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Abstract
This paper presents an approach for continuous process
improvement and illustrates its application to improving
the robustness of election processes. In this approach, the
Little-JIL process definition language is used to create a
precise and detailed model of an election process. Given
this process model and a potential undesirable event, or
hazard, a fault tree is automatically derived. Fault tree
analysis is then used to automatically identify combina-
tions of failures that might allow the selected potential
hazard to occur. Once these combinations have been
identified, we iteratively improve the process model to
increase the robustness of the election process against
those combinations that seem the most likely to occur.

We demonstrate this approach for the Yolo County
election process. We focus our analysis on the ballot
counting process and what happens when a discrepancy
is found during the count. We identify two single points
of failure (SPFs) in this process and propose process
modifications that we then show remove these SPFs.

1 Introduction

An election is the “formal choosing of a person for an of-
fice, dignity, or position of any kind; usually by the votes
of a constituent body” [49]. Such a choosing requires a
process, or a sequence of actions, that result in a selec-
tion. This process may be as simple as counting raised
hands in a room, or as complex as tallying votes across a
multiplicity of jurisdictions, each of which uses its own
rules to make the votes available.

Indeed, part of the process is determining which votes
to count, and who is a member of the “constituent body.”
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The rules governing this are essentially a political issue,
because different rules apply to different types of elec-
tions. An equally important part of the election process
is validating the results, to confirm that the votes were
counted correctly. Here, the degree of certainty in the
correctness of the result and the selection of the method
used to do the validation are both political questions,
however, how the selected method is implemented is not
a political question, but rather a technical one.

The process is important because the results of an elec-
tion can affect the course of history. Imagine how differ-
ent United States history would have been had George
McClellan become president in 1864 rather than Abra-
ham Lincoln. Had Lyndon Baines Johnson lost his first
Senate race, rather than winning by 87 votes, much of
the civil rights legislation of the 1960s may never have
been passed. History is replete with examples of where
elections changed history.

An election process involves people. The election
officials, candidates, poll workers, voters, and election
judges all participate directly in the process. Less di-
rectly, legislators, judges, regulators, and others who set
the rules for who can vote, and how the elections are to
be conducted, also participate. The rules may be com-
plicated, especially when a single ballot includes races
from multiple jurisdictions, each with its own rules. A
good example is a ballot for an election for federal, state,
and local candidates in San Francisco, CA. For some lo-
cal races, San Francisco uses ranked-choice voting1; but
for all state and federal candidates, the rules require ma-
jority voting. Thus, the votes for two different races on
the same ballot are counted differently.

Less obvious, but no less serious, problems often
arise in the voting process. For example, a ballot box
may not be turned in when required, or a set of votes
may be counted twice. These problems can be detected

1Ranked-choice voting effects instant runoff when no candidate
receives more than 50% of the first-choice votes. For details, see
http://www.sfgov2.org/index.aspx?page=876
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quickly when experienced election officials have antic-
ipated them, and have made appropriate provisions for
their detection and correction. Although most election
districts have enacted provisions for handling known
problems, unexpected issues may still arise. Thus, elec-
tion processes must be constantly improved to address
contingencies.

Currently, election officials use ad hoc approaches
both to address problems as they arise and to anticipate
problems before they arise. We advocate the use of con-
tinuous process improvement technology to complement
existing ad hoc approaches. In our work we formalize
election processes and desired properties. We then use
various analysis approaches to identify potential prob-
lems that might occur, thus systematizing the search for
problems before they arise. Once problems have been
identified, either in this anticipatory fashion, or through
actual experience in an election, we use these same forms
of analysis to confirm that process modifications success-
fully address the problems. Typically, modifications en-
tail adding new checks and redundancies into the pro-
cesses so that multiple simultaneous failures are neces-
sary to cause a desired election property to be violated.
We do not distinguish between accidental failures and
failures that an adversary deliberately causes (attacks).
Both can be equally pernicious.

Election process details vary among jurisdictions. To
demonstrate a specific, real-world application of our
techniques, we focus on the election process used by
Yolo County, California2. However, our technique is
generalizable, and is equally relevant and applicable to
many other jurisdictions’ election processes. The first
step in our approach is to develop a precise and rigor-
ously defined model of the election process. This paper
concentrates specifically on the part of the Yolo County
process that deals with the counting of votes. The next
step is to apply a variety of analyses to this process
model, in order to identify various types of process prob-
lems. This paper focuses on one such analysis, namely
Fault Tree Analysis (FTA). We demonstrate how we de-
rive fault trees from the Yolo County process model, and
how we use the fault trees to derive Minimal Cut Sets
that specify which combinations of events cause elec-
tion process failures. After suggested process modifica-
tions are identified with the help of election officials, we
show how repeated application of our analysis technolo-
gies can assure that such proposed changes successfully
eliminate flaws in the process, leading to continuous pro-
cess improvement.

The rest of this paper is organized as follows. Section
2 provides an overview of related work. Section 3 intro-
duces our approach and details how it can support contin-

2http://www.yoloelections.org/

uous process improvement. In Section 4, a case study of
process faults identified by Yolo County election officials
is presented, and a discussion of how our approach can
handle such faults is included. Finally, Section 5 presents
a conclusion and some directions for future research.

2 Related Work

This paper applies process modeling and fault tree anal-
ysis to the area of elections. In this section, we examine
work related to these areas of research.

2.1 Electronic Voting and Election Re-
quirements

A very active community is investigating approaches to
improving electronic voting systems [6, 30, 44]. Work
in this area is focused primarily on the security of the
devices used for electronic voting. Interest in electronic
voting systems is longstanding (such devices have been
used since the 1960s), but recent new technology has
brought a plethora of new problems. Numerous studies
have demonstrated several security-related concerns with
electronic voting systems [11, 25, 26, 38, 39, 52]. For ex-
ample, a study commissioned by the state of California
found that these systems were “inadequate to ensure the
accuracy and integrity of the election results” [4, 33]. A
similar study from the state of Ohio concluded that these
systems “failed to adopt, implement and follow industry
standard best practices” [8]. The Federal Election Com-
mission (FEC) and the Election Assistance Commission
(EAC) developed a series of standards that electronic
devices should meet in order to be certified, the latest
of which is the 2005 Voluntary Voting System Guide-
lines (VVSG) [14, 18, 19]. In addition to these stan-
dards, significant work has focused on the requirements
that an election as a whole must satisfy, such as privacy,
anonymity, accessibility, etc. [27, 31]. Accordingly, the
EAC continues development of a set of Election Man-
agement Guidelines (EMG) to complement the technical
standards for voting equipment [15]. These standards
and guidelines, however, focus only on the electronic
voting system itself. This work does not extend to the
analysis of actual election processes, which is the sub-
ject of this paper.

2.2 Process Modeling

It has previously been noted that the security of an elec-
tronic voting system alone does not provide assurance of
the security or accuracy of an election [3]. For example,
most elections require that an eligible voter be allowed
to vote no more than once. However, this requirement
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is typically enforced by a process external to the elec-
tronic voting system. Studying the effectiveness of such
a process in satisfying such a requirement seems to us
to fall within the area of process modeling and analysis,
which “focuses [on] interacting behaviors among agents,
regardless of whether a computer is involved in the trans-
actions” [12].

Raunak et al. apply process modeling and analysis
to election processes to determine whether fraudulent
behavior can result in incorrect election results [40],
and Simidchieva et al. expand this approach to deter-
mine whether an election process meets selected require-
ments [48]. Here we focus on expanding this approach to
improve the robustness of election processes using fault
tree analysis.

Antonyan et al. study how additional auditing proce-
dures may improve the integrity of elections, and illus-
trate their approach for AccuVote Optical Scan systems
and a generic election procedure [2]. The authors fo-
cus on how election procedures affect the ability to pre-
vent or detect attacks to the underlying election systems,
whereas our work focuses on how the election proce-
dures themselves may fail. Hall et. al. have also ex-
amined audit procedures, specifically focusing on post-
election audits [21, 22]. Like our work, the authors ex-
amine the procedures for a specific county and use itera-
tive process improvement before generalizing their ap-
proach. Our work, however, is not focused on audit
procedures. Instead, we focus on automatically finding
points of failure in specific election processes.

2.3 Fault Tree Analysis

Fault Tree Analysis (FTA) is a deductive safety and re-
liability analysis technique that focuses on how a failure
state or hazard may occur in a system [17, 50]. A fault
tree diagram has some similarity to an electronic circuit
diagram, comprising events and logic gates that control
whether an event may eventually lead to the hazard at the
root of the tree. Fault tree analysis is used by numerous
safety-critical industries, including the aerospace, nu-
clear power, and automotive industries. Brooke et al.
demonstrate that in addition to safety-critical systems,
fault trees may also be used to analyze security-critical
systems [7]. For example, Helmer et al. use software
fault trees for intrusion detection systems [23], Zhang
et al. use fault trees for vulnerability evaluation [54], and
Rushdi and Ba-Rukab apply fault trees to measure a sys-
tem’s exposure to a vulnerability [43]. Yee discusses how
safety cases, a construct similar to fault trees, may be
used to increase our confidence in voting systems [53].

Attack trees are structurally the same as fault trees,
and are used by computer security analysts to model the
different paths an attacker may take to reach an objec-

tive [45]. Attack trees have been used in penetration
testing [29], in identifying insider attacks [41], and for
forensics [5, 34, 35, 37]. Nai Fovino et al. combine both
fault trees and attack trees for quantitative security risk
assessment [32]. Attack trees are also similar to attack
graphs [36, 47]. Unlike attack trees, however, attack
graphs may be cyclical and do not use logic operators
between nodes.

Attack tree analysis generally assumes that faults arise
from malicious intent. Since we do not ascribe an intent
to how these faults arise, we focus on fault tree analysis
in this paper. However, since both fault trees and attack
trees are structurally equivalent, this analysis applies to
attack trees as well.

3 Approach

Our approach focuses on modeling and analyzing the
process used to conduct an election. We use this ap-
proach to study how voting systems (which in fact need
not be electronic) are configured, used, and checked, and
to study other parts of the process such as registering
voters and consolidating results from different precincts.
Using models of such processes, we are able to apply a
range of analyses to infer a variety of characteristics and
properties of the modeled election process. Simidchieva
et al have applied finite-state verification [48], and Rau-
nak et al have applied discrete event simulation [40] to
such models, and this approach extends that work. An-
alyzing the fitness of specific capabilities (e.g., a spe-
cific electronic voting system) for incorporation into a
specific election process is a future direction that seems
well-supported by our process analysis approach.

In this paper we focus on one specific process analy-
sis technology, namely fault tree analysis. We demon-
strate a precise, detailed model of an election process,
and then develop fault trees that illustrate potential prob-
lems with that process—including those that an attacker
can exploit. We then offer suggestions for hardening the
process against these problems.

The interested reader is encouraged to download and
explore the full election process model (part of which
is presented in Section 3.2), full specifications of the
fault trees (the top levels of which are outlined in
Section 3.4), and additional artifacts and technologies
described in this paper from the following website:
http://laser.cs.umass.edu/elections/

3.1 Process Improvement
The basic tenets of continuous process improvement
were introduced by Shewhart [46] and applied with per-
haps the greatest effect by Deming [13]. The essence
of this approach is to capture the process to be improved,
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compare its characteristics to those that are desired, iden-
tify weaknesses and shortcomings in the process, pro-
pose and evaluate improvements, and then install those
improvements in the process to complete the improve-
ment cycle and form the basis for a subsequent improve-
ment cycle. This cycle has been referred to in various
ways (e.g., the Plan-Do-Check-Act, or PDCA, Cycle and
Define-Measure-Analyze-Improve-Control or DMAIC)
over the past decades. In all of its names and manifes-
tations it has relied most essentially upon the ability to
understand the process, understand its desired properties,
and analyze the ways in which the process does or does
not adhere to those properties.

Originally, and typically still, these understandings
and analyses have been obtained informally. Processes
and properties have typically been described in informal
natural language, and analyses of their conformance have
typically been done with informal discussion and argu-
mentation. More recently, however, research has shown
that processes and properties can be defined with pre-
cise and rigorous notation, and that doing so then renders
the evaluation of their consistency amenable to powerful
technological support. Our proposed approach promises
to move the venerable informal process improvement ap-
proach towards a disciplined engineering practice sup-
ported by scientific rigor. Process definitions have also
been used as the basis for reasoning about processes in
several other domains, including science (e.g., [1, 16]) ,
medicine (e.g., [10, 24]), and business (e.g., [20, 51]).

3.2 Example Election Process

As noted above for specificity we use an abstract version
of the Yolo County election process as the basis for an
example of the application of our approach. This exam-
ple election process model assumes a physical ballot and
includes some steps that assume the correct performance
of a voting machine and a ballot scanner, but no assump-
tions are made about the internal workings or the nature
of the implementation of the voting machine or scan-
ner technology. The example process consists of three
main phases–the pre-polling events that must occur be-
fore the polls open on Election Day, the voting events
that occur on Election Day, and the counting–and pos-
sible recounting–of the votes after the election is over.
The first two phases of the process model are specified
at a fairly high level and therefore in addition to rep-
resenting the Yolo County election process as elicited
from election officials, the model may also apply to many
other jurisdictions’ processes. The third phase, namely
how ballots are counted, is modeled in more detail in
close collaboration with election officials to ensure va-
lidity, i.e. that the process model accurately represents
the Yolo County election process and does so with suf-

ficient specificity. Because of this specificity, the model
includes a counting process based on a central-count op-
tical scan (CCOS) system, but the model is technology-
agnostic with respect to specific machines or devices
used.

The pre-polling events include training election offi-
cials and registering eligible voters. Before the election
begins on Election Day, the voting rolls (i.e. the lists
of registered voters) are generated and distributed to the
precincts. The events that occur on Election Day include
the initial checks and setup of any voting machines that
may be used and the actual voting process, which encom-
passes verifying the voter’s credentials and allowing the
voter to cast a ballot. In the case where the voter is not
listed on the voting roll or has been previously checked
off as having voted, the voter casts a provisional ballot,
which is kept separately from the regular ballots. After
the election is complete, the ballot totals at each precinct
are recorded onto a summary sheet. This summary in-
dicates how many ballots have been cast or spoiled, and
how many were cast provisionally or remain unused, but
does not detail any vote totals. The summary sheet and
the physical ballots from each precinct are then trans-
ported to a higher-level election authority, called Election
Central, that performs vote counts, and may also con-
solidate totals from multiple voting sites, do vote-total
verification, and declare official election results. In ex-
ceptional situations, such as when the reported ballot to-
tals from a precinct do not match the totals of the ballots
received at Election Central, an exception handling sub-
process is invoked, which for this case may include either
rescanning or recounting the ballots, or both.

3.3 Process Definition Technology

We use the Little-JIL [9] visual process definition lan-
guage as a vehicle for modeling the Yolo County elec-
tion process. A Little-JIL process coordination diagram,
such as the one shown in Figure 1, consists of a hierar-
chical decomposition of steps. Note that Little-JIL is a
language with rich semantics that allows the precise def-
inition of many different aspects of processes, such as
coordination, exception handling, agents, artifacts, and
more; the diagrams presented in this paper elide many
of these important details to avoid visual clutter–readers
wishing to explore the full process model specification
should download it from the project website.

A step is denoted by a black bar, with the step name
appearing above that bar. Associated with each step is
an agent that is responsible for its execution. The behav-
ior of a step consists of the behaviors of its children (the
steps that connect to the lower left side of the parent step
bar via edges) and the order in which they are executed.
Each step that has children also has a sequence badge,
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which appears in the left half of the step bar and speci-
fies the order in which its children will be executed. For
example, the root step conduct election in Figure 1
has an arrow, which means it is a sequential step, and
hence all of its children are to be executed in left to right
order. A step without children is called a leaf step and
responsibility for execution of such a step is left entirely
to the step’s agent. A step is reasonably thought of as a
procedure that is invoked whenever there is a reference
to that step from anywhere in the process definition.

In addition to the coordination diagram, a Little-JIL
process definition includes an artifact specification and
an agent specification. The artifact specification con-
sists of all the artifacts that are used in the process,
which for this election process example includes ballot
repository (a repository containing all the ballots cast
in one precinct) and tallies (a report of the number
of votes cast for each candidate). Each step has artifact
declarations (not shown in the diagrams presented here)
to define which artifacts it will be accessing or providing.
Artifacts are generally passed within the coordination hi-
erarchy (from parents to children and vice versa). As
steps can be thought of as procedures, this artifact pass-
ing is essentially a parameter passing mechanism.

The agent specification indicates for each process step
what kind of agent is responsible for its execution. One
of the important features of Little-JIL is that it allows
the definition of both human and automated (executed
by a hardware device or software system) agents. For
the election process, Voter, Election Official, and
Precinct are some example types of agents. Note that
the former two are human agents while the latter can be
an automated agent. Little-JIL processes only specify
the type of agent (e.g., Voter) that should execute a spe-
cific step, rather than a specific agent instance (e.g., Jane
Doe).

Figure 1: The conduct election process.

Little-JIL also provides comprehensive exception han-
dling semantics. For example, the do recount step
in Figure 1 connects to the X in the right half of the
step bar of its parent, conduct election, which in-
dicates that do recount is an exception handler. Ex-
ceptions in Little-JIL are typed and different exception
handlers must be defined for each exception kind. The
do recount step is an exception handler for exceptions

of type Vote Count Inconsistent Exception as the
edge that connects do recount to its parent indicates.
Finally, Little-JIL’s exception handling mechanism also
provides flexible continuation semantics after exception
handling takes place. The arrow next to the Vote Count
Inconsistent Exception notation indicates that af-
ter the exception has been handled, the process will con-
tinue as if the step that originally raised the exception
completed successfully.

As noted, the root step conduct election is
a sequential step and so all of its children, namely
pre-polling activities, prepare for and
conduct election at precinct, and count votes
are to be executed in this specific order. Note that the
edge connecting conduct election to pre-polling
activities has the notation Precinct+. The + in-
dicates that the pre-polling activities step will
be instantiated one or more times, once for each agent
that executes it. In the case of the pre-polling
activities step, the agent is specified to be of type
Precinct, so this step will be executed once for each
agent instance of type Precinct, which effectively enu-
merates all Precincts specified as resources, and man-
aged by the Little-JIL resource manager.

After the pre-polling activities are com-
pleted, conduct election proceeds by next execut-
ing prepare for and conduct election at
precinct. Since the edge leading to it again has the
Precinct+ notation, this step is also instantiated mul-
tiple times, once for each executing agent, in this case
specified to be of type Precinct. Once the elec-
tion at all precincts completes, the execution contin-
ues with the count votes step, where the vote to-
tals are counted. The count votes step can trigger
an exception in the case of a vote count discrepancy
that cannot be resolved at the precinct level, in which
case the do recount exception handler of the conduct
election step is invoked. The substeps that elabo-
rate the do recount exception handler, as well as the
pre-polling activities and prepare for and
conduct election at precinct subprocesses are
omitted here due to space considerations.

The count votes subprocess is further elaborated in
Figure 2. The count votes step is decomposed into
the count votes from all precincts step, indi-
cating that consolidation of ballots from all participat-
ing precincts must occur. Note that once again, the edge
to count votes from all precincts carries the
Precinct+ notation, indicating that the subprocess will
be executed once for every precinct in the system. In
turn, count votes from all precincts consists
of executing perform ballot count and add vote
count to vote total in exactly this order, as pre-
scribed by the arrow sequence badge of their parent. Ef-
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Figure 2: The count votes subprocess of conduct election.

fectively, the model states that after the votes from each
precinct are counted, the precinct totals are added to the
current Election Central totals, and this continues until
the votes from all precincts are counted.

The perform ballot count is further decomposed
into four substeps, executed in left to right order as indi-
cated by the sequence badge of their parent, an arrow. To
perform ballot count, first a reconciliation of
total ballots and counted ballots takes place.
During this step, election officials confirm that the ballot
counts on the summary sheet they have received from the
precinct corresponds to the physical ballots they have re-
ceived. The summary sheet indicates how many total bal-
lots were issued to the precinct, how many of them were
used, and how these used ballots break down into cast,
spoiled, and provisional ballots. If there is a discrepancy
between the ballots received and the ballots reported on
the summary sheet, the reconciliation of total
ballots and counted ballots step can throw a
Vote Count Inconsistent Exception. This excep-
tion would be caught by the handle discrepancy at
precinct handler as the edge emanating from the X on
perform ballot count’s step bar and leading to the
handler indicates.

Next, the election officials scan votes, which in the
real-world process consists of passing ballots through
scanner machines that read the voter intent and keep
a running count. As noted, the process model is
technology-agnostic, so no assumptions are made in the
model about how ballots are scanned. After all bal-

lots are scanned, election officials have to confirm
tallies match by comparing the tallies, or vote counts
reported by scan votes and ensuring that those num-
bers are consistent with the ballot counts reported on
the precinct’s summary sheet. Optionally, after the tal-
lies are confirmed, the election officials may perform a
precinct-specific manual count or recount of some or all
received ballots (for example in the case where the bal-
lots received do not match the ballots reported on the
precinct summary sheet). This step, called perform
random audit in Figure 2, is denoted as optional by
the ? notation on the edge leading to it. If this step un-
covers a discrepancy, it can also throw a Vote Count
Inconsistent Exception.

The Vote Count Inconsistent Exception indi-
cates that a vote count at a given precinct is inconsistent,
and can be handled differently depending on the circum-
stances. The handler step for this exception is handle
discrepancy at precinct, indicating that if there is
any observed discrepancy for the ballots from a given
precinct, an attempt will be made to address that dis-
crepancy immediately before the vote counts from this
precinct have been added to the running totals. The step
handle discrepancy at precinct has a circle with
a line through it as its sequence badge, indicating that it
is a choice step. That means that handle discrepancy
at precinct can be carried out by choosing to exe-
cute exactly one of its chilren–either rescan or perform
random audit–but not both. Thus, depending on the
circumstances, election officials may decide that the dis-
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crepancy was due to erroneously rescanning a batch of
ballots twice, indicating a rescan, or that the discrep-
ancy was due to another reason, indicating an audit. If
rescan is chosen, then the election officials will first
scan votes, then override software. This scenario
occurs when a batch of ballots is scanned more than once
by mistake, and, to correct the erroneous vote tally cal-
culated, the election officials must manually override the
software. Although the model makes a reference to a
manual override of software, no technology assumptions
are made here. Note that scan votes looks differently
from other steps, lacking for example the filled circle
above its name–this is because scan votes is a refer-
ence, or an invocation of a step that has already been
declared elsewhere in the process, in this case as a child
of the perform ballot count step. References behave
in exactly the same way as the original declarations of a
step, and require the same number and types of input and
output parameters, and an agent of the same type.

If the election officials decide to perform random
audit instead of rescan, then the Vote Count
Inconsistent Exception is handled differently. Note
that perform random audit, like scan votes, is
a reference and is originally declared as a child of the
perform ballot count step. Note that in the con-
text of the exception handler, there is no question mark
on the edge leading to the reference of perform random
audit, indicating that it is not optional when instantiated
in this context. Also, recall that the original declaration
of perform random audit can throw a Vote Count
Inconsistent Exception, and therefore the reference
can do the same. If this happens, the exception is prop-
agated up the call stack, as in a traditional programming
language, until an appropriate handler is encountered.
In this case, the exception would be handled by the do
recount handler shown in Figure 1, indicating that the
discrepancy could not be resolved at the precinct level
and must be escalated.

3.4 Fault Trees

As noted above, continuous process improvement relies
upon the identification of defects, which is then followed
by attempts to remove the defects, and subsequent verifi-
cation that the defects have indeed been removed. We
now present one form of analysis that can be used to
trigger such an improvement, namely the analysis of the
impact of incorrect performance of a process step. The
effects of incorrect step performance can be studied by
creating fault trees. These structures can be automati-
cally generated from a Little-JIL process definition, and
the derived fault tree can then be used to determine all
the various combinations of incorrectly performed steps
that can lead to the occurrence of a specified hazard. A

“hazard” is a condition under which it becomes possible
for an accident that causes substantial damage or loss of
life to occur. In this paper we study how various haz-
ards can occur, given that the model being analyzed is a
correct representation of an actual real-world process.

Figure 3 depicts the highest levels of a fault tree gener-
ated from the process defined in Figure 1, for the hazard
“artifact tallies produced by step confirm tallies
match is wrong on output.” Only a small part of the
fault tree is presented here for simplicity and readability,
but the full fault tree specification is made available on-
line. The full tree can be automatically derived from the
full process specification, of which similarly only a part
has been presented here. Two kinds of nodes comprise
a fault tree: event nodes represented as rounded rectan-
gles or ellipses, and decision nodes, represented as gates
using standard notation. An AND gate means that in or-
der for its parent to occur, all of its children must occur;
an OR gate means that only one of its children needs to
occur for the OR gate’s parent to occur; and a NOT gate
indicates the negation relationship. Events depicted by
rounded rectangles indicate leaf events in the full tree;
ellipses indicate events that have further decomposition,
not included here.

The fault tree in Figure 3 indicates only a few possi-
ble scenarios that would result in the wrong tallies be-
ing reported after the step confirm tallies match
completes. For example, following one scenario in the
tree from the bottom up, if the ballot repository is some-
how corrupt when the election officials complete the
reconciliation of total ballots and counted
ballots, then the ballot repository passed on to the next
step, scan votes, will be incorrect. In turn, this will re-
sult in wrong vote tallies reported by scan votes, and
the wrong tallies will then be propagated to confirm
tallies match, which will report the wrong tallies
upon completion, resulting in the hazard.

3.5 Automatic Generation of Fault Trees
and Minimal Cut Sets (MCS)

Given that the full fault tree generated for this hazard
contains over seventy nodes, the ability to automatically
derive these structures from Little-JIL process defini-
tions is very valuable. Once a fault tree is derived, it
can be manually inspected to identify different vulnera-
bility scenarios that could lead to the hazard occurring.
Perhaps more important, however, fault trees are also
amenable to an automated technique for calculating Min-
imal Cut Sets. A Cut Set is a combination of events such
that if all events in the cut set occur, the hazard will oc-
cur. A Minimal Cut Set (MCS) is a Cut Set for which the
removal of any event causes the set to no longer be a Cut
Set. Thus, a MCS of size two identifies a combination of
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two events that together will lead to the occurrence of the
hazard. A MCS of size one therefore indicates a single
point of failure (SPF). SPFs would seem to be particu-
larly worrisome sources of process vulnerability because
they indicate single steps in the process that, when exe-
cuted incorrectly, can lead to the hazard.

MCSs can be readily and automatically calculated
from the fault tree as follows. Starting from the root
node, for each gate in the fault tree a Boolean equation
is constructed, with the parent node on the left side and
the child nodes on the right side. If the gate is an OR, the
children nodes are connected by the Boolean operator +,
or if the gate is an AND, children nodes are connected
by the Boolean operator *. NOT gates only negate single
leaf nodes, so the negated versions of those nodes are
substituted in appropriately. These equations are then
computed using standard Boolean algebra, where 1 is
equivalent to true, and 0 is equivalent to false, and a
NOT operator converts a 0 to 1 (¬false = true) or a
1 to 0 (¬true = false). so that if a clause is made up
of terms connected by the * operator, all its terms would
have to be 1s for the clause to be true, and if the terms
are connected by a +, at least one of the terms in the
clause must be a 1 for the clause to evaluate to true (for
example 1+1+0 = 1, and 0*1*1 = 0).

If a node on the right side of the equation is further
decomposed in the fault tree, then the node is replaced
by its corresponding elaboration equation as described
above. This recursive substitution of elaborating equa-
tions as prescribed by the fault tree structure is repeated
until all possible substitutions have been made, result-
ing in a Boolean equation consisting of only the haz-
ard (i.e. root node in the fault tree) on the left side
of the equation, and only simple events with no further
decomposition (i.e. leaf nodes in the fault tree) con-
nected by + and *. The resulting right side expression
is then transformed into a more compact representation
using standard techniques for Boolean expression mini-
mization such as the ones described in [42] and finally
transformed into disjunctive normal form (a disjunction
of conjunctive clauses). Given this equation, then the
hazard will occur (i.e. evaluate to 1 or true) only if
one or more of the conjunctive clauses evaluate to true,
which can only happen if all the terms in a conjunctive
clause evaluate to true, indicating all participating sim-
ple events in that clause occurring. Therefore each con-
junctive clause forms a MCS.

3.6 The Improvement Loop

The technologies just described support the precise mod-
eling of election processes and the analysis of such mod-
els for the presence of certain types of problematic vul-
nerabilities. This framework, when applied iteratively,

can provide suitable support for continuous process im-
provement. Once problems have been identified through
the application of different analyses, process modifica-
tions can be suggested to address these problems. These
modifications are usually identified by the domain ex-
perts through discussions of the model, to ensure that the
proposed modifications are reasonable, would not inter-
fere heavily with the real-world process, and would be
easy to effect. The proposed process modifications can
be evaluated before being deployed in the real world, by
making the appropriate changes to the process model,
and then reanalyzing the modified model to ensure that
the changes successfully correct the problems, without
introducing more problematic vulnerabilities in other
parts of the process. Because the process is modeled us-
ing a precise and rigorous process definition language,
multiple kinds of analysis can be applied to discover dif-
ferent kinds of problems, and the fault-tree analysis pre-
sented in this paper is only one example.

In the case where a SPF is discovered in the pro-
cess model, remedial changes often add redundancy to
the process by means of additional checks and balances.
The goal of such changes is to increase the size of the
MCS, or the number of events that must occur together
to cause the hazard to occur. Choosing where to place
such additional checks and balances often requires the in-
put of domain experts as well, to ensure that redundancy
is added judiciously in a way that is unobtrusive but still
prevents the SPF. This is usually done by identifying sev-
eral candidate steps that are SPFs or participate in small
MCSs and then consulting with election officials to iden-
tify steps that are often performed incorrectly in the real-
world process and would therefore benefit the most from
extra redundancy, versus steps that have, in the election
officials’ experience, a lower chance of being carried out
erroneously, or that are performed so infrequently that
added redundancy would not have the same impact than
it would at steps that are performed very frequently.

4 Case Study

To demonstrate our approach, we have selected one prob-
lem that Yolo County has encountered, namely vote tally
discrepancies during the counting of votes. We use our
model to show how the problem can arise, and that the
probability of this problem occurring is increased by the
presence of single points of failure within the process
model. We indicate how to implement corrective proce-
dures, and then analyze these procedures to ensure that
the corrected model no longer exhibits single points of
failure.
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Figure 3: Fault tree for the hazard “artifact tallies produced by step confirm tallies match is wrong on output.”

MCS Events in the MCS

MCS A Step scan votes produces wrong tallies

MCS B Step confirm tallies match produces wrong tallies

Table 1: Smallest MCSs calculated for the fault tree in Figure 3; two SPFs are identified.

4.1 A Potential Problem in a Real-World
Election Process

The potential problem arises in the counting of ballots,
and was identified by elections officials at Yolo County
as a source of discrepancies. Yolo County counts all bal-
lots at Election Central. A brief description of the real-
world process follows.

At the beginning of the day, the election officials
record the number of blank ballots sent to each precinct.
During the election, every voter has to sign the voting
roll that contains the list of registered voters. The voter
is then given a ballot, goes to a voting booth, votes, and
then puts the ballot into the ballot box. If a voters mis-
marks a ballot, a new ballot will be issued upon request
(up to three ballots). The mis-marked, or spoiled, bal-
lots are kept separately from the other ballots. If the
voter chooses to vote on an electronic voting machine
(DRE+VVPAT), no paper ballot is used; instead, the
DRE+VVPAT records the ballot both electronically and
on a paper tape.

If a voter is not listed in the voting roll, or there is a
question about whether the voter should be allowed to
vote at that precinct, the voter can cast a provisional bal-
lot. In Yolo County, provisional ballots cannot be cast

electronically; they must be cast on paper.
When the polling station closes, the poll workers as-

semble the ballots into four groups: cast, spoiled, provi-
sional, and unused. The number of ballots in each group
is recorded, and the total is checked against the number
of ballots given to the precinct. The ballots are then taken
to Election Central, where the counts are recomputed and
rechecked.

At this point, the election officials place the cast bal-
lots into clear bags, one for each precinct. The bags are
moved to a room with high-speed scanners. Each bag is
individually opened and the ballots scanned. Scanning
software counts the votes cast in each race, producing
vote totals. Both the number of ballots scanned and the
totals for the races are recorded separately from the ini-
tial ballot count reported by the precinct. Note that this
is a description of the real-world process and as such it
describes the specific voting technologies used. The pro-
cess model, however, is technology-agnostic; that is, al-
though it specifically models a central-count optical scan
(CCOS) process, it makes no assumptions about the de-
vices being used, so none of the following results are de-
pendent on the specific scanner devices or scanning and
tabulation software that Yolo County uses.

We consider the following problem:
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Figure 4: The count votes subprocess, augmented with an additional exception declaration at the step confirm
tallies match.

• Discrepancy between precinct and Election Central
counts. This problem occurs when the number of
ballots counted at and reported by the precinct or
polling station is inconsistent with the number of
ballots or vote tallies reported by the scanner at
Election Central.

4.2 How the Problem Can Happen in the
Real-World Process

A number of occurrences may cause the problem. The
two most likely ones are that ballots are misplaced while
they are being transported from the precinct to Election
Central, or that the identifying information about the
precinct from which the ballots came is incorrect. The
latter will cause the ballots to be counted as though they
came from precinct X when they should be counted as
having come from precinct Y , throwing off the counts
for both precincts. Other possible problems are that the
ballots could be miscounted, either at the precinct or at
Election Central. Even if automated, the systems that
do the counting may err due to faulty use, mechanical
problems, or other reasons. If any of the counts are done
by a computerized system, faulty software may misread
the vote tallies from the storage devices. More simply,
the handwriting of the ballot counts on the precinct sum-
mary sheets may be hard to read, or be misread. A more
sinister reason is that someone adds ballots, or removes
ballots, from the set of ballots to be counted.

4.3 Applying Fault Tree Analysis to Iden-
tify How the Problem Can Happen in
the Model

The fault tree generated for the hazard “artifact tallies
produced out of step confirm tallies match is wrong
on output” is shown in Figure 3. Note that the first few
levels of this fault tree contain only OR gates. This is
typically undesirable because it indicates that only one of
possibly several child events has to occur in order for the
parent event to occur, and this can lead to a SPF. In fact,
Table 1 lists two SPFs identified among the MCSs calcu-
lated for the fault tree in Figure 3. Indeed, the complete
list of MCSs (omitted here due to space limitations but
made available online) contains sixteen Cut Sets, twelve
of which are of size two or smaller.

Note that both SPFs refer to the incorrect execution of
steps in the count votes subprocess shown in Figure 2.
One way that the hazard may occur is if the step confirm
tallies match itself is carried out incorrectly. This
is a SPF as there is no mechanism in the process to de-
tect when this step has been performed incorrectly, either
through error, or as the consequence of collusive election
official behavior. Domain experts must identify the dif-
ferent ways that a step may be executed incorrectly and
would presumably use that information to suggest effec-
tive ways to change the process to remove the SPF.

Another way for the hazard to occur is if the step scan
votes produces the wrong vote tallies. An example of
how this may occur would be if a batch of ballots was er-
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roneously scanned twice. But there are many other ways
for this step to produce wrong tallies. For example the
error might be caused by a faulty scanner, or by tamper-
ing with the ballot repository. The full fault tree includes
these scenarios identified by election officials, as well as
others.

4.4 Process Model Modifications to Sup-
port Continuous Process Improvement

Both SPFs identified in Table 1, for the fault tree in Fig-
ure 3, result in wrong tallies being reported after the
step confirm tallies match completes execution.
This incorrect result is reached in one of two ways: ei-
ther the step confirm tallies match itself is car-
ried out incorrectly or it receives the wrong tallies from
its predecessor, scan votes and propagates the mis-
take. SPFs of this nature can often be removed by the
addition of redundancies, or extra checks, to the pro-
cess. Referring back to the subprocess for count votes
in Figure 2, note that the steps reconciliation of
total ballots and counted ballots and perform
random audit both have the ability to raise a Vote
Count Inconsistent Exception if a discrepancy
arises. The step confirm tallies match could also be
allowed to raise this exception, as shown in Figure 4, to
better handle the situation where there is a mismatch be-
tween the tallies reported by scanning the votes and the
ballot counts indicated on the precinct summary sheet.
This seemingly small change in the process definition
leads to a very different fault tree. Figure 5 shows the
top few levels of the fault tree derived from the modi-
fied process definition, using the same hazard, “artifact
tallies produced by step confirm tallies match
is wrong on output.” Note that unlike the original fault
tree in Figure 3, the fault tree derived from the modified
process has an AND gate connecting the event “Artifact
tallies is wrong when step confirm tallies match
is completed” to its children, indicating that now both
events must occur in order to cause the hazard. In fact,
when the MCSs are computed for this modified fault tree,
there are no longer any SPFs. As in the previous case,
the full list of MCSs contains sixteen cut sets; only two
of them, however, are now of size two (shown in Table
2; the primes indicate that these MCSs were calculated
for the fault tree derived from the modified process), and
there are no SPFs.

It may appear that the SPF would be recognizable in
the original process model through manual inspection,
and it may seem easy to identify an appropriate process
change to remove the SPF. However, note that this ex-
ample is a simplified case looking at only a small part
of the process model, and is only meant to illustrate the
approach. Generally, the process model under consider-

ation may be much larger or may include sophisticated
parallelism and other characteristics that would make it
prohibitively complex for manual inspection to identify
every possible scenario that may cause a hazard to occur.
In such cases, automatically derived fault trees can pro-
vide much needed guidance and identify SPFs that would
be very difficult or impossible to spot through manual in-
spection.

Adding only one additional check eliminates both
SPFs identified in the original process model because
this extra check is judiciously placed at the step where
it would have the most impact. In this case, the wrong
tallies may be produced by confirm tallies match
either because the step itself is performed incorrectly or
because it received incorrect tallies from its predecessor,
so by placing an extra check at this step, both scenar-
ios would benefit from the redundancy, eliminating both
SPFs. Note that an additional check could have been
added to scan votes instead, preventing it from passing
on the wrong tallies to its successor, confirm tallies
match. Although this would have fixed one SPF, it would
not have prevented confirm tallies match from pro-
ducing wrong tallies through its own incorrect perfor-
mance. A careful consideration of the fault tree and its
corresponding MCSs in tandem with the domain experts
is needed to identify minimal changes that the election
officials feel would be easy to implement within the real-
world process that would ensure the removal of a SPF
and be most beneficial in preventing further vulnerabil-
ities. These changes can then be made in the process
model and evaluated using the same analysis techniques
to ensure that they are indeed effective.

5 Conclusion and Future Work

In this paper, we have presented an approach for continu-
ous election process improvement. The approach entails
precisely defining a model of the election process that is
to be evaluated, and then subjecting this model to differ-
ent analyses. As a case study, we present the effective-
ness of one form of analysis, namely Fault Tree Analy-
sis, for improving the robustness of the election process
used in Yolo County, California. Although the case study
in this paper concentrates on a model of a counting pro-
cess that is specific to the Yolo County process, the rest
of the model is fairly general and the technologies de-
scribed in this paper are broadly applicable and are not
restricted to a specific process model. Through the ap-
plication of FTA, we automatically generate fault trees,
indicating different scenarios in the process that could
enable an undesirable hazard to occur. We then use the
fault trees to compute Minimal Cut Sets, combinations of
events that could lead to the hazard. Together with elec-
tion officials, for this case study, we carefully consider
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Figure 5: After implementing process changes, the fault tree is different for the hazard “artifact tallies produced by
step confirm tallies match is wrong on output.”

MCS Events in the MCS, separated by semicolon

MCS A′ Step scan votes produces wrong tallies;
Vote Count Inconsistent Exception is NOT thrown by step confirm tallies match

MCS B′ Step confirm tallies match produces wrong tallies;
Vote Count Inconsistent Exception is NOT thrown by step confirm tallies match

Table 2: Smallest MCSs calculated for the fault tree in Figure 5; no SPFs are identified.

SPFs in conjunction with the fault trees and the process
model, and identify process changes that would remove
the SPFs. To ensure that the modifications successfully
remove the SPFs and do not introduce additional vulner-
abilities, we reapply the fault tree analysis to the mod-
ified process and demonstrate that all SPFs with regard
to the specified hazard have been effectively removed by
means of a relatively modest process change carefully
placed in such a way as to cause relatively large impact.

Continuous process improvement through the applica-
tion of FTA seems to be an effective approach for im-
proving the robustness of election processes. Careful and
precise definition of the election process enables the ap-
plication of FTA, as well as a plethora of other analysis
approaches. One major benefit of using FTA to analyze
a carefully defined process model is the automatic gen-
eration of fault trees and corresponding MCSs. This is
especially important as processes in the election domain
are often very large and complex, and manual generation
of fault trees would be a onerous and error-prone task.
Another benefit is that one process model can be used to
consider a number of hazards. Moreover if the process

definition is modified it is relatively easy to generate fault
trees for the new models. In addition to facilitating FTA,
another benefit of a precise process model is that once it
is defined, the same model could be used for many differ-
ent kinds of reasoning, thus amortizing the cost of initial
development.

In the future, we plan to explore other ways in which
to utilize the process model to identify potential improve-
ments in the real-world process. For example, FTA fo-
cuses on identifying different scenarios in the process
that could lead to a pre-defined hazard occurring, but
there is a complementary technique called FMEA that
we intend to pursue. FMEA, or Failure Mode and Ef-
fects Analysis, determines what kinds of hazards could
occur as a result of the incorrect performance of a pre-
defined step (i.e., the failure). There are a number of
FTA and FMEA analyses that we intend to pursue, in-
cluding approaches that combine these two techniques
(e.g., [28]). We also plan to model and analyze differ-
ent jurisdictions’ election processes to further evaluate
and improve the approach presented in this paper, start-
ing with the election process used in Marin County, Cal-
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ifornia.

Additionally, although not explored in detail in this
paper, a carefully defined process model can be used to
derive requirements that different agents in the process
must satisfy for the overall process to adhere to prede-
fined security or privacy constraints. One obvious benefit
of such analysis would be the derivation of requirements
that voting technologies and devices would need to sat-
isfy, in order to make guarantees that the devices can be
used within the process without leading to undesirable
violations of security and privacy constraints. Such a
global view is clearly desirable, because it can lead to
assurances about the voting devices within the context
of the larger election process, in which they play only a
small part.

Finally, a jurisdiction might use the approach de-
scribed here to understand that idiosyncrasies in the way
it conducts elections might cause a crucial election pro-
cess step that is performed by a particular voting device
to be a single point of failure. In such a case, the ju-
risdiction might decide that its voting process should be
changed to add redundancy that removes the SPF. We
suggest that a core election process that is compatible
with elections across many jurisdictions could enable
election officials to share information on problems that
arise with the use of a specific type of voting technol-
ogy within that core process–focusing on how the device
interfaces with the core election process and without hav-
ing to discuss intricacies of their own election process or
information proprietary to voting device vendors. Such
a library of election processes, perhaps accompanied by
the results of various analyses, could be made widely
available for discussion of best practices for using tech-
nologies or procedures to identify and mitigate various
problematic vulnerabilities.
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