Decentralized Decision Making with Anytime
Algorithms

Alan Carlin and Shlomo Zilberstein
University of Massachusetts
Department of Computer Science
Ambherst, MA 01003, USA
acarlin@cs.umass.edu, shlomo@cs.umass.edu

June 2010

Abstract

Anytime algorithms allow a system to trade solution quality for computation
time. In previous work, monitoring techniques have been developed to allow
agents to stop the computation at the “right” time so as to optimize a given time-
dependent utility function. However, these results apply only to the single-agent
case. In this paper we analyze the problems that arise when several agents solve
components of a larger problem, each using an anytime algorithm. Monitoring is
more challenging in this case because each agent is uncertain about the progress
made so far by the others. We develop a formal framework for decentralized mon-
itoring, establish the complexity of several interesting variants of the problem, and
propose solution techniques for each variant. Finally, we show that the framework
can be applied to decentralized flow and planning problems.

1 Introduction and Related Work

Algorithms take time to produce optimal solutions. Users, by contrast, may not have
time to wait for completion. It is unfortunate when the user is forced into a binary deci-
sion, wait for algorithm completion, or do not run the algorithm at all. Fortunately there
has been a considerable amount of work on a compromise, the “anytime algorithm”.
Anytime algorithms can produce partial or non-optimal solutions as well as optimal
ones. If interrupted before completion, they will produce the non-optimal result. In
this way, the user can decide on the best way to trade off compute time for solution
quality.

In artificial intelligence, the trade-off is often quantified in a utility function U (g, t),
where ¢ represents the time, ¢ represents the quality, and U (g, t) is thus the utility of
achieving solution quality q at time ¢. If the algorithm senses that further deliberation
will result in a favorable trade-off of time for solution quality, the algorithm continues.
If not, the algorithm stops and produces a solution. One other area of study has been
the ramifications of monitoring the algorithm’s progress. Monitoring can often result
in a “context switch”, using up resources, that briefly hinders the efficiency of the

algorithm being studies. Thus, the area of anytime algorithms and monitoring lends
itself to a formal analysis.

The literature on anytime algorithms is rich in centralized settings. We refer to
(Anderson, 1993; Cox and Raja, In Press) for good, recent overviews, and give a brief
summary here. Dean and Boddy used the term “anytime algorithm” in the 1980’s to
describe a class of algorithms that can be interrupted at any point during computation
to return a result whose utility is a function of computation time” (Dean and Boddy,
1988). They used these algorithms in their work on time dependent planning, regard-
ing how to plan when the time available may vary. Horvitz, during the 1980’s as well,
used decision theory to analyze “costs and benefits of applying alternative approxima-
tion procedures” to cases “where it is clear that there are insufficient computational
resources to perform an analysis deemed as complete” (Horvitz, 1987). (Zilberstein
and Russell, 1996) used performance profiles of algorithms in order to inform future
anytime decisions.

More recent work on decision theoretic frameworks include (Hansen and Zilber-
stein, 2001; Sandholm, 2003). In (Hansen and Zilberstein, 2001), a performance profile
of the agent is formed offline. Based on this profile, a dynamic programming approach
is used to make stopping decisions. The decisions use Bayesian reasoning based on
the profiles in order to ascertain probability of future quality, as well as monitoring
decisions, as to whether to pause and ascertain quality, or merely to continue. The
calculations also include reasoning that an agent may choose to continue in the present
step, but stop in the future step. The work in (Sandholm, 2003) is aimed at the decision
as to when to optimally terminate an algorithm. Termination decisions are based on
the prior probability of an answer, on a utility model based on the utility of quality and
time, and on performance profiles. The concept is demonstrated on a 3-SAT model.

Further complexities arise when the system is decentralized. For instance, consider
a decentralized setting, where multiple agents are each solving components of a larger
problem by running multiple anytime algorithms concurrently. How does each individ-
ual agent know when is the best time to stop deliberating and start executing, when it
does not necessarily know the status of computation of the other agents? Perhaps the
solution to this problem is to communicate status among the agents, so that they can
make a better joint decision. But such communication may not be free. How to weigh
the value of this communication?

In the multi-agent realm, Raja and Lesser explore a framework for coordinating
agents Meta-Level control (Raja and Lesser, 2004, 2007). In these works, a single
agent or multiple agents schedule a series of tasks. At various points in time, new tasks
arrive, and each agent must decide whether to deliberate on the new information and
whether to negotiate with other agents about the new schedule. The authors show that
an MDP framework can be made to reason about such problems. These works explore
the interaction of various tasks, with various deadlines and utility. We view our work as
complimentary, as our work reasons about a finer granularity; we reason about progress
within the individual tasks, when to terminate and communicate from tasks that have
been partially completed.

In this paper, we formally analyze questions of decentralized anytime computation
and monitoring. The paper concerns itself with the deliberation phase, with how a
multi-agent system should monitor its progress in finding a solution, and when a multi-
agent system should cease deliberation and begin execution. We develop a theoretical

framework for this problem, prove complexity in a number of cases, and propose so-
lution methods. We demonstrate the value of multi-agent techniques, as opposed to
simple single-agent techniques, on small example problems.

2 Model

We formalize a decentralized monitoring problem (DMP) by defining it as a tuple <
Aga Q)Aa P7 Ua CLa CGaT >.

e Agis aset of agents.

o () =< @1,Q1...Q, > is a set of possible quality levels for agents 1..n. At each
step t, we denote the vector of agent qualities by ¢*, or usually more simply by
¢. Components of ¢'¢ are qualities for individual agents. We denote the quality
for agent 7 at time ¢ by ¢! (occasionally 7! and s is similarly used).

e 79, ajoint quality at the initial step, known to all agents.

LEINT3 LERNT3 EEIET)

e A, A set of options, “continue”, “stop”, “monitorL’, “monitorG” available to
each agent. monitorL and monitorG represent the notions “monitor locally” and
“monitor globally”, respectively.

e P is the transition model for the “continue” action. For all ¢,¢ € {1..T — 1},
i t+1
qi € Q’i, and qu S Qi’ el
P(q; " qf) € 10,1]
Furthermore, Eq:+1eQiP(qf+1|qE) = 1. We also assume that the transition

model of continuation for each agent is independent of the transition model of
continuation for the other agents, that is, P(q{""|q!, ¢}) = P(q;*"|q})

e A utility function , U(q, t), that assigns a utility to quality vector ¢ at time ¢.

e (1,Cq, is a cost assigned to local monitoring and global monitoring actions
respectively.

e T, the horizon, is the number of time steps in the problem.

The agents in our model represent various agents, each running an anytime algo-
rithm. Unless a “stop” action is taken by one of the agents, all agents will continue to
deliberate for T time steps.

2.1 Quality

Quality represents the performance of each agent, as it deliberates. For instance, if each
agent is running an online algorithm to compute the solution to a max flow problem,
an example of quality is the flow of the current (perhaps non-optimal) solutions. The
utility captures the fact that an agent considers utility as a function of quality of the
individual agents. The time, ¢, is also considered in the utility function. In this paper
we consider a class of utility functions.

Definition 1. A time-dependent local utility function is called time separable if the
utility of a solution of quality q at time t can be expressed as the difference between
two positive functions,

U(q.t) =Ur(q) — Uc(t)
where U1(q) is called the intrinsic value function and Uc(t) is called the cost of time.

Time k Time k+1 Time k+2

continue monitor

Figure 1: An example of the state space for one of the agents, while running a model
M1 for 3 steps.

The problems of interest are problems where both |Ur| and |Uc| monotonically
increase with time. Thus, our agents must decide whether to accept the current solu-
tion quality, or whether to continue deliberation, which will result in a higher solution
quality but also a higher time cost.

2.2 Actions

At each time step, agents decide which option to take, to “continue”, “stop”, or “mon-
itor” globally or locally. If all agents choose to “continue”, then the time step is incre-
mented and solution quality transitions according to P. If any agent chooses “stop”,
then computation ceases for all agents and the utility U(q,t) of the current solution
is taken as the final utility. If any agent chooses “monitorL’, then for each agent that
chooses monitorL, a cost of C'f, is subtracted from the utility. If any agent chooses
“monitorG”, a single cost of C'g is subtracted from the utility. After an agent chooses
to monitor, it must then choose whether to continue or stop, at the same time step. The
next time step occurs only after all agents choose to “continue”.

Agents are assumed to know the initial quality vector ¢° only. An agent has no
knowledge about quality in later time steps, unless a monitor action is taken. A “mon-
itorL” action monitors the local quality; when agent 7 takes the “monitorL’” action at
time ¢ it learns ¢¢. However, it still does not know any component of ¢'*,. By contrast,
a “monitorG” action forces all agents to communicate with each other, and all agents
learn the global quality ¢'¢.

3 Local Monitoring

In this section, we examine the concept of local monitoring. That is, each agent must
decide whether to continue its anytime computation, stop immediately, or to monitor
its progress at a cost C'r,, and then decide.

3 3 T
51 1 51

@ EU(Qi*i,q?iquQE) EU(Qi*i,q?iITLQE) EU(Q??QETISLCJ%)
rh EU(q§+1,q%+llq§,T§) EU(qfl,q%*llrf,ré) EU(q?l,q%*lISﬁ,ré)
55 EU(qlJr 7q2+ |Qia5§) EU(QlJr 7q2+ ITL‘S@ E‘U(ql+ aQQ+ |S§’S§)

Table 1: Expected utility of continuing for two agents, when each agent has achieved
quality g, r, or s at the current time step. The expected utility must be computed for the
next time step. However, each agent does not know the quality of the other agent. Thus,
agent 1 must decide on which columns it continues, agent 2 must decide on which row.
The agents only jointly continue if both a column and row is selected for an entry.

3.1 Complexity of Local Monitoring

When C', = 0, each agent should choose to monitor locally on every step, since doing
so is free. When Cg = oo, agents should never choose to monitor globally. The
following theorem shows that even for the simple case where C';, = 0, Cg = oo, and
number of agents is fixed, the problem of finding a joint optimal policy is NP-complete.

Theorem 1. The problem of finding an optimal solution for a DMP with |Ag| = k,
Cr, =0and Cg = oo is NP-hard.

Proof. First we show that the problem is NP-hard. Table 1 illustrates a simple 2-
step problem for 2-agents. Each agent has achieved a local quality, which it knows.
Each entry in the matrix shows the value of continuing, given that agent 1’s quality
is specified by its column, and agent 2’s quality is specified in the row. However,
each agent does not know the quality of the other agents, it can only reason about the
probabilities of the other agents’ qualities based on the initial quality. Thus, agent
1 can only select to continue or not continue on each column, and agent 2 can only
select to continue or not continue on each row. If either agent decides to stop, utility
in future steps is always zero. Furthermore, the future utilities listed in the table must
be weighted by the probability of inhabiting the corresponding joint state at the current
step.

Thus, the expected utility of the joint decision is the weighted sum of the entries
where all agents have selected to “continue”. However Tsitsiklis proved that solving
this game is NP-hard through reduction from 35 AT (Tsitsiklis and Athans, 1985). O

To show that this DMP is in NP, we will reduce to a transition independent Decen-
tralized MDP (Dec-MDP), a problem which was shown by Goldman and Zilberstein
to be NP-complete (Goldman and Zilberstein, 2004). We will refer to this particular
Dec-MDP model as M1.

In the Dec-MDP model, each agent has a local state space (denoted S;) available,
similar to a classic MDP. The vector of states, one for each agent, is referred to as the
joint state. Each agent takes one action from a set of actions denoted A;, and actions
have stochastic effects which change the local state. The vector of actions, one per
agent, is referred to as the joint action. Finally, agents receive a joint reward (denoted
R(3,@)) for taking a joint action from a joint state. Execution takes place sequentially,
a joint action is taken from a joint state, a joint reward is received, and the process
repeats. In a finite horizon problem, there are 7" repetitions, with 7" being the horizon
of the problem. An agent’s Dec-MDP policy is a mapping from its history of states and
actions to a plan for future actions, and is denoted ;.

Each agent is aware of its own local state and local action, but not necessarily the
states and actions of the other agents at run-time. It is aware, however, of the other
agent’s policy which was formed at planning time. The Dec-MDP model enforces the
rule that the joint state is jointly fully observable. That is, between the agents, the whole
state can be observed at every step. In typical formulations of Dec-MDP, this means
each agent is aware of its local state but not the state of the other agents. In a transition
independent Dec-MDP, state transitions of each agent are fully independent of each
other, no agent can have an effect another agent’s local state. The only dependency
between the agents is with respect to joint reward.

Theorem 2. Let k be a constant. The problem of finding an optimal solution for a
DMP with Cy, = k and Cg = oo is NP-complete.

Proof. NP-hardness follows from above, with £ = 0 as a special case. To show NP-
completeness, we show that the problem can be reduced to a transition independent
Dec-MDP. Policies and policy-values for the DMP will correspond to policies and
policy-values for M 1. The conversion to M1 is as follows:

The state space S° for agent i is a tuple < ¢;,t,¢; >, where ¢; is a quality level
(drawn from Q;), t? is the time step at which that quality level was monitored, and ¢;
is the number of the current time step. We also define a terminal state for each agent.

The action space for all agents is {terminate, continue, monitor}.

The transitions consist of the following: when the action is to continue, ¢; is merely
incremented. When the action is to terminate, the agent transitions to the terminal state.
Let Pypp(s’]s, a) be the transition function of the Dec-MDP M 1. When the action is
to monitor, we have:

Pypp(< ri, 0t > | < ¢;,t2,t >, monitor) = 0
ift' #tort #t°.

Pypp(<ri,t" ¢ >| < ¢, t9,t >, monitor) =
P(rl|gl)if t =t =t

The Reward is defined as zero if all actions choose to continue, as —kC' if k agents
choose to monitor and none of the agents are in a terminal state, as U(g;, ¢;...) if one
of the agents chooses to terminate and none of the agents are in a terminal state, and as
zero if any agent is in a terminal state.

This reduction is polynomial, as the number of states in the M1 Dec-MDP is |Q|T
and number of actions is 3. The representation is transition-independent, as the state
of each agent does not affect the state of the other agents. Note that when one agent
terminates, the other agents do not enter a terminal state, such a specification would
violate transition independence. Rather, this notion, that no reward is accumulated
once any agent has terminated, is captured by the Reward function. No reward is
received if any of the agents are in a terminal state. Since reward is only received when
one of the agents enters the terminal state, reward is only received once, and the reward
received by the Dec-MDP is the same as the utility received by the DMP.

An optimal policy for the Dec-MDP produces an optimal policy for the correspond-
ing multi-agent anytime problem. Note that the uncertainty of quality present when an
agent does not monitor is simulated in the MDP. Even though, in an MDP, an agent al-
ways knows its state, in this reduction the transition is not executed until the monitoring

action is taken. Thus, even though an MDP has no local uncertainty, an agent does not
“know” its quality until the monitor action is executed, and thus the local uncertainty
of the multi-agent anytime problem is represented. U

3.2 Solution Methods with Local Monitoring
3.2.1 Greedy Solution

We first show a naive, greedy polynomial solution method to the multi-agent anytime
problem, and then we show its flaws and improve on it. The solution method follows
from directly adapting (Hansen and Zilberstein, 2001), and considering the other agents
to be a part of the environment. The definitions in this subsection thus are adapted from
the single-agent definitions of (Hansen and Zilberstein, 2001), with the addition of
multi-agent vectors where appropriate. Greedy computation does not take into account
the actions of the other agents, we will initiate a greedy computation by assuming that
the other agents always continue, and that they will never monitor or terminate. For
ease of explanation, we will describe the algorithm from a single agent’s point of view.
It should be assumed that each agent is executing this algorithm simultaneously.

Each agent begins by forming a performance profile for the other agents. We will
use the term Pr as a probability function assuming only “continue” actions are taken,
extending the transition model P over multiple steps. Furthermore we can derive per-
formance profiles of multiple agents from the individual agents, using the independence
of agent transitions. For example, in the two agent case we use Pr({) as shorthand for

Pr(qi)Pr(g;)-

Definition 2. A dynamic local performance profile of an anytime algorithm, Pr;(r;|q;, At),
denotes the probability of agent 1 getting a solution of quality r by continuing the al-
gorithm for time interval At when the currently available solution has quality q.

Definition 3. Ler t' = t + At. A greedy estimate of expected value of computation
(MEVC) for agent © at time t is:

MEVC(q/,t,At)= > Y

qteQi 7t e,
Pr(qtlgt, t)Pr(7t|gt, AU FY) — UGt t))

The first probability is the expectation of the current global state, given the local
state, and the second probability is the chance of transition. Thus, MEVC is merely the
difference between the expected utility level after continuing for At more steps, versus
the expected utility level at present. Both of these terms must be computed based on
the performance profiles of the other agents, and thus the utilities are summed over all
possible qualities achieved by the other agents. Cost of monitoring, C'7,, is not included
in the above definition. An agent making a decision must subtract this quantity outside
the MEVC term.

For type-dependent utility functions, the agent faces a choice as to whether to con-
tinue and achieve higher quality in a longer time, or to halt and receive the current
quality with no additional time spent. We call a policy that makes such a decision, a
monitoring policy.

g | i [st
g 1-2]10]-1
5 3]
shl-2]-1]1

Table 2: An example of a case where greedy termination policy produces a poor solu-
tion

Definition 4. A monitoring policy I1(q;,t) for agent i is a mapping from time step t
and local quality level q; to a decision whether to continue the algorithm and act on
the currently available solution.

The above definition excludes the costs C', and C¢, the choices are merely whether
to continue or act. Thus, we must define a cost-sensitive monitoring policy, which
accounts for Cf, and Cg.

Definition 5. A cost-sensitive monitoring policy, 11; .(q;,t), is a mapping from time
step t and quality level q; into a monitoring decision (At, m) such that At represents
the additional amount of time to allocate to the anytime algorithm, and m is a binary
variable that represents whether to monitor at the end of this time allocation or to stop
without monitoring.

Thus, a cost-sensitive monitoring policy at each step chooses to either blindly con-
tinue, monitor, or terminate.

A greedy monitoring policy can then be derived by applying dynamic programming
over one agent. Working backwards, such an algorithm assigns each quality level on
the final step a value, based on its expected utility over possible qualities of the other
agents. Then, working backwards, it finds the value of the previous step, which is
the max over: (1) the current expected utility over the possible qualities of the other
agents (if it chooses to stop). (2) The expected utility of continuing (if it chooses to
continue). An algorithm to find a cost-sensitive monitoring policy can similarly find
the expectation over each time step with and without monitoring, and compare the
difference to the cost of monitoring.

3.2.2 Solution Methods: Modeling the Other Agents

The greedy solution may not be optimal when a following conditions is false: (1) The
other agents will never terminate. (2) The other agents will never observe their local
state.

To illustrate the first point, examine Table 2, as an instantiation of the expected util-
ity values shown in Table 1. Assume all entries have equal probability and monitoring
cost is zero, that the values shown merely represent the value of continuing. Agent 1
would greedily decide to continue if it is in state ¢} only, as that is the only column
whose summation is positive. Agent 2 would greedily continue if it has achieved qual-
ity 7%, as that is the only row whose summation is positive. However, this would mean
that the agents continue from all joint quality levels which are bolded. The sum of
these levels is negative, and the agents would do better by selecting to terminate all the
time!

Rather than the greedy approach, we propose to solve the DMP with Cc = oo by
leveraging the bilinear program approach of Petrik and Zilberstein to solving transition

independent Dec-MDPs (Petrik and Zilberstein, 2009). We first convert the problem
to the M1 model described above. We prune “impossible” state-actions, for example
we prune states where t > ;, as an agent can not have last monitored in the future.
Then we convert the resulting problem into a bilinear program. A bilinear program
can be described by the following inequalities for the two-agent case (the framework
is extensible beyond two agents if more agent-vectors are added).

MaTimize, r?w + 2T Ry + roy
subject to A1z = oy

Aoy = ap

Each component of the vector x is a joint state-action pair. The vectors r; and 75
are non-zero for entries corresponding to state-actions that have non-zero reward, for
agents 1 and 2 respectively. a; and as represent the initial distributions.

In the case of the M1 model, 1 and 75 are —C', in entries corresponding to state-
actions where the agent monitors. The matrix R specifies joint rewards for joint actions,
its entries correspond to the joint utility of the row and column state, when either agent
terminates. The constraints enforce the transition probabilities. A; and A, have a row
for each state, and a column for each state-action. o1 and a» are 1 in the first row and
—1 for the last row. Intuitively, the constraints are very similar to the classic linear
program formulation of maximum flow (Cormen et al., 2009).

Bilinear programs, like their linear counterparts, can be solved through methods in
the literature (Petrik and Zilberstein, 2009). These techniques are beyond the scope
of this paper, one technique is to alternatingly fix x and y policies and solve for the
other as a linear program. Although bilinear problems are NP-complete in general, in
practice performance depends on the number of non-zero entries in R.

4 Global Monitoring

Next, we examine the case where agents can communicate with each other. We will
analyze the case where C;, = 0 and Cs = k, where k is a constant. This problem
is NP-complete as well. We will show this by reducing to a transition independent
Dec-MDP-Comm-Sync (Becker et al., 2009). A Dec-MDP-Comm-Sync is a transition
independent Dec-MDP with an additional property: After each step, agents can decide
whether to communicate or not to communicate. If they do not communicate, agents
continue onto the next step as with a typical transition independent Dec-MDP. If any
agent selects to communicate, then all agents learn the global state. However, a joint
cost of C is assessed for performing the communication. Agents form joint plans at
each time of communication. The portion of the joint plan formed by agent ¢ after step
t is denoted .

Theorem 3. The DMP problem with Cy, = 0 and Cg is a constant, is NP-complete.

Proof. NP-hardness is the same as the theorem above.

To show that the problem is in NP, we can reduce the problem to finding the solution
of a Dec-MDP-Comm-Sync (Becker et al., 2009). We create the following Dec-MDP-
Comm-Sync from a DM P with Cr, = 0.

e S%=the possible (g;,t) levels for agent i.

e [= A “terminal” state for each time step for agent i.
e Joint States: [,(S° + F?)

e A’ =*“Continue”, “terminate”

Joint Actions: [, A’

e P: P(s,continue, s’) = P;(s’ € Qi|s € Q)

P: P(s,terminate, f;) = 1.

R: R(3, terminate) = 0 if any s; in F*.
e R: Otherwise, R(S, terminate) = U(35)
e T: The same as T" from the DMP.

e C:Cq

The reduction is polynomial as the number of states added is equal to 7', and only
one action is added. 0

Having represented the problem as a Dec-MDP-Comm-Sync, we use solution tech-
niques from the literature (Becker et al., 2009). To make communication decisions,
agents compute Value of Information (Vol). Agents compute

Vol =V* -V - Cq

where V'* represents the expected utility after monitoring, V' represents expected utility
without monitoring, and C is cost of monitoring. Computation of each of these terms
requires summation over the possible states of the other agent. Non-myopic policies
require each agent to make a communicate/not-communicate decision at each step,
resulting in the construction of a table resembling tables 1 and 2.

5 Profiles

We generated performance profiles of two different anytime algorithms. The first algo-
rithm was the Ford Fulkerson maximum flow solution method. Our motivating scenario
involved a decentralized maximum flow problem where two entities must each solve
a maximum flow problem in order to supply disparate goods to the customer. To esti-
mate the transition model P in the DMP, we profiled performance of Ford Fulkerson
through Monte Carlo simulation. The flow network was constructed randomly on each
trial, with each edge capacity in the network drawn from a uniform distribution. Qual-
ity levels corresponded to regions containing equal-sized ranges of the current flow.
From the simulation, a 3-dimensional probability table was created, with each layer of
the table corresponding to the time, each row corresponding to a quality at that time,
each column representing the quality at the next time step, and the entry representing
the transition probability. Utility was defined as min(g;, g;) —t (the lesser of the flows
minus the timestep, which was the time in seconds modulo 5) there were 10 quality lev-
els and 10 time steps for each agent and C, ¢ = 1. We created software to compile a
Decentralized MDP from the probability matrix, as described in the previous sections,
and solved the resulting problem using a bilinear program.

10

Error Bound >5|4-5]3-4|25-3| <25
Solution Quality 0 1 2 3 4
Table 3: Assignment of quality levels for Rock Sampling.

Problem (Local/Global) | Compile Time | Solve Time
Max Flow Local 3.5 114
Rock Sample Local 13 2.8
Max Flow Global .04 370
Rock Sample Global .01 129

Table 4: Timing results (s). Compile time represents time to compile performance
profile into bilinear problem, solve time measures time taken by the bilinear solver.

The second example was the Rock Sampling domain, borrowed from the POMDP
planning literature. In this planning problem, two rovers must each form a plan to sam-
ple rocks, maximizing the interesting samples. However, the location of the rocks are
not known until runtime, and thus the plans can not be constructed until the rovers are
deployed. We selected the HSVI algorithm for POMDPs as the planning tool (Smith
and Simmons, 2002). HSVI is an anytime algorithm, the performance improves with
time, its error bound is constructed and reported at runtime. Prior to runtime, the algo-
rithm was simulated 10, 000 times on randomized Rock Sampling problems, in order to
find the performance profile. Quality of performance was assigned according to Table
3, lower error bound meant higher quality. The utility function was g; + ¢; — ¢, where
t was time in seconds modulo 5. Since the online HSVI algorithm took 2 seconds to
construct its error bound, cost of monitoring was assigned as .4t.

For each of these examples, we conducted separate experiments for Local Moni-
toring (LM) and Global Monitoring (GM). In Local Monitoring, C'¢ = oo while for
Global Monitoring, C', = 0. For Local Monitoring, the decentralized anytime prob-
lem was converted to a Dec-MDP and solved using the bilinear program. For Global
Monitoring, the problem was converted to a Dec-MDP-Comm-Sync and solved. We
refer to these as Non-Myopic strategies (NM) in the table.

Mean running time is shown in Table 4. The Max Flow problem was larger than
the Rock Sample problem (containing more quality levels), thus consumed more time.
The global formulations, as opposed to the local formulations, required a subproblem
formulation to compute V'* at each communication point, and thus more time elapsed.
As expected, solutions with Global Monitoring outperformed their counterparts with
merely Local Monitoring, due to the fact that for the GM experiments, C';, was assumed
to be zero, and thus local monitoring was free.

6 Conclusions and Future Work

Anytime algorithms effectively gauge the trade-off between time and quality. Moni-
toring is an essential part of the process. Existing techniques from the literature weigh

Problem NM NM
Local | Global
Max Flow 6.35 6.75

Rock Sample 2.8 3.6

Table 5: Expected utility of joint policies on two profiles.

11

the trade-off between time, quality, and monitoring for the single-agent case. The
complexity of the monitoring problem is known, and dynamic programming methods
provide an efficient solution method.

However, this paper shows that these techniques do not scale to the multi-agent
case. In this paper, we took a decision-theoretic approach to the monitoring problem.
We formalized the problem for the multi-agent case, and proved that there exist prob-
lems for both local and global monitoring which are NP-complete. We showed how
the multi-agent monitoring problems can be compiled as special cases of Decentralized
Markov Decision Processes, and thus solvers from the literature can produce efficient
solutions.

Future work lies in several directions. First, we will analyze and produce solutions
for monitoring problems that are partially observable. We will also examine items
like varying the monitoring cost. Second, we would like to examine cases with non-
cooperative utility functions. Third, we will apply the methods to cases involving more
than two agents. The latter will require modifications to the bilinear solver.

References

Anderson, M. 2007. A review of recent research in metareasoning and metalearning. Al Maga-
zine 28(1):7-16.

Becker, R.; Carlin, A.; Lesser, V.; and Zilberstein, S. 2009. Analyzing myopic approaches for
multi-agent communication. Computational Intelligence 25(1):31-50.

Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001. Introduction to Algorithms. Chapter
29.

Cox, M., and Raja, A. In Press. Metareasoning: Thinking about thinking. Cambridge, MA: MIT
Press.

Dean, T., and Boddy, M. 1988. An analysis of time-dependent planning. In Proceedings of the
Seventh National Conference on Artificial Intelligence, 49-54. AAAL

Goldman, C., and Zilberstein, S. 2004. Decentralized control of cooperative systems: Catego-
rization and complexity analysis. JAIR 22:143-174.

Hansen, E., and Zilberstein, S. 2001. Monitoring and control of anytime algorithms: A dynamic
programming approach. Artificial Intelligence 126(1-2):139-157.

Horvitz, E. 1987. Reasoning about beliefs and actions under computational resource constraints.
In Proceedings of Third Workshop on Uncertainty in Artificial Intelligence, 429-444. AAAI.

Lesser, V.; Decker, K.; Wagner, T.; Carver, N.; Garvey, A.; Horling, B.; Neiman, D.; Podorozhny,
R.; NagendraPrasad, M.; Raja, A.; Vincent, R.; Xuan, P.; and Zhang, X. 2004. Evolution of
the gpgp/taems domain-independent coordination framework. In Autonomous Agents and
Multi-Agent Systems, 87-143.

Petrik, M., and Zilberstein, S. 2009. A bilinear approach for multiagent planning. JAIR 35:235—
274.

Puterman, M. 2005. Markov decision processes, Discrete stochastic dynamic programming.
John Wiley And Sons, Inc.

Raja, A., and Lesser, V. 2004. Meta-level reasoning in deliberative agents. In Proceedings of
the International Conference on Intelligent Agent Technology (IAT 2004), 141-147.

Raja, A., and Lesser, V. 2007. A framework for meta-level control in multi-agent systems.
Autonomous Agents and Multi-Agent Systems 15:147-196.

Sandholm, T. 2003. Terminating decision algorithms optimally. In Proceedings of the Inter-
national Conference on Principles and Practice of Constraint Programming, poster paper.
Springer.

Smith, P, and Geddes, N. 2002. A Cognitive Systems Engineering Approach to the Design

12

of Decision Support Systems, The Human Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications. Earlbaum Associates.

Smith, T., and Simmons, R. 2004. Heuristic Search Value Iteration for POMDPs. In Proceedings
of the International Conference on Uncertainty in Artificial Intelligence (UAI 2004).

Tsitsiklis, J., and Athans, M. 1985. On the complexity of decentralized decision making and
detection problems. IEEE Transactions on Automatic Control 30(5):440—446.

Zilberstein, S., and Russell, S. 1996. Optimal composition of real-time systems. Artificial
Intelligence 82(1-2):181-213.

13

