
 1

Improved memory management for XML Data Stream Processing

Ravishankar Rajamony, Yanlei Diao
Department of Computer Science

University of Massachusetts Amherst

{rrvai,yanlei}@cs.umass.edu

ABSTRACT

Running XPath queries on XML documents with minimum

memory usage is a challenge. YFilter 1.0 stores the entire

document in memory. The extensions to YFilter applied in [3]

are limited as they discuss memory management techniques for a

limited taxonomy of queries. They do not handle cases where

data is being shared between queries. We implemented a basic

algorithm which extended [3] to incorporate sharing of data

among queries. However, this implementation also faced a

problem of delayed pruning of data from the memory along with

the overhead involved in maintaining additional data structures.

We propose a novel algorithm YCompact which has a buffer

manager that handles pruning of irrelevant information. This is

achieved with reduced overhead in terms of data structures. This

resulted in significant memory improvement as compared to the

previously implemented algorithms with no extra overhead.

Keywords

Data Stream, YFilter [1], XPath, Sampling, pruning, filtering,

YCompact

1. INTRODUCTION
XML data streams have become ubiquitous for information

exchange over the internet. Examples abound from news feeds,

financial data feeds and network monitoring events. More

recently, sensor technologies such as RFID have appeared as new

sources of XML data streams, bringing along with them

challenges to manage and utilize the data effectively.

 In a traditional DBMS, the data is resident: it is stored in some

medium to allow easy querying and updates. The queries are one-

shot and can vary to cover a wide range of information needs.

The data processing can be thought of as being query-driven, i.e.

query results are generated as frequently as queries are invoked.

However the streaming data environment is data-driven i.e.

continuous queries are used to process unending streams of data.

The answers generated for a particular query can quickly become

obsolete in a very short period of time. Hence, continuous results

need to be generated in a timely fashion.

 YFilter [1] aims to provide fast on the fly matching of XML

data to a large number of user interest specification. However, it

stores the entire document in the memory. There is no pruning of

data after query processing. FisT [10] provides a XML filtering

system. FisT [10] performs holistic matching of twig patterns

with incoming XML documents by transforming them into Prufer

sequences. Fist evaluates its algorithm for different query sets

and compares the algorithm’s performance with YFilter [1].

However, it has not studied memory management techniques for

processing queries over XML documents.

 Improvements to YFilter were provided by Feng and Kumaran

[3]. They improved the YFilter code base to incorporate memory

management techniques with pruning of irrelevant nodes from

the memory. However if node information was being shared

between queries, there was no provision to reduce memory

consumption by having a single copy of the shared node

information in memory. We first implemented a basic algorithm

that extended Feng and Kumaran’s work [3] in improving

memory usage by storing a single copy of node information in a

separate shared buffer if there is sharing between queries.

YCompact extended this idea by using a single global buffer and

using pointers to keep track of shared node information. The

different issues that we addressed in YCompact were to minimize

memory usage by pruning of unnecessary nodes and extending

the concept of sharing node information across a wide variety of

queries like the basic algorithm but with lesser overhead. We

evaluated the memory usage across 4 different datasets and

different types of queries. The results show reduced memory

usage by YCompact than any of the other techniques with no

overhead involved.

 We present a taxonomy in section 2 for the different types of

queries for which buffering is required. We describe YFilter

implementation in section 3 and describe Extensions to YFilter

by Feng and Kumaran [3]. In section 4 we propose a basic

algorithm which incorporates sharing of node information

between queries. We extend the algorithm in section 5 to

YCompact which reduces overhead in terms of data structures

and provides better memory management as compared to the

basic implementation. We show the results we have obtained for

different query sets and data sets in section 6. Finally we

summarize the work with conclusion and related work.

2. TAXONOMY

In this section, we consider a subset of XPath queries where

nodes have self-predicates nested paths, self-predicates on

position and multiple predicates as described in [1] and [3]. The

characteristics of certain types of queries potentially make them

susceptible to causing memory overhead. We have highlighted

different types of queries for which buffering might be required

and illustrate those categories with examples. We use the NASA

dataset as reference for all the examples. Before we describe the

queries, we need to define few terms:

We need to define few terms:

Output_node: Node, which finally needs to be output

Predicate_node(s) : Node (or a set of nodes) on which predicates

are to be applied. Lets call it predicate_node(s).

 2

2.1 Queries with no predicate_node

Such queries have no predicate_node, but only an output_node.

Hence, we can start outputting the output_node, as and when we

encounter it, without having to buffer it. Hence this query takes

constant amount of memory: O (1).

Example: We illustrate an example that is a query with no

predicate.

 /datasets/dataset/title: All <title> elements that are children of a

<dataset> element.

2.2 Queries with predicate_node before or the same

as output_node

In this case, predicate nodes occur before or are the same as the

output nodes. Hence we don’t really need to buffer anything here

and the memory usage is constant: O (1).

Examples: We illustrate couple of examples in which output

node occurs same as a predicate node.

1. /datasets/dataset/altname [@type=”ADC”]: Selects all altname

children of the dataset node that have a type attribute with value

ADC

2. //dataset/altname [@type=”brief”]: Selects all altname children

of dataset node that have a type attribute brief.

2.3 Queries with predicate_node within output_node

In this case, we should keep on buffering the output_ node, till

we encounter predicate_nodes. When we encounter a

predicate_node, we check if the predicate is satisfied. If

predicates are satisfied, we can write out the buffered

output_node, and continue directly outputting the remaining of

output_node, as and when we encounter it, without having to

buffer it. If the predicate_nodes are not satisfied, then we discard

the so far buffered output_node. From memory management

point of view, it’s important to note here that after having seen all

the relevant predicate nodes, we can prune out the buffered data.

This is important, as we want to minimize the amount of data that

needs to be stored in the system at any point of time during the

execution. In other words, till the predicate is evaluated to

true/false the output node has to be kept in the memory.

Example: We illustrate an example that is a query with an output

node occurs before a predicate node.

 //dataset/reference/source/other//title [author]: The output

node title has to be buffered till the predicate author is satisfied.

2.4 Queries where predicate_node occurs after

output_node

In such queries, it depends on the order in which we encounter

the nodes. If we encounter predicate_node first, and output_node

later, then we don’t really need to buffer anything. But if we first

encounter the output_node and the predicate_node later, then we

do have to buffer the output_node, and wait to check if the

predicate_node is satisfied.

Example: We illustrate an example that is a query where an

output node is a sibling and appears before of the predicate node.

 //dataset/title//source/other [author]/title: The output node title

has to be buffered till predicate node author is checked to be

satisfied or not.

2.5 Queries with positional operators

The position functions in the query may or may not require

buffering.

Examples: We illustrate examples that are queries with a

positional parameter on the output node.

 1. /datasets/dataset//source/other/author [position () =2]: For this

query, we don’t need to buffer anything. We can directly output

the 2nd author node.

2. /datasets/dataset//source/other/author [position () =last]: For

this query, the last author has to be returned as an output. The last

encountered ‘author’ child node has to be stored in memory until

all the child nodes of author are checked. This is an example

where buffering is needed for queries with positional parameters.

3. YFILTER

We used YFilter [1] as an environment for developing our query

processing techniques. ¨YFilter aims to provide fast, on-the fly

matching of XML encoded data to a large number of interest

specifications, and transformation of the matching XML data

based on recipient-specific requirements.¨ YFilter processes data

at the granularity of an event level, where an event is the arrival

of the start or end of an element. Standing queries, i.e. those that

are continuously applied to incoming data streams, can be issued

to YFilter in the XPath language.

3.1 YFilter overview

In order to explain YFilter technology [1], we need to define a

few terms, namely

1. Main path: The part of the query without any predicates is the

main path.

2. Nested path: The part path expression in a predicate is the

nested path.

 YFilter [1] explains query decomposition where the nested

paths are extracted from the main path expressions and processed

individually. The different stages of query processing can be

described as follows:

 YFilter [1] shares the processing work for multiple queries of

matching the paths mentioned above by building a single NFA

over all path expressions.

 After the path matching by building a single NFA structure,

simple predicates e.g. over attributes are evaluated. We shall

discuss about the join between the main path and the nested path

in section 3.3. The following example illustrates the query

decomposition into a main path and a nested path.

 3

Example: //dataset/reference/source/other//title [author]

 Here, the main path is //dataset/reference/source/other//title.

The nested path is //dataset/reference/source/other//title/author.

3.2 Current limitations of YFilter

 Aspects of YFilter implementation that impede its use in an

online setting for very long documents include:

1. Delayed processing of queries including nested paths

YFilter processes queries including nested paths only after the

entire document is seen. Results should be generated on the fly,

i.e. whenever conditions are satisfied for different paths of the

queries.

2. Complete buffering

YFilter incrementally builds and stores the entire XML document

into memory. This is unsuited for processing of large XML

documents as the document can be potentially infinitely long, and

storing even a fraction of the stream will quickly overwhelm the

available memory.

3. No dynamic pruning

In addition to the wasteful storage of the entire document in

memory, YFilter currently doesn’t have functionality to prune the

tree of unnecessary nodes.

3.3 Extensions to YFilter [3]

Feng and Kumaran [3] improved YFilter [1] for better memory

management with two extensions. First, YFilter [1] processes

queries including nested paths only after entire document is seen.

This inevitably requires lots of data to be buffered until the end

of the parse of the document. Feng and Kumaran [3] modified

this to process nested paths on-the-fly. If multiple nested paths

are satisfied for a query with single nested path, the results are

written out. If a nested path is not satisfied, then they waited till

the end of element tag of the last common ancestor of the output

node is encountered. They used the concept of a join where a

main path was joined with each nested path of the last common

node in a query as illustrated in figure 1.

Join Algorithm
They implemented an n-way in-memory symmetric hash join

algorithm that is invoked each time a main path or a nested path

is satisfied. They used one hash table per main and path. There

are two phases in the join, namely the probe and the build phase.

In the build phase, all the anchor nodes from main path and the

nested path are stored in the corresponding hash tables. In the

probe phase, all anchor nodes are used in the join with no

duplicates. The anchor node here is the last common ancestor in

case of multiple nested paths. For example,

/datasets/dataset [keywords]/altname [@type=”ADC”]
 In this case, the anchor node is dataset.

Data structures
The event-based processing is performed with the help of two

auxiliary data structures for each query - a bit map and a set of

multi-hash tables in [3]. They use multi-hash tables to store

information pertaining to each nested path as well as the main

path. For each path, the corresponding multi-hash table stored the

anchor node as the key, and the event ID as the value. To keep

track of which nested paths were satisfied for a query, they utilize

a bit map. The bit map contained a set of main path event ids

along with a corresponding set of bits - one for each nested path,

initialized to zero. If all sets of bits of the nested paths are set to 1

then a result is produced as all the nested paths are satisfied.

Figure 1: n-way single level symmetric hash join used in [3]

Buffer Manager

To manage memory more efficiently, they avoid storing the

outputs for each event in the query hash tables. Instead, they store

the unique event id associated with each event. This query result

buffer not only avoids caching the full path information for each

tuple in the hash tables but also helps them avoid storing

duplicates as different queries could have the same output. Their

decision to prune the contents of the hash table is motivated by

the fact that once a match was found for a query, there is no need

to store the associated values in memory. In addition to this,

whenever an end-of-element tag of the last common ancestor is

encountered; all the associated entries were cleared from the hash

tables. Thus, once they identify the nodes that are required for

query processing, they are able to determine which nodes to

prune from memory.

 However, they do not handle sharing of node information

among queries. Since they store information per query, there is

no technique to handle shared information among different

queries. In other words, if there is node information that is

shared among queries, their implementation will store all the

information separately leading to extra memory usage. This will

also result in delayed pruning of the nodes as there will be more

information in memory than that is required.

 There still persists a problem of delayed pruning in case of

queries where there are multiple nested paths. The last common

ancestor/anchor node has to be stored in memory till the

predicates are satisfied. To summarize, the extensions to YFilter

 4

[3] reduce memory usage by pruning of irrelevant information

from memory. However, since their implementation does not

handle sharing of node information among queries, memory

usage is higher.

4. Basic Implementation to incorporate

sharing of node information

The buffer manager of Feng and Kumaran [3] is did not handle

sharing of node information across queries. If there are different

queries sharing node information, then multiple copies of that

information will be stored in memory till the queries are

processed. The data structures that they used did not include

any information on the common node information among

different queries. In case of multiple nested paths, their

algorithm stores the anchor node till all nested paths are satisfied.

This results in delayed pruning of node information from the

buffer. The algorithm mentioned in this section extends the

algorithm proposed in [3] to queries where different queries share

node information. By maintaining a single copy of share node

information, memory usage can be reduced and queries can be

processed more efficiently.

4.1 Idea

We modified the algorithm presented in [3] to include a shared

buffer which holds node information that is shared across

different queries. The idea was to store node information

common across different queries only once and this was achieved

by maintaining a single buffer containing the output nodes of

each query i. We also maintained a separate shared buffer to store

the node information that was common across all the queries.

This enabled processing of the queries with better memory

utilization as there is less information to be stored in memory.

4.2 Data Structures

The data structures used are a Hash Map for the shared buffer,

Hash map for the pin count and Array List for the output buffer

which stored the output nodes and characters for each query. The

individual output node and corresponding characters are stored in

the output buffer. If there is any information that is shared across

queries, then a pointer from the output buffer points to the shared

buffer which is linked to the pin_counter hash map by the

EventID which is the key. The different data structures used with

their contents are described in figure 2.

4.3 Dry Run of an example

Consider the group of queries below in order to illustrate the

basic implementation on sharing of node information.

a/b/d[c]

/a/b/d[f]/e

/a//d[g]

on the input document,

<a>

<d><e>

<c>xyz</c>

<f>123</f>

<g>567</g>

</e></d>

The Output Buffer will contain:

<d> POINTER_TO_SHARED_BUFFER …<g>567</g> </d>

The Shared buffer will contain:

Shared Buffer

Event_ID Output_Node

1 <e>

2 <c>

3 Xyz

4 </c>

5 <f>

6 123

7 </f>

8 </e>

The Pin_Counter will contain:

Pin_Counter(Hash Map)

Event_ID Pin_Count

1 2

2 1

 Thus, as seen in the example the sharing of nodes among

different queries is handled over Extensions to YFilter [3].

4.4 Algorithm

The algorithm is spread across different methods startelement,

endelelement and characters in EXfilterBasic.java. The buffer

manager handles pruning of node information from memory. The

different steps below indicate the flow of the algorithm across

these different methods.

a. The output nodes which are common across queries are shared

in the shared buffer. A corresponding pin count is maintained to

keep track of which output node is required for which query.

b. The number of queries that share the node information

(Pin_count) and the output nodes is found at the beginning of the

endelement method mentioned above.

c. The output buffer has a pointer which points to the shared

buffer in case of sharing data. The shared buffer has an Event_ID

as a key and the Output_Node as value.

 5

End

Element

CharsStart

Element

node info1

Output_Node

(Value)

Event_ID

(Key)

21

Pin count

(Value)

Event_ID

(Key)

Output Buffer

(if no sharing)

for each query i

(ArrayList)

Shared Buffer for all

queries (Hash Map)

Pin Counter (Hash Map)

Key to the map(if

sharing)

Figure 2: Basic layout of data structures in Buffer Manager

d. The output buffer is populated in the order of the start element,

characters and end element. If there is no sharing of any node

information among queries, then the output buffer has the

Output_Node as its contents.

e. If there is sharing, then the Output_node has a pointer and the

shared buffer holds all the node information.

e. The pin counter hashmap has an Event_ID as a key and a

Pin_count as value. The Pin_count is used to keep track of how

many queries share node information.

e. The pin_count is decremented after each query is processed.

Once pin count reaches 0, the contents of the Shared Buffer are

removed from the memory.

 Thus, as seen from the above basic algorithm, sharing of

node information among different queries is included as

compared to [3]. This results in reduced memory usage as

compared to YFilter [1] and Extensions to YFilter [3]. However,

the use of an additional data structure for the shared buffer causes

overhead and increased memory usage as there have to be buffers

maintained for each query(Output buffer) and for all the

queries(Shared buffer).

 There is also the problem of the order in which queries are

processed. In a group of 3 queries, if a query arrives before

another query having 0 pin count this information will be stored

in the buffer till the second query is processed. i.e. the

information from the first query is not required by the second

query, but is still kept in the shared buffer till the second query is

processed resulting in delayed pruning from the buffer. This can

be defined as a fragmentation (smaller chunks of a large chunk

being shared) issue and is illustrated with an example in the next

section.

5. YCompact

The YCompact algorithm acts as a superset to all the other

implementations. It ensures efficient memory utilization with

minimum buffering for a single query as well as a group of

queries. There are issues of fragmentation and delayed pruning in

the algorithm mentioned as described in section 4. There are

overhead problems in maintaining an additional shared buffer. In

order to handle fragmentation, after processing one query if a part

of the buffer is not required by the other queries, then that is

removed from the buffer.

5.1 Idea

The idea is to maintain one global buffer that the basic

implementation does not provide; that holds the output node

information for all the queries. In order to handle sharing of

information between queries, we use the same buffer with start

and end indices to keep track of where the output node of one

query starts and where it ends. If there is overlap of output

between queries, then we use a pin count value to prune the node

information from the buffer after each query is processed. If the

node information is not required by any other query, then output

is flushed and buffer is cleared. After each query is matched and

output is written out, we attempt to prune the buffer such that no

information that is not required by any of the other queries is

stored in the buffer.

5.2 Data Structures

The data structures used are Linked List as the output buffer and

HashMap as the pin_counter. Pin_counter is used as a hashmap

to map element_name from the linked list to the Object

(start_index, end_index and pin_count_value). The main

advantage of this approach over the basic implementation is that

it avoids the overhead of maintaining an additional data structure.

This keeps track of the output nodes in the buffer. The basic

layout of the data structures is given in the figure below. The

variables si, ei and pin stand for start_index, end_index and

pin_count_value respectively for any query i. These names are

described in the algorithm in the next subsection.

End

Element

CharsStart

Element Global Buffer for all queries

(LinkedList)

Counter (Hash Map)

si, ei, pin1

Pin count

(Value)

Event_ID

(Key)

Figure 3: Basic layout of data structures in Buffer Manager

5.3 Dry run of an example

 For the same set of queries and input document as mentioned

in section 4.3, the data structures are populated as follows:

 6

Global Buffer

<d>, 1, <e>,2, <c>,3, xyz, </c>,4, <f>,5, 123, </f>, 6, <g>, 7,

567, </g>,8, </e>,9, </d>,10.

Counter

Event_ID Si, ei, pin

1 6, 8, 3

2 2, 12, 2

3 1, 13, 0

If query 3 is processed first, then Counter will be:

Event_ID Si, ei, pin

3 1, 13, 0

2 2, 12, 2

1 6, 8, 3

 Comparing next.start_index with current.start_index and

next.end_index with current.end_index and a non-zero

next.pin_count_value, start_index and end_index are assigned to

2, 12. The element <d> is pruned from the buffer as it is no

longer required. Similarly after end of e is encountered, pruning

takes place of the elements upto f and after f as they are no longer

required.

5.4 Algorithm

This algorithm highlights the main steps to be handled in the

different methods of EXfilterbasic.java as described in section 4.

Similarly, the buffer manager handles pruning of node

information from the memory. The different steps indicate the

flow of the algorithm across these methods and classes.

a. Maintain a single buffer for nodes and characters i.e. start

element, characters and end element. It is a linked list.

b. Add to the buffer

As an output node is encountered add it to the buffer. Use a start

index to keep track of the start of the output node as well as an

end index to keep track of the end of the output node for each

query. In order to keep track of these indices and

pin_count_value there is an object with three members, namely

start_index, end_index and pin_count_value.

c. Output of the query

Check if the predicates evaluate to true or false for a query with

multiple predicates. If all the predicates evaluate to true and

output node is not required by any other query then decrement

pin count and output the result.

 If all the predicates evaluate to true and output node is

required by another query, then just output the result.

 If all the predicates evaluate to false, move on to the next

query and wait till end of element of parent is encountered. This

is done by checking the flag is_buffering_on. This is true and the

output_on is false, which means that data still needs to be

buffered and there is nothing to output.

d. Prune from the buffer when all predicates are satisfied

If the pin count value is reduced to zero, prune node information

from the buffer. Whenever an output node is not needed by any

other query, it is removed from the buffer.

 If a query arrives before another query having 0 pin count,

then in order to handle fragmentation pruning is done as follows:

 Counter is a hashmap having name of the element as key and

an Object (start_index, end_index, pin_count_value) as value.

Using an iterator get the keys from the hashmap. corresponding

to the keys, get the values.

 If there is a case when start_index of second entry is greater

than start index of the first and end_index of the first is greater

than that of the second and the pin_count_value of the second

entry is non-zero, then reset the start_index and end_index to the

next values. Else, the pin count is zero and the fragment is not

required by other queries, prune the data from the buffer. This

prunes only the fragment that is no longer needed by the buffer.

Also, if predicate is false, wait for the parent’s end element to

prune from the buffer.

 Thus, from the algorithm and an example we can see that, the

fragmentation issue mentioned in section 4 can be removed by

keeping track of the start_index and end_index for output_node

in the buffer. Thus, the problem due to delayed pruning described

in section 4 is eliminated.

 The overhead involved in maintaining an additional data

structure in the basic implementation is also removed resulting in

improved memory usage.

6 Performance Evaluations

In this section, we evaluate 4 different datasets for the YFilter

algorithm [1], Feng and Kumaran’s extension to YFilter system

[3], Basic implementation and YCompact Algorithm. The metrics

for evaluation are Memory Usage and CPU usage. The objectives

of the tests are to determine if the memory usage is less in the

YCompact algorithm than any of the earlier used techniques and

to check whether there is any overhead involved. The tests on the

different datasets are mentioned below.

 We analyzed different DTD’s, datasets and query sets to test

the effectiveness of the algorithm. The query sets are described

in detail along-with the data sets. The basis of selection for the

query sets was based on the following criteria:

1. Manually generated queries that seem to have shared nodes

between them. The degree of sharing is different across the

different queries.

2. Automatically generated queries from the YFilter code base to

test the memory usage for smaller/larger datasets.

 The datasets were selected based common uses in literature.

The details of the different datasets are mentioned in the coming

subsections.

6.1 Experimental Setup
The experiments were performed on a Linux Desktop with an

Intel Pentium 2.1GHz processor and 2GB of RAM. The JVM

settings we used were –Xms 500m –Xmx 1000m. The Java

 7

version used was Java SDK 1.5. We used Profiling in Java to

measure the memory usage.

 The filter package in YFilter code base contains the main class

EXfilter. The different algorithms were tested in different modes

as described below:

1. Result output mode: The result was written to a file using the

knob –result=ALL. The result size along with the output for each

query was written to the file.

2. Memory usage mode: The memory usage in bytes was written

to the file using the knob –result=ALL and --

outputMemoryUse=TRUE. The other knob –longDocument is set

to TRUE if we need to measure the memory usage of YCompact.

In order to measure the memory usage for YFilter, longDocument

is set to FALSE and original_streaming is set to TRUE. For

extensions to YFilter [3], the longDocument is set to FALSE and

symmetric_hash is set to TRUE. We used the memory usage

module that was downloaded from the internet [12] by Feng and

Kumaran [3].

3. CPU usage mode: The CPU usage was measured in Java in

milliseconds using System time. The only knob to be used is --

result=NONE. The --outputMemoryUse knob is set to FALSE as

there is no memory usage to be measured. For the different

algorithms the knobs to be set are same as mentioned in the

memory usage mode.

6.2 Algorithms

We ran our tests on 4 different algorithms. The results of memory

usage and CPU usage are described for each algorithm across

different datasets in the section.

YFilter: YFilter handles queries such that the entire document is

stored in the memory. The maximum memory usage is quite high

and almost equal to the document size.

YFilter + Symmetric Hash Join [3]: Extensions added to

YFilter by Feng and Kumaran [3] pruned unnecessary node

information from the buffer once queries were processed.

YFilter + Basic Implementation for sharing: The basic

implementation described in section 4 improves significantly

over YFilter and the one suggested by [3]. However, due to

overhead of maintaining an extra data structure, namely Shared

buffer the memory usage is still not less.

YFilter + YCompact: The YCompact algorithm described in

section 5 ensures pruning of irrelevant information from the

buffer and fast execution of queries. Thus, the memory usage is

minimal across different data sets and the previous algorithms.

6.3 Tests on NASA Dataset

The NASA dataset was used to conduct experiments on 4

different groups of queries. The tests were to identify

characteristics of results, measure memory usage across different

algorithms and find CPU usage for all the algorithms.

Data Characteristics

The NASA XML dataset is available at the University of

Washington XML data repository [5]. The table below indicates

the characteristics of the data used.

Table 1: Data Characteristics for NASA dataset

Name Size Num. of

Unique

Elements

Avg/Max

Depth

NASA 25.0 MB 180 5.77/7

Query characteristics

We manually selected query sets for the NASA dataset [5]. The

query sets are classified into four different groups mentioned

below.

a. Query Set 1 (Group 1): In this category, queries are selected

such that output node of certain queries are a subset of the output

node of other queries. In this example, query 4 has an output

node which is a subset of query 2. The queries are illustrated in

Figure 4.

1./datasets/dataset[title]/author[lastName]/title

2. /datasets/dataset/title/altname/reference[name]/author

3. /datasets/dataset/title/altname/reference[lastName]/title

4. /datasets/dataset/title/altname/reference[name]/author

/lastName

Figure 4: Query Set 1

b. Query Set 2 (Group 2): In this category, queries are selected

such that different predicate nodes act on the same output nodes.

In this example, queries 1 and 2 share the same output node,

whereas queries 3 and 4 share the same output node. The queries

are described in the figure below.

1. /datasets/dataset[altname]/title

2. /datasets/dataset[reference]/title

3. /datasets/dataset[lastName]/author/title

4. /datasets/dataset[initial]/author/title

Figure 5: Query Set 2

c. Query Set 3 (Group 3): In this category, queries are selected

such that queries have different nested paths but same main paths

as seen in figure 6. In this example, queries 2 and 4 can be

grouped together as well as queries 1 and 3 can be grouped.

1. //dataset/title/altname/reference[name]/author/initial

2. //dataset/title/altname/reference[intitial]/title

3. //dataset/title/altname/reference[name]/author

4. //dataset/title/altname/reference[lastName]/title

5. /datasets/dataset[altname]/title

Figure 6: Query Set 3

 8

d. Query Set 4 (Group 4): In this case, there are 5 different

queries passed simultaneously to parse over the input document.

The group of randomly selected different queries is shown in

Figure 8.

1. /datasets/dataset/reference/source/other/author

/lastName[text()="Jackson"]

2. /datasets/dataset/reference/source/journal[name][date]

/author

3. /datasets/dataset[altname]/title

4. /datasets/dataset[altname]//journal[date/year]/author

/lastName

5. /datasets/dataset[keywords]/altname[@type="ADC"]

Figure 7: Query Set 4

Result Characteristics

The cumulative size is an upper bound of the storage cost. It

gives us the total cost of storing the node information separately

for each query in memory. We calculate the percentage shared in

order to observe the trends of memory usage with respect to

degree of sharing across different datasets. The percentage shared

is given by the formula:

No of bytes Shared/Cumulative Size * 100

Table 2: Result Characteristics for NASA dataset

Result

Characteristics

Group

1

Group

2

Group

3

Group

4

Cumulative Size 508KB 556KB 572KB 604KB

Percentage Shared 40% 56% 64% 22%

Memory Usage
In this section, we analyze the memory usage across different

algorithms. We measure the memory usage of the entire XPath

filtering engine. We calculate the memory usage in bytes after

whenever an end of element is encountered. We compute the

maximum and average values for every query set across different

data sets and report them in the tables below.

 The memory usage shown in row 2 of Table 3 gives the

maximum and the average values for YFilter implementation.

Since, YFilter stores entire document in memory the maximum

memory usage value is quite close to the size of the input

document. An interesting observation is that the average and the

maximum values increase as the size of the result (from table 2)

increases.

The memory usage in [3] consists of the memory used by the Join

algorithms and memory used as a result of buffering of data.

The memory usage values are shown in row 3 of Table 3. Since

the basic implementation for sharing of node information and

YCompact are extensions to [3], the reduction in the memory

usage values are as a result of a more effective buffer manager.

For the NASA dataset [5], and group 3 class of queries

mentioned in section 2, the buffering cost was around 62% as

compared to the join cost which was around 38%. The overall

improvement of the YCompact algorithm is on this 62% as

buffering is significantly improved, while the join still continues

to be used in the YCompact algorithm as it is an extension of [3].

 The memory usage for the basic implementation is less as

compared to the previous two algorithms. This is as a result of

single buffering if there is sharing of data across queries.

 The memory usage for YCompact is the least as compared to

the other algorithms. This is as a result of pruning of irrelevant

information and maintaining a single global buffer which ensures

no data duplication.

 The memory usage values are sampled using a simple Java

program where every 100th memory usage measurement is written

to file for plotting figures 9 and 10.

Table 3: Memory Usage (KB) for NASA dataset
Memory

Usage

Group 1

Max,

Average

Group 2

Max,

Average

Group 3

Max,

Average

Group 4

Max,

Average

YFilter 23929,

10966

24441,

11166

24839,

11312

24929,

11984

YFilter +

SHJ[3]

3041,

966

4489,

1066

4639

1096

4829,

988

YFilter + Basic

Implementation

984,

66

1034,

68

1066,

73

1208

87

YFilter +

YCompact

862,

57

871,

59

898,

62

1007

76

Percentage

improvement of

YCompact over

YFilter

99% 99% 99% 99%

Percentage

improvement of

YCompact over

YFilter + SHJ

94% 94% 94% 92%

Percentage

improvement of

YCompact over

Basic

Implementation

11– 13% 14 - 18% 15-19% 9 – 11%

 The Memory usage shown in Figure 8 shows the amount of

memory used to process the 25MB NASA xml document using

the original YFilter implementation for the Group 3 class of

queries which is chosen as an example to represent the memory

usage. As a result of no pruning and caching of all nodes, the

maximum memory usage is close to the actual size of the

document.

 The Memory usage shown in Figure 9 shows the amount of

memory used by the YCompact algorithm which is significantly

lower than any of the other algorithms. The dips in the figure are

as a result of pruning of data from the memory for effective

memory management.

 9

Figure89: Memory usage (YFilter) for Query Set 3 queries of

NASA dataset

Figure 9: Memory usage (YCompact algorithm) for Query Set

3 queries of NASA dataset

CPU Usage

We ran an empty query set on the NASA dataset to measure the

parsing cost incurred by YFilter in the class parser.java. The total

CPU usage time consists of parsing and processing cost. The

parsing cost for the NASA dataset is 5188 ms.

The CPU usage time is calculated by disabling any I/O operations

to speedup the time required to process the queries. The CPU

usage of the YCompact algorithm is less than that of the original

YFilter implementation. The CPU usage is less for all the other

algorithms as compared to YFilter because of a couple of reasons.

First, unlike YFilter which stores the entire document in memory

and evaluates the nested paths at the end, all the other algorithms

evaluate nested paths on the fly and generate results on-the-fly

without storing the entire document in memory. Second, since

YFilter does not prune any node from memory, a lot of unwanted

information is stored; which adds to the processing time of the

queries.

 YCompact has the least CPU usage as compared to all the

other algorithms as a result of handling of fragmentation and

delayed pruning as described in section 5. The use of simplified

data structures and garbage collection in Java enable faster

processing of queries. The CPU usage time increases as the result

size increases as seen in tables 2 and 4.

 Table 4: CPU Usage Characteristics for NASA dataset

CPU Usage Group 1

 (ms)

Group 2

(ms)

Group 3

(ms)

Group 4

(ms)

YFilter
13144 15535 16828 18240

YFilter +

SHJ [3]

12487

14308

15757

17381

YFilter +

Basic

implementati

on

11679

13481

14145

16594

YFilter +

YCompact

10781

12147

12760

15406

6.4 Tests on News Article Dataset

The News Article dataset was used to conduct experiments on 2

different groups of queries. The first group consisted of queries

having simple predicates. The second group consisted of a

collection of mixed queries. The different metrics of evaluation

are same as mentioned for the NASA dataset.

Data Characteristics

The News Article XML dataset is available at the YFilter

homepage [13]. We used a concatenated dataset of 400 XML

documents to test our results. The table below indicates the

characteristics of the data used.

Table 5: Data Characteristics for News Article dataset

Name Size of Concatenated

document(MB)

News Article 0.8

Query Characteristics

 The queries are selected from the YFilter homepage

[13] on simple predicates and mixed queries. The two different

types of query sets are described below:

a. Query Set 1 (Group 1): In this category, 200 queries on simple

predicates were used on a concatenated News Article dataset of

0.8 MB. Example of simple predicates on queries is described

below. In this example using the terminologies described in

section 2, the predicate is id on the node body.end and

bibliography is the output node.

//body/body.end[@id=12]//bibliography

 10

b. Query Set 2 (Group 2): In this category, 1000 mixed queries

were used on a concatenated News Article dataset of 0.8 MB.

Using the terminologies described in section 3, mixed queries are

collection of queries with single nested paths, multiple nested

paths etc. An example belonging to this group of queries is

described below. In this case, there are multiple nested paths,

namely /*version//col and /*body/body.end/bibliography//col

/*[@version=1][body/body.end/bibliography]//col

Result Characteristics

The metrics are the same as described for the NASA dataset.

Table 6: Result Characteristics for News Article dataset

Result metrics Group 1

Group 2

Cumulative Size 62KB 234KB

Percentage Shared 52% 64%

Memory Usage
We analyze the memory usage similar to the NASA dataset. The

memory usage of YFilter is similar to the NASA dataset with the

maximum value being around the size of the document.

 The Memory usage of the YCompact algorithm is significantly

less than any other algorithm. The Memory usage for queries on

simple predicates is constant for the YCompact algorithm as the

predicates are encountered before the queries in all of the queries

and there is no buffering.

 The Memory usage values for YCompact for simple

predicates signify that a lot of memory can be saved as compared

to YFilter.

 The memory usage for the News Article dataset differs from

the NASA dataset such that the document is small and YFilter

frees the cached document at the end of the parse of each

document.

 The memory usage for the News Article dataset differs from

the NASA dataset such that the document is small and YFilter

frees the cached document at the end of the parse of each

document.

 The Memory usage shown in Figure 11 shows the amount of

memory used to parse the 0.8MB concatenated News Article

document using the original YFilter implementation for the 1000

mixed queries. The memory usage restarts from lower values after

reaching the maximum value as a result of garbage collection in

Java i.e. once the Java objects are no longer referenced by the

program, memory is freed and again allocation takes place. The

data is sampled into 100 intervals for the ease of readability.

 The Memory usage shown in Figure 10 shows the amount of

memory used to parse the 0.8MB concatenated News Article

document using the original YFilter implementation for the 1000

mixed queries. The memory usage restarts from lower values after

reaching the maximum value as a result of garbage collection in

Java i.e. once the Java objects are no longer referenced by the

program, memory is freed and again allocation takes place. The

data is sampled into 100 intervals for the ease of readability.

Table 7: Memory Usage for News Article dataset (KB)

Memory usage Group 1

MAX, Average

Group 2

MAX, Average

YFilter 746, 246 798, 428

YFilter + SHJ 328, 104

564, 230

YFilter + Basic

Implementation

Almost constant ~ 2.45 228, 48

YFilter + YCompact Almost constant ~ 2 171, 36

Percentage

improvement of

YCompact over

YFilter

99% 92%

Percentage

improvement of

YCompact over

YFilter + SHJ

97% 84%

Percentage

improvement of

YCompact over

YFilter + Basic

implementation

25% 22 – 24%

 The Memory usage shown in Figure 11 shows the amount

of memory used by the YCompact algorithm which is

significantly lower than any other algorithm. Thus, an interesting

observation over the previous dataset is as the number of queries

increase the pattern of memory usage remains quite similar.

Figure 10: Memory usage (YFilter) for Query Set 2 queries of

News Article dataset

 11

Figure 11: Memory usage (YCompact algorithm) for Query

Set 2 queries of News Article dataset

CPU Usage

The parsing cost for the News Article dataset is 1063 ms.

The CPU usage of the YCompact algorithm is less than that of

the original YFilter implementation. Thus, without introducing

overhead there is a significant reduction in memory usage. The

CPU usage varies according to the result size similar to the

NASA dataset as seen in tables 6 and 8. The other observations

made for the NASA dataset hold true here too. The processing

time for the queries is less if we subtract the parsing cost from the

total CPU usage. This indicates that the algorithms work

efficiently for larger number of queries on smaller documents.

Table 8: CPU Usage Characteristics for News Article dataset

CPU Usage Group 1

(Milliseconds)

Group 2

(Milliseconds)

YFilter 2897 7826

YFilter + SHJ 2824 7762

YFilter + Basic

Implementation

2798 7682

YFilter + YCompact

Implementation

2712 7614

6.5 Tests on DBLP Dataset

The DBLP dataset was used to conduct experiments on 2

different groups of queries. The first group consisted of 10

randomly generated queries. The second group consisted of 100

randomly generated queries. The different metrics of evaluation

are same as the ones described above.

Data Characteristics

The DBLP XML dataset is available at the University of

Washington XML data repository [5]. The table below indicates

the characteristics of the data used.

Table 9: Data Characteristics for DBLP dataset

Name Size(MB)
Total Num. of

Elements

Avg/Max

Depth

DBLP 130.0 3332130 2.9/6

Query Characteristics

The queries are random query sets generated by YFilter for

DBLP dataset [5]. The two groups consist of 10 and 100

randomly generated queries.

a. Query Set 1 (Group 1): 10 randomly generated queries were

used to parse over the DBLP dataset to measure the result sizes,

memory usage and CPU time.

b. Query Set 2 (Group 2): 100 randomly generated queries were

used to parse over the two datasets to measure the result sizes,

memory usage and CPU time.

Result Characteristics

The result metrics are the same as described for the previous two

datasets.

Table 10: Result Characteristics for DBLP dataset

Result Characteristics Group 1

(10

queries)

Group 2

(100

queries)

Cumulative Size 978KB 2280KB

Percentage Shared 54% 62%

Memory Usage
The Memory usage of the YCompact algorithm is significantly

less than any other algorithm similar to the previous datasets.

The DBLP document is around 6 times larger than the NASA

dataset. The ratio of the memory usage of the YCompact

algorithm to that of the basic implementation is more or less

similar to that of NASA and News Article datasets as can be seen

in the percentage of improvement rows.

 The Memory usage for greater number of queries over the

large document follows a similar pattern to the NASA dataset

with highest values for YFilter and least for YCompact

algorithm. The percentage improvement of the YCompact

algorithm over the Basic implementation and the implementation

proposed by Feng and Kumaran [3] is more or less consistent

across DBLP, NASA and NEWS ARTICLE datasets.

CPU Usage

The parsing cost for the DBLP dataset is 29632 ms. Table 12

gives the values of CPU usage for the different query sets. The

CPU usage of the YCompact algorithm is less than that of the

original YFilter implementation similar to the other datasets

mentioned above. The CPU usage follows the same trend across

different algorithms as mentioned for the first two datasets.

 12

Table 11: Memory Usage for DBLP dataset (KB)

Memory Usage Group 1

MAX, Average

Group 2

MAX, Average

YFilter(Unfinished

after 30MB of

document)

28678, 10091 29815, 10978

YFilter + SHJ 8041, 2098 14567, 8765

YFilter + Basic

Implementation

1567, 86

4665, 374

YFilter + YCompact

Implementation

1346, 73

3528, 309

Percentage

improvement of

YCompact over

YFilter

99% 96%

Percentage

improvement of

YCompact over

YFilter + SHJ

96% 93%

Percentage

improvement of

YCompact over

YFilter + Basic

implementation

17 – 20% 19 -22%

Table 12: CPU Usage for DBLP dataset

CPU Usage Group 1

(Milliseconds)

Group 2

(Milliseconds)

YFilter 65187 104937

YFilter + SHJ 64289 103789

YFilter + Basic

Implementation

63678 102145

YFilter + YCompact

Implementation

62765 101876

6.6 Tests on Xmark Dataset [14]

The Xmark dataset was used to conduct experiments on 2

different groups of queries as mentioned in section 2. The first

group consisted of 10 randomly generated queries. The second

group consisted of 100 randomly generated queries. The different

metrics of evaluation are mentioned below.

Data Characteristics

The Xmark XML dataset is available at the University of

Washington XML data repository [5]. The table below indicates

the characteristics of the data used.

Table 13: Data Characteristics for Xmark dataset

Name Size(MB)

Xmark 114.0

Query Characteristics

The queries are random query sets generated by YFilter for

Xmark dataset [14] similar to the DBLP dataset. The two groups

consist of 10 and 100 randomly generated queries

a. Query Set 1 (Group 1): 10 randomly generated queries were

used to parse over the Xmark dataset to measure the result sizes,

memory usage and CPU time and to verify patterns of

improvement

b. Query Set 2 (Group 2): 100 randomly generated queries were

used to parse over the Xmark dataset to measure the result sizes,

memory usage and CPU time and to verify patterns of

improvement.

Result Characteristics

The result metrics are the same as described in the previous

datasets.

Table 14: Data Characteristics for Xmark dataset

Result Characteristics Group

1

Group

2

Cumulative Size 924KB 1848KB

Percentage Shared 44% 56%

Memory Usage
 The Memory usage of the YCompact algorithm is significantly

less than any other algorithm similar to the previous datasets.

 The Xmark document is around 4.5 times larger than the

NASA dataset. The ratio of the memory usage of the YCompact

algorithm to that of the basic implementation is comparable to the

other datasets as indicated by the percentage improvement row in

the memory usage table.

 The Memory usage for greater number of queries over the

large document follows a similar pattern to the NASA dataset

with highest values for YFilter and least for YCompact

algorithm.

CPU Usage

The parsing cost for the News Article dataset is 22563 ms.

The CPU usage of the YCompact algorithm is less than that of

the original YFilter implementation. Thus, without introducing

overhead there is a significant reduction in memory usage as seen

across all the previous datasets.

 The CPU usage follows similar patterns to all previous

datasets.

 13

Table 15: Memory Usage for Xmark dataset

Memory Usage Group 1

MAX, Average

Group 2

MAX, Average

YFilter(Unfinished

after 30MB of the

document)

28962, 9208 29451. 10568

YFilter + SHJ 7568, 1872 12732, 5876

YFilter + Basic

Implementation

1231, 79

4109, 298

YFilter + YCompact

Implementation

1178, 63

3298, 277

Percentage

improvement of

YCompact over

YFilter

99% 97%

Percentage

improvement of

YCompact over

YFilter + SHJ

96% 94%

Percentage

improvement of

YCompact over

Basic

implementation

14 – 17% 17 -20%

Table 16 CPU Usage for Xmark dataset

CPU Usage for different

algorithms

Group 1

(Milliseconds

)

Group 2

(Milliseconds

)

YFilter 40876 96782

YFilter + SHJ 38989 95678

YFilter + Basic Implementation 37243 94234

YFilter + YCompact

Implementation

36244 93236

7 Related Work

We use YFilter [1] which is an environment for developing our

query processing techniques. There are some extensions to

YFilter already in place by Feng and Kumaran[3]. They

identified limitations of YFilter where the entire document was

being stored in the memory which led to buffering overhead.

However, they did not check for sharing of node information

among queries.

 There has been some work done in XPath queries on

streaming data using XSQ. A queue for buffering relevant data

from a given XPath query was used as a buffer as described by

Peng and Chawathe [2]. Buffering of XPath queries in order to

store potential results was studied by them. In their analysis, the

items in the buffer are marked separately so that after evaluation

of predicates only those items that are affected by the predicates

are evaluated.

 Koch et al[6] developed a language called Flux with an

algorithm for automatically translating a significant part of XPath

into Flux queries. The main contribution of this paper is the Flux

language together with an algorithm for automatically translating

a significant fragment of XPath into equivalent Flux queries.

Flux – while intended as an internal representation format for

queries rather than a language for end-users – provides a intuition

for buffers-conscious query processing on structured data

streams. The algorithm uses schema information to schedule Flux

queries so as to reduce the use of buffers.

 Barton et al[7] developed a novel streaming algorithm for

evaluating XPath expressions that use backward axes and

forward axes of an XML document. The performance of their

algorithm is efficient as well as shows memory utilization by

retaining only relevant portions in memory. Li et al [8] developed

a series of optimizations which transform Xpath queries so that

they can correctly execute within a single pass of any dataset.

This involved buffering of information. Fegaras et al [11] dealt

with the buffer size and client's ability to optimize queries

effectively. They presented a framework for processing streamed

XML data and an algebraic optimization framework.

 Guo and Chirkova [9] devised efficient algorithms for passing

queries over large input documents. They measured the response

times. FisT [10] provides a XML filtering system. FisT[10]

performed holistic matching of twig patterns with incoming XML

documents by transforming into Prufer sequences.

 Feng and Kumaran[3] also discusses a taxonomy for XPath

queries to gain insight into memory utilization of queries, as they

implement execution of XPath queries on streaming XML data

over the framework of YFilter, but our taxonomy presents

facilitating theoretical memory utilization analysis of concurrent

queries along with implementation ensuring minimum memory

consumption. As seen in the related work, there has been lot of

emphasis on faster processing of queries apart from Flux [6]. Our

approach proposes a novel YCompact algorithm and compares

memory usage and CPU usage across different datasets for

different query sets.

8. Conclusion and Future Work

We have devised techniques that produce real time outputs with

significantly less memory usage and no overhead over the

existing YFilter implementation. The results show efficient

memory management for various different datasets using different

classes of queries. The interesting question is that whether these

improvements to YFilter will still hold for different types of

Xpath queries on a real system with memory and throughput

constraints. Also, it could be possible to come up with a

theoretical bound on amount of memory usage for different types

of queries.

ACKNOWLEDGMENTS
I would like to thank Prof. Yanlei Diao for her continuous

guidance throughout the project. I would also like to thank Prof.

Gerome Miklau for being the second reader for this work.

References

[1] Y. Diao, P. M. Altinel, M. J. Franklin, and P. Fisher. Path

Sharing and Predicate Evaluation for High- Performance XML

Filtering. In TODS, 2003.

 14

[2] F. Peng and S. S. Chawathe. XPath queries on streaming data.

In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, pages 431–442,

New York, NY, USA, 2003. ACM Press.

[3] S. Feng, G. Kumaran. XML Data Stream Processing:

Extensions to YFilter. UMASS Technical Report, 2007.

[4] Filtering and Transformation for High-Volume XML

Message Brokering. Online version at, http://yfilter.cs.umass.edu/

[5] University of Washington XML Repository,

http://www.cs.washington.edu/research/xmldatasets/

[6] Cristoph Koch, Stefanie Scherzinger, Nicole Scweikardt and

Bernhard Stegmaeir, Schema-based scheduling of event

processes and buffer minimization for queries on structured data

stream. In 30th VLDB conference' 04.

[7] Charles Barton, Phillipe Charles, Deepak Goyal, Mukund

Raghavachari, Marcus Fontoura and Vanja Josifovski, Streaming

XPath processing with forward and backward axes. In 19th

ICDE'03, page 455.

[8] Xiaogang Li and Gagan Agrawal, Efficient evaluation of

Xquery over streaming data, In VLDB'05.

[9] Gang Gou and Rada Chirkova, Efficient algorithms for

evaluating XPath over streams, In Proceedings of the 2007 ACM

SIGMOD international conference on Management of data

[10] Jonho Kwon, Praveen Rao, Bongki Moon and Sukho Lee,

FisT: Scalable XML Document Filtering by Sequencing Twig

Patterns, In VLDB'05

[11] Leonidas Fegaras, David Levine, Sujoe Bose and Vamsi

Chaluvadi, Query processing of streamed XML data. In

Proceedings CIKM'02

[12] Java memory Usage module,

http://www.javaworld.com/javaworld/javaqa/2003-12/02-qa-

1226-sizeof.html#resources

[13] YFilter homepage, http://yfilter.cs.umass.edu/

[14] Xmark dataset, http://www.xml-benchmark.org/

