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ABSTRACT
Achieving ubiquitous connectivity or high aggregate through-
put using a series of Wi-Fi access points can cause se-
rious performance problems for highly mobile clients.
While data transfer using a single access point at a
time is insufficient for supporting delay- and throughput-
sensitive applications, leveraging concurrent data trans-
fers through multiple access points offers a plausible
alternative. To this end, we design, implement, and eval-
uate a system that establishes and maintains concurrent
connections to 802.11 APs in a mobile environment. We
demonstrate that existing multi-AP solutions do not per-
form well in mobile settings due to limitations imposed
by the association and dhcp processes and propose an
alternative design. We have implemented and evaluated
our system on a vehicular testbed. Our results show that
our system provides manifold improvements in through-
put and connectivity over stock WiFi implementations.
We compare our results against measurements of real
user needs in mobile settings in terms of application use
and desired session length.

1. INTRODUCTION
Cellular infrastructure provides the most common

method of mobile access today because it offers high
bandwidth and long-range coverage. Unfortunately, in
areas where cellular demand is high, the deployed capac-
ity cannot keep up. Carriers are now imposing caps on
bandwidth and differentiated plans. In response, users
and networks wish to supplement their connections with
Wi-Fi networks. And recent measurement work [2] has
demonstrated 3G data can be offloaded successfully.

Unfortunately, these same measurements show Wi-Fi
bandwidth is often a fraction of 3G. Wi-Fi has other
disadvantages compared to 3G infrastructure. Wi-Fi is
short range. It is in an unlicensed band that is often
crowded. It can be deployed as a mesh, but to do so
over large areas is expensive. Moreover, its deployment
is often ad-hoc, offered by independent homes and apart-
ments. On the other hand, Wi-Fi is a cheap and common
interface in mobile devices, and when it is available, it

is often free and available on several different channels
at once [21]. Additionally, many people choose to use
Wi-Fi intermittently rather than pay 3G fees. Whether
used as the best choice for an auxiliary channel for 3G,
or used as a stand-alone option for access, a critical
question is how can we improve Wi-Fi throughput for
mobile clients?

An effective approach for improving Wi-Fi perfor-
mance is to split a single physical wireless interface into
several virtual interfaces that each connect to a different
AP. This idea was first proposed by Chandra et al. [19].
Kandula et al. [10] proposed FatVAP, which includes a
scheduler that distributes the client’s time across APs
so as to maximize throughput; they improve throughput
by 3x. Similarly, Nicholson et al. [17] demonstrated sig-
nificant bandwidth gains with Juggler for mobile Wi-Fi
clients. These gains are possible because these systems
rely on a driver that can switch between APs by telling
one AP that it is in power save mode and then moon-
lighting on another AP. These drivers attempt to keep
the switching delay small, making sure the deadline for
retrieving stored packets at the first AP is met so that
TCP flows are not disrupted.

It seems straightforward to directly apply virtualized
Wi-Fi drivers to mobile 3G and Wi-Fi users. Unfortu-
nately, these past works have based their designs and
evaluations on stationary wireless clients. In this paper,
we evaluate virtualized Wi-Fi for highly mobile clients,
and we demonstrate that it is not a straightforward
win. When Wi-Fi is aggregated across multiple chan-
nels, scheduling is an NP-hard problem for mobile clients,
which must consider association joins and dhcp requests
that cannot be delayed by the power-save maneuver. As
we show, the best application of virtualized Wi-Fi is
in areas where the density of APs is so high that all
the benefits of bandwidth aggregation can be had from
APs on a single Wi-Fi channel. Our measurements show
that, otherwise, the benefits of standard drivers that
have agile serial switching between APs (and are simpler
to optimize from a coding standpoint) can be the better
choice.



Specifically, we offer the following contributions in
this paper:

• We present the design and implementation of Spi-
der, a system that aims at improving the perfor-
mance of highly mobile networks by providing con-
current 802.11 connections to open access points.
Spider achieves this goal by virtualizing a wireless
card and efficiently managing connections to APs
through each virtual interface. In contrast to past
works which use a per-connected-AP granularity
to schedule concurrent connections, Spider sched-
ules 802.11 channels. We argue that this design is
more suitable for highly mobile scenarios where it
is critical to quickly join to nearby access points.

• We quantify the costs of link-layer association and
dhcp on virtualized Wi-Fi, demonstrating that
scheduling on multiple channels can thwart suc-
cessful joins to APs and limit TCP performance.
We also demonstrate that reducing timeouts [7]
lowers join success rates when virtualized Wi-Fi is
used.

• We experiment with numerous link management
policies in Spider using vehicles driven in two cities
that offer intermittent Wi-Fi access. The results
show that mobile virtualized Wi-Fi does not maxi-
mize both throughput and connectivity simultane-
ously. We show that if connectivity is a priority,
then joining to multiple APs on multiple channels
is best: 44% connectivity, 28KBps. However, if
throughput is a priority, then joining to multiple
APs on only one channel is best at the cost of
connectivity: 35% connectivity, 122KBps. In the
middle is a non-virtualized policy of one AP at a
time from any channel available: 40% connectivity,
77KBps.

We begin with experiments that demonstrate the ef-
fects of virtualized Wi-Fi scheduling on link-layer asso-
ciation and dhcp, motivating the problems we address
in this paper. We then provide the details of Spider’s
design and implementation. Next, we present the results
of extensive experimentation with several virtualization
policies. Finally, we offer a review of related work and
our conclusions.

2. MULTI-AP CHALLENGES FOR MOBILE
CLIENTS

Concurrent connections between a client and multiple
APs [10,17,19] are possible for Wi-Fi because the APs
can be instructed by the client to buffer packets. The
client falsely claims it is entering the power-save mode
(PSM) and then communicates with another AP. What
past works overlook is that clients in a mobile Wi-Fi
environment must continuously associate and obtain
dhcp leases from APs as they become available. These
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Figure 1: The Wi-Fi card spends 30ms each on Chan-
nels 1, 6, and 11. During an association phase the card
loses “association response” from the AP due to channel
switching.

packets cannot be buffered by the PSM request. As we
show, a schedule that maximizes aggregate bandwidth
for already-joined APs can prevent successful associa-
tion and dhcp requests, which are critical components
of these AP hand-offs. Accordingly, past works on vir-
tualized Wi-Fi all experiment with their mechanisms
in stationary contexts. In particular, these past exper-
iments consider throughput and other characteristics
only after permanent connections to APs have been
formed.

In this section, we quantify the performance penalties
virtualized Wi-Fi imposes on association and dhcp re-
quests in an outdoor mobile setting. We also experiment
with reduced link layer and dhcp timeout values [7],
showing that they increase the number of failed connec-
tion attempts.

2.1 Association and DHCP
Figure 1 illustrates one of the major problems that

makes virtualized Wi-Fi difficult in a mobile scenario.
Suppose that according to the driver’s schedule, the
Wi-Fi card divides a fixed interval among three APs
each on one of the three non-overlapping Wi-Fi channels
(1, 6, and 11). The association process involves a four-
way handshake: authentication request, authentication
response, association request, and association response.
A failure will occur if the client switches channels before
receiving the final response.

After a client associates, the AP can be asked to
buffer non-broadcast packets. Unfortunately, the four
messages to complete a dhcp request (discover, offer,
request, and ack) are broadcast messages, and delays
in the AP’s response can be relatively long and difficult
to predict. Hence, if a client switches channels before
obtaining a dhcp lease, the process must restart. A
timeout during association or dhcp triggers a seconds-
long back-off, which is catastrophic given the typical
duration of mobile Wi-Fi access (typically 10–20 seconds
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Figure 2: The rate of successful link-layer associations on
a channel as a function of the amount of time the Wi-Fi
driver spends on a single channel (out of 400ms for all
channels).
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Figure 3: The rate of successful dhcp requests on a
channel as a function of the amount of time the Wi-Fi
driver spends on that channel as well as the dhcp timeout.

for a vehicle). If there were no delays for association or
dhcp, then virtualized Wi-Fi would be an obvious win
for any number of channels. Erikson et al. [7] have shown
that these delays can be minimized in non-virtualized
Wi-Fi by reducing the timeouts used in these protocols.
We evaluate these reduced timer settings below; we find
that reduced timeouts can increase dhcp failure rates
and overall time to get a lease when the driver spends a
portion of its time on other channels.

We performed a series of experiments to quantify how
channel scheduling settings can severely degrade the
probability of successfully associating and obtaining a
dhcp lease. Each experiment was performed on five
different vehicles moving around Amherst, MA for 6
hours each. The wireless card of each mobile node
was set to spend a fraction x of a 400ms round-robin
scheduling interval on channel 6, and (1− x)/2 of the
interval on each of channels 1 and 11. Also, we changed
the link layer association timeout value from a default
of 5 seconds to 100ms for these experiments.

Whether evaluating association or dhcp, we find that
the success is strongly positively correlated with the
amount of time scheduled on the primary channel. Fig-
ure 2 shows empirical CDFs of these experiments. When
a single channel receives 100% of the interval, the median
association time is 200ms, and all associations complete
within 400ms. With a small drop to 75% of the 400ms
schedule, we see a sharp decrease in performance: the
median association time drops to 300ms and only 75%
of associations completing within 400ms. Note that in
all cases, it is possible to connect in under 200ms, but
the success rate is below 20%.
dhcp performance is more sensitive to the schedule,

as shown in Figure 3. Of course, dhcp requests are de-
pendent on successful association during the experiment,
and we call a join success in both cases. When 100%
of the schedule is spent on a single channel, the median
join time decreases from 2.5s for the default dhcp packet
timeout of 1 sec, to a median join time of 1.3s for 100ms
dhcp timeouts. Unfortunately, the situation is more
complicated for values above the median. At the 90th

percentile, the default dhcp packet timeout achieves 2.6s
joins; but the 90th percentile is worse at 4.1s for 600ms
time outs, and then shorter again at 1.6s for 100ms time-
outs. These swings can be explained by a sharp increase
in completely failed dhcp requests. Moreover, the same
graph shows the effects of using a reduced schedule on
the channel. With only 50% of the schedule, the 90th

perc. join times drop to 2.2s, and then down to 6.6s at
25%. Hence, reduced timeouts increase failure rates and
overall join time when the driver spends a portion of its
time on other channels.

We further evaluate the effects of reduced timeouts
on the performance of our driver in conjunction with
the overheads of managing multiple virtual interfaces in
Section 4.

2.2 TCP and UDP performance
In a multi-AP setting, the throughput of a UDP

stream is proportional to the amount of time spent by the
card communicating with an AP. For TCP streams, this
relationship is not straightforward due to non-deterministic
effects of TCP timeouts and slow start. The experiments
in this subsection took place on a desktop to prevent mo-
bile factors from affecting performance; in Section 4 we
report TCP throughput for vehicular experiments. Note
that previous works on virtualized Wi-Fi do not quantify
how scheduling affects transport performance since they
do not consider schedules that might be sufficient to
allow joining new APs on other channels.

Figure 4 shows the effects of channel scheduling on
TCP. We vary the percentage of time out of 400ms
that the card spends on a primary channel just as in
Section 2.1. In other words, the card spends between 0
and 400ms on the primary channel. As expected, varying



Figure 4: Average TCP throughput as a function of the
percentage of time spent by the Wi-Fi driver on the pri-
mary channel. Since the cumulative time spent on all the
channels is 400 ms (which is less than two RTTs) the
throughput is proportional to the percentage of time spent
on the primary channel.
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Figure 5: Average TCP throughput as a function of the
absolute time spent on each channel. The throughput is
very sensitive to the amount of time spent by the driver on
each channel due to TCP timeouts and TCP slow start.

the percentage of time spent on the primary channel
leads to a monotonic improvement in throughput. Since
the cumulative time spent on all the channels is 400ms
the throughput is proportional to the percentage of
time spent on the primary channel; 400ms is less time
than two RTTs (in this experiment), which would have
triggered a TCP timeout and slow start.

In a second experiment, we vary the absolute amount
of time the card spends on a primary channel, shown
in Figure 5. In other words, a point on the x-axis
corresponds to a schedule where the card spends x ms
on each of channels 1, 6, and 11; hence the total time
spent away from the TCP channel is 2x, ranging from 0
to 800ms.

As we vary the amount of time the Wi-Fi card spends
on each channel, the throughput varies more wildly. Due
to the interaction between the RTT of TCP packets and
the card schedule, packets from the AP to the client can
get lost. Hence, TCP times out or gets stuck in slow
start, strangling throughput.

TCP/UDP sensitivity to the percentage of time spent
on a channel presents a tension between throughput and

connectivity. For example, suppose the Wi-Fi card is
transferring data with two AP on channel 1 and starts
to associate with two other APs on channel 6. For the
associations to be successful, the card must spend more
than 80% of the time on channel 6. However, this im-
plies that TCP/UDP throughput on channel 1 would
degrade substantially. Addressing this tension between
throughput of ongoing TCP/UDP streams with success-
ful associations and dhcp attempts is the fundamental
problem of applying multi-AP solutions to the mobile
environment.

3. Spider
Spider is designed to leverage concurrent 802.11 con-

nections to improve performance in highly mobile net-
works. To this end, we have made several design choices
that distinguish Spider from solutions that either target
stationary wireless settings [10,17,19] or enhance stock
Wi-Fi networks [7].

Design Choice 1: In contrast to previous work that
slices time across individual APs [10,17,19], Spider sched-
ules a physical Wi-Fi card among 802.11 channels. Per-
channel queues incur no switching overhead for interfaces
on the same channel. Staying on one channel also miti-
gates the problem of failed associations discussed in the
previous section since broadcast packets (which are not
buffered in power-save mode) can still be received if the
virtual interface is on the right channel. Moreover, it
allows Spider to opportunistically scan for new APs with-
out losing connectivity to the old ones. Communicating
with multiple APs on the same channel can amplify the
hidden terminal problem, but as we show in Section 4
aggregate throughput still increases.

Design Choice 2: Spider addresses both selection of
multiple APs and Wi-Fi card scheduling. Both problems
are NP-Hard (see Appendix A and [10]). It is possible
to design optimal dynamic programming solutions for
them. However, we found that using heuristics is more
effective in practice given that short encounters makes
it difficult to solve the related equations in real-time.
Spider can use pre-defined static channel schedules or
dynamic schedules that adapt based on ongoing associa-
tions and data transfers. The AP selection heuristic of
Spider is discussed later in this section.

Design Choice 3: Unlike Juggler [17], Spider does
not hide the existence of multiple virtual interfaces from
applications. Spider exposes a separate Linux network
device interface for each connection, allowing maximal
flexibility in the way that applications may use concur-
rent Wi-Fi connections. Spider does not require a cus-
tomized kernel or modification to the kernel socket data
structure [17]. Finally, Spider is a completely standalone
loadable module that is compatible with off-the-shelf
wireless utilities such as iwconfig, iwlist, iwspy and
iptables, making link management and network debug-
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ging easier.
Spider works in both ad-hoc and infrastructure modes,

though our focus is the latter. The overall design of
Spider is illustrated in Figure 6. Spider has two major
components: a customized wireless device driver and
the link management module (LMM).

3.1 Wireless Driver
Like FatVAP [10], Spider customizes the popular Mad-

Wifi driver to present multiple “virtual” network inter-
faces. Similar to Juggler [17], Spider’s driver exposes a
/proc file-system interface through which parameters
such as the channel-switching schedule and various time-
out values can be configured by a link management mod-
ule running in user space. The key differences between
Spider’s driver are 1) Spider’s capability to schedule
multiple APs on a channel concurrently rather than
individual APs, and 2) Spider’s support for opportunis-
tic scanning, which allows new APs to be discovered
without sacrificing data-transfer opportunities.

3.1.1 Switching Among Channels
Spider’s design is intended to maximize connectivity

opportunities in mobile environments without sacrific-
ing throughput: Spider can attempt to associate and
obtain dhcp leases from many APs on a channel in par-
allel, without dedicating the wireless card and giving
up opportunities to transfer data through other APs
on that channel. In this way, Spider can overlap the
long and unpredictable delays experienced while waiting
for responses from the AP during the association and

dhcp phases. Accordingly, the procedure for switching
channels is slightly different than in other multi-AP
solutions.

• First, the client starts buffering outgoing packets
on the virtual interfaces communicating on the
current channel.

• Next, the client sends to each AP that it is as-
sociated with on the current channel an 802.11
management frame with the PSM bit set, indi-
cating that it is entering power-save mode. This
causes the APs to buffer all frames destined for the
client until it returns to the channel.

• After deactivating the virtual interfaces on the
previous channel, the client changes the state of
the wireless card to the new channel. A hardware
reset is required to apply the change.

• Finally, the set of interfaces which are associated
or attempting to associate with APs on the new
channel are activated. A management frame with
the PSM bit cleared is sent out over each virtual
interface associated on the new channel, and the
outgoing packets stored in the PSM queues of the
newly activated virtual interfaces are submitted to
the card’s transmit queue.

3.1.2 Opportunistic Scanning
To maintain connectivity, mobile clients must be able

to discover new APs as they move. Typically, clients
scan for new APs continuously when not associated
by cycling through the available channels, transmitting
probe requests and listening for responses. Even after
successfully associating with an AP, a traditional wireless
driver may periodically switch away from the AP for
tens or hundreds of ms to scan on other channels. The
multi-AP solution Juggler [17] allows “scanning slots”
to be added to the switching schedule, during which the
card rotates among channels 1, 6, and 11 and listens for
beacons. Unfortunately, these approaches sacrifice time
which could be spent transferring data or associating
with an AP.

To maximize the time available for useful work, Spider
scans opportunistically in the background without dis-
rupting ongoing connections. While associated with an
AP, a client often receives beacons and probe responses
transmitted by other APs on the same channel—wireless
drivers typically drop these frames early in the receive
process to avoid additional processing overhead. Spi-
der instead accepts these frames and maintains a list
of APs which it has heard from recently. To maximize
the probability that we receive a response from each AP,
Spider can be configured to periodically broadcast probe
requests.



3.2 Link Management Module
Spider’s link management module implements con-

nection establishment and management policies. This
module is responsible for applying AP selection policies,
managing concurrent connections, detecting lost con-
nections and establishing new ones, as well as notifying
applications of the availability of a link.

The link management module creates a configurable
number of virtual interfaces on boot-up and sets an
appropriate channel schedule given a specific operation
mode. Each operation mode is defined by the total
amount of time to be scheduled among channels, as
well as the fraction of time which is to be spent on
each channel. The link management module provides
support for dynamically changing the schedule; however,
static schedules configured before boot-up are used as
default. We present results from experiments using
different operation modes in Sections 2 and Section 4.

After the initial setup phase, a thread is created for
each interface to perform link discovery and management
operations for that interface. Software locks are used to
ensure that no two threads select and attempt to connect
to the same AP. Furthermore, threads safely share their
connection history and estimated rank of the APs. As
soon as an interface joins a network and obtains an IP
address, corresponding iptables rules are set to allow
routing traffic to and from that specific interface. If the
same IP address is assigned to different virtual interfaces
by different APs, we only use the most recently assigned
interface with that IP address, bring down those other
interfaces, and then attempt to connect them to different
APs. However, we observed that such events were rare.

Similar to Cartel [8] and Cabernet [7], we have incorpo-
rated specific optimizations in our implementation of the
link management module such as caching dhcp leases
and configuring link-layer and dhcp timeouts. Upon
a successful link-layer association, the corresponding
thread first consults its per-BSSID cache of dhcp leases
before issuing dhcp requests. Furthermore, after a con-
nection is established, the thread continuously pings a
known host to monitor the availability of the connection.
In case an AP does not allow icmp pings to propagate
pinging the gateway is used to establish connectivity.
If 30 ping attempts fail (sent at a rate of 10 pings per
second), Spider assumes that the connection is dropped,
notifies the application, and tries associating with an-
other AP. Spider notifies applications of connectivity
loss using a shared flag resident on the system’s RAM
disk.

3.2.1 Access Point Selection & Scheduling
Spider’s link management module deals with select-

ing a set of available APs and scheduling time of the
Wi-Fi card. In Appendix A, we show that the multi-AP
selection problem while maximizing a given system util-

ity function is NP-Hard. Since Spider selects from the
power-set of available APs, the complexity of an optimal
dynamic programming solution grows exponentially.

Therefore, to make the problem tractable, Spider uses
the following heuristic to select APs: Each AP, i, in
a Wi-Fi, is assigned a utility Ui. Ui is a function of
the number of successful join attempts the client has
made with the AP previously. A successful join con-
sists of three phases: i) link-layer association, ii) dhcp
lease acquisition, and iii) end-to-end connectivity test
as described in Section 3.2. Spider assigns fixed values
va, vb, or vc (va < vb < vc) to the each specific join
attempt depending on how far it succeeds in the asso-
ciation process. Failed associations are assigned a zero
value. Utility Ui of each AP i are the weighted average
of previous and recent association attempts made with
the AP—the recent association are given larger weights.
Each management thread of the link layer module se-
lects the AP with highest utility which has not already
been selected by other threads. It uses signal strength
to break ties when APs have the same utility.

The link management module can be configured to
use other criteria such as the amount of time the AP
is in data-transfer range with the client or the amount
of data transferred during a connection as the utility
function. However, by default it uses join success as
discussed above since it is a primary determinant of
AP usefulness in highly mobile scenarios and is stable
compared to bandwidth measures that can vary with
distance, mobility, and environmental factors. The link
management module can be configured to dynamically
change the channel switching schedule by estimating the
amount of time required by each ongoing connection
depending on its state (association, dhcp, data-transfer).
However, pre-defined static channel schedules proved
to be more stable and therefore, are used in Spider’s
evaluation.

4. EVALUATION
We envision Spider as a solution that complements

cellular data services by providing for an effective use
of concurrent 802.11 connections to open APs in highly
mobile scenarios. Such a solution targets applications
that do not justify the per-month per-device cost of
subscribing to cellular data plans. Furthermore, even
in cases that cost is not an issue, open Wi-Fi solutions
like Spider are a natural supplement to cellular networks
due to their higher fundamental capacity. Their draw-
back, however, is that they do not provide continuous
connectivity.

Spider aims at improving throughput and connectivity
for mobile clients using open Wi-Fi access by synergisti-
cally using multi-AP selection, channel switching, oppor-
tunistic scanning, and parallel per-channel association.
Here, we evaluate the performance of Spider by focusing



# interfaces 0 1 2 3 4
Mean 4.942 4.952 5.266 5.546 5.945
STD 0.009 0.009 1.236 0.823 1.121

Table 1: Channel switching latency (ms)

on the following key questions:
• What improvement in throughput and connectivity

does Spider provide over stock Wi-Fi access?
• What is the effect of AP density on Spider’s per-

formance?
• Does Spider meet connectivity needs of common

wireless users?
While answering these questions, we also present sev-

eral micro-benchmarks and explore trade-offs available
when setting different dhcp and link-layer timeouts.

4.1 Experimental Setup
We have evaluated Spider on UMass DOME [21], an

outdoor vehicular testbed designed for mobile experimen-
tation. Most of our experiments take place on DOME
public transit buses.We also performed experiments on
a passenger car using the same hardware equipments as
DOME. This allowed us to focus experiments in down-
town area of Amherst, MA which has Wi-Fi coverage
that is more typical of a city. We also conducted experi-
ments using the passenger car in Cambridge, MA area,
as we detail below. In all cases, the equipment consisted
of a Hacom OpenBrick 1GHz Intel Celeron M system
running Ubuntu Linux 2.6.18 and Atheros 802.11abg
MiniPCI Wireless Card.

The analysis of traces collected from performing initial
experiments verified our conjecture that the majority of
the APs are on either of the three ”orthogonal” channels
1 (28%), 6 (33%), or 11(34%). Cabernet [7] reports
comparable numbers for the Boston area with 83% of
the APs on either of the three channels and 38.5% using
channel 6. Due to this non-uniformity in the distribution
of the APs over channels, we have configured Spider to
only schedule among these three channels in the following
experiments.

We test four different configurations of Spider. (1)
Single-channel, Multiple-AP: Spider stays on one channel
(channel 1, 6, or 11) and associates with as many APs on
the channel as possible. (2) Single-channel, Single-AP:
Spider mimics off-the-shelf Wi-Fi on a single channel. (3)
Multiple-channel, Multiple-AP: Spider switches between
the three orthogonal channels using static schedules. (4)
Multiple-channel, Single-AP: in this mode a Spider node
switches channels but is associated with one AP at a
time. We also tested the MadWiFi driver as a point of
comparison to configuration 2.
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Figure 7: Throughput micro-benchmark

4.2 Driver Micro-benchmarks
We present the results of two micro-benchmarks de-

signed to measure (1) the latency overhead incurred
when switching channels, and (2) the ability of our driver
to aggregate bandwidth across connections through mul-
tiple APs.

Table 1 shows the mean latency of a channel switch
operation and the standard deviation. The channel
switching latency is the time required to send a PSM
frame to each associated AP on the old channel, perform
a hardware reset to apply the channel change, and then
send a PSM poll frame to each associated AP on the new
channel. The latency is typically in the range of 5-6ms,
increasing proportional to the number of APs,because
a separate PSM frame must be sent to each AP. The
largest contributor to the latency is the hardware reset
step, which can vary depending on the model of card.
The latency is within a few ms of that achieved by other
multi-AP drivers [10,17].

Fig. 7 shows the ability of the driver to utilize the
bandwidth offered by multiple APs. We measured mean
aggregate throughput achieved while downloading large
files over HTTP for a number of configurations: a host
with a single card running stock MadWiFi, for compari-
son; a host with two physical cards running stock drivers;
Spider connected to two APs on the same channel; and
Spider connected to one AP on channel 1 and one on
channel 11, with a schedule of 50ms on each channel;
and the previous configuration spending 100ms on each
channel. The APs and servers were connected via LANs
in our lab, and a traffic shaper was used to adjust the
backhaul bandwidth available through each AP.

The host with two physical interfaces and the host
with Spider running on a single channel both achieved
aggregate throughput equal to twice that achieved by
the host with a single card and stock driver—this is ex-
pected, as Spider incurs no channel-switching overheads
and does not run the risk of causing TCP timeouts by



(Config) Parameters Throughput Connectivity

(1) Channel 1, Multi-AP 121.5 KB/s 35.5%
(2) Channel 1, Single-AP 28.0 KB/s 22.3%
(3) Multi-channel, Multi-AP 28.8 KB/s 44.6%
(4) Multi-channel, Single-AP 77.9 KB/s 40.2%
(2) Channel 6, single-AP∗ 90.7 KB/s 36.4%
MadWiFi driver ∗ 35.9 KB/s 18.0%

Figure 8: Avg. throughput and connectivity for Spider
configurations. Staying on a single channel and leveraging
multiple AP connections provides best avg. throughput.
The multi-channel, multi-AP approach provides the best
connectivity. (Multi-channel scenarios use a static schedule
of 200 ms on ch. 1, 6, and 11. ∗ denotes experiments
performed in Cambridge, where channel 6 was the best.)

going off-channel. The results for the multi-channel Spi-
der configurations show the trade-off between exploiting
new connectivity opportunities and extracting through-
put from connected APs. When high-bandwidth links
are available, a schedule which switches more rapidly
between channels is able to achieve greater throughput
by reducing the risk of TCP timeouts.

4.3 Connectivity and Throughput
We analyze throughput and connectivity of Spider

using four key metrics. (1) Average throughput: amount
of data transferred to a sink per unit time over an
experiment. (2) Average connectivity: percentage of time
that a non-zero amount of data was transferred to a sink.
The average throughput and connectivity are bounds on
open Wi-Fi performance using multi-AP solutions. (3)
Disruption length: contiguous period of time when there
is no connectivity. This distribution indicates whether
Wi-Fi can support interactive applications such as VoIP
or web search. (4) Instantaneous bandwidth: amount of
data per second transferred by a Spider node when there
is connectivity. The instantaneous bandwidth indicates
whether multi-AP solutions can support applications
that require bursts of high throughput connectivity.

We present the average throughput and average con-
nectivity for a Spider node in its four configurations in
Fig. 8. These experiments were performed using a pas-
senger car around downtown Amherst. From the table
we draw two conclusions. First, the single-channel multi-
AP configuration performs best in terms of throughput.
It has an average throughput of more than 4 times
that of the single-AP counterpart. The use of multiple
channels incurs an additional overhead of switching and
associating on orthogonal channels, strangling through-
put. Second, the single-channel multi-AP solution has
the best performance in terms of connectivity. Although
the average throughput is lower, multiple channels host
a larger pool of APs for Spider to choose from.

Figs. 10 and 9 are the CDFs of the disruption and
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Figure 9: CDF of the Internet connectivity duration for
Spider configurations.
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Figure 10: CDF of disconnectivity for Spider configura-
tions.

connection lengths for different configurations of Spider
respectively. The results demonstrate several interesting
trade-offs. The longest periods of Internet connectivity
are obtained by staying on one channel and maintaining
concurrent connections to several APs. However, that
strategy also experiences the longest disruptions due to
areas where there is no Wi-Fi coverage on the chosen
channel. In contrast, the multiple-channel multi-AP
solution experiences shortest connections due to disrup-
tions caused by the time it takes to join APs on separate
channels. The single-AP configurations provide trade-
offs between the two extremes. We compare these results
with the needs of wireless users in Section 4.7.

Fig. 11 shows the instantaneous bandwidth that Spider
provides when actively transferring data. The single-
channel, multi-AP configuration performs best in terms
of per-connection throughput. The 60th percentile is
around 300 KBps and the 90th percentile is around 1000
KBps — comparable to the throughput provided by Fat-
VAP in a static environment (see Figure 13 in [10]). Spi-
der’s multi-channel, multi-AP solution performs poorly
in terms of instantaneous bandwidth due to the overhead
of association and dhcp on separate channels, clearly
illustrating the importance of staying on a single channel
if high throughput is the design goal.
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Figure 11: CDF of KB/s transferred (during connectiv-
ity) for Spider configurations. Single-channel configs. pro-
vide the best instantaneous throughput. Multi-AP, multi-
channel reduce throughput due to the overhead of joining.

4.4 Effect of AP Density
We evaluated the effect of AP density on the perfor-

mance of Spider using the same set of experiments listed
in Table 8. Here, we compare the case in which Spider
is allowed to associate with one AP with the case where
it maintains connection with multiple APs. During our
experiments, Spider associated with a maximum of three
APs 5% of the time, 2 APs 10% of the time, and is asso-
ciated with one AP around 85% of the time. It is notable
that, even with such a meager open Wi-Fi density in
Amherst, multi-AP Spider has a average throughput
that is four times that of a single AP case.

We also used Spider in a set of experiments performed
in Cambridge with a twofold goal: First, for external va-
lidity, we wanted to test Spider in an environment with
a different mobility pattern and AP density. Second,
we intended to compare our results with those obtained
by Cabernet in the same area. The last two entries in
Table 8 are results for experiments conducted in Cam-
bridge. It is of course impossible to set up the exact
conditions in which Cabernet was tested: 802.11G is
now widely available and it’s not possible to determine if
more or less open APs are available. However, it is strik-
ing that on Channel 6, Spider has an average throughput
that is 800% greater than the results reported by Caber-
net (a throughput of 10.75 KBps [7]). Additionally,
when comparing the results with the stock MadWiFi
driver, we find that Spider provides 2.5x improvement
in throughput and 2x improvement in connectivity.

4.5 Effect of Join Timeouts
One of the primary challenges in designing multi-

AP solutions for mobile Wi-Fi access is the overhead
associated with dhcp and association. A way to minimize
this overhead is to reduce the timeouts associated with
dhcp and link layer retries. Fig. 12 and Fig. 13 show

parameters Failed dhcp
chan 1, linklayer: 100ms,
dhcp: 600ms, 7 interfaces

23.0% ±6.4%

channel 1, linklayer: 100ms,
dhcp: 400ms, 7 interfaces

27.1% ±5.4%

chan 1, linklayer: 100ms,
dhcp: 200ms, 7 interfaces

28.2% ±4.0%

3 Chans, static 1/3 schedule,
linklayer: 100ms, dhcp: 200ms,
7 interfaces

23.6% ±10.7%

Chan 1, default timer,
7 interfaces

13.5% ±6.3%

3 Chans, static 1/3 schedule,
default timer, 7 interfaces

21.8 % ±6.9%

Figure 12: dhcp failure probabilities for different timeout
configurations for Spider. Primary differences are bolded.
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Figure 13: The rate of successful joins as a function of
dhcp timeout. The cost of switching among channels
overshadows the benefit of quickly establishing connections
when timeouts are reduced.

the effect of reducing these timeouts on Spider. Fig. 12
presents the increase in failure rate of dhcp requests
with reduced timeouts while maintaining concurrent
connections on multiple channels. Compared to the
default timers, reducing timeouts can lead to a two-
fold increase in dhcp failure rates. Similarly, switching
among multiple channels while trying to associate with
multiple APs leads to high probability of failure (as high
as 30–35%).

Although the number of failed dhcp attempts increases
with timeout reduction, in Fig. 13 we find that the me-
dian time to a successful association improves—similar
to the observation made in Cabernet [7]. However, the
absolute median time to associate is 2–3 seconds, which
increases by 2x when using multiple channels. This sug-
gests the either a mobile multi-AP solution should stay
on one channel or have a scheduling algorithm which



Parameters Throughput Connectivity

3-channel (equal schedule) 28.8 KB/s 44.7%
2-channel (equal schedule) 25.1 KB/s 35.8%
Single-channel 121.5 KB/s 35.5%

Figure 14: Average throughput and average connectivity
seen when applying different static schedules for multi-
channel configuration for Spider.

accounts for high association overheads.

4.6 Effect of Channel Schedule
To understand the effect of different channel schedules

on throughput, connectivity, and association overhead,
we present Fig. 15 and Table 14. The association exper-
iments were performed on transit buses that are part
of the DOME testbed while the throughput and con-
nectivity experiments were performed in a car with the
same hardware and software. We tested two schedules
(1) equal schedule (200 ms each) on the three channels
and (2) equal schedule (200 ms each) on two represen-
tative channels. Our experiments were performed in
areas where there are sufficient APs on all the three
channels. While more complicated dynamic schedules
are possible, we argue that it is difficult, if not infeasi-
ble, to develop an efficient schedule that considers APs
connections that are in data transfer and association
phases simultaneously.

Fig. 15 shows that the single channel mode with re-
duced timeouts performs best in terms of association
time–however, the reduced timeouts lead to a large
number of dhcp failures, which is a huge deterrent.
Moreover, the three channel schedule performs worse
than the dual channel scheduling. Hence, switching be-
tween channels during association is a primary source
of overhead in multi-AP solutions. Table 14 presents
throughput and connectivity results for the different
schedules—throughput is maximized when Spider uses
a single channel and connectivity is maximized when it
uses a equal schedule on three channels.

4.7 Matching Usability Needs
A central question that has intrigued researchers is

whether open Wi-Fi access can provide the connectivity
needs of people when in transit. Unfortunately, we
are not aware of the availability of any data on the
actual connectivity requirements of mobile wireless users.
To this end, we performed a study using data from
a permanent Wi-Fi mesh we deployed in downtown
Amherst. The mesh consists of 25 nodes and covers
an area of about 0.50 km2. We collected performance
data on all TCP flows from 161 wireless users for an
entire day. Although, all users might not be mobile,
the data provides us a plausible baseline. Overall in
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Figure 15: Delay in obtaining a dhcp lease and link layer
association for different scheduling policies in Spider. The
figure also considers reduced timeouts.
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Figure 16: Comparison of connection lengths for wireless
users and Spider.
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Figure 17: Comparison of disruption lengths for wireless
users and Spider.

the data collected, there were 128,587 completed TCP
connections and 13,645,161 packets were sent (1.7 GB).
Of these, 86,838 connections were made to the http port
(68% of the connections). We compare the traffic needs
of wireless users with those provided by Spider based on



two key metrics: (1) distribution of the duration of TCP
connections, and (2) distribution of inter-connection
time.

Fig. 16 compares the TCP flow lengths seen from
actual users using our mesh network and Spider in its
multi-channel and single-channel modes. It is clear from
the figure that Spider can support all the TCP connec-
tion flows that users require. Additionally, in Fig. 17
we compare the time between two connection for the
mesh users and disruption time for Spider. When Spider
uses multiple channels and multiple APs, it experiences
disruptions comparable to what real users can sustain.
While the single channel multiple AP sees large disrup-
tion, we believe that with a higher density of APs on
one channel, this gap can be bridged.

These results present Spider as a plausible complement
to cellular data services. However, more data on mobile
user’s connectivity needs and network usage pattern is
required in order to find out the degree to which Spider
can align itself with the needs of each individual user.
Conducting this study forms part of our future work
with Spider.

5. RELATED WORK
Spider builds on previous work on Wi-Fi access from

mobile nodes, fast Wi-Fi and cellular hand-offs, and
using multiple APs for throughput aggregation. Here,
we compare and contrast Spider with the most relevant
literature.

Wi-Fi Access from Moving Vehicles: Several
challenging problems such as lossy wireless mediums [4,
7,8,12], tuning TCP performance for mobility [1], and
AP selection [16] are well studied. The feasibility of
using cached history to reduce association and dhcp
overheads [5] has been demonstrated. Directional an-
tennas have also been used to improve throughput [14].
However, this body of work concentrates on using a
stock Wi-Fi model—association and data transfer with
one AP at a time. However, as we have demonstrated,
using a aggregation of APs can provide high aggregate
throughput and better connectivity in a mobile environ-
ment.

Performance through diversity: Using technolog-
ical and spatial diversity to improve Wi-Fi connectivity
has also been studied in the past. This class of related
work can be broadly classified by either infrastructure-
end or client-end modifications. Infrastructure-end mod-
ifications includes coordination or selection amongst
multiple open APs [3,11–13,13,23]. In contrast to these
approaches, Spider is a purely client-side solution that
aims at improving a mobile user’s performance in an
organic Wi-Fi setting. Client-side diversity-based so-
lutions rely on aggregating bandwidth across multiple
APs [10, 17, 19]. However, these solution are tuned to
work efficiently only in a static, stationary wireless envi-

ronment.
An orthogonal approach to aggregating bandwidth

in mobile nodes is using additional hardware—the as-
sumption is that each client has more than one Wi-Fi
card and data can be striped across concurrent connec-
tions to APs. PERM [22] is a multi-homed solution
that aggregates throughput across multiple residential
ISPs, profiles on-going connections, and assigns flows to
interfaces to minimize delay. MAR [20] exploits hetero-
geneity of existing wide-area wireless networks by using
a router architecture that aggregates independent cellu-
lar links into one fat reliable virtual data transfer pipe.
Horde [18] is a middle-ware solution on mobile nodes
that performs network striping over diverse cellular links
tuned to application needs. Most of these data striping
approaches can be built into Spider to enhance mobile
user performance.

Soft hand-off and AP selection: Spider also builds
on related work on fast cellular hand-offs and AP selec-
tion in mobile Wi-Fi networks. Fast hand-off is used
to mitigate the adverse effects of disruptions in cellular
networks [6]. While fast soft hand-off is plausible in a
cellular network where the cell towers are under the con-
trol of one central authority, it is not feasible in Wi-Fi
networks laid down by third-party users. The only prac-
tical soft hand-off solution using client side modifications
is Spider that virtualizes the Wi-Fi card and maintains
concurrent AP connections. Access point selection has
also been an active area of research in Wi-Fi mobile
networks. Several techniques including RSSI [9] and
history-based techniques [15] have been proposed. How-
ever, multi-AP selection, solved by Spider is a harder
problem (as we demonstrate in the Appendix) since it
involves selection of a set of APs.

6. CONCLUSION
We presented the design, implementation, and evalu-

ation of Spider, a system that can maintain concurrent
connections to multiple WiFi access points in highly mo-
bile scenarios. Spider concomitantly uses utility-based
multi-AP selection, channel-based scheduling, and op-
portunistic scanning to maximize throughput and con-
nectivity while mitigating the overheads of association
and obtaining dhcp leases. Our evaluation of Spider on
a vehicular testbed shows that it can provide manifold
improvement in throughput and connectivity; allowing
it to be a plausible supplement to cellular data services.
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APPENDIX
A. PROOF OF NP-HARDNESS

We assume that the mobile node spends T seconds
on a road segment that has n open WiFi access points.
We also assume that the driver has n virtual interfaces,
thus, it is possible to establish concurrent connections
to the n APs. Let Si be the i’th subset of the power-
set of n APs. We define a value Vi for each subset
Si. Vi is a function of the access points in the subset
and quantifies connectivity or throughput. For example,
if cumulative throughput is our desired metric, and
the wireless bandwidth that Si can provide is Wi then
Vi = Ti × Wi, where Ti is the time spent by a Spider
node within the range of the APs in Si. We also define
a cost Ci associated with Si. Ci is the sum of the time
that Spider spends within range of the APs in Si, the
association time, and the switching overhead among
channels and processing per channel queues. If Di is
this overhead, Ci = Ti + #Ti/T $ ×Di.

With these parameters as input, the goal of the multi-
AP optimization problem is to select a set of subsets Si,
such that the sum of their values is maximized subject
to the following constraints: (1) the total cost should
not exceed the total time T and, (2) each Ti must be
positive and less than T . Formally,

max
∑
i

Ti.Wi

such that
∑
i

(Ti + #Ti/T $.Di) ≤ T

∀i, 0 ≤ Ti ≤ T

The above problem is equivalent to the 0-1 knapsack
problem, which is known to be NP-hard.


