
Routing for Diverse Wireless Networks

Paper ID: 1569334617 Number of pages:12

Xiaozheng Tie, Aruna Balasubramanian, Manikandan Somasundaram, Arun Venkataramani
University of Massachusetts Amherst

{xztie, arunab, mani, arun}@cs.umass.edu

Abstract
Our work is motivated by a simple question: can we de-

sign a simple routing protocol that works well across diverse
wireless network environments such as meshes, MANETs,
and DTNs? We identify packet replication as a key structural
difference between protocols designed for opposite ends of
the connectivity spectrum, namely, DTNs and meshes. We
develop a model to quantify under what conditions and by
how much replication improves packet delays, and use these
insights to drive the design of ReGain, a routing protocol
that self-adapts replication to the extent of connectivity in
network conditions. We implement ReGain and evaluate its
performance through deployment over a mesh testbed and
trace-driven evaluations on real network testbeds exhibiting
diverse connectivity. Our results show that ReGain achieves
up to 2× better delay and 1.3× better goodput over exist-
ing protocols in a variety of network connectivity and load
conditions.

1 INTRODUCTION
Routing in wireless networks has seen a huge body of

work over the last decade as networking researchers and
practitioners have been identifying new target environments
such as multi-hop mesh networks, mobile or vehicular ad
hoc networks (MANETs), and disruption-tolerant networks
(DTNs). A variety of current or foreseeable applications mo-
tivate this research including extending the reach of the In-
ternet [7, 6, 8], wildlife monitoring [30], content distribution
[15, 13, 20], etc. Consequently, a number of routing pro-
tocols have been developed for each one of these environ-
ments.

Unfortunately, the state of the art is that routing protocols
designed for one environment work poorly or break down
completely in others. For example, mesh routing proto-
cols based on traditional link-state or distance vector routing
break down in DTNs where a contemporaneous end-to-end
path is unavailable. Most proactive as well as on-demand
MANET routing protocols also assume the availability of a
contemporaneous end-to-end path. Likewise, DTN routing
protocols commonly use packet replication to reduce delays,
but packet replication performs poorly in predictable, well
connected mesh networks. In other words, existing routing
protocols do not adapt to diverse network environments.

However, as wireless networks continue to proliferate,
users are likely to encounter diverse environments. As
we show in section 2, there are already several exam-
ples of real-world network deployments that exhibit diverse

connectivity—either spatially varying connectivity with a
mix of WiFi mesh and opportunistic DTNs [2] or tempo-
rally varying connectivity [20]. Exploiting these variations
can increase the capacity of the network and allow users to
seamlessly operate in diverse environments [13, 28].

Our work is motivated by a simple question: can we de-
sign a simple routing protocol that works well across di-
verse wireless network environments? Designing such a self-
adapting protocol can provide several benefits. First, it can
significantly improve performance in diverse networks com-
pared to protocols designed for a specific environment. Sec-
ond, a self-adapting protocol makes it easier to intercon-
nect different networks and allow seamless operation. Third,
adapting to diverse environments will allow protocols to be
robust under changing network conditions caused by node
failures or duty cycling. Finally, it reduces the engineering
and management complexity of protocol design as maintain-
ing one protocol for diverse networks is simpler than main-
taining different protocols for different networks.

To design a self-adapting protocol, we look at routing
protocols designed for diametrically opposite ends of the
connectivity spectrum—well-connected mesh networks and
always-partitioned DTNs—and observe that a critical struc-
tural difference between the two is packet replication, a
mechanism that yields significant delay benefits for the latter
but yields little benefit for and often hurts the former. We de-
velop a model to quantify under what conditions and by how
much replication improves packet delays. We show formally
as well as through experiments based on real DTN traces that
replication yields significant delay gains if and only if path
delays exhibit high unpredictability.

Based on these insights, we design and implement Re-
Gain, a routing protocol that self-adapts replication to the
unpredictability of path delays as well as the load in the
network. ReGain achieves these properties using two key
insights. First, it monitors the distribution of path delays,
not just their expected value, unlike traditional DTN rout-
ing protocols. Second, it leverages the empirical finding that
replicating each packet along two paths suffices to capture
most of the achievable replication gain. Furthermore, Re-
Gain uses load-aware adaptation that allows it to be respon-
sive to changing load conditions. ReGain turns off replica-
tion along the second path and switches to single-path for-
warding when it determines that the actual delay is signifi-
cantly higher than the estimated delay. Under extremely high
load, even single path forwarding may not achieve the net-

1

work capacity required to support the load. So, ReGain uses
a load-aware forwarding to switch from single-path forward-
ing to multi-path forwarding.

We extensively evaluate ReGain using (1) a prototype
deployed over a 16-node mesh network testbed, (2) trace-
driven experiments on two DTN testbeds, DieselNet [12]
and Haggle [20], and (3) emulation of network topologies
with varying levels of connectivity all the way from well-
connected meshes to highly disconnected DTNs. Our ex-
periments show that ReGain achieves up to 2× delay and
1.35× goodput over existing protocols in networks with spa-
tially and temporally diverse connectivity, while achieving
delay and goodput comparable to or better than the state-of-
the-art protocols tailored for well-connected and sparsely-
connected networks.
2 WHY DESIGN FOR DIVERSITY?

In this section, we motivate the need for a self-adapting
routing protocols for diverse networks. To this end, we first
show that state-of-the-art routing protocols perform poorly
outside the specific environment for which they are designed.
We then present real-world examples of networks exhibit-
ing significant temporal and spatial diversity in connectivity
characteristics. Finally, we describe the challenges in de-
signing a self-adapting routing protocol that works well in
networks with temporal or spatial diversity in connectivity.
2.1 Routing performance in diverse networks

State-of-the-art wireless routing protocol designs deeply
embed assumptions about the connectivity characteristics of
the underlying network. For example, in sparsely-connected
DTNs, packets are routed by replicating copies through mul-
tiple nodes. In contrast, in well-connected mesh networks,
packets are forwarded over a single path to the destination.

To understand how protocols perform outside their tar-
get environment, we conduct a simple experiment compar-
ing the performance of several DTN, MANET, and mesh
routing protocols, namely, RAPID [12], Random replica-
tion, DTLSR [23], AODV [33] and OLSR [4]. The first
two are replication protocols for sparsely-connected net-
works, and the latter three are forwarding protocols for
intermittently-disconnected or well-connected networks. We
conduct trace-driven experiments based on two sparsely-
connected testbeds, DieselNet[16], Haggle[20], and we con-
duct a deployment-based experiment on a well-connected
mesh testbed (Figure 8).

We make simple modifications to the above protocols so
that DTN protocols can work in a mesh and vice-versa. We
choose workload parameters to focus specifically on low and
high network load. A more detailed description of the mod-
ifications as well as the experimental setup is deferred to §5,
which also presents a more exhaustive exploration of proto-
col, workload, and environment parameters.

Figure 1(a) shows that in well-connected mesh, repli-
cation routing using RAPID increases delay by about 2×
compared to OLSR, the best forwarding protocol. Replica-
tion wastes resources while yielding little benefit in well-
connected environments.

However, the situation reverses in sparse networks. Fig-
ure 1(b) shows that in DieselNet DTN environment, repli-
cation routing using RAPID yields almost a 2× reduction
in delay compared to DTLSR, the best forwarding protocol.

Even random replication significantly reduces delay com-
pared to forwarding protocols. We observe qualitatively sim-
ilar results for the Haggle traces (not shown in figure).

Replication is not always beneficial in sparse networks.
Figure 1(c) shows that replication can hurt performance in
sparse networks when the offered load is high. Under high
load, replication increases the delay in DieselNet by 15%
over forwarding. We observe similar trends for goodput
across different networks and loads (not shown in figure).

Taken together, these results suggest that existing pro-
tocols work poorly outside of the specific environment for
which they are designed. This state of affairs would not
be terribly disturbing if real networks exhibited stable con-
nectivity characteristics, i.e., a given network always either
looked like a DTN or like a mesh. However, we find sig-
nificant temporal and spatial diversity in realistic network
testbeds, as described next.

2.2 Temporal and spatial diversity
Figure 2(a) shows that the connectivity, i.e., fraction of

connected node-pairs in the Haggle network varies tempo-
rally. Haggle [20] is an opportunistic network formed by 8
mobile devices carried by users and one stationary device in
the Intel Cambridge Lab. Figure 2(a) shows that the connec-
tivity of the Haggle network changes dynamically as a result
of user mobility. The connectivity is less than 10% for 40%
of the time, and is over 20% for 45% of the time. Connectiv-
ity can also vary temporally due to other causes such as node
failures or duty cycling in sensor networks.

Similarly, Figure 2(b) shows that the DieselNet bus net-
work’s connectivity varies spatially. DieselNet[2] is a hybrid
mesh-DTN testbed consisting of 20 buses operating in a 150
sq.mile area. Buses are connected either when they come in
contact with mesh access points (APs) or other buses. Figure
2(b) shows that the connectivity of buses varies with geo-
graphical location. The total number of bus-AP and bus-bus
contacts per day are over 500 in the town (center grid) and
the campus center (upper center grid), but are below 100 in
locations farther from the campus (right three grids).

Changes in network connectivity across location is often
the result of the difference in wireless penetration. For exam-
ple, in the hybrid mesh-DTN topology of DieselNet, buses
are well connected in urban centers with high WiFi AP den-
sity (as shown by the mesh clusters in Figure 2(b)), but are
poorly connected as they move to less urban areas. Recent
measurement studies show that such variations in connectiv-
ity can occur even in cellular networks [14].

Mesh protocols today rarely utilize the connectivity avail-
able in DTN areas with poor WiFi penetration. However,
exploiting hybrid mesh-DTN networks and utilizing the con-
nectivity offered by disruption-prone DTNs when available
(e.g., bus-bus contacts in DieselNet) can significantly in-
crease wireless capacity. For example, Balasubramanian et
al [13] show that the performance of delay-tolerant Web ap-
plications can be improved using a sparse-DTN when avail-
able. Similarly, Hui et al [28] show that delay-tolerant and
opportunistic communications can double the throughput of
a well-connected mesh network. Thus, in order to truly ex-
ploit the potential of hybrid networks, protocols should self-
adapt to changing connectivity patterns.

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

D
el

ay
 o

f f
lo

w
 (s

ec
on

d)

RAPID Random DTLSR AODV OLSR

Replication Forwrading

Quartiles
Mean

(a) Mesh: low load (4 pkt/second/flow)

 0

 0.3

 0.6

 0.9

 1.2

RAPID Random DTLSR AODV OLSR

Replication Forwrading

D
el

ay
 o

f f
lo

w
 (h

ou
r) Quartiles

Mean

(b) DieselNe-DTN: low load (20 pkt/hour/flow)

 0

 0.6

 1.2

 1.8

D
el

ay
 o

f f
lo

w
 (h

ou
r)

RAPID Random DTLSR AODV OLSR

Replication Forwrading

Quartiles
Mean

(c) DieselNet-DTN: high load (50 pkt/hour/flow)

Figure 1. Each boxplot shows min, max, 25%, 75% quartiles, median, and mean packet delays. Replication benefits
significantly in the DieselNet DTN network under low load but hurts performance in well-connected mesh. Replication
hurts performance under high load in the DieselNet DTN network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

time(day)

Fr
ac

tio
n

of
 c

on
ne

ct
ed

 n
od

es

(a) Haggle network: Connectivity varies temporally.

Total number of bus-AP and
bus-bus contacts per day

 673

 524

 205 40

 56 135

 100 378 85

WiFi Mesh cluster

(b) DieselNet: Connectivity varies spatially. The region includes
UMASS campus and Amherst town center (4 sq.mile)

Figure 2. Networks that exhibit varying connectivity
characteristics temporally and spatially

2.3 Designing a self-adapting routing protocol
In order to address the challenges of designing a self-

adapting routing protocol, we begin by observing a key
structural difference between routing protocols designed for
well-connected networks and sparsely-connected networks,
namely, replication. Therefore, we ask the question: Under
what connectivity and load conditions should replication be
used over forwarding? In §3 we develop a simple model
to first understand the benefits of replication in terms of the
network characteristics, ignoring the impact of load. We then
use the insights from the model to design ReGain that tunes
replication according to the network connectivity while be-
ing responsive to load.

3 QUANTIFYING REPLICATION GAIN
In this section, we develop an analytical model to quantify

when and by how much replication improves delay. A foun-
dational understanding of this question is crucial to the de-
sign of a routing protocol that self-adapts to diverse network
environments. The model formally shows that replication
yields big gains if and only if delays of different paths are
highly unpredictable. We also perform trace-driven experi-

S D

There are paths between S and D. Each path has a delay

X1

X2

Xn

i

Xi

Xi

Figure 3. Model

ments to show that twofold replication is sufficient to achieve
most of the available gain in practice.
3.1 Model

We quantify the benefit of replication in terms of end-to-
end delay improvement. To this end, we model the end-to-
end delays of the different paths connecting a source and
destination pair. Figure 3 shows a node pair with source
S, destination D, and n different (possibly multi-hop) paths
connecting them. The end-to-end delays of the paths are rep-
resented by random variables X1, · · · ,Xn respectively. In §4
we describe a practical technique to measure this end-to-end
path delays, considering both bandwidth and link loss rates.

We also make a simplifying assumption, namely, that the
random variables X1, · · · ,Xn are independent. Note that this
assumption is rather simplistic as it implies that there is no
interference between packets traversing different paths and
thus ignores any effects induced by load. However, abstract-
ing away load effects yields simple insights into the best case
gains of replication. Later, we consider the effect of load on
the routing decision (§4).

Forwarding and replication choose from among these
paths for routing, but in different ways. We assume forward-
ing sends a packet on the path with the minimum expected
delay, and replication sends copies of a packet on all paths.
Let µ and µ(1) denote the expected delay from S to D using
forwarding and replication respectively, then 1

µ = min{E[X1],E[X2], ...,E[Xn]} (1)

µ(1) = E[min{X1,X2, ...,Xn}] (2)

The random variable representing the delay when using
replication, min{X1,X2, ...,Xn}, is also commonly referred
to as the first-order statistic. It is well known [21] and easy
to show that µ ≥ µ(1), and we define the ratio µ/µ(1) to be the
replication gain.
3.2 How to compute the replication gain?

The replication gain is defined as µ/µ(1). Let m be the
path with minimum expected delay. It is straightforward to

1E[·] denotes the expected value of a random variable.

3

show (refer to the Appendix) that the replication gain is

µ
µ(1)

=

Z +∞

0
P[Xm > x]dxZ +∞

0

n

∏
i=1

P[Xi > x]dx
(3)

Eq. 3 presents an important insights: Computing the repli-
cation gain, and in turn deciding whether to replicate, re-
quires knowledge of the delay distribution of the different
paths (Xi’s), not just their expected values (E[Xi]′s).

State-of-the-art replication protocols often make replica-
tion decisions based on the expected delay[37, 36] or make
assumptions about the delay distribution a priori [12, 37,
41, 36, 11]. For example, RAPID [12] assumes that the de-
lay distribution is exponential, and therefore estimates the
replication gain of k replicas to be k-fold relying only on
expected delays. However, the k-fold replication gain as-
sumption does not hold when the delay distribution is not
exponential, e.g., in predictable mesh networks, two replicas
are unlikely to halve the delay. Therefore, we design Re-
Gain (§4), which makes replication decisions based on the
delay distribution, but makes no assumptions about the dis-
tribution a priori. Our evaluations (§5) shows that using the
delay distribution can significantly improve performance of
routing protocols over only using the expected values.
3.3 When is the replication gain high?

Intuitively, replication helps when the delays are highly
unpredictable. For example, consider a source and desti-
nation connected by two paths whose delays are given by
random variables X1 and X2. If X1 is always equal to 1
second and X2 is always equal to 3 seconds, then replication
yields no benefit compared to simply choosing the first path.
Now suppose that X1 is 0.1s in 90% of the cases and 10s in
10% of the cases, and X2 is 0.3s in 90% of the cases and 30s
in 10% of the cases. The mean delays of X1 and X2 are still
about 1s and 3s respectively. However, replication results in
a mean delay of about 0.2s, a 5× improvement compared to
the shortest path forwarding. We first define predictability
of delays as follows.

Definition 1. The predictability of a random variable X is
the smallest ε such that its cumulative density below εE[X]
is at least 1− ε, i.e., P [X ≤ εE[X]] ≥ 1− ε.

Note that ε = 1 always satisfies the condition in the defi-
nition (as P[X ≤ E[X]]≥ 0), so predictability is well defined
and lies between 0 and 1. Low predictability (i.e., highly
unpredictable delays) means that the delay is much smaller
than the mean most of the time, but the mean is inflated by
occasional large values. Figure 4 shows a pictorial example
of distributions with low and high predictability.

In the previous example, when X1 is always 1 second,
ε = 1. When X1 is 0.1s in 90% of the cases and 10s in 10%,
the predictability ε = 0.1. We arrive at these predictability
values by solving the equation P[X1 ≤ εE[X1]] ≥ 1 − ε.
Intuitively, as in the example, lower predictability implies
higher replication gain2. We formalize this claim using the

2The predictability is different from variance. It is easy to show
that high variance doesn’t lead to high replication gain.

P
[X

≤
x
]

P [X ≤ x] = 1 − e
−x

1

0
E[X]

x

low ε

high ε
P [X ≤ x] = Φ(

x − 1

0.5
)

Figure 4. Distributions with more values below the mean
have lower predictability

following theorem.

THEOREM 1. For a source-destination pair connected by
n ≥ 2 paths, the delays of the paths are independent and
identically distributed (i.i.d) as denoted by X.
(a) If X has predictability ε, then the replication gain is at
least 1

1−(1−ε)2 , i.e., low predictability implies high replica-
tion gain.
(b) If the replication gain is G ≥ 1, then X has predictability
at most G− 1

n+1 , i.e., high replication gain implies low pre-
dictability.

The relation between replication gain and predictability
generalizes to independent but nonidentical distributed
random variables. We define relative predictability as:

Definition 2. For a set of random variables X1, · · · ,Xn, let
Xm have the minimum expected delay. Then the relative
predictability of a random variable Xi is the smallest δ such
that P [X ≤ δE[Xm]] ≥ 1−δ.

THEOREM 2. For a source-destination pair connected by
n ≥ 2 paths, the delays of the paths are independently but
non-identically distributed as denoted by X1, · · · ,Xn and
E[Xm] = min{E[X1], · · · ,E[Xn]}
(a) If there exists a variable Xi 6= Xm with relative pre-
dictability δ, then the replication gain is at least 1

1−(1−δ)2 ,
i.e., low predictability implies high replication gain.
(b) If the replication gain is G ≥ 1, and there exists Xi such
that P[Xi ≤ G− 1

n+1 E[Xm]] = max1≤ j≤n P[X j ≤ G− 1
n+1 E[Xm]],

then Xi has relative predictability at most (G− 1
n+1) i.e., high

replication gain implies low predictability.

The proofs for both theorems are presented in the Appendix.

3.4 Implications
The theorems yield two important implications. First,

replication gain grows unbounded as the predictability ap-
proaches 0. Furthermore, as the theorems hold for any n≥ 2,
even two paths can yield unbounded gains. To study how
replication gain increases with the number of paths used for
replication in practice, we perform trace-driven analysis on
DieselNet-DTN and Haggle. Using the traces, we generate
link-state graphs of link delays. Using this graph, we infer
the path delay distributions and use Eq. 3 to estimate repli-
cation gain when two, three, four and all paths are used for
replication respectively. Figure 5 shows that two paths give
between 65% and 75% of maximum gain in real traces, and
the marginal benefit of using additional paths is small.

4

 0

 1

 2

 3

 4

All432

R
ep

lic
at

io
nt

 g
ai

n

Number of paths for replication

Quartiles
Mean

(a) DieselNet-DTN

 0

 1

 2

 3

 4

All432

R
ep

lic
at

io
nt

 g
ai

n

Number of paths for replication

Quartiles
Mean

(b) Haggle

Figure 5. Replication gain across node pairs. Two paths
get most of the gain on both traces.

Further, since the predictability of a path can help infer
replication gain, the theorems can be used to prune paths
that are not suitable for replication. We use these insights to
design ReGain, described in the next section.
4 ReGain DESIGN

In this section, we present ReGain, a routing protocol that
self-adapts the level of replication to network and load con-
ditions. ReGain’s design is driven by the following insights
revealed by our model (§3) and analysis of existing routing
protocols (§2): (1) replication gain depends on the distribu-
tion of path delays, not just their mean value; (2) two paths
suffice to capture most of the replication gain; (3) under high
load, replication yields little benefit and hurts performance.

ReGain consists of three main components—(i) estimat-
ing the end-to-end delay distribution, (ii) selecting the opti-
mal path for replication based on the delay distribution, (iii)
adapting replication and forwarding on multiple paths to net-
work and load conditions.
4.1 Delay estimation

The model presented in §3 quantifies the replication gain
as a function of the end-to-end delay distribution. How-
ever, estimating the delay distribution in a unified manner
across diverse networks is non-trivial. For example, in well-
connected mesh networks, ETT[24], Per-hop RTT[10] or
similar metrics are used to estimate link delays, but these
metrics are unsuitable to estimate delays in disruption-prone
environments where there are no persistent links. Similarly,
in sparse networks, inter-contact times[12, 11, 36] are often
used to measure link delays, but they are not meaningful in
mesh environments where links are persistent.

Instead, ReGain uses a unified metric to capture
link delays in both well-connected and sparse networks.
DTLSR[23] uses a similar unified metric to capture link de-
lays but is a forwarding-only protocol that does not self-
adapt. We compare the performance of ReGain with DTLSR
in Section 5.
4.1.1 Link delay metric

We define link delay as the sum of the link availabil-
ity delay and the delay to successfully transfer the packet
across the link. In sparse-networks, the availability delay
contributes significantly to the link delay, while in well-
connected networks, the delay to successfully transfer the
packet is the significant contributor to the link delay. In this
subsection and the next, we ignore load-dependent queuing
delays and address them in §4.3.
Link availability delay: This delay is the time until which
the link remains down. In mesh networks, this time is zero
for nodes that are connected. In disruption-prone networks,

Availability delay X

Inter-contact time Y

Nodes contact intermittently.
The contact durations are much smaller than inter-contact time

node contacct
uniform random point

time

Figure 6. Availability delay X and inter-contact time Y

this time is often approximated by the expected inter-contact
time between the corresponding nodes. However, there is a
subtle but important distinction between the availability de-
lay and the inter-contact time.

To appreciate the distinction formally, let X be a random
variable representing the availability delay and Y be a ran-
dom variable representing the inter-contact time. For sim-
plicity, assume that the contact durations are much smaller
than the inter-contact times. By definition, X represents the
time until the next contact sampled at a uniformly random
point in time, while Y is the time between contacts. Figure
6 illustrates the difference between the availability delay and
the inter-contact time. It can be shown that (see proof in the
Appendix) that X and Y are related as follows:

P[X ≤ x] =
1

E[Y]

Z x

0
(1−P[Y ≤ y])dy (4)

and

E[X] =
E[Y]

2
+

σ2(Y)
2E[Y]

(5)

where σ2(Y) denotes the variance of Y .
In other words, E[X] is not equal to E[Y] in the general

case, contrary to explicit or implicit assumptions made by
prior routing protocols [12, 38, 11, 36]. However, in the spe-
cial case when the inter-contact time Y is exponentially dis-
tributed, X is identical to Y . If Y represents periodic node
meetings, i.e., the variance is 0, then X is uniformly dis-
tributed between 0 and E[Y], so E[X] = E[Y]/2. If Y is uni-
formly distributed in the interval [a,b], then E[Y] = (a+b)/2
and E[X] = a/6 + b/3. To enable delay estimation for arbi-
trary distributions, ReGain explicitly measures the availabil-
ity delay X .
Delay to successfully transfer the packet: This delay de-
pends on the transmission delay, propagation delay, and the
loss rate of the link. To incorporate loss rates, the delay to
transfer packets includes the delay incurred in retransmitting
lost packets.
4.1.2 Estimating link delay

The total link delay is measured using link probes. Each
node periodically sends out probes and one-hop neighbors
who receive the probe send an acknowledgement. If a probe
is acknowledged, the sender estimates the link delay as half
of the corresponding round-trip time. If a probe is not ac-
knowledged, the sender estimates the corresponding round-
trip time as the time since sending the unacknowledged
probe and receiving an acknowledgement (for a subsequent
probe). In other words, the delays for acknowledged probes
incorporate the transmission and propagation delays, and the

5

delays for unacknowledged probes incorporate the delay in-
troduced by unavailability and loss.

Each node computes a summary of the link delay distri-
bution obtained from the samples collected using the probes
as above. This summary consists of the mean value and the
decile values (i.e., the tenth, twentieth, thirtieth, etc. per-
centiles). These eleven values constitute a link-state adver-
tisement (LSA). Nodes periodically disseminate the LSA to
all other nodes by piggybacking them on the link probes,
and thereby maintain a link-state graph of the network with
each link annotated with its delay distribution summary as
reported by the most recent LSA.
4.1.3 Estimating path delay

The path delay is computed as the sum of its constituent
link delays. The expected delay of a path is the sum of the
expected delays of its constituent links (by linearity of ex-
pectations [18]). However, the path delay distribution is the
convolution of its constituent link delay distributions.

More precisely, let Xn denote the end-to-end delay of a
path consisting of n links, and let Y1,Y2, · · · ,Yn denote the
constituent link delays. Let Xi = Y1 +Y2 + · · ·+Yi, 1 ≤ i ≤
n, denote the delay of the path consisting only of the first i
links. Then, Xi = Xi−1 +Yi and the distribution of Xi is the
convolution of the distributions of Xi−1 and Yi. In this way,
a node iteratively computes the delay distributions of paths
from one-link path X1 to n-link path Xn.

The convolutions are computed by discrete link delay val-
ues obtained from the decile values in the LSAs. The end-to-
end path delay distribution as computed above may consist
of many more than ten values, however this distribution is
only used locally by a node to select paths as described next.
4.2 Path selection

In this section, we describe how ReGain selects paths for
replication based on the delay distributions. ReGain uses at
most two paths for replicating packets in accordance with
the trace-driven analysis in §3. A node selects the first path
by running Dijkstra’s shortest path algorithm. The algorithm
takes as input the expected delay of links and outputs the
path with minimum expected delay for each destination.

A node selects the second path by choosing one that min-
imizes the combined two-path delay. The choice of the sec-
ond path depends on path delay distributions, not just their
expected values. Let X1 denote the delay on the first path
with the minimum expected delay as computed above and
X2, · · · ,Xm denote the delays of other candidate paths. The
expected delay D1,i of replicating along both paths is

D1,i =
Z +∞

0
P[X1 > x]P[Xi > x]dx (6)

A node picks as the secondary path the path that min-
imizes D1,i, 2 ≤ i ≤ m, where D1,i is computed as above.
Since the delay estimation algorithm using the decile values
results in a discrete random variable, ReGain’s implementa-
tion computes D1,i as

D1,i =
N

∑
k=0

P[X1 > k∆]P[Xi > k∆]∆

for a suitably small interval ∆ and the sum is over integers
0 ≤ k < N, where N is the smallest integer such that N∆

exceeds the largest observed delay across all candidate paths.
A node uses the second path to replicate packets only when
D1,i < 0.9 ·E[X1], i.e., the replication gain is at least 1.1.

The number of candidate second paths to a destination
can be exponential in the size of the network, so a brute force
search for the best second path using delay distributions as
above can be expensive. ReGain uses a simple heuristic to
prune the set of candidate second paths. Based on Theo-
rem 1 and 2 (§3), paths with low predictability yield high
replication gain. Accordingly, ReGain estimates the relative
predictability of each path using the delay distribution. Re-
Gain then only considers paths whose predictability ε < 0.7
as a candidate second path (which yields a replication gain
of at least 1.1 using Theorem 2).
4.3 Load-aware adaptation

ReGain as explained so far ignored the impact of load.
However, under high load conditions, replication yields lit-
tle benefit and can instead severely hurt performance (even
when limited to two paths). So, ReGain uses a load-aware
replication to switch from replication to (single-path) for-
warding. Under extremely high load, even single-path path
forwarding may not achieve the network capacity required to
support the load. So, ReGain uses a load-aware forwarding
to switch from single-path forwarding to multi-path forward-
ing. We explain both mechanisms below.
4.3.1 Load-aware replication

Each source node tracks the actual delay of replicating
packets along two paths by having the destination send an ac-
knowledgment for the earliest delivered copy of each packet.
If the actual two-path delay exceeds twice the estimated two-
path delay, the node treats it as a sign of network congestion
and reverts to single-path forwarding along the shortest path.

The node keeps monitoring the actual two-path delay by
sending infrequent probe packets on the second path. It
switches back to replication when the actual two-path delays
falls below twice the estimated two-path delay. Our experi-
ments in §5 suggest that this simple heuristic is sufficiently
responsive to high load enabling ReGain to achieve perfor-
mance comparable to state-of-the-art forwarding protocols.
4.3.2 Load-aware forwarding

A node uses load-aware forwarding to switch from single-
path forwarding to multi-path forwarding under high net-
work load. In contrast to replication that sends copies of
a packet on multiple path, multi-path forwarding sends each
packet along a single path but stripes packets along different
paths. To appreciate when multi-path forwarding is funda-
mentally needed, consider a node pair connected by a low-
delay, low-bandwidth path and a high-delay, high-bandwidth
path. When the network load is low, the best strategy is
to send all packets on the low-delay, low-bandwidth path.
However, when the load exceeds the bandwidth of the low-
delay path, a node must distribute some load on the high-
delay, high-bandwidth path.

As above, each source node tracks the actual delay of
packets. If the average actual delay on the shortest path is
more than twice its expected delay, the source node consid-
ers the shortest path as congested. At this point, ReGain
sends probe packets and measures the actual delay on the
path with the second-lowest expected delay, and starts for-
warding packets on both the shortest path and this path if the

6

Single-Path
ForwardingReplication Multi-Path

Forwarding

start

Low load High load

Load-aware
replication

Load-aware
forwarding

Figure 7. ReGain’s state machine

latter’s actual delay is less than half of the former’s actual
delay. The packets are striped along the two paths such that
the load on each path is inversely proportional to their ac-
tual delays. A node switches back from two-path forwarding
to single-path forwarding if the actual delay on the second-
lowest delay path exceeds half of the actual delay on the
shortest path.

Figure 7 shows ReGain’s state machine that puts together
all three components : replication, single-path forwarding,
and multi-path forwarding.

4.4 Implementation details
ReGain source-routes data packets by including the en-

tire path in the packet header in order to avoid routing loops.
When the destination receives the packet, it sends an ac-
knowledgment reporting the time of receipt on each path
along which it received the packet. If the absolute delay val-
ues are on the order of minutes or longer (as in DTNs), Re-
Gain uses the timestamp reported in the acknowledgment to
approximate the one-way path delay. This assumes loosely
synchronized clocks across nodes, which we expect to hold
in practice. If the absolute delay values is small (as in
meshes), ReGain estimates one-way path delay as half the
round trip delay to receive the acknowledgment.

We send link probes and probe acknowledgements as
broadcast packets to avoid retransmissions by the 802.11
MAC and reduce overhead. Finally, to keep routing over-
head low, ReGain nodes propagate LSAs only if the expected
delay or any of the decile values change by more than 10%.

5 EVALUATION
We evaluate ReGain using a combination of trace-driven

evaluations as well as deployment-based experiments. For
a broad evaluation, we perform experiments over a range of
parameters as listed below:

1. Diverse networks: We conduct experiments on net-
works that exhibit spatial (§5.2.1) and temporal (§5.2.2)
variations to evaluate the performance of ReGain under
different connectivity scenarios.

2. Homogeneous networks: We quantify the performance
of ReGain in homogenous network conditions on the
ends of the connectivity spectrum; i.e. sparsely-
connected DTNs (§5.3.1) and well-connected meshes
(§5.3.2) and show that ReGain outperforms the state-
of-the-art replication-only and forwarding-only proto-
cols in each of the environments.

3. Varying load: We show that ReGain adapts to varying
load and outperforms state-of-the-art routing protocols
under different load conditions. We also show that the
second best performing protocol varies with changing
load, motivating the need for a self-adapting protocol.

Approx 85 meters

Ap
pr

ox
 4

0
m

et
er

s

Figure 8. The Mesh testbed with dots representing nodes.

Finally, we show how different components of ReGain
individually contribute to its performance, namely, (i) Using
delay distributions rather than mean, (ii) Load aware replica-
tion and forwarding, and (iii) Using two-path replication.
5.1 Experimental setup

We evaluate ReGain using a deployed prototype on a
wireless mesh testbed as well as trace-driven experiments
using traces collected from real network testbeds exhibiting
temporally and spatially diverse connectivity. We refer to
these testbeds as Mesh, Haggle and DieselNet. The deploy-
ment as well as trace-driven evaluations use 1.5KB packets.
The experiments are of one hour duration on Mesh and one
day duration on Haggle and DieselNet. Each data point is
averaged over five runs.
5.1.1 Mesh Deployment:

We deploy ReGain on the Mesh testbed. Mesh is a well-
connected wireless mesh testbed consisting of 16 nodes in
one floor of our computer science building (Figure 8). Each
node is an Apple Mac Mini computer running Linux 2.6 with
802.11b Atheros/MadWiFi wireless card. The cards are con-
figured to send at 5.5Mbps with a transmit power of 15dBm.
RTS/CTS is turned off, and the cards are set to ad hoc mode.
The ReGain prototype runs as a user-space daemon. Our im-
plementation sends and receives raw 802.11 frames from the
wireless device using the libnet interface[3]. Path lengths
vary between 1 and 5 hops.
5.1.2 Trace-driven evaluation:

We conduct trace-driven evaluations over Haggle and
DieselNet using the QualNet simulator[5]. Haggle[20] is a
sparsely-connected network with temporally diverse connec-
tivity (Figure 2(a)). The trace consists of a list of contacts in
the format (i, j, s, e), where i and j are two nodes, s and e
are the start and end time of one contact between them.

DieselNet [2] is a hybrid mesh-DTN testbed with spa-
tially diverse connectivity. The testbed consists of 20 buses
in a 150 sq.mile area forming a sparse network. The testbed
has several mesh clusters (shown in Figure 2(b)), and the
buses have continuous connectivity to the mesh APs when
in range of the mesh cluster, forming a well-connected net-
work. Unlike Haggle and Mesh the DieselNet testbed has
two kinds of nodes: stationary APs and mobile buses.

We a priori infer the GPS coordinates of the APs in the
mesh clusters. We log the GPS coordinate of each bus in the
format (i, t, lat, lon) denoting that node i is at GPS location
(lat, lon) at time t. Any two nodes in the trace are said to be
in contact when they are within 100 meters of each other, as
inferred from their GPS locations.

Given the length of a contact between two nodes (that
is obtained from the contact schedule in Haggle and from

7

the GPS coordinates in DieselNet), QualNet simulates data
transfer during the period of the contact. The data rate is
set to 5.5Mbps using two-ray pathloss model and rayleigh
fading model.
5.1.3 Alternate routing protocols

We compare the performance of ReGain to the following
forwarding and replication based protocols:

1. Replication-based: (i) RAPID [12], a DTN routing pro-
tocol that makes replication decision based on packet
utilities and (ii) Random, a simple replication-based
protocol that replicates packets with a random proba-
bility of 0.5.

2. Forwarding-based: (i) DTLSR [23], a DTN routing
protocol based on link-state forwarding that uses de-
lays as the link metric, (ii) AODV [33], a mesh rout-
ing protocol based on distance-vector forwarding that
uses hop count as the link metric, and (iii) OLSR [4],
a mesh routing protocol based on link-state forwarding
that uses ETX [22] as the link metric.

We implement RAPID, Random and DTLSR in our Mesh
testbed and in the QualNet simulator, and modify existing
implementations of AODV [1] and OLSR [4].

While evaluating the above protocols in environments
they are not designed for, we make some straightforward
changes. AODV and OLSR assume the existence of a con-
temporaneous end-to-end path. To adapt AODV and OLSR
to sparsely-connected networks, we set a high timeout val-
ues allowing them to buffer packets. RAPID’s design based
on inter-contact times and transfer opportunities makes it un-
usable as-is on a mesh, so we modify it to use expected de-
lays or ETT [24] (specifically in Eq. 8 in [12]) in mesh net-
works. We preserve RAPID’s assumption of exponentially
distributed delays, i.e., k replicas of a packet reduce delay
k-fold, as that is central to its design and ignores the nature
of actual delay distributions in contrast to ReGain.

To reduce clutter, the lines for Random and AODV in the
graphs are deferred to the Appendix, as we find that Random
consistently performs worse than ReGain and RAPID, and
AODV consistently performs close to OLSR.
5.1.4 Load and metrics

We generate 30 concurrent flows between randomly cho-
sen source-destination pairs. In the DieselNet testbed, where
nodes can either be a bus or an AP, packets either flow from
a bus to the AP or vice versa. We vary the rate of the flows
to change the load in the network.

We quantify the performance of the protocols in terms
of delay and goodput. Delay of a flow is the average delay
of packets in a flow, and the delay of undelivered packet is
the time the packet spent in the network. Goodput is the
average rate of packet reception over the experiment period.
The goodput metric is similar to the capacity of the network.
5.2 Diverse connectivity

We conduct experiments in diverse network environments
to show that ReGain adapts well to different connectivity
scenarios.
5.2.1 DieselNet: Spatial diversity

We first evaluate ReGain on DieselNet, a hybrid mesh-
DTN network that has spatially diverse connectivity (Fig-
ure 2(b)). As no protocol is explicitly designed for this hy-

 0

 2

 4

 6

 8

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
v
e
ra

g
e
 D

e
la

y
 (

m
in

)

REGAIN
RAPID+OLSR

RAPID
OLSR

(a) Delay

 0

 0.4

 0.8

 1.2

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
v
e
ra

g
e
 G

o
o
d
p
u
t
(p

k
t/
m

in
)

REGAIN
RAPID+OLSR

RAPID
OLSR

(b) Goodput

Figure 9. Spatial diversity on DieselNet. ReGain im-
proves delay by 1.45× and goodput by 1.25×.

brid mesh-DTN environment exists, we compare ReGain to
three protocol setups: (a) RAPID on the buses and OLSR on
the mesh clusters (i.e., replication on DTN and forwarding
on mesh respectively); (b) RAPID on both buses and mesh
clusters; (c) OLSR on both busses and mesh clusters. We
mark them as RAPID+OLSR, RAPID, and OLSR respec-
tively. Recall that RAPID is well-suited for the DTNs while
OLSR is well suited for mesh environments.

Figure 9 shows the average delay and goodput across
flows on DieselNet. ReGain outperforms all other pro-
tocols at all loads and, in particular, improves delay by
1.45× and goodput by 1.25× over the second best protocol,
RAPID+OLSR. The gains increase with load.

OLSR, a forwarding protocol routes most packets via di-
rect contact and fails to utilize connectivity enabled by bus-
bus DTN connectivity. ReGain, RAPID+OLSR and RAPID
all leverage DTN connectivity and outperform OLSR. How-
ever, ReGain adapts replication better to the spatial diversity
compared to the the latter two protocols.

We performed a paired t-test[18] to understand if the dif-
ference between the different protocols is statistically signif-
icant. We compare the average value across flows using Re-
Gain to the average value across flows using the second best
protocol, RAPID+OLSR. We found that the p-values were
less than 0.001, indicating that the difference between the
average values is statistically significant. The p-values are
in the same ballpark for all of the experiments comparing
averages in this paper, so we omit stating them explicitly.
5.2.2 Haggle: Temporal diversity

As Haggle exhibits temporal diversity in connectivity
(Figure 2(a)), we use this trace to evaluate ReGain’s perfor-
mance in scenarios with varying connectivity over time. Fig-
ure 10 shows that ReGain improves delay by 1.35× and im-
proves goodput by 1.15× over the second best protocol. Fur-
thermore, it consistently achieves the best delay and goodput
even as the load increases.

Figure 10 further shows that at low load, RAPID, a
replication-based protocol outperforms OLSR and DTLSR,
both forwarding-based protocols. However, when the load
increases, OLSR and DTLSR outperform RAPID, showing
that replication hurts performance under high load.
5.2.3 Mesh: Emulating diverse connectivity

To further stress-test ReGain’s performance in diverse
connectivity scenarios, we use the mesh testbed to emulate
networks with changing connectivity. We define connectivity
as the fraction of connected node pairs in the network graph.

8

 0

 2

 4

 6

 8

 0 5 10 15 20 25

pkt/hour/flow

A
v
e
ra

g
e
 D

e
la

y
 (

h
o
u
r)

REGAIN
RAPID
DTLSR
OLSR

(a) Delay

 0

 5

 10

 15

 20

 0 5 10 15 20 25

pkt/hour/flow
A

v
e
ra

g
e
 G

o
o
d
p
u
t
(p

k
t/
h
o
u
r)

REGAIN
RAPID
DTLSR
OLSR

(b) Goodput

Figure 10. Temporal diversity on Haggle. ReGain im-
proves delay by 1.35× and goodput by 1.15×.

100

10

1

0.1

0.03
 0 0.2 0.4 0.6 0.8 1

Connectivity

A
v
e
ra

g
e
 D

e
la

y
 (

s
e
c
o
n
d
)

REGAIN
RAPID
DTLSR
OLSR

(a) Delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

Connectivity

A
v
e
ra

g
e
 G

o
o
d
p
u
t
(p

k
t/
s
e
c
o
n
d
) REGAIN

RAPID
DTLSR
OLSR

(b) Goodput

Figure 11. Emulating diverse connectivity on Mesh. The
y-axis of (a) is in logscale. ReGain improves delay by 2×
and goodput by 1.25× across varying connectivity.

We bring the nodes up and down, fixing the down time to
one minute. We vary the node up time to get different levels
of connectivity. The load is fixed to 0.5 pkt/second/flow to
induce moderate load, while the connectivity increases from
0.1 to 1, holding each connectivity level for one hour.

Figure 11 shows the average delay and goodput across
flows at time-varying connectivity. ReGain has up to 2×
delay improvement and 1.25× goodput improvement over
existing protocols.

It is noteworthy that the other protocols work well in spe-
cific connectivity regimes but perform poorly in others. For
example, Figure 11(a) shows that when connectivity is less
than 0.7, RAPID outperforms forwarding-based OLSR and
DTLSR. However, as connectivity improves, both OLSR and
DTLSR outperform RAPID. On the other hand, ReGain out-
performs all of the compared protocols at all connectivity
levels.
5.3 Homogeneous network conditions

We conduct experiments in sparsely-connected and well-
connected networks and show that in these environments,
ReGain, a self-adapting protocol, outperforms protocols that
are specifically designed for the environment.
5.3.1 Sparsely-connected networks

We use the DieselNet testbed as our sparsely-connected
network but remove the mesh clusters, and mark the testbed
as DieselNet-DTN. Figure 12 shows that under low load, Re-
Gain performs comparably to RAPID, a replication-based
protocol specifically designed for the sparsely-connected
DTN environment. However, ReGain achieves 1.40× delay
and 1.30× goodput improvement under high load. ReGain’s
load-aware replication enables the better performance than

 0

 0.5

 1

 1.5

 0 10 20 30 40 50

pkt/hour/flow

A
v
e

ra
g

e
 D

e
la

y
 (

h
o

u
r)

REGAIN
RAPID
DTLSR
OLSR

(a) Delay

 0

 10

 20

 30

 0 10 20 30 40 50

pkt/hour/flow

A
v
e

ra
g

e
 G

o
o

d
p

u
t

(p
k
t/

h
o

u
r)

REGAIN
RAPID
DTLSR
OLSR

(b) Goodput

Figure 12. DieselNet-DTN: Sparsely-connected network.
ReGain has comparable performance to RAPID, a DTN
routing protocol, under low load. ReGain outperforms
RAPID under high load.

 0

 0.2

 0.4

 0.6

 0 2 4 6 8 10

pkt/second/flow

A
v
e

ra
g

e
 D

e
la

y
 (

s
e

c
o

n
d

)

REGAIN
RAPID
DTLSR
OLSR

(a) Delay

 0

 2

 4

 6

 0 2 4 6 8 10

pkt/second/flow

A
v
e

ra
g

e
 G

o
o

d
p

u
t

(p
k
t/

s
e

c
o

n
d

) REGAIN
RAPID
DTLSR
OLSR

(b) Goodput

Figure 13. Mesh: Well-connected network. ReGain has
comparable performance to OLSR, a protocol designed
for mesh networks, under low load. ReGain performs
slightly better than OLSR under high load.

RAPID under high load.
DTLSR and OLSR perform much worse compared to

both RAPID and ReGain; DTLSR does not use replication,
and OLSR is not designed for highly unpredictable and dis-
connected topologies.
5.3.2 Well-connected networks

We use our mesh deployment as the well-connected net-
work. Figure 13 shows that under low load, ReGain has sim-
ilar performance to OLSR, a forwarding-based routing pro-
tocol designed specifically for well-connected meshes. At
high loads, ReGain has a 1.16× delay and 1.11× goodput
improvement over OLSR. ReGain employs load-aware for-
warding to distribute load across multiple paths under high
load, which results in the slightly better performance com-
pared to OLSR.

As expected, ReGain has up to 1.7× delay and 3× good-
put improvement over RAPID, since RAPID is not designed
for mesh environments.
5.4 Component of ReGain

In this section, we evaluate four aspects of ReGain’s de-
sign: (a) using delay distribution rather than mean values for
path selection, (b) load-aware adaptation, (c) using two-path
replication, (d) routing overhead.
5.4.1 Distribution vs. mean

We modify ReGain to select the replication path using
mean delay rather than delay distribution as follows: the
first path is selected as the minimum expected delay path
as before, and the second path is the one with the second

9

 0

 2

 4

 6

 8

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
v
e
ra

g
e
 D

e
la

y
 (

m
in

)

Distribution
Mean

(a) Delay

 0

 0.4

 0.8

 1.2

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow
A

v
e
ra

g
e
 G

o
o
d
p
u
t
(p

k
t/
m

in
) Distribution

Mean

(b) Goodput

Figure 14. DieselNet: Using delay distribution versus
mean delays for path selection. Using delay distribution
improves delay performance by 1.5× delay and goodput
performance by 1.22× over using mean delay.

 0

 2

 4

 6

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
v
e
ra

g
e
 D

e
la

y
 (

m
in

)

load-aware replication+forwarding
only load-aware replication

no load-aware

(a) Delay

 0

 0.4

 0.8

 1.2

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
v
e
ra

g
e
 G

o
o
d
p
u
t
(p

k
t/
m

in
)

load-aware replication+forwarding
only load-aware replication

no load-aware

(b) Goodput

Figure 15. DieselNet: Performance of load-aware repli-
cation and load-aware forwarding components. Load-
aware replication improves delay by 1.35× and goodput
by 1.21×, and load-aware forwarding further improves
delay by 1.14× and goodput by 1.1×.

minimum expected delay. We mark the performance of this
modified protocol as Mean. Recall that the default ReGain
chooses the secondary path as the path whose delay distribu-
tion minimizes the combined two-path delay metric (Equa-
tion 6). We mark the performance of ReGain that uses delay
distribution as Distribution.

Figure 14 shows that selecting paths using distribution
has 1.50× delay and 1.22× goodput improvement over us-
ing mean delay in DieselNet. The result suggests that dis-
tributions, unlike mean values, capture the unpredictability
of path delays better, and in turn enables higher replication
gain. Experiments on the other testbeds are consistent with
this result and are deferred to the Appendix.
5.4.2 Load aware adaptation

We evaluate the load-aware adaptation component of Re-
Gain by comparing it against the following variants: ReGain
without any load-aware adaptation and ReGain with only
load-aware replication but no load-aware forwarding. Figure
15 shows the under high network load, load aware replica-
tion improves delay by 1.35× and goodput by 1.21×, and
load aware forwarding further improves delay by 1.14× and
goodput by 1.1×.
5.4.3 Using two-path replication

The model in §3 suggests that replication gain increases
as more paths are used for replication, when the effect of
network load is ignored. Here, we experimentally analyze
how ReGain’s benefit changes as the number of paths used

 0

 2

 4

 6

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
v
e
ra

g
e
 D

e
la

y
 (

m
in

)

m=1
m=2
m=3
m=4

(a) DieselNet

 0

 0.4

 0.8

 1.2

 0 10 20 30 40 50

pkt/hour/flow

A
v
e
ra

g
e
 D

e
la

y
 (

h
o
u
r)

m=1
m=2
m=3
m=4

(b) DieselNet-DTN

Figure 16. Average delay when m=1,2,3,4 secondary
paths are used for replication in ReGain. m=1 (default
ReGain) gets most of the replication benefit.

for replication increases, by taking into account load effects.
We set m, the number of the second paths for replication, to
be 1, 2, 3, 4 (note that the default ReGain uses m = 1). We
assume that when a node decides to revert from replication
to forwarding due to high load (Section 4.3), it does so on all
the m secondary paths.

Figure 16 shows that two-path replication (m=1) is a
sweet spot, and gets most of the benefits. Using more paths
yields negligible benefit under light load but hurts as load
increases. This reflects the protocol design tradeoff between
leveraging replication benefit and adapting to load. We defer
results from other testbeds to the Appendix.
5.4.4 Routing overhead

Although the previous experiments implicitly incorpo-
rated the effect of routing overhead for all protocols, we ex-
plicitly evaluate it. Different protocols incur different over-
heads, depending on what information they exchange with
their neighbors (i) ReGain: link-state announcement and
packet acknowledgments, (ii) RAPID: information about
packet replicas and contact information, (iii) DTLSR: link
state announcements, (iv) OLSR: link state announcement
and other control messages. We compute the routing over-
head as the percentage of the total traffic data.

Figure 17 shows the routing overhead of different proto-
cols on Mesh and DieselNet. ReGain has less than 0.5%
routing overhead across both testbeds, though it’s overhead
is slightly higher than DTLSR and OLSR. The previous ex-
periments suggest that the benefits of ReGain justifies this
increase in overhead. The routing overhead of DTLSR and
OLSR decreases as load increases because they do not incur
per-packet overhead. RAPID incurs the highest overhead be-
cause it disseminates packet replica locations in addition to
information about past node contacts. We observe similar
results in other testbeds and present the results in the Ap-
pendix.

5.5 Other results
We conducted more experiments than those presented

above to further investigate ReGain’s performance, but omit-
ted them due to lack of space. We briefly summarize them
here. The experiments evaluate delay and goodput over spa-
tially and temporally diverse connectivity networks as well
as mesh and DTNs for a workload consisting of (1) a sin-
gle flow between a randomly chosen node pair, (2) 30 con-
current flows with (nonuniform) powerlaw-distributed send-
ing rates, (3) flows between all pairs of nodes with uniform

10

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 2 4 6 8 10

pkt/second/flow

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l
d
a
ta

REGAIN
RAPID
DTLSR
OLSR

(a) Mesh

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow
P

e
rc

e
n
ta

g
e
 o

f
to

ta
l
d
a
ta

REGAIN
RAPID+OLSR

RAPID
OLSR

(b) DieselNet

Figure 17. Routing overhead as a percentage of total traf-
fic data: ReGain has less than 0.5% routing overhead.

sending rates, and (4) flows between all pairs of nodes with
powerlaw-distributed sending rates.

In the single flow case, ReGain achieve even higher de-
lay and goodput gains over the other protocols than in the
multiple flow cases. For example, ReGain has 2.5× delay
and 1.8× goodput improvement over the other protocols in
the emulated time-varying connectivity Mesh. This is due to
better utilization of multiple paths. The different variants of
the concurrent flow experiments yield qualitatively similar
conclusions to the experiments presented in this paper.

6 RELATED WORK
Our work differs from prior work primarily in its goal—to

design and implement a simple routing protocol that works
well across diverse wireless network environments—that to
our knowledge has not been done before. The design of Re-
Gain liberally borrows insights from a large body of prior
work in wireless routing as discussed below.

Replication routing, also referred to as epidemic routing
[40], multi-copy routing [36], controlled flooding [26], etc.
in the literature, has been well studied over the last decade
[26, 31, 38, 12, 34, 12, 16, 37, 32, 44, 40, 36]. Most ex-
isting replication routing protocols are primarily designed
for highly disconnected networks where pairs of nodes meet
each other infrequently. In comparison, ReGain is designed
to work well across a broad spectrum of connectivity all the
way from DTNs to well connected mesh networks. Further-
more, although existing protocols leverage replication to im-
prove delays in DTNs, the question of when replication helps
and by how much has not received careful attention. Given
our goals, a foundational as well as trace-driven investiga-
tion of this question forms an important focus of our work,
and is addressed in §2.

Many DTN routing protocols make explicit or implicit
assumptions about the inter-meeting of nodes. For exam-
ple, RAPID[12] assumes that the meeting times are expo-
nentially distributed; Thrasyvoulos et al. [38, 37] assume a
random-walk mobility model; Jain et al. [29] use a Bernoulli
and Gaussian path delivery model; Shin et al. [35] apply
Levy walk pattern to optimize DTN routing strategy. These
assumptions can restrict their applicability to other envi-
ronments. For example, consider exponentially distributed
meeting times, an assumption central to RAPID’s design.
Although this assumption is unlikely to hurt performance in
DTNs where the inter-contact times follow a different distri-
bution, it breaks down in a mesh environment as it implies
that making K replicas of a packet reduce the delay by a fac-

tor of K. However, replicating packets in a mesh will only
exacerbate delays by overwhelming the network. Even in
DTNs, if the mobility schedule is known a priori, as may
be the case if buses stick to a fixed schedule, replication is
unnecessary.

In comparison, ReGain explicitly measures the distribu-
tion of path delays and the nature of this distribution to con-
trol replication, and is applicable to broad spectrum of mo-
bility or disconnection patterns. This idea is similar in spirit
to Francois et al. [25] who develop a theoretical routing
framework based on known delay distributions to replicate
packets so as to achieve statistical delay guarantees in DTNs
with unconstrained bandwidth. In comparison, our work is
foremost a design and implementation effort and targets di-
verse wireless network environments.

Our model formally shows that replication improves de-
lay significantly if and only if path delays are highly unpre-
dictable. Source coding techniques such as erasure coding
can further reduce delay as shown by Wang et al. [41]. Our
network model and use of order statistics to model replica-
tion gain is similar to Wang et al. [41], however they fo-
cus on quantifying the added benefit of erasure coding over
simple replication for specific distributions, whereas our re-
sult does not assume a specific distribution. Network coding
techniques can significantly improve throughput under un-
predictable network conditions, but have limited benefit for
delay. Zhang et al. [43] show that random linear coding per-
forms worse than replication schemes with multiple flows
as the destination must wait until all independent blocks are
received to decode the whole packet.

Existing replication protocols use several schemes to con-
trol replication such as probabilistic replication[26, 31], util-
ity replication [38, 12], prioritizing transmit order[34, 12],
acknowledgments to remove useless packet [16], and explic-
itly bounding replicas [37, 38]. ReGain’s design shares many
of these ideas including bounding the number of replicas to
two, but additionally compares actual packet delays to esti-
mated packet delays to judge the effectiveness of replication
and turn it off as needed. Using measured delay distributions
allows ReGain to obtain more accurate estimates of packet
delays and be more responsive to load or interference.

Mesh, MANET, and DTN routing protocols use a vari-
ety of link metrics such as hop count, ETX [22], ETT [24],
inter-contact time [16], expected delay [12, 23] etc. Re-
Gain’s use of expected delays is similar in spirit to ETT in
well-connected networks and inter-contact times in highly
disconnected networks. Unlike protocols such as RAPID or
DTLSR that attempt to estimate expected delays accounting
for the number of buffered packets at a node, ReGain ac-
counts for load based on the difference between the actual
and estimated delays.

Some existing forwarding-based routing protocols use
multipath forwarding to balance load [39, 42, 27, 19, 17].
These protocols measure path quality and load to explicitly
optimize for delay [27, 19], goodput [42] or reliability [17]
metric. ReGain shares similar goal to these works and ex-
plicitly optimizes for delay but only uses multipath forward-
ing when it helps reduce delay.

11

7 CONCLUSIONS
Wireless routing has seen an enormous body of research

in recent times, but is becoming increasingly compartmen-
talized. Researchers and practitioners continue to develop
sophisticated routing protocols that are designed and opti-
mized for specific network environments such as meshes,
MANETs, and DTNs, but perform poorly or break down in
other environments. This state of affairs makes the case for a
simple routing protocol that works well across diverse wire-
less network environments.

To address this challenge, we design and implement Re-
Gain, a routing protocol that self-adapts replication to chang-
ing network conditions and load. The key insight behind
ReGain’s generality is to not embed specific assumptions
about node mobility, but instead infer and leverage it in a
fine-grained manner. We rigorously evaluate ReGain using a
combination of prototype deployment, simulation, and em-
ulation experiments over a broad spectrum of network envi-
ronments and show that it achieves significantly better per-
formance than state-of-the-art protocols in networks with di-
verse connectivity characteristics.

8 References
[1] Aodv. http://moment.cs.ucsb.edu/AODV/aodv.html.

[2] Dieselnet. http://prisms.cs.umass.edu/dome/umassdieselnet.

[3] Libnet. http://libnet.sourceforge.net.

[4] Optimized link state routing protocol. http:
//www.olsr.org/.

[5] Qualnet. http://www.scalable-networks.com/products.

[6] San francisco bawug. http://www.bawug.org/.

[7] Seattle wireless. http://seattlewireless.net/.

[8] Southampton open wireless network.
http://www.sown.org.uk/.

[9] Variance. http://en.wikipedia.org/wiki/Variance.

[10] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou.
A multi-radio unification protocol for ieee 802.11 wire-
less networks. In BroadNets’04.

[11] A. Al Hanbali, A. A. Kherani, and P. Nain. Simple
models for the performance evaluation of a class of
two-hop relay protocols. In NETWORKING’07.

[12] A. Balasubramanian, B. N. Levine, and A. Venkatara-
mani. Dtn routing as a resource allocation problem. In
Sigcomm, 2007.

[13] A. Balasubramanian, B. N. Levine, and A. Venkatara-
mani. Enabling interactive applications in hybrid net-
works. In Mobicom, 2008.

[14] A. Balasubramanian, R. Mahajan, and A. Venkatara-
mani. Augmenting mobile 3g using wifi: Measure-
ment, design, and implementation. In MobiSys, 2010.

[15] A. Balasubramanian, R. Mahajan, A. Venkataramani,
B. N. Levine, and J. Zahorjan. Interactive wifi connec-
tivity for moving vehicles. In SIGCOMM, 2008.

[16] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
Maxprop: Routing for vehicle-based disruption-
tolerant networks. In INFOCOM’06.

[17] P. M. Carthy and D. Grigoras. Multipath associativity
based routing. In WONS, 2005.

[18] G. Casella and R. Berger. Statistical Inference.
Duxbury, second edition, 2002.

[19] L. D. Cha M. Split-n-save multiplexing in wireless ad
hoc routing. In infocom workshop, 2005.

[20] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
and J. Scott. Impact of human mobility on the design of
opportunistic forwarding algorithms. In Infocom, 2006.

[21] A.-M. Croicu and Y. M. Hussaini. On the expected
optimal value and the optimal expected value. Applied
Mathematics and Computation, 2006.

[22] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris.
A high-throughput path metric for multi-hop wireless
routing. In MobiCom’03.

[23] M. Demmer and K. Fall. Dtlsr: delay tolerant routing
for developing regions. In NSDR, 2007.

[24] R. Draves, J. Padhye, and B. Zill. Routing in multi-
radio, multi-hop wireless mesh networks. In MobiCom,
2004.

[25] J.-M. François and G. Leduc. Routing based on deliv-
ery distributions in predictable disruption tolerant net-
works. Ad Hoc Netw., 2009.

[26] K. A. Harras, K. C. Almeroth, and E. M. Belding-
Royer. Delay tolerant mobile networks (dtmns): Con-
trolled flooding in sparse mobile networks. In IFIP
Networking, 2005.

[27] X. Huang and Y. Fang. End-to-end delay differentia-
tion by prioritized multipath routing in wireless sensor
networks. In MILCOM, 2005.

[28] P. Hui, A. Lindgren, and J. Crowcroft. Empirical eval-
uation of hybrid opportunistic networks. In COM-
SNETS, 2009.

[29] S. Jain, M. Demmer, R. Patra, and K. Fall. Using re-
dundancy to cope with failures in a delay tolerant net-
work. In SIGCOMM ’05.

[30] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh,
and D. Rubenstein. Energy-efficient computing for
wildlife tracking: design tradeoffs and early experi-
ences with zebranet. SIGARCH Comput. Archit. News,
2002.

[31] A. Lindgren, A. Doria, and O. Schelén. Probabilistic
routing in intermittently connected networks. In SIG-
MOBILE Mob. Comput. Commun. Rev., 2003.

[32] S. Nelson, M. Bakht, and R. Kravets. Encounter-based
routing in dtns. In INFOCOM, 2009.

[33] C. E. Perkins and E. M. Royer. Ad-hoc on-demand
distance vector routing. In The Second IEEE Workshop
on Mbile Computing Systems and Applications, 1999.

[34] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain,
and R. Krishnan. Prioritized epidemic routing for op-
portunistic networks. In MobiOpp, 2007.

[35] M. Shin, S. Hong, and I. Rhee. Dtn routing strategies

12

using optimal search patterns. In CHANTS ’08.

[36] T. Spyropoulos, K. Psounis, and C. Raghavendra. Ef-
ficient routing in intermittently connected mobile net-
works: The multiple-copy case. IEEE/ACM Trans.
Netw., 2008.

[37] T. Spyropoulos, K. Psounis, and C. S. Raghavendra.
Spray and wait: an efficient routing scheme for inter-
mittently connected mobile networks. In WDTN, 2005.

[38] T. Spyropoulos, K. Psounis, and C. S. Raghavendra.
Spray and focus: Efficient mobility-assisted routing for
heterogeneous and correlated mobility. In PERCOMW,
2007.

[39] M. Tarique, K. E. Tepe, S. Adibi, and S. Erfani. Sur-
vey of multipath routing protocols for mobile ad hoc
networks. In Journal of Network and Computer Appli-
cations, 2009.

[40] A. Vahdat and D. Becker. Epidemic routing for par-
tially connected ad hoc networks. Technical report,
Duke University, 2000.

[41] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-
coding based routing for opportunistic networks. In
WDTN, 2005.

[42] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi. Effects
of multipath routing on tcp performance in ad hoc net-
works. In GLOBECOM’04.

[43] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. On
the benets of random linear coding for unicast applica-
tions in disruption tolerant networks. In IEEE Second
Workshop on Network Coding, Theory, and Applica-
tions, 2006.

[44] Z. Zhang. Routing in intermittently connected mobile
ad hoc networks and delay tolerant networks: overview
and challenges. Communications Surveys & Tutorials,
IEEE, 2006.

APPENDIX

Derivation of Eq. 3

PROOF. Let m be the path with minimum expected delay
and fXm(x) denote the PDF (probability density function) of
Xm, then

µ = E[Xm] =
Z +∞

0
x fXm(x)dx =

Z +∞

0
(
Z x

0
dy) fXm(x) dx

=
Z +∞

0

Z x

0
fXm(x) dy dx =

Z +∞

0

(Z +∞

y
fXm(x)dx

)
dy

=
Z +∞

0
P[Xm > y]dy

(7)
Let X(1) = min{X1,X2, ...,Xn}, using similar steps used

above, we have

µ(1) = E[X(1)] =
Z +∞

0
P[X(1) > x]dx =

Z +∞

0

n

∏
i=1

P[Xi > x]dx

(8)

And replication gain is

µ
µ(1)

=

Z +∞

0
P[Xm > x]dxZ +∞

0

n

∏
i=1

P[Xi > x]dx

Proof of Theorem 1

PROOF. (a) From Eq. 8, we know that for n i.i.d random
variables (with each denoted as X and n ≥ 2)

µ(1) =
Z +∞

0
(P[X > x])ndx

=
Z

εµ

0
(P[X > x])ndx+

Z +∞

εµ
(P[X > x])ndx

≤
Z

εµ

0
(P[X > x])ndx+P[X > εµ]

Z +∞

εµ
P[X > x]dx

≤
Z

εµ

0
P[X > x]dx+(1−P[X ≤ εµ])(µ−

Z
εµ

0
P[X > x]dx)

We know that X has predictability ε, i.e., P[X ≤ εµ] ≥
1− ε, thus

1−P[X ≤ εµ] ≤ ε

We further let aµ =
R εµ

0 P[X > x]dx, then

µ(1) ≤ aµ+ ε(µ−aµ) = (a+ ε− εa)µ = [ε+a(1− ε)]µ

Since aµ ≤
R εµ

0 dx = εµ, thus

µ(1) ≤ [ε+ε(1−ε)]µ = [1−(1−ε)2]µ,
µ

µ(1)
≥ 1

1− (1− ε)2

Thus replication gain is at least 1
1−(1−ε)2 .

(b) Let ε = G− 1
n+1 , we want to prove that P[X ≤ εµ] ≥

1− ε.
Using Eq. 8:

µ(1) =
Z +∞

0
(P[X > x])ndx ≥

Z
εµ

0
(P[X > x])ndx ≥ εµ(P[X > εµ])n

µ
µ(1)

= G ≤ 1
ε(P[X > εµ])n

Since ε = G− 1
n+1 , i.e. G = 1/εn+1, then:

1
εn+1 ≤ 1

ε(P[X > εµ])n

Thus P[X > εµ]≤ ε, P[X ≤ εµ]≥ 1−ε for ε = G− 1
n+1 . Since

there can be smaller ε value that satisfies P[X ≤ εµ] ≥ 1− ε

and we are unable to find the smallest value of ε, thus X has
predictability at most G− 1

n+1 .

Proof of Theorem 2

PROOF. Let µ = E[Xm]

13

(a) From Eq. 8, we have

µ(1) =
Z +∞

0

n

∏
j=1

P[X j > x]dx

=
Z

δµ

0

n

∏
j=1

P[X j > x]dx+
Z +∞

δµ

n

∏
j=1

P[X j > x]dx

≤
Z

δµ

0
P[Xm > x]dx+P[Xi > δµ]

Z +∞

δµ
P[Xm > x]dx

Since Xi has relative predictability δ, thus P[Xi > δµ] ≤ δ.
Let aµ =

R δµ
0 P[Xm > x]dx and use imilar steps as the proof

of Theorem 1(a), we have

µ(1) ≤ aµ+δ(µ−aµ)≤ (1−(1−δ)2)µ,
µ

µ(1)
≥ 1

1− (1−δ)2

i.e., replication gain is at least 1
1−(1−δ)2 .

(b) Let δ = G− 1
n+1 , we want to prove P[Xi ≤ δµ]]≥ 1−δ.

Using Eq. 8:

µ(1) =
Z +∞

0

n

∏
j=1

P[X j > x]dx ≥
Z

δµ

0

n

∏
j=1

P[X j > x]dx

≥ δµ
n

∏
j=1

P[X j > δµ]

Since P[Xi ≤ δµ] = max1≤ j≤n P[X j ≤ δµ], i.e., P[Xi >
δµ] = min1≤ j≤n P[X j > δµ], then

µ(1) ≥ δµ (P[Xi > δµ])n

µ
µ(1)

= G ≤ 1
δ (P[Xi > δµ])n

Since δ = G− 1
n+1 , i.e. G = 1/δn+1, then:

1
δn+1 ≤ 1

δ (P[Xi > δµ])n

Thus P[Xi > δµ]≤ δ, P[Xi ≤ δµ]≥ 1−δ for δ = G− 1
n+1 , i.e.,

Xi has predictability at most G− 1
n+1 .

Derivation of Eq. 4

PROOF. Let X denote the link availability delay and Y de-
note the inter-contact time. By definition, X represents the
time until the next contact sampled at a uniformly random
point in time, it also represents the packets’ waiting time to
be transferred after they are generated.

Let Y ′ denote the ”special” inter-contact interval in which
a packet arrives. Note that Y ′ is not distributed the same as
Y because a packet is more likely to arrive in a longer inter-
val than a shorter one. So the probability that an interval of
length y is chosen by a packet should be proportional to the
length (y) as well as the relative occurrence of such intervals
(fY (y)dy). We can write

P(y < Y ′ ≤ y+dy) = fY ′(y)dy = Ky fY (y)dy (9)

Integrating both sides of Eq. 9, we have

K = 1/E(Y), so fY ′(y) =
y fY (y)
E(Y)

If we are told that Y ′ = y, then the probability that X does
not exceed the value x is given by

P(X ≤ x|Y ′ = y) =
x
y

Thus we may write down the joint density of Y ′ and X as

P(x < X ≤ x+dx, y < Y ′ ≤ y+dy) = (
dx
y

)(
y fY (y)dy

E(Y)
)

=
fY (y) dx dy

E(Y)
(0 ≤ x ≤ y)

Integrating over y we botain fX (x), namely,

fX (x)dx =
Z +∞

y=x

fY (y) dx dy
E(Y)

, fX (x) =
1−FY (x)

E(Y)

Thus

FX (x) =
Z x

0
fX (y)dy =

1
E(Y)

Z x

0
(1−FY (y))dy

Derivation of Eq. 5

PROOF. First, let’s compute E(X):

E(X) =
Z +∞

0
x fX (x)dx =

Z +∞

0
x

1−FY (x)
E(Y)

dx

=
1

E(Y)

Z +∞

0
xP(Y > x)dx

So we have

E(X)∗E(Y) =
Z +∞

0
xP(Y > x)dx (10)

We also know that

E(Y) =
Z +∞

0
P(Y > y)dy (11)

Finally, we can express variance[9] of Y using its CCDF:

Var(Y) = 2
Z +∞

0
yP(Y > y)dy− (

Z +∞

0
P(Y > y)dy)2 (12)

Using Eq. 10 and 11 to replace the rightsize of Eq. 12,
we have

Var(Y) = 2E(X)∗E(Y)− (E(Y))2

So we have:

E(X) =
E(Y)

2
+

Var(Y)
2E(Y)

=
E(Y)

2
+

σ2(Y)
2E(Y)

14

 0

 2

 4

 6

 8

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
ve

ra
ge

 D
el

ay
 (

m
in

)

REGAIN
RAPID+OLSR

RAPID
OLSR
AODV

Random

(a) Delay

 0

 0.4

 0.8

 1.2

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/m
in

)

REGAIN
RAPID+OLSR

RAPID
OLSR
AODV

Random

(b) Goodput

Figure 18. Spatial diversity on DieselNet. ReGain im-
proves delay by 1.45× and goodput by 1.25×.

EXTENSIVE EVALUATION OF REGAIN
Diverse connectivity
DieselNet: Spatial diversity

The results are shown in Figure 18. The experimental
setup is the same as Figure 9.
Haggle: Temporal diversity

The results are shown in Figure 19. The experimental
setup is the same as Figure 10.
Mesh: Emulating diverse connectivity

The results are shown in Figure 20. The experimental
setup is the same as Figure 11.
Homogeneous network conditions
Sparsely-connected networks

The results are shown in Figure 21. The experimental
setup is the same as Figure 12.
Well-connected networks

The results are shown in Figure 22. The experimental
setup is the same as Figure 13.
Component of ReGain
Distribution vs. mean

The results are shown in Figure 23 and 24. The experi-
mental setup is similar to Figure 14.
Load aware adaptation

The results are shown in Figure 25 and 26. The experi-
mental setup is similar to Figure 15.
Using two-path replication

The results are shown in Figure 27. The experimental
setup is similar to Figure 16.
Routing overhead

The results are shown in Figure 28. The experimental
setup is similar to Figure 17.

 0

 2

 4

 6

 8

 0 5 10 15 20 25

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(a) Delay

 0

 5

 10

 15

 20

 0 5 10 15 20 25

pkt/hour/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/h
ou

r)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(b) Goodput

Figure 19. Temporal diversity on Haggle. ReGain im-
proves delay by 1.35× and goodput by 1.15×.

100

10

1

0.1

0.03
 0 0.2 0.4 0.6 0.8 1

Connectivity

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(a) Delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

Connectivity

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/s
ec

on
d)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(b) Goodput

Figure 20. Emulating diverse connectivity on Mesh. The
y-axis of (a) is in logscale. ReGain improves delay by 2×
and goodput by 1.25× across varying connectivity.

 0

 0.5

 1

 1.5

 0 10 20 30 40 50

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(a) Delay

 0

 10

 20

 30

 0 10 20 30 40 50

pkt/hour/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/h
ou

r)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(b) Goodput

Figure 21. DieselNet-DTN: Sparsely-connected network.
ReGain has comparable performance to RAPID, a DTN
routing protocol, under low load. ReGain outperforms
RAPID under high load.

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

pkt/second/flow

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(a) Delay

 0

 2

 4

 6

 0 2 4 6 8 10

pkt/second/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/s
ec

on
d)

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(b) Goodput

Figure 22. Mesh: Well-connected network. ReGain has
comparable performance to OLSR, a protocol designed
for mesh networks, under low load. ReGain performs
slightly better than OLSR under high load.

 0

 0.4

 0.8

 1.2

 0 10 20 30 40 50

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)

Distribution
Mean

(a) Delay

 0

 10

 20

 30

 0 10 20 30 40 50

pkt/hour/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/h
ou

r)

Distribution
Mean

(b) Goodput

Figure 23. DieselNet-DTN: Using delay distribution ver-
sus mean delays for path selection. Using delay distri-
bution improves delay performance by 1.3× delay and
goodput performance by 1.17× over using mean delay.

 0

 2

 4

 6

 8

 0 5 10 15 20 25

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)

Distribution
Mean

(a) Delay

 0

 5

 10

 15

 20

 0 5 10 15 20 25

pkt/hour/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/h
ou

r)

Distribution
Mean

(b) Goodput

Figure 24. Haggle: Using delay distribution versus mean
delays for path selection. Using delay distribution im-
proves delay performance by 1.4× delay and goodput
performance by 1.16× over using mean delay.

 0

 0.4

 0.8

 1.2

 0 10 20 30 40 50

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)

load-aware replication+forwarding
only load-aware replication

no load-aware

(a) Delay

 0

 10

 20

 30

 0 10 20 30 40 50

pkt/hour/flow

A
ve

ra
ge

 G
oo

dp
ut

 (
pk

t/h
ou

r)

load-aware replication+forwarding
only load-aware replication

no load-aware

(b) Goodput

Figure 25. DieselNet-DTN: Performance of load-
aware replication and load-aware forwarding compo-
nents. Load-aware replication improves delay by 1.16×
and goodput by 1.07×, and load-aware forwarding fur-
ther improves delay by 1.09× and goodput by 1.08×.

 0

 2

 4

 6

 8

 0 5 10 15 20 25

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)
load-aware replication+forwarding

only load-aware replication
no load-aware

(a) Delay

 0

 5

 10

 15

 20

 0 5 10 15 20 25

pkt/hour/flow
A

ve
ra

ge
 G

oo
dp

ut
 (

pk
t/h

ou
r)

load-aware replication+forwarding
only load-aware replication

no load-aware

(b) Goodput

Figure 26. Haggle: Performance of load-aware repli-
cation and load-aware forwarding components. Load-
aware replication improves delay by 1.18× and goodput
by 1.12×, and load-aware forwarding further improves
delay by 1.1× and goodput by 1.06×.

 0

 2

 4

 6

 8

 0 5 10 15 20 25

pkt/hour/flow

A
ve

ra
ge

 D
el

ay
 (

ho
ur

)

m=1
m=2
m=3
m=4

(a) Haggle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

pkt/second/flow

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
)

m=1
m=2
m=3
m=4

(b) Mesh

Figure 27. Average delay when m=1,2,3,4 secondary
paths are used for replication in ReGain. m=1 (default
ReGain) gets most of the replication benefit.

16

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 2 4 6 8 10

pkt/second/flow

P
er

ce
nt

ag
e

of
 to

ta
l d

at
a

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(a) Mesh

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.4 0.8 1.2 1.6 2

pkt/min/flow

P
er

ce
nt

ag
e

of
 to

ta
l d

at
a

REGAIN
RAPID+OLSR

RAPID
OLSR
AODV

Random

(b) DieselNet

 0

 0.5

 1

 1.5

 0 10 20 30 40 50

pkt/hour/flow

P
er

ce
nt

ag
e

of
 to

ta
l d

at
a

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(c) DieselNet-DTN

 0

 0.5

 1

 1.5

 0 5 10 15 20 25

pkt/hour/flow

P
er

ce
nt

ag
e

of
 to

ta
l d

at
a

REGAIN
RAPID
DTLSR
OLSR
AODV

Random

(d) Haggle

Figure 28. Routing overhead as a percentage of total traffic data: ReGain has less than 0.5% routing overhead.

17

