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ABSTRACT 

Running XPath queries on XML documents with minimum 

memory usage is a challenge. YFilter 1.0 stores the entire 

document in memory.  The extensions to YFilter applied in [3] 

are limited as they discuss memory management techniques for a 

limited taxonomy of queries. They do not handle cases where 

data is being shared between queries. We implemented a basic 

algorithm which extended [3] to incorporate sharing of data 

among queries. However, this implementation also faced a 

problem of delayed pruning of data from the memory along with 

the overhead involved in maintaining additional data structures. 

We propose a novel algorithm YCompact which has a buffer 

manager that handles pruning of irrelevant information. This is 

achieved with reduced overhead in terms of data structures. This 

resulted in significant memory improvement as compared to the 

previously implemented algorithms with no extra overhead. 

Keywords 

Data Stream, YFilter [1], XPath, Sampling, pruning, filtering, 

YCompact 

1. INTRODUCTION 
XML data streams have become ubiquitous for information 

exchange over the internet.  Examples abound from news feeds, 

financial data feeds and network monitoring events. More 

recently, sensor technologies such as RFID have appeared as new 

sources of XML data streams, bringing along with them 

challenges to manage and utilize the data effectively. 

     In a traditional DBMS, the data is resident: it is stored in some 

medium to allow easy querying and updates. The queries are one-

shot and can vary to cover a wide range of information needs. 

The data processing can be thought of as being query-driven, i.e. 

query results are generated as frequently as queries are invoked. 

However the streaming data environment is data-driven i.e. 

continuous queries are used to process unending streams of data. 

The answers generated for a particular query can quickly become 

obsolete in a very short period of time. Hence, continuous results 

need to be generated in a timely fashion. 

     YFilter [1] aims to provide fast on the fly matching of XML 

data to a large number of user interest specification. However, it 

stores the entire document in the memory. There is no pruning of 

data after query processing. FisT [10] provides a XML filtering 

system. FisT [10] performs holistic matching of twig patterns 

with incoming XML documents by transforming them into Prufer 

sequences.  Fist evaluates its algorithm for different query sets 

and compares the algorithm’s performance with YFilter [1]. 

However, it has not studied memory management techniques for 

processing queries over XML documents.   

     Improvements to YFilter were provided by Feng and Kumaran 

[3]. They improved the YFilter code base to incorporate memory 

management techniques with pruning of irrelevant nodes from 

the memory. However if node information was being shared 

between queries, there was no provision to reduce memory 

consumption by having a single copy of the shared node 

information in memory. We first implemented a basic algorithm 

that extended Feng and Kumaran’s work [3] in improving 

memory usage by storing a single copy of node information in a 

separate shared buffer if there is sharing between queries. 

YCompact extended this idea by using a single global buffer and 

using pointers to keep track of shared node information. The 

different issues that we addressed in YCompact were to minimize 

memory usage by pruning of unnecessary nodes and extending 

the concept of sharing node information across a wide variety of 

queries like the basic algorithm but with lesser overhead. We 

evaluated the memory usage across 4 different datasets and 

different types of queries. The results show reduced memory 

usage by YCompact than any of the other techniques with no 

overhead involved.  

    We present a taxonomy in section 2 for the different types of 

queries for which buffering is required.  We describe YFilter 

implementation in section 3 and describe Extensions to YFilter 

by Feng and Kumaran [3]. In section 4 we propose a basic 

algorithm which incorporates sharing of node information 

between queries. We extend the algorithm in section 5 to 

YCompact which reduces overhead in terms of data structures 

and provides better memory management as compared to the 

basic implementation. We show the results we have obtained for 

different query sets and data sets in section 6. Finally we 

summarize the work with conclusion and related work. 

 

2. TAXONOMY 

In this section, we consider a subset of XPath queries where 

nodes have self-predicates nested paths, self-predicates on 

position and multiple predicates as described in [1] and [3].  The 

characteristics of certain types of queries potentially make them 

susceptible to causing memory overhead.  We have highlighted 

different types of queries for which buffering might be required 

and illustrate those categories with examples. We use the NASA 

dataset as reference for all the examples. Before we describe the 

queries, we need to define few terms: 

We need to define few terms: 

Output_node: Node, which finally needs to be output 

Predicate_node(s) : Node (or a set of nodes) on which predicates 

are to be applied. Lets call it predicate_node(s). 
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2.1 Queries with no predicate_node 

Such queries have no predicate_node, but only an output_node. 

Hence, we can start outputting the output_node, as and when we 

encounter it, without having to buffer it. Hence this query takes 

constant amount of memory: O (1). 

Example: We illustrate an example that is a query with no 

predicate.   

    /datasets/dataset/title: All <title> elements that are children of a 

<dataset> element. 

2.2 Queries with predicate_node before or the same 

as output_node  

In this case, predicate nodes occur before or are the same as the 

output nodes. Hence we don’t really need to buffer anything here 

and the memory usage is constant: O (1). 

Examples: We illustrate couple of examples in which output 

node occurs same as a predicate node.  

1. /datasets/dataset/altname [@type=”ADC”]: Selects all altname 

children of the dataset node that have a type attribute with value 

ADC  

2. //dataset/altname [@type=”brief”]: Selects all altname children 

of dataset node that have a type attribute brief.      

2.3 Queries with predicate_node within output_node 

In this case, we should keep on buffering the output_ node, till 

we encounter predicate_nodes. When we encounter a 

predicate_node, we check if the predicate is satisfied. If 

predicates are satisfied, we can write out the buffered 

output_node, and continue directly outputting the remaining of 

output_node, as and when we encounter it, without having to 

buffer it. If the predicate_nodes are not satisfied, then we discard 

the so far buffered output_node. From memory management 

point of view, it’s important to note here that after having seen all 

the relevant predicate nodes, we can prune out the buffered data. 

This is important, as we want to minimize the amount of data that 

needs to be stored in the system at any point of time during the 

execution. In other words, till the predicate is evaluated to 

true/false the output node has to be kept in the memory.  

Example: We illustrate an example that is a query with an output 

node occurs before a predicate node. 

     //dataset/reference/source/other//title [author]: The output 

node title has to be buffered till the predicate author is satisfied. 

2.4 Queries where predicate_node occurs after 

output_node 

In such queries, it depends on the order in which we encounter 

the nodes. If we encounter predicate_node first, and output_node 

later, then we don’t really need to buffer anything. But if we first 

encounter the output_node and the predicate_node later, then we 

do have to buffer the output_node, and wait to check if the 

predicate_node is satisfied.  

Example: We illustrate an example that is a query where an 

output node is a sibling and appears before of the predicate node.      

    //dataset/title//source/other [author]/title: The output node title 

has to be buffered till predicate node author is checked to be 

satisfied or not. 

2.5 Queries with positional operators  

The position functions in the query may or may not require 

buffering. 

Examples: We illustrate examples that are queries with a 

positional parameter on the output node. 

 1. /datasets/dataset//source/other/author [position () =2]: For this 

query, we don’t need to buffer anything. We can directly output 

the 2nd author node.  

2. /datasets/dataset//source/other/author [position () =last]: For 

this query, the last author has to be returned as an output. The last 

encountered ‘author’ child node has to be stored in memory until 

all the child nodes of author are checked. This is an example 

where buffering is needed for queries with positional parameters. 

 

3. YFILTER 

We used YFilter [1] as an environment for developing our query 

processing techniques. ¨YFilter aims to provide fast, on-the fly 

matching of XML encoded data to a large number of interest 

specifications, and transformation of the matching XML data 

based on recipient-specific requirements.¨ YFilter processes data 

at the granularity of an event level, where an event is the arrival 

of the start or end of an element. Standing queries, i.e. those that 

are continuously applied to incoming data streams, can be issued 

to YFilter in the XPath language. 

 

3.1 YFilter overview     

In order to explain YFilter technology [1], we need to define a 

few terms, namely 

1. Main path: The part of the query without any predicates is the 

main path.  

2. Nested path: The part path expression in a predicate is the 

nested path. 

     YFilter [1] explains query decomposition where the nested 

paths are extracted from the main path expressions and processed 

individually. The different stages of query processing can be 

described as follows:  

     YFilter [1] shares the processing work for multiple queries of 

matching the paths mentioned above by building a single NFA 

over all path expressions.  

     After the path matching by building a single NFA structure, 

simple predicates e.g. over attributes are evaluated. We shall 

discuss about the join between the main path and the nested path 

in section 3.3. The following example illustrates the query 

decomposition into a main path and a nested path. 
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Example:  //dataset/reference/source/other//title [author] 

     Here, the main path is //dataset/reference/source/other//title. 

The nested path is //dataset/reference/source/other//title/author. 

 

3.2 Current limitations of YFilter 

     Aspects of YFilter implementation that impede its use in an 

online setting for very long documents include: 

 

1. Delayed processing of queries including nested paths 

YFilter processes queries including nested paths only after the 

entire document is seen. Results should be generated on the fly, 

i.e. whenever conditions are satisfied for different paths of the 

queries. 

2. Complete buffering 

YFilter incrementally builds and stores the entire XML document 

into memory. This is unsuited for processing of large XML 

documents as the document can be potentially infinitely long, and 

storing even a fraction of the stream will quickly overwhelm the 

available memory. 

3. No dynamic pruning 

In addition to the wasteful storage of the entire document in 

memory, YFilter currently doesn’t have functionality to prune the 

tree of unnecessary nodes. 

 

3.3 Extensions to YFilter [3] 

Feng and Kumaran [3] improved YFilter [1] for better memory 

management with two extensions. First, YFilter [1] processes 

queries including nested paths only after entire document is seen. 

This inevitably requires lots of data to be buffered until the end 

of the parse of the document. Feng and Kumaran [3] modified 

this to process nested paths on-the-fly. If multiple nested paths 

are satisfied for a query with single nested path, the results are 

written out. If a nested path is not satisfied, then they waited till 

the end of element tag of the last common ancestor of the output 

node is encountered. They used the concept of a join where a 

main path was joined with each nested path of the last common 

node in a query as illustrated in figure 1.  

 

Join Algorithm 
They implemented an n-way in-memory symmetric hash join 

algorithm that is invoked each time a main path or a nested path 

is satisfied. They used one hash table per main and path. There 

are two phases in the join, namely the probe and the build phase. 

In the build phase, all the anchor nodes from main path and the 

nested path are stored in the corresponding hash tables.  In the 

probe phase, all anchor nodes are used in the join with no 

duplicates. The anchor node here is the last common ancestor in 

case of multiple nested paths. For example, 

/datasets/dataset [keywords]/altname [@type=”ADC”] 
     In this case, the anchor node is dataset. 

 

Data structures 
The event-based processing is performed with the help of two 

auxiliary data structures for each query - a bit map and a set of 

multi-hash tables in [3]. They use multi-hash tables to store 

information pertaining to each nested path as well as the main 

path. For each path, the corresponding multi-hash table stored the 

anchor node as the key, and the event ID as the value. To keep 

track of which nested paths were satisfied for a query, they utilize 

a bit map. The bit map contained a set of main path event ids 

along with a corresponding set of bits - one for each nested path, 

initialized to zero. If all sets of bits of the nested paths are set to 1 

then a result is produced as all the nested paths are satisfied.  

 

 

Figure 1: n-way single level symmetric hash join used in [3] 

 

Buffer Manager 

To manage memory more efficiently, they avoid storing the 

outputs for each event in the query hash tables. Instead, they store 

the unique event id associated with each event. This query result 

buffer not only avoids caching the full path information for each 

tuple in the hash tables but also helps them avoid storing 

duplicates as different queries could have the same output. Their 

decision to prune the contents of the hash table is motivated by 

the fact that once a match was found for a query, there is no need 

to store the associated values in memory. In addition to this, 

whenever an end-of-element tag of the last common ancestor is 

encountered; all the associated entries were cleared from the hash 

tables. Thus, once they identify the nodes that are required for 

query processing, they are able to determine which nodes to 

prune from memory.  

     However, they do not handle sharing of node information 

among queries. Since they store information per query, there is 

no technique to handle shared information among different 

queries.  In other words, if there is node information that is 

shared among queries, their implementation will store all the 

information separately leading to extra memory usage. This will 

also result in delayed pruning of the nodes as there will be more 

information in memory than that is required. 

     There still persists a problem of delayed pruning in case of 

queries where there are multiple nested paths. The last common 

ancestor/anchor node has to be stored in memory till the 

predicates are satisfied. To summarize, the extensions to YFilter 
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[3] reduce memory usage by pruning of irrelevant information 

from memory. However, since their implementation does not 

handle sharing of node information among queries, memory 

usage is higher. 

 

4. Basic Implementation to incorporate 

sharing of node information 

The buffer manager of Feng and Kumaran [3] is did not handle 

sharing of node information across queries. If there are different 

queries sharing node information, then multiple copies of that 

information will be stored in memory till the queries are 

processed.    The data structures that they used did not include 

any information on the common node information among 

different queries.  In case of multiple nested paths, their 

algorithm stores the anchor node till all nested paths are satisfied. 

This results in delayed pruning of node information from the 

buffer. The algorithm mentioned in this section extends the 

algorithm proposed in [3] to queries where different queries share 

node information. By maintaining a single copy of share node 

information, memory usage can be reduced and queries can be 

processed more efficiently.   

 

4.1 Idea  

We modified the algorithm presented in [3] to include a shared 

buffer which holds node information that is shared across 

different queries. The idea was to store node information 

common across different queries only once and this was achieved 

by maintaining a single buffer containing the output nodes of 

each query i. We also maintained a separate shared buffer to store 

the node information that was common across all the queries. 

This enabled processing of the queries with better memory 

utilization as there is less information to be stored in memory.   

 

4.2 Data Structures 

The data structures used are a Hash Map for the shared buffer, 

Hash map for the pin count and Array List for the output buffer 

which stored the output nodes and characters for each query. The 

individual output node and corresponding characters are stored in 

the output buffer. If there is any information that is shared across 

queries, then a pointer from the output buffer points to the shared 

buffer which is linked to the pin_counter hash map by the 

EventID which is the key. The different data structures used with 

their contents are described in figure 2. 

 

4.3 Dry Run of an example 

Consider the group of queries below in order to illustrate the 

basic implementation on sharing of node information. 

a/b/d[c] 

/a/b/d[f]/e 

/a//d[g] 

on the input document, 

 

<a> 

<b><d><e> 

<c>xyz</c> 

<f>123</f> 

<g>567</g> 

</e></d></b> 

</a> 

The Output Buffer will contain: 

<d> POINTER_TO_SHARED_BUFFER …<g>567</g> </d> 

The Shared buffer will contain: 

Shared Buffer 

Event_ID Output_Node 

1 <e> 

2 <c> 

3 Xyz 

4 </c> 

5 <f> 

6 123 

7 </f> 

8 </e> 

 

The Pin_Counter will contain: 

Pin_Counter(Hash Map) 

Event_ID Pin_Count 

1 2 

2 1 

 

     Thus, as seen in the example the sharing of nodes among 

different queries is handled over Extensions to YFilter [3]. 

 

4.4 Algorithm 

The algorithm is spread across different methods startelement, 

endelelement and characters in EXfilterBasic.java. The buffer 

manager handles pruning of node information from memory. The 

different steps below indicate the flow of the algorithm across 

these different methods. 

a. The output nodes which are common across queries are shared 

in the shared buffer. A corresponding pin count is maintained to 

keep track of which output node is required for which query.  

b. The number of queries that share the node information 

(Pin_count) and the output nodes is found at the beginning of the 

endelement method mentioned above. 

c. The output buffer has a pointer which points to the shared 

buffer in case of sharing data. The shared buffer has an Event_ID 

as a key and the Output_Node as value. 
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End 

Element

CharsStart 

Element

node info1

Output_Node

(Value)

Event_ID

(Key)

21

Pin  count 

(Value)

Event_ID

(Key)

Output Buffer 

(if no sharing) 

for each query i 

(ArrayList)

Shared Buffer for all 

queries (Hash Map)

Pin Counter (Hash Map)

Key to the map(if

sharing)

 

Figure 2: Basic layout of data structures in Buffer Manager 

 

d. The output buffer is populated in the order of the start element, 

characters and end element. If there is no sharing of any node 

information among queries, then the output buffer has the 

Output_Node as its contents. 

e. If there is sharing, then the Output_node has a pointer and the 

shared buffer holds all the node information. 

e. The pin counter hashmap has an Event_ID as a key and a 

Pin_count as value. The Pin_count is used to keep track of how 

many queries share node information. 

e. The pin_count is decremented after each query is processed. 

Once pin count reaches 0, the contents of the Shared Buffer are 

removed from the memory. 

     Thus, as seen from the above basic algorithm, sharing of 

node information among different queries is included as 

compared to [3]. This results in reduced memory usage as 

compared to YFilter [1] and Extensions to YFilter [3]. However, 

the use of an additional data structure for the shared buffer causes 

overhead and increased memory usage as there have to be buffers 

maintained for each query(Output buffer) and for all the 

queries(Shared buffer). 

     There is also the problem of the order in which queries are 

processed. In a group of 3 queries, if a query arrives before 

another query having 0 pin count this information will be stored 

in the buffer till the second query is processed. i.e. the 

information from the first query is  not required by the second 

query, but is still kept in the shared buffer till the second query is 

processed resulting in delayed pruning from the buffer. This can 

be defined as a fragmentation (smaller chunks of a large chunk 

being shared) issue and is illustrated with an example in the next 

section.     

 

5. YCompact 

The YCompact algorithm acts as a superset to all the other 

implementations. It ensures efficient memory utilization with 

minimum buffering for a single query as well as a group of 

queries. There are issues of fragmentation and delayed pruning in 

the algorithm mentioned as described in section 4. There are 

overhead problems in maintaining an additional shared buffer. In 

order to handle fragmentation, after processing one query if a part 

of the buffer is not required by the other queries, then that is 

removed from the buffer.  

 

5.1 Idea 

The idea is to maintain one global buffer that the basic 

implementation does not provide; that holds the output node 

information for all the queries. In order to handle sharing of 

information between queries, we use the same buffer with start 

and end indices to keep track of where the output node of one 

query starts and where it ends. If there is overlap of output 

between queries, then we use a pin count value to prune the node 

information from the buffer after each query is processed. If the 

node information is not required by any other query, then output 

is flushed and buffer is cleared. After each query is matched and 

output is written out, we attempt to prune the buffer such that no 

information that is not required by any of the other queries is 

stored in the buffer. 

 

5.2 Data Structures 

The data structures used are Linked List as the output buffer and 

HashMap as the pin_counter. Pin_counter is used as a hashmap 

to map element_name from the linked list to the Object 

(start_index, end_index and pin_count_value). The main 

advantage of this approach over the basic implementation is that 

it avoids the overhead of maintaining an additional data structure. 

This keeps track of the output nodes in the buffer. The basic 

layout of the data structures is given in the figure below. The 

variables si, ei and pin stand for start_index, end_index and 

pin_count_value respectively for any query i. These names are 

described in the algorithm in the next subsection. 

End 

Element

CharsStart 

Element Global Buffer for all queries 

(LinkedList)

Counter (Hash Map)

si, ei, pin1

Pin  count 

(Value)

Event_ID

(Key)

 

Figure 3: Basic layout of data structures in Buffer Manager 

 

5.3 Dry run of an example 

     For the same set of queries and input document as mentioned 

in section 4.3, the data structures are populated as follows: 
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Global Buffer 

<d>, 1, <e>,2, <c>,3, xyz, </c>,4, <f>,5, 123, </f>, 6, <g>, 7, 

567, </g>,8, </e>,9, </d>,10. 

Counter 

Event_ID Si, ei, pin 

1 6, 8, 3 

2 2, 12, 2 

3 1, 13, 0 

 

If query 3 is processed first, then Counter will be:  

  

Event_ID Si, ei, pin 

3 1, 13, 0 

2 2, 12, 2 

1 6, 8, 3 

      

     Comparing next.start_index with current.start_index and 

next.end_index with current.end_index and a non-zero 

next.pin_count_value, start_index and end_index are assigned to 

2, 12. The element <d> is pruned from the buffer as it is no 

longer required. Similarly after end of e is encountered, pruning 

takes place of the elements upto f and after f as they are no longer 

required. 

 

5.4 Algorithm 

This algorithm highlights the main steps to be handled in the 

different methods of EXfilterbasic.java as described in section 4. 

Similarly, the buffer manager handles pruning of node 

information from the memory. The different steps indicate the 

flow of the algorithm across these methods and classes. 

a. Maintain a single buffer for nodes and characters i.e. start 

element, characters and end element. It is a linked list.  

b. Add to the buffer 

As an output node is encountered add it to the buffer.  Use a start 

index to keep track of the start of the output node as well as an 

end index to keep track of the end of the output node for each 

query. In order to keep track of these indices and 

pin_count_value there is an object with three members, namely 

start_index, end_index and pin_count_value. 

c. Output of the query 

Check if the predicates evaluate to true or false for a query with 

multiple predicates. If all the predicates evaluate to true and 

output node is not required by any other query then decrement 

pin count and output the result. 

     If all the predicates evaluate to true and output node is 

required by another query, then just output the result. 

     If all the predicates evaluate to false, move on to the next 

query and wait till end of element of parent is encountered. This 

is done by checking the flag is_buffering_on. This is true and the 

output_on is false, which means that data still needs to be 

buffered and there is nothing to output.  

d. Prune from the buffer when all predicates are satisfied 

If the pin count value is reduced to zero, prune node information 

from the buffer. Whenever an output node is not needed by any 

other query, it is removed from the buffer.  

     If a query arrives before another query having 0 pin count, 

then in order to handle fragmentation pruning is done as follows:  

     Counter is a hashmap having name of the element as key and 

an Object (start_index, end_index, pin_count_value) as value. 

Using an iterator get the keys from the hashmap. corresponding 

to the keys, get the values.  

     If there is a case when start_index of second entry is greater 

than start index of the first and end_index of the first is greater 

than that of the second and the pin_count_value of the second 

entry is non-zero, then reset the start_index and end_index to the 

next values. Else, the pin count is zero and the fragment is not 

required by other queries, prune the data from the buffer. This 

prunes only the fragment that is no longer needed by the buffer. 

Also, if predicate is false, wait for the parent’s end element to 

prune from the buffer. 

     Thus, from the algorithm and an example we can see that, the 

fragmentation issue mentioned in section 4 can be removed by 

keeping track of the start_index and end_index for output_node 

in the buffer. Thus, the problem due to delayed pruning described 

in section 4 is eliminated. 

      The overhead involved in maintaining an additional data 

structure in the basic implementation is also removed resulting in 

improved memory usage.  

 

6 Performance Evaluations 

In this section, we evaluate 4 different datasets for the YFilter 

algorithm [1], Feng and Kumaran’s extension to YFilter system 

[3], Basic implementation and YCompact Algorithm. The metrics 

for evaluation are Memory Usage and CPU usage. The objectives 

of the tests are to determine if the memory usage is less in the 

YCompact algorithm than any of the earlier used techniques and 

to check whether there is any overhead involved. The tests on the 

different datasets are mentioned below. 

 

     We analyzed different DTD’s, datasets and query sets to test 

the effectiveness of the algorithm.  The query sets are described 

in detail along-with the data sets. The basis of selection for the 

query sets was based on the following criteria: 

1. Manually generated queries that seem to have shared nodes 

between them. The degree of sharing is different across the 

different queries. 

2. Automatically generated queries from the YFilter code base to 

test the memory usage for smaller/larger datasets. 

     The datasets were selected based common uses in literature. 

The details of the different datasets are mentioned in the coming 

subsections. 

 

  

6.1 Experimental Setup 
The experiments were performed on a Linux Desktop with an 

Intel Pentium 2.1GHz processor and 2GB of RAM. The JVM 

settings we used were –Xms 500m –Xmx 1000m.  The Java 
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version used was Java SDK 1.5. We used Profiling in Java to 

measure the memory usage.   

     The filter package in YFilter code base contains the main class 

EXfilter. The different algorithms were tested in different modes 

as described below:  

1. Result output mode: The result was written to a file using the 

knob –result=ALL. The result size along with the output for each 

query was written to the file.  

2. Memory usage mode: The memory usage in bytes was written 

to the file using the knob –result=ALL and --

outputMemoryUse=TRUE. The other knob –longDocument is set 

to TRUE if we need to measure the memory usage of YCompact. 

In order to measure the memory usage for YFilter, longDocument 

is set to FALSE and original_streaming is set to TRUE. For 

extensions to YFilter [3], the longDocument is set to FALSE and 

symmetric_hash is set to TRUE. We used the memory usage 

module that was downloaded from the internet [12] by Feng and 

Kumaran [3].  

3. CPU usage mode: The CPU usage was measured in Java in 

milliseconds using System time. The only knob to be used is --

result=NONE. The --outputMemoryUse knob is set to FALSE as 

there is no memory usage to be measured. For the different 

algorithms the knobs to be set are same as mentioned in the 

memory usage mode.  

 

6.2 Algorithms 

We ran our tests on 4 different algorithms. The results of memory 

usage and CPU usage are described for each algorithm across 

different datasets in the section. 

YFilter:  YFilter handles queries such that the entire document is 

stored in the memory. The maximum memory usage is quite high 

and almost equal to the document size. 

YFilter + Symmetric Hash Join [3]: Extensions added to 

YFilter by Feng and Kumaran [3] pruned unnecessary node 

information from the buffer once queries were processed.  

YFilter + Basic Implementation for sharing: The basic 

implementation described in section 4 improves significantly 

over YFilter and the one suggested by [3]. However, due to 

overhead of maintaining an extra data structure, namely Shared 

buffer the memory usage is still not less. 

YFilter + YCompact: The YCompact algorithm described in 

section 5 ensures pruning of irrelevant information from the 

buffer and fast execution of queries. Thus, the memory usage is 

minimal across different data sets and the previous algorithms. 

 

6.3 Tests on NASA Dataset 

The NASA dataset was used to conduct experiments on 4 

different groups of queries. The tests were to identify 

characteristics of results, measure memory usage across different 

algorithms and find CPU usage for all the algorithms.  

 

Data Characteristics 

The NASA XML dataset is available at the University of 

Washington XML data repository [5]. The table below indicates 

the characteristics of the data used.  

Table 1: Data Characteristics for NASA dataset 

Name Size Num. of 

Unique 

Elements 

Avg/Max 

Depth 

NASA 25.0 MB 180 5.77/7 

 

Query characteristics 

We manually selected query sets for the NASA dataset [5]. The 

query sets are classified into four different groups mentioned 

below. 

a. Query Set 1 (Group 1):  In this category, queries are selected 

such that output node of certain queries are a subset of the output 

node of other queries. In this example, query 4 has an output 

node which is a subset of query 2. The queries are illustrated in 

Figure 4. 

 

1./datasets/dataset[title]/author[lastName]/title 

2. /datasets/dataset/title/altname/reference[name]/author 

3. /datasets/dataset/title/altname/reference[lastName]/title 

4. /datasets/dataset/title/altname/reference[name]/author 

/lastName 

 

Figure 4: Query Set 1 

 

b. Query Set 2 (Group 2): In this category, queries are selected 

such that different predicate nodes act on the same output nodes. 

In this example, queries 1 and 2 share the same output node, 

whereas queries 3 and 4 share the same output node. The queries 

are described in the figure below. 

 

1. /datasets/dataset[altname]/title 

2. /datasets/dataset[reference]/title 

3. /datasets/dataset[lastName]/author/title 

4. /datasets/dataset[initial]/author/title 

Figure 5: Query Set 2 

 

c. Query Set 3 (Group 3): In this category, queries are selected 

such that queries have different nested paths but same main paths 

as seen in figure 6. In this example, queries 2 and 4 can be 

grouped together as well as queries 1 and 3 can be grouped.  

 

1. //dataset/title/altname/reference[name]/author/initial 

2. //dataset/title/altname/reference[intitial]/title 

3. //dataset/title/altname/reference[name]/author 

4. //dataset/title/altname/reference[lastName]/title 

5. /datasets/dataset[altname]/title 

 

Figure 6: Query Set 3 
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d. Query Set 4 (Group 4): In this case, there are 5 different 

queries passed simultaneously to parse over the input document. 

The group of randomly selected different queries is shown in 

Figure 8. 

 

1. /datasets/dataset/reference/source/other/author 

/lastName[text()="Jackson"] 

2. /datasets/dataset/reference/source/journal[name][date] 

/author 

3. /datasets/dataset[altname]/title 

4. /datasets/dataset[altname]//journal[date/year]/author 

/lastName 

5. /datasets/dataset[keywords]/altname[@type="ADC"] 

 

Figure 7: Query Set 4 

 

Result Characteristics 

The cumulative size is an upper bound of the storage cost. It 

gives us the total cost of storing the node information separately 

for each query in memory. We calculate the percentage shared in 

order to observe the trends of memory usage with respect to 

degree of sharing across different datasets. The percentage shared 

is given by the formula: 

No of bytes Shared/Cumulative Size * 100 

Table 2: Result Characteristics for NASA dataset 

Result 

Characteristics 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Cumulative Size  508KB 556KB 572KB 604KB 

Percentage Shared 40% 56% 64% 22% 

 

Memory Usage 
In this section, we analyze the memory usage across different 

algorithms. We measure the memory usage of the entire XPath 

filtering engine. We calculate the memory usage in bytes after 

whenever an end of element is encountered. We compute the 

maximum and average values for every query set across different 

data sets and report them in the tables below.  

     The memory usage shown in row 2 of Table 3 gives the 

maximum and the average values for YFilter implementation. 

Since, YFilter stores entire document in memory the maximum 

memory usage value is quite close to the size of the input 

document. An interesting observation is that the average and the 

maximum values increase as the size of the result (from table 2) 

increases. 

The memory usage in [3] consists of the memory used by the Join 

algorithms and memory used as a result of buffering of data. 

The memory usage values are shown in row 3 of Table 3. Since 

the basic implementation for sharing of node information and 

YCompact are extensions to [3], the reduction in the memory 

usage values are as a result of a more effective buffer manager. 

For the NASA dataset [5], and group 3 class of queries 

mentioned in section 2, the buffering cost was around 62% as 

compared to the join cost which was around 38%. The overall 

improvement of the YCompact algorithm is on this 62% as 

buffering is significantly improved, while the join still continues 

to be used in the YCompact algorithm as it is an extension of [3].  

     The memory usage for the basic implementation is less as 

compared to the previous two algorithms. This is as a result of 

single buffering if there is sharing of data across queries. 

     The memory usage for YCompact is the least as compared to 

the other algorithms. This is as a result of pruning of irrelevant 

information and maintaining a single global buffer which ensures 

no data duplication. 

    The memory usage values are sampled using a simple Java 

program where every 100th memory usage measurement is written 

to file for plotting figures 9 and 10. 

 

Table 3:  Memory Usage (KB) for NASA dataset 
Memory 

Usage  

Group 1 

Max, 

Average 

Group 2 

Max, 

Average 

Group 3 

Max, 

Average 

Group 4 

Max, 

Average 

YFilter 23929, 

10966 

24441, 

11166  

24839, 

11312 

24929, 

11984  

YFilter + 

SHJ[3] 

3041,  

966  

4489, 

1066   

4639 

1096  

4829, 

988  

YFilter + Basic 

Implementation 

984, 

66 

1034, 

68 

 

1066, 

73  

 

1208 

87  

YFilter + 

YCompact 

862, 

57   

 

871, 

59  

 

898,  

62  

 

1007 

76 

Percentage 

improvement of 

YCompact over 

YFilter 

99% 99% 99% 99% 

Percentage 

improvement of 

YCompact over 

YFilter + SHJ 

94% 94% 94% 92% 

Percentage 

improvement of 

YCompact over 

Basic 

Implementation 

11– 13% 14 - 18% 15-19% 9 – 11% 

 

     The Memory usage shown in Figure 8 shows the amount of 

memory used to process the 25MB NASA xml document using 

the original YFilter implementation for the Group 3 class of 

queries which is chosen as an example to represent the memory 

usage. As a result of no pruning and caching of all nodes, the 

maximum memory usage is close to the actual size of the 

document.  

      The Memory usage shown in Figure 9 shows the amount of 

memory used by the YCompact algorithm which is significantly 

lower than any of the other algorithms. The dips in the figure are 

as a result of pruning of data from the memory for effective 

memory management. 
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Figure89: Memory usage (YFilter) for Query Set 3 queries of 

NASA dataset  

 

     

 

Figure 9: Memory usage (YCompact algorithm) for Query Set 

3 queries of NASA dataset  

 

CPU Usage 

We ran an empty query set on the NASA dataset to measure the 

parsing cost incurred by YFilter in the class parser.java. The total 

CPU usage time consists of parsing and processing cost. The 

parsing cost for the NASA dataset is 5188 ms.  

The CPU usage time is calculated by disabling any I/O operations 

to speedup the time required to process the queries. The CPU 

usage of the YCompact algorithm is less than that of the original 

YFilter implementation. The CPU usage is less for all the other 

algorithms as compared to YFilter because of a couple of reasons. 

First, unlike YFilter which stores the entire document in memory 

and evaluates the nested paths at the end, all the other algorithms 

evaluate nested paths on the fly and generate results on-the-fly 

without storing the entire document in memory. Second, since 

YFilter does not prune any node from memory, a lot of unwanted 

information is stored; which adds to the processing time of the 

queries.  

     YCompact has the least CPU usage as compared to all the 

other algorithms as a result of handling of fragmentation and 

delayed pruning as described in section 5. The use of simplified 

data structures and garbage collection in Java enable faster 

processing of queries. The CPU usage time increases as the result 

size increases as seen in tables 2 and 4. 

 

 Table 4: CPU Usage Characteristics for NASA dataset 

CPU Usage  Group 1 

 (ms) 

Group 2 

(ms) 

Group 3 

(ms) 

Group 4 

(ms) 

YFilter 
13144 15535 16828 18240 

YFilter + 

SHJ [3] 

 

12487 

 

14308 

 

15757 

 

17381 

YFilter + 

Basic 

implementati

on 

 

11679 

 

13481 

 

14145 

 

16594 

YFilter + 

YCompact 

 

10781 

 

12147 

 

12760 

 

15406 

 

6.4 Tests on News Article Dataset 

The News Article dataset was used to conduct experiments on 2 

different groups of queries. The first group consisted of queries 

having simple predicates. The second group consisted of a 

collection of mixed queries. The different metrics of evaluation 

are same as mentioned for the NASA dataset. 

 

Data Characteristics 

The News Article XML dataset is available at the YFilter 

homepage [13]. We used a concatenated dataset of 400 XML 

documents to test our results. The table below indicates the 

characteristics of the data used.  

 

Table 5: Data Characteristics for News Article dataset 

Name Size of Concatenated 

document(MB) 

News Article 0.8 

 

Query Characteristics  

 The queries are selected from the YFilter homepage 

[13] on simple predicates and mixed queries. The two different 

types of query sets are described below: 

a. Query Set 1 (Group 1): In this category, 200 queries on simple 

predicates were used on a concatenated News Article dataset of 

0.8 MB. Example of simple predicates on queries is described 

below. In this example using the terminologies described in 

section 2, the predicate is id on the node body.end and 

bibliography is the output node. 

//body/body.end[@id=12]//bibliography 
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b. Query Set 2 (Group 2): In this category, 1000 mixed queries 

were used on a concatenated News Article dataset of 0.8 MB. 

Using the terminologies described in section 3, mixed queries are 

collection of queries with single nested paths, multiple nested 

paths etc. An example belonging to this group of queries is 

described below. In this case, there are multiple nested paths, 

namely /*version//col and /*body/body.end/bibliography//col 

/*[@version=1][body/body.end/bibliography]//col 

 

Result Characteristics 

The metrics are the same as described for the NASA dataset. 

 

Table 6: Result Characteristics for News Article dataset 

Result metrics Group 1 

 

Group 2 

 

Cumulative Size 62KB 234KB 

Percentage Shared 52% 64% 

 

Memory Usage 
We analyze the memory usage similar to the NASA dataset. The 

memory usage of YFilter is similar to the NASA dataset with the 

maximum value being around the size of the document.  

     The Memory usage of the YCompact algorithm is significantly 

less than any other algorithm. The Memory usage for queries on 

simple predicates is constant for the YCompact algorithm as the 

predicates are encountered before the queries in all of the queries 

and there is no buffering. 

      The Memory usage values for YCompact for simple 

predicates signify that a lot of memory can be saved as compared 

to YFilter.  

    The memory usage for the News Article dataset differs from 

the NASA dataset such that the document is small and YFilter 

frees the cached document at the end of the parse of each 

document.  

     The memory usage for the News Article dataset differs from 

the NASA dataset such that the document is small and YFilter 

frees the cached document at the end of the parse of each 

document.  

     The Memory usage shown in Figure 11 shows the amount of 

memory used to parse the 0.8MB concatenated News Article 

document using the original YFilter implementation for the 1000 

mixed queries. The memory usage restarts from lower values after 

reaching the maximum value as a result of garbage collection in 

Java i.e. once the Java objects are no longer referenced by the 

program, memory is freed and again allocation takes place. The 

data is sampled into 100 intervals for the ease of readability. 

     The Memory usage shown in Figure 10 shows the amount of 

memory used to parse the 0.8MB concatenated News Article 

document using the original YFilter implementation for the 1000 

mixed queries. The memory usage restarts from lower values after 

reaching the maximum value as a result of garbage collection in 

Java i.e. once the Java objects are no longer referenced by the 

program, memory is freed and again allocation takes place. The 

data is sampled into 100 intervals for the ease of readability. 

 

 

 

Table 7: Memory Usage for News Article dataset (KB) 

Memory usage Group 1 

MAX, Average 

Group 2 

MAX, Average 

YFilter 746, 246  798, 428   

YFilter + SHJ 328, 104 

 

564, 230   

YFilter + Basic 

Implementation 

Almost constant ~ 2.45 228, 48  

YFilter + YCompact Almost constant ~ 2 171, 36   

Percentage 

improvement of 

YCompact over 

YFilter 

99% 92% 

 

Percentage 

improvement of 

YCompact over 

YFilter + SHJ 

97% 84% 

Percentage 

improvement of 

YCompact over 

YFilter +  Basic 

implementation 

25% 22 – 24% 

 

 

          The Memory usage shown in Figure 11 shows the amount 

of memory used by the YCompact algorithm which is 

significantly lower than any other algorithm. Thus, an interesting 

observation over the previous dataset is as the number of queries 

increase the pattern of memory usage remains quite similar. 

 

Figure 10: Memory usage (YFilter) for Query Set 2 queries of 

News Article dataset  
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Figure 11: Memory usage (YCompact algorithm) for Query 

Set 2 queries of News Article dataset  

  

CPU Usage 

The parsing cost for the News Article dataset is 1063 ms.  

The CPU usage of the YCompact algorithm is less than that of 

the original YFilter implementation. Thus, without introducing 

overhead there is a significant reduction in memory usage. The 

CPU usage varies according to the result size similar to the 

NASA dataset as seen in tables 6 and 8.  The other observations 

made for the NASA dataset hold true here too. The processing 

time for the queries is less if we subtract the parsing cost from the 

total CPU usage. This indicates that the algorithms work 

efficiently for larger number of queries on smaller documents. 

 

Table 8: CPU Usage Characteristics for News Article dataset 

CPU Usage Group  1 

(Milliseconds) 

Group 2 

(Milliseconds) 

YFilter 2897 7826 

YFilter + SHJ 2824 7762 

YFilter + Basic 

Implementation 

2798 7682 

YFilter + YCompact 

Implementation 

2712 7614 

 

6.5 Tests on DBLP Dataset 

The DBLP dataset was used to conduct experiments on 2 

different groups of queries. The first group consisted of 10 

randomly generated queries. The second group consisted of 100 

randomly generated queries. The different metrics of evaluation 

are same as the ones described above. 

 

Data Characteristics 

The DBLP XML dataset is available at the University of 

Washington XML data repository [5]. The table below indicates 

the characteristics of the data used. 

 

 

Table 9: Data Characteristics for DBLP dataset 

Name Size(MB) 
Total Num. of  

Elements 

Avg/Max 

Depth 

DBLP 130.0 3332130 2.9/6 

 

Query Characteristics 

The queries are random query sets generated by YFilter for 

DBLP dataset [5]. The two groups consist of 10 and 100 

randomly generated queries. 

a. Query Set 1 (Group 1): 10 randomly generated queries were 

used to parse over the DBLP dataset to measure the result sizes, 

memory usage and CPU time.     

b. Query Set 2 (Group 2): 100 randomly generated queries were 

used to parse over the two datasets to measure the result sizes, 

memory usage and CPU time.     

  

Result Characteristics 

The result metrics are the same as described for the previous two 

datasets. 

Table 10: Result Characteristics for DBLP dataset 

Result Characteristics Group 1 

(10 

queries) 

Group 2 

(100 

queries) 

Cumulative Size  978KB 2280KB 

Percentage Shared 54% 62% 

  

Memory Usage 
The Memory usage of the YCompact algorithm is significantly 

less than any other algorithm similar to the previous datasets.     

The DBLP document is around 6 times larger than the NASA 

dataset. The ratio of the memory usage of the YCompact 

algorithm to that of the basic implementation is more or less 

similar to that of NASA and News Article datasets as can be seen 

in the percentage of improvement rows. 

     The Memory usage for greater number of queries over the 

large document follows a similar pattern to the NASA dataset 

with highest values for YFilter and least for YCompact 

algorithm. The percentage improvement of the YCompact 

algorithm over the Basic implementation and the implementation 

proposed by Feng and Kumaran [3] is more or less consistent 

across DBLP, NASA and NEWS ARTICLE datasets. 

      

CPU Usage 

The parsing cost for the DBLP dataset is 29632 ms.  Table 12 

gives the values of CPU usage for the different query sets. The 

CPU usage of the YCompact algorithm is less than that of the 

original YFilter implementation similar to the other datasets 

mentioned above. The CPU usage follows the same trend across 

different algorithms as mentioned for the first two datasets. 
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Table 11: Memory Usage for DBLP dataset (KB) 

Memory Usage Group 1 

MAX, Average 

Group 2 

MAX, Average 

YFilter(Unfinished 

after 30MB of 

document) 

28678, 10091  29815, 10978  

YFilter + SHJ 8041, 2098  14567, 8765  

YFilter + Basic 

Implementation 

1567, 86  

 

4665, 374  

YFilter + YCompact 

Implementation 

1346, 73  

 

3528, 309  

Percentage 

improvement of 

YCompact over 

YFilter  

99% 96% 

Percentage 

improvement of 

YCompact over 

YFilter + SHJ 

96% 93% 

Percentage 

improvement of 

YCompact over 

YFilter + Basic 

implementation 

17 – 20% 19 -22% 

 

Table 12: CPU Usage for DBLP dataset 

CPU Usage Group 1 

(Milliseconds) 

Group 2 

(Milliseconds) 

YFilter 65187 104937 

YFilter + SHJ 64289 103789 

YFilter + Basic 

Implementation 

63678 102145 

YFilter + YCompact 

Implementation 

62765 101876 

 

6.6 Tests on Xmark Dataset [14] 

The Xmark dataset was used to conduct experiments on 2 

different groups of queries as mentioned in section 2. The first 

group consisted of 10 randomly generated queries. The second 

group consisted of 100 randomly generated queries. The different 

metrics of evaluation are mentioned below. 

 

Data Characteristics 

The Xmark XML dataset is available at the University of 

Washington XML data repository [5]. The table below indicates 

the characteristics of the data used.  

 

Table 13: Data Characteristics for Xmark dataset 

Name Size(MB) 

Xmark 114.0 

 

Query Characteristics 

The queries are random query sets generated by YFilter for 

Xmark dataset [14] similar to the DBLP dataset. The two groups 

consist of 10 and 100 randomly generated queries 

a. Query Set 1 (Group 1): 10 randomly generated queries were 

used to parse over the Xmark dataset to measure the result sizes, 

memory usage and CPU time and to verify patterns of 

improvement     

b. Query Set 2 (Group 2): 100 randomly generated queries were 

used to parse over the Xmark dataset to measure the result sizes, 

memory usage and CPU time and to verify patterns of 

improvement. 

 

Result Characteristics 

The result metrics are the same as described in the previous 

datasets. 

Table 14: Data Characteristics for Xmark dataset 

Result Characteristics Group 

1 

 

Group 

2 

 

Cumulative Size 924KB 1848KB 

Percentage Shared 44% 56% 

 

Memory Usage 
 The Memory usage of the YCompact algorithm is significantly 

less than any other algorithm similar to the previous datasets.  

     The Xmark document is around 4.5 times larger than the 

NASA dataset. The ratio of the memory usage of the YCompact 

algorithm to that of the basic implementation is comparable to the 

other datasets as indicated by the percentage improvement row in 

the memory usage table. 

     The Memory usage for greater number of queries over the 

large document follows a similar pattern to the NASA dataset 

with highest values for YFilter and least for YCompact 

algorithm.  

 

CPU Usage 

The parsing cost for the News Article dataset is 22563 ms.  

The CPU usage of the YCompact algorithm is less than that of 

the original YFilter implementation. Thus, without introducing 

overhead there is a significant reduction in memory usage as seen 

across all the previous datasets.  

     The CPU usage follows similar patterns to all previous 

datasets.  
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Table 15: Memory Usage for Xmark dataset 

Memory Usage Group 1 

MAX, Average 

Group 2 

MAX, Average 

YFilter(Unfinished 

after 30MB of the 

document) 

28962, 9208   29451. 10568  

YFilter + SHJ 7568, 1872 12732, 5876 

YFilter + Basic 

Implementation 

1231, 79  

 

4109, 298 

YFilter + YCompact 

Implementation 

1178, 63  

  

3298, 277  

Percentage 

improvement of 

YCompact over 

YFilter  

99% 97% 

Percentage 

improvement of 

YCompact over 

YFilter + SHJ  

96% 94% 

Percentage 

improvement of 

YCompact over 

Basic 

implementation 

14 – 17% 17 -20% 

 

Table 16 CPU Usage for Xmark dataset 

CPU Usage for different 

algorithms 

Group 1 

(Milliseconds

) 

Group 2 

(Milliseconds

) 

YFilter 40876 96782 

YFilter + SHJ 38989 95678 

YFilter + Basic Implementation 37243 94234 

YFilter + YCompact 

Implementation 

36244 93236 

 

7 Related Work 

We use YFilter [1] which is an environment for developing our 

query processing techniques. There are some extensions to 

YFilter already in place by Feng and Kumaran[3]. They 

identified limitations of YFilter where the entire document was 

being stored in the memory which led to buffering overhead.  

However, they did not check for sharing of node information 

among queries.             

     There has been some work done in XPath queries on 

streaming data using XSQ. A queue for buffering relevant data 

from a given XPath query was used as a buffer as described by 

Peng and Chawathe [2]. Buffering of XPath queries in order to 

store potential results was studied by them. In their analysis, the 

items in the buffer are marked separately so that after evaluation 

of predicates only those items that are affected by the predicates 

are evaluated. 

     Koch et al[6] developed a language called Flux with an 

algorithm for automatically translating a significant part of XPath 

into Flux queries. The main contribution of this paper is the Flux 

language together with an algorithm for automatically translating 

a significant fragment of XPath into equivalent Flux queries. 

Flux – while intended as an internal representation format for 

queries rather than a language for end-users – provides a intuition 

for buffers-conscious query processing on structured data 

streams. The algorithm uses schema information to schedule Flux 

queries so as to reduce the use of buffers.  

     Barton et al[7] developed a novel streaming algorithm for 

evaluating XPath expressions that use backward axes and 

forward axes of an XML document. The performance of their 

algorithm is efficient as well as shows memory utilization by 

retaining only relevant portions in memory. Li et al [8] developed 

a series of optimizations which transform Xpath queries so that 

they can correctly execute within a single pass of any dataset. 

This involved buffering of information. Fegaras et al [11] dealt 

with the buffer size and client's ability to optimize queries 

effectively. They presented a framework for processing streamed 

XML data and an algebraic optimization framework. 

     Guo and Chirkova [9] devised efficient algorithms for passing 

queries over large input documents. They measured the response 

times. FisT [10] provides a XML filtering system. FisT[10] 

performed holistic matching of twig patterns with incoming XML 

documents by transforming into Prufer sequences.  

     Feng and Kumaran[3] also discusses a taxonomy for XPath 

queries to gain insight into memory utilization of queries, as they 

implement execution of XPath queries on streaming XML data 

over the framework of YFilter, but our taxonomy presents 

facilitating theoretical memory utilization analysis of concurrent 

queries along with implementation ensuring minimum memory 

consumption. As seen in the related work, there has been lot of 

emphasis on faster processing of queries apart from Flux [6]. Our 

approach proposes a novel YCompact algorithm and compares 

memory usage and CPU usage across different datasets for 

different query sets.  

 

8. Conclusion and Future Work 

We have devised techniques that produce real time outputs with 

significantly less memory usage and no overhead over the 

existing YFilter implementation. The results show efficient 

memory management for various different datasets using different 

classes of queries. The interesting question is that whether these 

improvements to YFilter will still hold for different types of 

Xpath queries on a real system with memory and throughput 

constraints. Also, it could be possible to come up with a 

theoretical bound on amount of memory usage for different types 

of queries.  
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