size of the largest connected component decreases by a factor of 3. Flaxman et
al. [15] provides a framework for strengthening existing graphs by supplementing
them with regular subgraphs. Cohen et al. [12] provided a modification to
classical percolation theory in order to study the effects of removing vertices
with highest degree, and demonstrated that even though scale-free graphs are
robust to random failure they are highly sensitive to targeted attack.



1.4 Roadmap

In Section 2, we provide an algorithm that uses semidefinite programming (SDP)
and branch-and-cut techniques to bound the values of MinConn(G,n, m) for
arbitrary client-server networks. Further, we apply these techniques to assess
the vulnerability of two real-world networks: a wireless mesh network and the
power grid of the Philippines. In Section 3, we extend the SDP-based approach
to larger graphs by using a divide-and-conquer heuristic. Further, we apply this
approach to two larger real-world networks: the Internet AS graph, and the
road networks of lowa and Michigan. Finally, in Section 5, we offer concluding
remarks.

2 An SDP-based Algorithm

The goal of this section is to derive upper and lower bounds on MinConn(G,n, m)
by means of a semidefinite program (SDP). For clarity, the SDP is translated
from a conceptually simple, but numerically unstable, Quadratically Constrained
Quadratic Program (QCQP) formulation. Fundamental to our approach is
a block representation for GG that separates serviceable, non-serviceable, and
entirely removed clients.

2.1 QCQP Formulation

Let A be the adjacency matrix of G = (S U C, E), and for convenience label
V = SUC. Further, for any V' C V| let G(V') denote the induced subgraph
of G whose vertex set is V/ and whose edge set is the subset of E consisting of
those edges with both ends in V'. A block B is any (possibly empty) subset of
V such that G(B) is disconnected from G(V \ B), but neither subgraph G(B)
nor G(V '\ B) are necessarily connected individually. We designate three blocks
Bj, Bs, and Bs, with |B;| = b;. The block indicator matriz for G is a |V| x 3
matrix X, where

.| 1, nodeie€ B
X(i5) = { 0, otherwise (1)

It follows that > ; X (i,:) = 1 and >, X(:, j) = bj, where 7 denotes any cell
along that dimension (as in Matlab or Python).

We next seek to frame the MinConn problem in terms of the three blocks
we have created above, illustrated in Fig. 1. These blocks will correspond
to a segmentation of serviceable, non-serviceable, and removed clients in G.
Specifically, the first block is the server block, to which all server vertices are
fixed, and clients with paths to these servers are placed. Clients without paths to
servers are placed in the second block. Finally, the third block is the null block,
which is where clients that have been removed from the graph are placed. The
set of removed vertices and edges are called the vertex and edge cuts, and they
are labeled Cy and Cg respectively. We have the following QCQP formulation.
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Figure 1: Separating a Client-Server Graph into blocks

e Given: client-server graph G = (SUC, E) and n,m € R.
e Find: minimum || X(:,1) || such that,

(1) X(Z, 1) =1, Vies. (All servers in Block 1)
(2) Zl‘;‘l Z?:l X(l,]) < |V| (Vertex Count)

(3) |CV| <n. (Vertex Cut Size)

(4) |CE| <m. (Edge Cut Size)

(5) X(Z,j) S {0, 1} (0-1 property)

Note that Cy = Bs so

V]

Cvl=>_X(.3). (2)

Finding an expression for |Cg| is just a bit more complicated. We begin with
a short digression. Vector X(:,j) indicates the vertex membership of block j.
That is to say, X (¢,7) = 1 if vertex i is in block j and is 0 otherwise. For an
arbitrary matrix M, the quantity X (:, )T M X (:,5) gives the sum of entries in
the sub-matrix indicated by X (:, j). Define D to be the matrix with row sums of
adjacency matrix A along its diagonal, and further define the Laplacian matrix
L = D — A. The quantity X (:,j)T DX (:, j) gives twice the total number of edges
incident to vertices indicated by X (:,7), and X (:,5)TAX(:,J) gives twice the
number of edges fully contained in block j. It follows that X (:, /)T LX(:, j) gives
twice the number of edges incident to, but not fully contained in, block j.

To quantify |Cg|, we seek to bound the number of edges between blocks 1
and 2, that is, all edges connecting the two blocks. This quantity is captured by



the following
1< 1
|CE| = §ZX(7])TLX(7J)_ §X(73)TLX(73) (3)
j=1

The first term gives the total number of edges that lie between any of the three
blocks. The second term subtracts the number of edges that pass between the
null block and the others.

2.2 SDP Formulation

The QCQP formulation cannot be solved directly because there is no mechanism
to enforce orthogonality between block vectors; hence there is no way to force each
vertex into a single partition. Directly enforcing orthogonality is not possible in
a QCQP. Therefore, we must graduate to a richer language, that of semidefinite
programming. Every semidefinite program with an N x N constraint matrix
can be solved in time O(N?) [17]. A semidefinite program is any problem of the
form

Minimize C' e Z subject to Ae Z =0 and Z > 0,

where A @ B = trace(ATB) = >_i; AijBij is the Frobenius inner product and
Z = 0 indicates that Z is positive semidefinite.

The Frobenius inner product gives the component-wise product of two ma-
trices. So, for example, the ;" entry of A e Z is equal to the product of the
i7" entry of A and the ij*" entry of Z. Our goal is to implement each of the
constraints in the QCQP formulation in terms of a semidefinite optimization
variable. To that end, let vec(X) be the vector formed by concatenating the

columns of X. Furthermore, let

0= el | W

Define the lift matriz associated with X as Y = yy”. Wolcowicz and Zhao [30]
were the first to use this representation in the context of graph decomposition.
First order terms are found along the first row and column, while second order
terms are easily extracted from the remainder of the matrix. For notational
simplicity, we number the rows and columns of Y beginning with index zero. We
will also use the function ¢(i,j) = i +m(j — 1), which maps the entry X (i, j)
to its corresponding entry in vec(X(,7)). The matrix ¥ comprises all pairwise
products of block indices of the form X (i1, j1)X (i2, j2), as well as single indices
X(i,7). Term X (i1,71)X (i2, j2) indicates that vertex i, appears in block j; and
vertex 15 appears in block jo. We have,

Y (i1, j1), @iz, j2)) = X (i1, 1) X (i2, ja),

while
Y (0, ¢(i1, 1)) = Y(¢(i1,41),0) = X (i1, j1)-



Now suppose that B(é(i1,j1), #(i2,j2)) = B for some matrix B, then the term
BX (i1, j1)X (i2, j2) will appear in row ¢(i1,j1) and column ¢(ia, jo) of matrix
B e Y. Constraints can thus be built as scaled single and pairwise products of
block indices.

THEOREM: There exists an SDP whose solution is at most the solution of
our QCQP formulation.

PROOF: It will suffice to rewrite the objective and each of the constraints of
our QCQP formulation as an SDP in terms of the lift matrix Y, where Y is
relaxed to the space of all semidefinite matrices. To that end let v = |V, and
define 1;,; and 0;,; to be the matrices of all ones and zeros, respectively, and
having size ¢ x j. The operator diag is defined as in Matlab so that it either
extracts the diagonal of a matrix or forms a diagonal matrix from a vector.
Also, let I;«; be the identity matrix of size ¢ X ¢ and the symbol “®” denote the
Kronecker Product of two matrices. The following is an SDP formulation.

PROGRAM: MinConnSDP(G,n,m)
e Given: graph G = (SUC,E) and n,m € R.
e Find: minimum O e Y such that,
(1) Fi1eY, Vie S. (Servers in Block 1)

(2) SeY =v. (Vertex Count)

(3) VeY =n. (Vertex Cut Size)

(4) EeY =m. (Edge Cut Size)

(5) A oY, Vi, j. (0-1 property)

(6) UeY =1. (Upper Left Equal 1)
(7) Z;eY, Vi (Sum Vertex Values is 1)

where
- O:diag([ 0 11><u 01><2u ])
- § = diag(1)y|x|y|) except that S(0,0) =0

- V=diag([ 0 O1x2 lixw |)

0 0120 010
€= Onx1 3hx2®L Ozxy
Ol/><l/ OV><2V _%L

- Aij = 0y x|y| except that A;;(¢(i,5),0) =1 and Ay;(¢(i, ), ¢4, 7)) = —1
- Fij = Oy x|y| except that Fi;(o(i,5), o(i, 7)) = 1

- U = diag(1}y|x|y|) except that ¢(0,0) =1

- Z; = Ojy|x|y| except that Z;(¢(i,5), ¢(i,7)) = 1 for all j € {1,2,3}

Constraints for the edge cut and the 0-1 property were first introduced by
Wolcowicz and Zhao [30], but we have modified the edge cut constraint to



subtract the number of edges passing to the null block. The last two constraints,
in bold, are new; we have introduced them for the purposes of numerical stability.
When translating constraints for mathematical programs, it is often necessary to
use decompositions that involve simpler and sometimes redundant (in the space

of binary vectors) constraints.
O

2.3 Solving the SDP Formulation

Semidefinite Programs can be solved by standard software suites. We use SDPT3
for MATLAB. This yields a tight lower bound for very small graphs. However,
as the size of the input graph increases, the solver fails to assign each vertex
to a single block. Instead, vertices are fractionally assigned to all blocks. We
address this issue by fixing a small number of vertices to a single block as part
of a branch-and-cut algorithm. Our entire solution procedure is as follows.

PROCEDURE: MinConnBC(G,n,m)
e Solve Program MinConnSDP(G,n, m) using SDPT3.

e Use branch-and-cut procedure to find a lower bound.
e Derive Upper bound by rounding.

The next section provides the details of this approach.

2.3.1 Lower Bound via Branch and Cut

Let S be the value of the semidefinite programming solution from Section 2.2. S
offers a lower bound on the optimal solution to MinConn(G,n, m). This bound
can be strengthened by fixing a small set of vertices T', each to one of the three
blocks. In doing so, we move the semidefinite variable Y closer to being a binary
matrix, which shrinks the search space and ultimately leads to a tighter bound.
On the other hand, we cannot be certain that the resulting solution is optimal
because it’s possible that the optimal solution does not admit the placement we
have chosen. However, if we evaluate all |Y'|? possible permutations of vertices
T, then we can be certain that the lowest solution among them is no greater
than optimal.

We choose the vertices of T' one-by-one. The first vertex, vy, is chosen to be
that whose placement is most ambivalent in & — that is, closet to one-third in
each block. For each branch on vy, the next vertex, vy, is chosen as the most
ambivalent vertex assignment in the given branch. This process is continued
until the entire set 7" is formed. Any given vertex i is fixed to block j by adding
the constraint F;; « Y = 1 to the SDP. To stem the exponential growth of
solution branches, we can leverage the structure of the graph G itself to prune
some of these branches. First, we can eliminate any branch that places more
than m pairs of connected vertices in different blocks (not including the null
block). Second, we can cut any branch that places a vertex ¢ in block 2 when 4
is adjacent to some server.



2.3.2 Upper Bound via Rounding

Our goal is to round some solution matrix Y* from the solution tree formed
via branch-and-cut into a concrete solution to Problem MinConn(G,n,m). In
principle, any partial solution from the tree is a valid candidate, but in practice
we find it difficult to round most solutions while simultaneously keeping the
objective value low and satisfying the edge cut constraint. So we try multiple
solution matrices and choose the best rounded solution among them. The best
candidates are those matrices Y* that are nearly binary, and for small graphs
these are readily found in the solution tree. However, for large graphs, a binary
solution does not emerge immediately, so we choose the best branches at the
last level of the solution tree and follow them exclusively until a nearly binary
matrix Y* is found.

We now proceed under the assumption that a suitable matrix Y* has been
identified. Given Y*, define Z* to be the block matrix formed by extracting the
diagonal of Y* and being fashioned in a manner analogous to the block matrix
X. Matrix Z* is therefore an |V| x 3 matrix with each row corresponding to a
single vertex and possessing net weight 1. Entry Z*(4,b) indicates the presence
of vertex ¢ in block b, which may be fractional. Rounding Z* means rounding
each row so that a single column in that row is equal to 1. This constitutes an
unambiguous assignment for each vertex.

Finally, we apply the Kernighan-Lin Algorithm [26] to reduce the number of
edges in the cut. The the Kernighan-Lin Algorithm is an iterative procedure
that begins by swapping every possible pair of vertices (vg,v1) one-at-a-time
where vy is in block 1 and vy is in block 2. The pair that lowers the edge cut by
the most is chosen and the vertices in the pair are fized to their respective blocks.
This procedure is repeated until there are no unfixed vertices remaining in one
or both blocks. This procedure is attractive because it preserves the objective
value and is known to produce small edge cuts when the initial partition is a
good one.

2.4 Empirical Evaluation

We compared the lower and upper bounds found by executing Procedure Min-
ConnBC(G,n,m) in two different real world networks: a wireless mesh network
from the Net Equality Project and the Philippine Power Grid.

2.4.1 Net Equality Wireless Mesh Network

In the context of a wireless mesh network, vertex removal implies that a relay has
been disabled while link removal implies that the connection between two nodes
has been disrupted. Here, a relay node is a client and gateway node a server;
our trace had no information about the number of users (laptops, desktops, etc.)
connected to clients. We investigated how the number of serviceable clients
decreases as other clients and links are removed from the network.

The Net Equality Project [4] works to provide Internet access to low-income
communities where residents live in dwellings within close proximity, such as

10
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Figure 2: Wireless mesh connectivity (link removal)

apartment complexes. They deploy a small number of gateway nodes that
provide direct access to the Internet and relatively inexpensive Meraki Mini
access points (relays) around the community, where most relays are multiple
hops from gateways. A resident has access to the Internet wherever he/she is in
range of either a gateway or a relay that is ultimately connected to a gateway.
We analyzed a snapshot of the Hacienda CDC housing development taken in
2007. At the time, 69 relays and 2 gateways were connected by 279 links serving
approximately 1,200 residents. We studied the removal of up to 18 clients and
20 links in the Net Equality Network.

Figure 2 shows the degradation of client serviceability in the network as
links are removed. The blue triangles give a lower bound on the number of
relays connected to the Internet after the indicated number links have been
removed. Circles in red provide a complimentary upper bound on the number
of serviceable clients. These values correspond to partial (lower bound) and
complete (upper bound) block assignments for each vertex. Two major features
dominate Figure 2, the first is a severe drop in client serviceability after allowing
12 links to be removed. The second is another drop when 19 links can be removed.
These points coincide with events where large subgraphs are finally disconnected
from both gateways. This behavior provides valuable insight into the fault
tolerance and attack vulnerability of the Net Equality graph. Communication
difficulties between a handful of relays will not usually cause a major disruption,
but degradation is not smooth, in general.

Figure 3 offers a view of client removal. Again, triangles in blue indicate a
lower bound on the number of remaining clients that are serviceable when the
given number of clients have been removed. Circles in red offer a complimentary
upper bound. In contrast to the link removal problem, client removal exhibits
a much more uniform decline in serviceability. However, while the rate of
deterioration is roughly uniform, it is much more severe for the same number
clients removed as links. For example, removing 8 clients can disconnect as many
as 39 clients from all servers, while removing 8 links will disconnect no more

11
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Figure 3: Wireless mesh conectivity (relay removal)

than 10 clients.

2.4.2 Philippine Power Grid

We also analyzed a network representing the Power Grid of the Philippines from
2006 [5]. The Grid comprised 44 power generators and 360 substations connected
by 796 transmission lines. We modeled the Grid as a client-server graph with
power generators corresponding to servers, substations corresponding to clients,
and transmission lines corresponding to edges. We studied, independently, the
effect of removing up to 50 transmission lines (links) or 50 substations (clients).

Figure 4 shows how power service degrades as the number of links removed
increases. The lower bound departs somewhat from the upper, but does serve to
establish that removing as many as 50 of transmission lines will not disconnect
more than 50% of the substations. On the other hand, the plot also indicates
that it is possible to disconnect roughly 20% of the substations after removing
some 50 transmission lines.

Figure 5 shows client serviceability degradation with client removal. The most
noticeable feature is the greater impact client removal has on client serviceability
compared with link removal. The bounds also depart from each other more
gradually than in the case of link removal. The figure shows that almost 50%
of the substations can be disconnected by strategically removing just 20 other
substations. In other words, removing fewer than 5% of the substations can
leave half the remaining grid without service.

2.5 Topological Influence on Serviceability

Removing one client is always at least a damaging to serviceability as removing
one link, so it makes sense that client removal is more damaging than link
removal in both the Wireless Mesh and Power Grid networks. But the Wireless
Mesh Network exhibits profound robustness even after a relatively large quantity
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of links have been removed while the Power Grid does not. Upon examination
we find that clients in the former have a much more rich degree distribution
than clients in the later. Even though the Wireless Mesh Network has just 20%
of the clients as the Power grid, more than half the clients in the Wireless Mesh
network share a link with at least eight other nodes. In contrast, more than half
the nodes in the Power Grid share four or fewer links with adjacent nodes. We
hypothesize that it is this dramatic difference in degree distribution between the
two networks that develops such a significant difference in robustness.

3 An Algorithm for Large Graphs

For large graphs, even the branch-and-cut procedure MinConnBC will fail be-
cause the main component MinConnSDP itself either fails to converge or returns
an extremely weak bound. In this section, we provide an additional solution to
bound MinConn(G,n,0) that instead uses MinConnSDP as a subroutine in a
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divide-and-conquer algorithm. Our approach is the first capable of providing
both upper and lower bounds on connectivity after vertex removal in graphs
with thousands of vertices. The limitation of this extension is that our analysis
does not apply to edge cuts and it will not work well for every graph. Success is
very topologically dependent.

3.1 A Divide-and-Conquer Solution for Client Removal

Let G be a client-server graph. Our strategy is to solve MinConn(G,n,0) by
breaking G into subgraphs G1,...,G, by groups of clients that act as gateways
for other clients. The connectivity properties of subgraph G; can be found by
solving a series of subproblems of the form MinConnBC(G;,n;,0). Once the
connectivity properties of each subgraph G; have been quantified, the solution
to MinConn(G,n,0) is formed by judiciously choosing those subproblems that
render the lowest client-server connectivity.

Our objective is to count the minimum number of clients that remain con-
nected to at least one server after the removal of some fixed number of clients.
Therefore, we seek to count the minimum number of clients that retain a service
path after the removal of some fixed number of other clients. Generally, the
serviceability of a client can depend on the serviceability of every other client.
However, in real world networks, this is rarely the case. We begin by describing
how to isolate the serviceability of a subgraph in an arbitrary client-server graph.

For arbitrary G = (S U C, E) define the set of gateways, Y C C, as those
clients that are adjacent to at least one server in S. The remaining clients are
labeled children are placed in the child set L. A subset of children, L', are said
to be siblings when they form a single connected component after all gateways
are removed. For each set of siblings L', there is a corresponding subset of
gateways, Y’ that are adjacent to the children in that set. We call such a subset
Y’ the gateways of siblings L’ and conversely, we call siblings L’ the children of
gateways Y’. Together, the set Y/ U L’ is called a family. The serviceability of
the children in a family depends entirely on their connectivity to the gateways
of that family.

OBSERVATION: If F'is a family in G and c s a child in F, then c is serviceable
iff there is a path from ¢ to some gateway in F'.

According to the above observation, we can decouple the serviceability of
clients in different families. This leaves us with a divide-and-conquer strategy
for solving MinConn(G,n,0) as Knapsack Problem.

PROCEDURE: MinConnDC(G,n,0)
Let G be a client-server graph. Bound the solution to Problem Min-
Conn(G,n,0) as follows.
e Form an exhaustive and disjoint decomposition of G into families F =
[y By, ...
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e Form a knapsack subproblem as follows. To each family F; = (Y;, L;), assign
a maximum weight W; = |Y;| and unit value multiplier U; so that for any
quantity, z, of removed clients in F;, the value xU; bounds from below the
number of clients that are not serviceable.

e Solve the knapsack problem for maximum aggregate weight n where item
i corresponds to family F;, with weight = € [0, W;] and value xU;. The
optimal value is a lower bound on client connectivity. The gateway clients
associated with items chosen can be removed from G to find a corresponding
upper bound.

The remainder of this section is devoted to providing details on the execution of
each step in this procedure. The variety of knapsack problem that we use can
be solved by greedy choice as it is similar to the Fractional Knapsack Problem.
To do so, we begin by sorting items according to decreasing unit value. Items
with highest unit value are chosen multiply (item ¢ has multiplicity W;) until
the maximum aggregate weight limit has been reached.

Our next step is to derive the maximum weight and unit value multiplier
functions for an arbitrary client-server graph G. The first step is to decompose
G into exhaustive and disjoint families. We begin by identifying all families
in G, then independently measure how their serviceability is affected by client
removal, and finally combine the results for each family. Algorithm 1 addresses
the first task for client-server graph G = (SUC, E). In this algorithm, subroutine
NEIGHBORS(G, ¢) returns the set of vertices in G that share an edge in F with
vertex ¢. Subroutine COMPONENTS(G) returns a set of sets of vertices, with
each set of vertices corresponding to a connected component of G. Subroutine
CLOSURE(F) returns the transitive closure of the union operation on each set
F € F — i.e., subroutine CLOSURE(F) combines overlapping sets in F until
all families in F are pair-wise disjoint.

Algorithm 1 FAMILIES(G)

Y 0 (gateways)
for s € S do

Y « Y UNEIGHBORS(G, s)
end for
L+ C\W (children)
B « COMPONENTS(G(L)) (siblings)
F 0 (families)
for B € B do

F« 0

for b € B do

F + FUNEIGHBORS(G(LUY),b) U {b}

end for

F «— FU{F}
: end for
: return CLOSURE(F)

e e e
AN S T
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Lines 1-4 are devoted to delineating two sets Y and L, which contain all
gateways and children respectively. In line 6, families of G are initially formed
as the connected components of the subgraph of G induced by the set of all
children L. In lines 8-14, each family is enlarged to include the gateways for
each set of siblings. Finally, in line 15, we combine families that share common
gateways so that each family is disjoint from every other family.

Algorithm 2 MULTIPLIER(Y, L)
. if L=0or |Y|=1 then
2:  return [YUL|/|Y]
3: end if
4z |Y|, y<|L|, U<+ y/z (best initial guess)
5. P « POWER(Y)
6: for P € P do
7
8
9

for i =1to |Y|—|P| do
r < MinnConnSDP(G(Y UL) © P,,0)

: yre—y—r (clients out of service)
10: x* i+ |P| (clients removed)
11: if 2* %« U > y* then
12: U<+ y*/x* (choose highest ratio)
13: end if
14:  end for
15: end for

16: return U

Let F be the set of all families in G as constructed by Algorithm 1. We
next seek to characterize the serviceability of each family F' € F by a pair of
numbers: the maximum weight and the unit value multiplier, which we label
W (F) and U(F) respectively. The maximum weight will be equal to the number
of clients that must be removed in order to completely disconnect F' from every
server, and the unit value multiplier will be formulated so that x U(F') bounds
from above the number of non-serviceable clients in F' after the removal of any
z clients. The maximum weight of family F' is always equal to the number of
gateways in F' because on the one hand, there is no way to indirectly disconnect
a gateway from all servers (which bounds W (F') from below), and on the other
hand, every child in F' must ultimately contain at least one gateway on every
service path (which bounds W(F) from above). Constructing the unit value
multiplier is more difficult because there are many ways to remove clients in F'
and we must take care to find the most damaging combination for each quantity
on the interval [1,..., W (F)]. Algorithm 2 shows how to construct U(F) for an
arbitrary F' and according to our requirement that U(F) yield an upper bound
on non-serviceability. The subroutine POWER(Y") returns the power set of set
Y, or a set of all possible subsets of Y.

Algorithm 2 begins by testing for trivial cases where we can immediately iden-
tify the unit value multiplier. For all other cases (line 4), we begin by setting the
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multiplier to the most obvious ratio where all gateways are removed. It is possible
that a better solution exists, and by iterating on all possible subproblems of this
family, we progressively refine this choice of unit value multiplier. Line 8 finds
the solution to each subproblem by running it through MinConnSDP (G, n,0).
Note that in Section 2, we worked with relatively large graphs that did not
immediately yield a strong solution to the semidefinite program, and therefore
required Procedure MinConnBC' for strengthening the result. For the subprob-
lems in Algorithm 2, however, we find that the problems are small enough that
further analysis is not necessary. The solution to MinConnSDP(G,n,0) gives a
lower bound on the number of clients that remain serviceable after removing
some n clients. For y*, however, we require an upper bound on the total number
of clients that are removed from service after removing n clients. Line 9 reverses
the output from MinConnSDP from number of clients connected to number
disconnected. The remaining lines replace the old multiplier value only if the
new value is greater.

3.1.1 Managing Subproblem Size

Algorithm 2 iterates over the power set of Y. This set becomes quite large for
even small sets, so we aim to keep the number of gateways at 5 or fewer. However,
we continue to require that families remain pair-wise disjoint so we must find a
way to split families with large gateway sets. For the purpose of creating a lower
bound on MinConn(G,n,0), it’s clear that removing edges will only lower the
value of the solution and will not jeopardize the bound. So, we judiciously choose
edges to remove so that there are 5 or fewer gateways corresponding to each
family in the new graph. Since we are dealing with relatively small subgraphs, a
simple spectral approach will suffice.

Ding et. al [14] showed how to use the eigenvector corresponding to the second
smallest eigenvalue of the Laplacian Matrix of a graph to find nearly-disconnected
components of that graph. Consider the graph H = G(F) for any family F.
The spectrum of the Laplacian of H has one eigenvalue equal to 0 for each
connected component in H. In this case, zero-valued eigenvalues are the smallest
because the Laplacian is always real and symmetric so its eigenvalues are always
non-negative. Any eigenvector belonging to a 0 eigenvalue will have the same
value for all indices that correspond to vertices in the same connected component.
Matrix perturbation theory predicts that graphs that have nearly disconnected
components will show similar eigenvector values between indices corresponding
to vertices in each component when considering the eigenvector corresponding
to the second smallest eigenvalue. The following procedure outlines the steps
that we took to to break families with large gateway sets into groups of families
with no more than 5 gateways.

Let F' = (Y, L) be a family in client-server graph G and define subroutine
EIGENVECTOR(H) to be a function that returns the eigenvector corresponding
to the second smallest eigenvalue of the Laplacian of H. If |Y| > 5, then it can
be disassembled with the following steps.
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e Compute z < EIGENVECTOR(G(F))

e Let k = [|Y|/5], and break Y into k subsets labeled Yi,...,Y; where
|Y;| =5 for i < k and |Yi| = |Y| —5(k — 1).

e Assign clients of Y to one of the subsets so that clients in the same subset
have similar entries in eigenvector x.

e Create k new families F1, ..., Fy so that family F; has set Y; as its gateways,
and create child sets L; for each family F; with L; initially empty.

e Assign each child in L to the family F; whose average eigenvector entry
matches closest to its own eigenvector entry.

3.2 Evaluation on the Internet AS Graph

Our first evaluation is on a snapshot of the Internet at the Autonomous Systems
(AS) level taken by the CAIDA project in April 2005 [13]. Their taxonomy
identifies inferred Tier-1 and Tier-2 ASes. We create a client-server graph with
Tier-1 and Tier-2 ASes labeled as servers and clients, respectively, and with an
edge set derived from the corresponding list of peering relationships. We assume
that the backbone of the Internet (the Tier-1 ASes) remains fully intact, but
that Tier-2 ASes are vulnerable to removal due to attack or administrative-level
disenfranchisement. We don’t claim that this is the most likely attack on the
Internet; it is rather presented as a means of understanding how node removal
at the edge of the Internet influences overall connectivity.

Let G denote the client-server graph that models the AS graph. We use
MinConnDC' to compute upper and lower bounds on MinConn(G,n,0) for
various values of n. Figure 6 shows the results where the number of clients
removed (n) varies from 0 to 2,500 in increments of 50. The blue curve in
triangles is the lower bound delivered as the solution to our knapsack problem.
The red curve in circles is an upper bound developed by actually removing from
G those client vertices identified by the knapsack solution.
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In contrast to the performance of MinConnBC(G,n,0) from Section 2, the
Knapsack solution has somewhat weak performance for small values of n, but
tightens considerably for larger values. The initial weaker performance can be
attributed to the error introduced by splitting families with large gateway sets.
Algorithm 1 returned 2,759 families total, and among those there were 9 that
had more than 5 gateways vertices. The largest set was found in one family
that had 292 gateways. The rest had fewer than 30 gateways. By splitting the
largest gateway set almost 60 times we introduced error. The lower bound makes
it seem easier to disconnect service paths to a larger number of clients than
is actually possible. However, once n is large enough that this large gateway
set can actually be removed, the upper bound settles close to the lower. We
believe that this type of tradeoff will be typical when applying MinConnDC to
any client-server graph with such hierarchical structure. Accuracy will largely
depend on the extent to which the graph can be decomposed into families with
the small gateway sets.

In our analysis we identified a small handful of families responsible for almost
all of the complexity in the graph. They had large gateways sets and large sets
of children. The remaining families had small gateway sets and small sets of
children. They appear as commodities to the knapsack algorithm. Overall, the
AS graph exhibits strong serviceability in the face of significant deterioration
of Tier-2 clients. Even when 900 (> 16%) Tier-2 clients are removed, better
than half the Internet remains in service. This result appears in sharp contrast
to research outlined in Section 1.3 where both Tier 1 and Tier 2 nodes can
be removed. There, far fewer than 50% of all nodes remain in the connected
component even when only 3% of the nodes have been removed [21,33].

3.3 Evaluation on Airport Connectivity

We next considered airport connectivity in the states of Iowa and Michigan. To do
so, we began by obtaining U.S. highway information from the Oak Ridge National
Laboratory [2]. These were found in a single large file composed of more than
200K different routes in North America. Each route was delineated by a sequence
of coordinates. We call these coordinates waypoints. From the Socioeconomic
Data and Applications Center (SEDAC) [1], we obtained population density
estimates from the 2000 census that are accurate to within several hundred
meters. We chose airports as only an example of critical infrastructure, and as in
our above cases, there are limitations to our analysis. We make the simplifying
assumption that each airport is equally resourceful. We also do not claim this
is the most effective attack on infrastructure, but it does server to bound the
severity of a particular kind of coordinated attack on a very import piece of
national infrastructure.

For each state, we extracted the routes and corresponding waypoints that
fall within the bounding box containing that state. A graph representing the
highway connectivity of each state was then generated by creating a client vertex
for each waypoint and an edge for any two adjacent waypoints in a given route.
Because one route will often end at the beginning of another, we consolidated
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Figure 7: Airports are shown as blue dots over highways in (a) Iowa and (b) Michigan.
Colors vary between different routes. Waypoints are not shown.

waypoints that were within 100 meters of each other into a single vertex. Our
next step was to create a server vertex for each airport, which we linked to all
waypoints within a (roughly) six-mile radius. The coordinates for airports in
these states were found at the data warehouse site socrata.com [3]. The final
step in graph construction was to assign a value to each waypoint corresponding
to the estimated population density near that point using the SEDAC data.
Since people might arrive at an initial waypoint near their place of residence
by means other than automobile, we averaged the measured population density
between all waypoints within approximately 15 miles of each other and assigned
each waypoint a value corresponding to this population density. This means
that the sum of all waypoint values in a given state is approximately equal to
the population of that state. Figure 7 shows all the routes used for each state as
well as the available airports.

Our construction yielded a client-server graph with clients corresponding to
waypoints in the given state and whose value was approximately equal to the
portion of the state’s population residing near the waypoint. Our objective was
to bound the quantity of people who maintain highway access to any airport
after the removal of some fixed number of waypoints. We imagine that the
waypoints are removed by either natural disaster of coordinated attack. We
constructed a solution to the WeightedMinConn Problem for this scenario by
modifying MinConnDC' as follows: i) client values were incorporated by first
modifying Algorithm MULTIPLIER to return the highest ratio of client values
to gateways removed, i) the objective function of Program MinConnSDP was
altered to minimize the aggregate value of connected clients.

3.3.1 Iowa

To apply our WeightedMinConn solution, we constructed a client-server graph
corresponding to the state of Iowa. The boundary of the state was delineated by
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the coordinates (-104.3701,42.6738) and (-96.2842,46.1566). In total there were
1947 waypoints and 272 airports. Algorithm FAMILIES returned 493 families
total with just three families having more than 5 gateways. They had gateway
sizes 8, 19, and 501. Breaking the family with 501 gateways into 101 subfamilies
was the main source of error. It causes the lower bound to retreat substantially
from the upper for small numbers of removed waypoints.

Figure 8 shows that despite the somewhat loose agreement between upper
and lower bounds, we can still draw interesting conclusions about how airport
access degrades with waypoint removal. For example, when just 200 waypoints
(approximately 10%) are blocked, it is possible to disconnect at least 500K
(15%) people from every airport, but no more than 1.7M (50%) can possibly be
disconnected. There is also a sudden drop in the upper bound after approximately
575 waypoints are removed. This is the point when the largest family (the one
that began with 501 gateways) is finally completely disconnected. It’s a critical
point where the number of people connected drops by about 500K.

3.3.2 Michigan

We performed similar analysis for the state of Michigan where the corresponding
client-server graph contained 2207 waypoints and 285 airports. We chose to focus
on the lower peninsula of Michigan (the mitten) bounded by the coordinates
(-87.4072,41.5327) and (-82.2656,45.7593). After applying Algorithm FAMILIES
there were 806 families total with 15 having more than 5 gateway vertices. The
three largest gateway sets were 129, 112, and 53. All other families had fewer
than 25 gateways. Figure 9 shows how airport connectivity degraded with
waypoint removal. Again, the families with large gateway sets were the major
source of error in the lower bound. They forced a large gap between upper
and lower bounds for up to 300 removed waypoints. Subsequently, the bounds
tightened significantly.

From the plot we can see that no more than 4.3 million people (43%) will
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Figure 9: Airport connectivity in Michigan

maintain airport connectivity after 300 waypoints have been removed, and it’s
possible that as few as 2.8 million (28%) will maintain connectivity. In other
words, at least half the residents of Michigan will lose airport access if fewer
than 14% of the waypoints are removed.

4 Computational Complexity

Wolcowicz and Zhao studied a problem fundamentally similar to MinConn:
Graph Partitioning. They sought to discover the fewest number of edges whose
removal could partition a graph into disconnected blocks with sizes nq,...,np.
Their idea was to first assign an indicator vector to each block z', ..., 2%, where
a:; = 1 iff vertex j is assigned to block 7. The ideal optimization algorithm would
assign the x! so that |z¢| = n; and the number of edges between vertices in
different blocks was minimized. Counting the number of edges between blocks
can be accomplished follows: label edges passing between blocks as external.
These edges compose the edge cut; its cardinality is called the edge cut size.
It can be verified that L e 2(2%)T gives the number of external edges incident
to vertices in block i [9]. It follows that £ >, L e 2*(2%)T gives the edge cut
size. A simpler version of this problem can be realized for both edge and vertex
partitions on two blocks as follows.

PROBLEM: EdgePartition(H,ny,ng)

e Given: Graph H = (V,E) and desired blocks sizes n; and ng, with
niy +ng = |V|

e Find: minimum quantity of edges whose removal creates two blocks with
sizes ny and ns.

PROBLEM: VertexPartition(H,ny,ns)
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e Given: Graph H = (V,E) and desired blocks sizes n; and ng, with
ny +ng = |V|

e Find: minimum quantity of vertices whose removal creates two blocks with
sizes nq and ns.

Bui and Jones [11] showed that weaker versions of these problems are NP-
hard. The version they analyzed looked for the smallest cut that separates a
graph into two blocks, each no smaller than «o|V|, with o < % They showed
that it is NP-hard to find a bipartition less than OPT + n?~¢ for edge cuts and
less than OPT + n®-5=¢ for vertex cuts where € > 0 in both cases. This implies
that Problems EdgePartition and VertexPartition are also NP-hard. To show
that problems MinConn(©,v,0) and MinConn(0,0,¢) are also NP-hard, it will
suffice to reduce them to the later.

THEOREM: EdgeSeparator(H,ny,ne) < MinConn(G,0,m).

PROOF: Consider the decision problem D EdgeSeparator(H,ny,ns, k), which
returns 1 when there exists an edge separator of size k or less that achieves
balance (nji,ng). Assume without loss of generality that n; < ny. We will
show that any instance of DEdgeSeparator can be efficiently transformed into an
instance of the decision problem DMinConn(G,0,m,c). DMinConn(G,0,m,c)
returns 1 when at least ¢ clients are disconnected from all servers after removing
any m edges and returns 0 otherwise.

For any instance (H,ni,ne, k) € DEdgeSeparator, with H = (Vg,Eg),
fashion a corresponding instance of DMinConn: (G,0,m,c) as follows. For
G = (Sq¢UCq, Eg), let Cq = Vi and initialize Eq = E. Let Sg = {s} be a
single vertex, and add to E one edge between s and each client in Cg. Finally,
set ¢ = n; and m = ny + k. Ignore, for the moment, s and all adjacent edges,
call this graph G*. What remains in G* is a graph isomorphic to H. Therefore,
any optimal cut corresponding to a solution to DFEdgeSeparator in H will also
exist in G*. That is, the smallest cut in H that creates blocks of size n, and ng
in H will also create blocks of size n; and ny in G*. So

(H,n1,n2,k) € DEdgeSeparator < (G*,0,k,ny) € DMinConn.

But any block of size ny in G must additionally cut the n; edges adjacent to s
before being completely disconnected from the other block. The result follows
by combining the size, k, of the block cut in G* with the size, n1, of this server
cut so that m = ny + k.

O

COROLLARY: VertexSeparator(G,ny,n2) < MinConn(0,0,v).
PROOF': The proof of Theorem 2 also applies here if we change edge cuts to

vertex cuts and replace each undirected edge of the form (s,¢;) € Eg with the
path (s,x;) ~ (z;, ¢;) where each x; is an additional client vertex.
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5 Conclusion

In this paper we have introduced an intuitive model, the client-server graph,
that is capable of describing many real-world networks more richly than its
predecessors. We have also introduced the Problem MinConn, which attempts
to quantify the minimum number of client vertices connected to a server after
either edge or client removal. Our framing of, and solution to, this problem is
preferable to existing techniques such as localized heuristics and graph separators
because it offers concrete bounds for edge, vertex and mixed edge-vertex removal
in any graph, and it also differentiates between resource providers (servers) and
consumers (clients). Our methods are also easily extended to find the minimum
aggregate weight of serviceable clients after weighted client removal. Finally,
our solution leverages a graph’s topology to provide bounds for large graphs, a
domain where other techniques often fall short.

We used our solution to MinConn to demonstrate how client serviceability
degrades in various real-world networks. This analysis enabled us to see that the
sparse connectivity of the Philippine Power Grid makes it much more susceptible
to link attack than the relatively dense Net Equality Wireless Mesh Network.
We also saw that the Internet AS level graph is reasonably robust to attacks
on the edge of the network. Lastly, we showed that coordinated attacks on the
highway systems in Iowa and Michigan could impose large-scale limitations on
personal mobility.
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