
Sheriff: Detecting and Eliminating False Sharing

Tongping Liu Emery D. Berger
Dept. of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

{tonyliu,emery}@cs.umass.edu

Abstract
False sharing is an insidious problem for multi-threaded programs
running on multicore processors, where it can silently degrade per-
formance and scalability. Debugging false sharing problems is no-
toriously difficult. Previous approaches aimed at identifying false
sharing are not only prohibitively slow (degrading performance by
200X), but also cannot distinguish false sharing from true sharing,
cannot cope with dynamically allocated objects, generate numerous
false positives, and fail to pinpoint the sources of false sharing.

This paper presents Sheriff, a software-only system that both
withstands and identifies false sharing in C/C++ applications. As a
false sharing resistant runtime system, Sheriff replaces the standard
pthreads library and eliminates false sharing, dramatically improv-
ing performance in the face of catastrophic false sharing (in one
case, by almost 10X versus pthreads). As a false sharing detection
tool, Sheriff precisely identifies the sources of false sharing with no
false positives and low overhead. A case study with the Phoenix and
PARSEC benchmark suites shows that Sheriff can quickly identify
false sharing and guide programmers to remove it.

1. Introduction
Writing multithreaded programs is challenging for a variety of rea-
sons. They are famously difficult to debug and present numerous
opportunities for error, including races, atomicity violations, and
deadlock. However, getting a multithreaded program to run cor-
rectly is not the only challenge. The primary reason to write mul-
tithreaded programs is to improve performance, either by hiding
latency or by taking advantage of multiple processing cores.

Reducing contention for shared resources is crucial to ensure
that multithreaded applications scale. However, contention can
arise even when multiple threads are accessing different objects.
This false sharing arises when multiple, logically distinct objects
happen to reside on the same cache line. For example, one thread
may update object A, while another thread updates object B. If
these objects happen to reside on the same cache line, the cache
coherence protocol will invalidate the entire cache line containing
A and B, causing subsequent accesses to miss on both processors.

When false sharing happens frequently enough, the resulting
“ping-ponging” of cache lines across processors can cause per-
formance to plummet [7, 11]. False sharing can slow a synthetic

[Copyright notice will appear here once ’preprint’ option is removed.]

microbenchmark by up to 160X, and slows one actual benchmark
from the Phoenix suite by 10X (see Section 7). The trend towards
increasingly larger cache lines together with an expected increase
in the number of multithreaded applications is conspiring to make
false sharing an increasingly common phenomenon.

False sharing is of course not new, and there have been several
past approaches to deal with it. One approach is to attempt to elimi-
nate false sharing altogether. The compiler can minimize false shar-
ing by adjusting memory layouts (e.g., through padding and align-
ment), or alter parallel loop scheduling to avoid sharing [8, 14].
However, the effectiveness of these techniques is limited to array-
based scientific codes. For more general-purpose applications, a
scalable dynamic memory allocator can reduce the likelihood of
false sharing of distinct heap objects [3], but cannot prevent false
sharing within individual heap objects.

Since automatically eliminating false sharing is difficult, other
past work has focused on detecting it. These tools operate on
binaries, either via simulation [21], binary instrumentation [18], or
hardware performance monitors [12, 13], and intercept all reads
and writes in order to detect false sharing.

Not only are some of these tools prohibitively slow (imposing
order-of-magnitude slowdowns), none of them provide the pro-
grammer with sufficient information. They fail to pinpoint the
source of false sharing problems, at best pointing to particular
addresses accessed by functions, leaving it to the programmer to
discover what these addresses correspond to.

Worse, these previous tools report numerous false positives.
First, they can report objects that were falsely shared so few times
that they do not present a performance bottleneck. Second, because
these tools are oblivious to object reuse by memory allocators, they
incorrectly aggregate access information when one address is re-
used for multiple objects. Third, they are unable to distinguish true
sharing, which is generally intended by the programmer, from false
sharing, which is not.

Contributions
This paper presents Sheriff, a software-only runtime system that
both eliminates and detects false sharing in C/C++ applications.
Sheriff acts as a plug-in replacement runtime system for the
pthreads library. Sheriff can be used in two modes: to eliminate
false sharing automatically, or to detect it.

When used as a false sharing resistant runtime, Sheriff can
dramatically increase performance in the face of catastrophic false
sharing. On an 8-core system, Sheriff accelerates one benchmark
by approximately 10X versus the standard pthreads library. To our
knowledge, Sheriff is the first false sharing resistant runtime for
shared-memory systems.

When used in detection mode, Sheriff detects false sharing with
no false positives. It only reports actual false sharing (not true
sharing, and not artifacts from heap object reuse), and only those

1 2010/8/24

instances that might have a performance impact. Sheriff pinpoints
false sharing locations by indicating offsets and global variables or
heap objects (with allocation sites), making false sharing relatively
easy to locate and correct. As a detection tool, Sheriff imposes a
2% performance penalty on average and a worst-case overhead of
under 4X, making it both precise and efficient.

The remainder of this paper is organized as follows. Section 2
gives an overview of Sheriff, including its key mechanisms. Sec-
tion 3 describes Sheriff’s runtime mode and how it prevents false
sharing. Section 4 describes Sheriff’s detection mode and how it
works to locate false sharing problems. Section 5 discusses some
key performance optimizations and Section 6 presents some of
Sheriff’s limitations. Section 7 then presents experimental results
on microbenchmarks and across two multithreaded benchmark
suites (Phoenix and PARSEC), then presents a case study of us-
ing Sheriff to detect and guide the correction of false sharing in
these suites. Section 8 describes key related work, and Section 9
concludes with future directions.

2. Sheriff Overview
Sheriff replaces the pthreads library and the memory allocator with
a runtime system that allows it to eliminate the effects of false
sharing, and, in detection mode, to indicate which objects or fields
within objects are causing performance problems.

2.1 Definitions and Goals
False sharing can take two different forms. It can arise due to
sharing of structurally-unrelated objects that happen to be located
on the same cache line (i.e., different variables), or when multiple
processors access different fields of the same object (which Hyde
and Fleisch refer to as “pseudo sharing” [11]). Sheriff aims to
either eliminate or detect both of these types of sharing, which,
for simplicity of exposition, the remainder of this paper refers to
simply as false sharing.

However, not all cases of false sharing are created equal. The
presence of false sharing does not always lead to performance
problems. The effect of false sharing on performance depends
on the memory access pattern of the application. False sharing
only causes significant performance degradation when multiple
threads repeatedly update falsely-shared data, because updates lead
to invalidations and thus cache misses.

Sheriff thus focuses exclusively on eliminating or identifying
those false sharing cases that lead to numerous invalidations and
thus have the potential to seriously degrade performance.

Reporting Detection of false sharing is only the first step. To
maximize its usefulness to the programmer, a false sharing tool
should identify falsely-shared objects precisely. Sheriff’s goal is
to provide as much context as possible about false sharing in order
to reduce programmer effort, identifying global variables by name,
heap objects by allocation context, and where possible, the fields
modified by different threads.

2.2 Insights
To achieve the goals outlined above, Sheriff leverages the following
two key insights.

• Delaying updates avoids false sharing. We observe that de-
laying updates so that they do not cause invalidations to other
threads eliminates the performance impact of false sharing.
Suppose two threads are updating two falsely-shared objects A
and B. If one thread’s accesses to A were delayed so that they
preceded all of the other thread’s accesses to B, then the false
sharing would cause no invalidations and hence have no perfor-
mance impact.

• Updates outside critical sections are false sharing. We also
observe that, in a correctly-synchronized program, the only
updates outside of critical sections are to unshared data. In
other words, any sharing outside of a critical section in a race-
free program must be false sharing.

2.3 Mechanisms
Processes as Threads As mentioned above, it is possible to pre-
vent false sharing from impacting performance by delaying each
thread’s updates. To accomplish this, Sheriff converts threads to
processes, an approach first used by Grace (a runtime system that
ensures safety for multithreaded C/C++ programs [4]). By suitably
sharing the heap and globals via copy-on-write shared memory,
processes can simulate threads, but in isolation from each other un-
til their individual updates are merged. This approach has the effect
of delaying all updates and eliminates the performance impact of
false sharing.

Replacing pthreads with processes is surprisingly inexpensive,
especially on Linux where both pthreads and processes are invoked
using the same underlying system call (see Berger et al. for exten-
sive timing results [4]).

More importantly, using processes rather than threads isolates
each thread’s memory accesses from each other. This isolation en-
sures that threads do not update shared cache lines, since each pro-
cess naturally has its own distinct set of cache lines. Converting
threads to processes also effectively enables the use of page pro-
tection effectively on a per-thread basis, allowing Sheriff to track
memory accesses by different threads and thus detect false sharing.

To maintain the shared-memory semantics of a multithreaded
program, Sheriff must eventually update the shared image so that
threads can see each other’s modifications. Sheriff delays these
updates until synchronization points (e.g., lock acquisition and
release).

However, the granularity of pages is too coarse: updates to
different areas of the same page appear to conflict, leading to a
question of how we manage updates by different threads to the
same page, and adding an unacceptable amount of imprecision to
false sharing detection.

Twinning and Diffing Sheriff assumes that it only observes race-
free executions. Since races are generally rare, especially in about-
to-be deployed applications whose performance is being debugged,
we consider this to be a reasonable assumption.

Therefore, outside of critical sections, Sheriff only needs to
write back its modifications rather than the full contents of any
pages it has modified.

To achieve this, Sheriff adapts the twinning and diffing mech-
anism first used in distributed shared memory systems to reduce
communication overhead [15]. In Sheriff, twinning and diffing al-
lows it to identify modifications on a word-by-word basis.

Figure 1 presents an overview of both mechanisms at work. All
pages are initially write-protected. Before any page is modified,
Sheriff copies its contents to a “twin page” and then unprotects the
page. At a synchronization point, Sheriff compares each twin page
and the modified page byte by byte to compute diffs.

The next sections describe Sheriff’s threads-as-processes and
twinning mechanisms in detail.

3. Threads as Processes
This section discusses the details of replacing threads with pro-
cesses. Sheriff significantly extends Grace’s mechanisms, which
only supported a restricted class of multithreaded programs. Sheriff
provides support for general-purpose multithreaded programs, in-
cluding full support for file I/O and cross-thread synchronization.

2 2010/8/24

Transaction Start

Transaction End

Page Fault

Private
 Working Copy

Original
 Twin Page

Shared Mapping

Copy

Virtual Cache Line
Status WordsTemporary

 Twin Page

Compare

T1, 3; T2, 1; 0, 0;

 Process T1

Copy
Compare

Copy

T1, 3; T1, 2 0, 0;

T1, 3; T1, 2 T1, 1;

T1, 3; T1, 2 T1, 1;Compare

Commit

Sampling
 Timer

 Handler

Starting Status:
1st – last thread id
2nd – interleaving times

Figure 1. Overview of Sheriff execution (Section 3.5). Sheriff simulates threads using processes (Section 3). Each process operates on
private copies of data and commits diffs to shared mappings at synchronization points (Section 3.5.3) In detection mode, Sheriff uses virtual
cache line status words (Section 4.3) and sampling (Section 4.2) to detect frequent false sharing within cache lines.

3.1 Thread Creation
Like Grace, Sheriff intercepts the pthread create() call and
replaces it with a process creation call. While Grace used fork(),
Sheriff uses the Linux system call clone() directly; see Sec-
tion 3.3 for details.

3.2 Shared Address Space
In order to create the illusion of multi-threaded programs that
different threads are sharing the same address space, Sheriff uses
memory mapped files to share the heap and globals across different
processes. Note that Sheriff does not try to share the stack across
different processes because different threads have their own stacks
and, in general, multithreaded programs do not use the stack for
cross-thread communication.

Sheriff creates two different mappings for both the heap and the
globals. One is a shared mapping, which is used to hold shared
state. The other is a private, copy-on-write (COW) per-process
mapping that each process works on directly. Private mappings are
linked to the shared mapping through the one memory mapped file.
Reads initially go directly to the shared mapping, but after the first
write operation, both reads and writes are entirely private. Sheriff
handles updating the shared image at synchronization points, as
described in Section 3.5.

Globals and Heap Sheriff uses the same global and heap organi-
zation as Grace, which we describe here briefly.

Sheriff uses a fixed-size (larger than normal globals size) file to
hold globals, which it checks to ensure is large enough to hold all
globals.

Sheriff also uses a fixed-size mapping to store the heap (cur-
rently set at 1.6GB). Memory allocations requirements from user
applications are satisfied from this fixed-size private mapping.

Since different threads can get the memory from this fixed-size
mapping, the heap data structure is shared among different threads
and allocations are protected by one process-based mutex. In order
to avoid false sharing induced by the memory allocator, Sheriff
employs a scalable “per-thread” heap organization that is loosely
based on Hoard [3] and built using HeapLayers [5]. Sheriff divides
the heap into a fixed number of sub-heaps (currently 16). Each
thread uses a hash of its process id to obtain the index of the heap
that can be used to satisfy memory allocations. Since each thread’s
heap allocates from different pages, the allocator itself is unlikely

int spawnWithShareFiles{
return syscall(SYS_clone,
CLONE_FS|CLONE_FILES|SIGCHLD,(void*)0);

}

Figure 2. Pseudo-code (for Linux) to create a new process with
shared file descriptors but a distinct address space.

void pthread_sync (var) {
closeTransaction();
realVar = getRealVariable(var);
real_pthread_sync (realVar);
startTransaction();

}

Figure 3. Pseudo-code for all synchronization operations (where
“sync” denotes the appropriate operation).

to collocate two objects from different threads on the same cache
line.

3.3 Shared File Access
In multithreaded programs, different threads in the same process
share the file descriptor that manages all opened files of each
thread. For example, if one thread opens a file, the other threads
see that the file has been opened. However, multiple processes each
have their own resources, including not just memory but also file
handles, sockets, device handles, and windows.

Sheriff takes advantage of a low-level feature of Linux that
allows selective sharing of memory and file descriptors. By setting
the flag CLONE FILES when creating new processes (Figure 2),
child processes can share the same physical file descriptor table
with the parent process while not sharing the same address space.

3.4 Synchronization
Sheriff also goes beyond Grace in providing support for synchro-
nization (in Grace, locks are treated as no-ops). Sheriff handles the
following synchronization operations: mutex, conditional variable,
barrier and thread join.

At each synchronization point, Sheriff must commit all changes
made to individual pages. The span between synchronization points

3 2010/8/24

is thus a single atomic transaction. Note that Sheriff’s approach
differs significantly from previous transactional memory propos-
als [16], including Grace’s. Sheriff is not optimistic, does not re-
place locks with speculation (i.e., it actually acquires program-level
locks), never needs to roll back (i.e., it is always able to commit
successfully), and achieves low overhead for long transactions.

In order to simulate multithreaded synchronization, Sheriff in-
tercepts all synchronization object initialization function calls, allo-
cates new synchronization objects in a mapping shared by all pro-
cesses and initializes them to be accessed by different processes.

Figure 3 presents a template for how Sheriff wraps synchroniza-
tion operations. For example, a call to pthread mutex lock
first ends the current transaction. It then calls the corresponding
pthreads library’s functions but on a process-wide mutex object.
Sheriff then begins a new transaction after the lock is acquired
(which will end when the corresponding lock is unlocked).

Conditional variable and barriers use the same mechanism, but
pthread join is slightly different. When joining, Sheriff ends
the current transaction and calls waitpid() to wait for the ap-
propriate process to complete.

3.5 Example Execution
Figure 1 presents an overview of Sheriff’s execution.

Before the program begins, Sheriff establishes the shared and
local mappings for the heap and globals, and initiates the first
transaction.

3.5.1 Transaction Begin
In the beginning of every transaction, Sheriff write-protects all
pages so that later writes on those pages can be caught by handling
SEGV protection faults. In later transactions, Sheriff only write-
protects pages dirtied in the last transaction, since the others remain
write-protected.

3.5.2 Execution
While performing reads, Sheriff runs almost the same speed as that
of a conventional multithreaded program. A write to a protected
page triggers a page fault that Sheriff handles.

Sheriff records the page holding the faulted address and then
sets this page to write-able so that future accesses on this page
can run at a full speed (won’t invoke page fault any more). Thus,
one page incurs only one page fault in one transaction. Although
protection faults and signal faults are expensive, those costs are
amortized across the whole transaction.

However, Sheriff must first obtain an exact copy of this page
(its twin). Sheriff accomplishes this by forcing a copy-on-write
operation on this page by writing to the start of this page with the
content obtained from the same address (i.e., it reads and writes the
same value).

This step is essential in order to ensure that the twin is identical
to the unmodified page. Since there is a time gap between the
creation of twin pages and that of private pages, private pages are
created by OS’s copy-on-write mechanism after the signal handler.
After forcing the copy-on-write, Sheriff stores the twin in a local
store (Section 2.3 describes the motivation and use of twins for
diffing).

3.5.3 Transaction End
At the end of each atomically-executed region—the end of each
thread, right before and end of those synchronization points, right
before a thread spawn, and right before joining another thread—
Sheriff acquires a commit lock, commits changes from private
pages to the shared space, releases the commit lock, and then
reclaims memory holding old private pages and twin pages.

Sheriff commits only the differences between the twin and the
modified pages, as described in Section 2.3. Once it has written
these diffs, Sheriff issues an madvise call with the MADV DONTNEED
flag that discards the current physical pages backing both the pri-
vate mapping and twin pages.

4. Detecting False Sharing
While the mechanisms described so far allow Sheriff to withstand
false sharing, they do not address how it can detect it. This section
describes in detail how Sheriff identifies problematic false sharing;
the mechanisms used here are only active when Sheriff is used in
detection mode.

4.1 Discovering False Sharing
When Sheriff concludes each transaction, it compares each dirty
page with its twin word by word to find any modifications, and
thus identifies all writes made by the current thread. To detect
false sharing, Sheriff simply compares the original contents of
adjacent memory in the same cache line (in the twin) to those on
the committed page (that is, those written by another thread). A
modification of any adjacent data indicates the presence of false
sharing: another thread has modified data on the same cache line
that the current thread has also modified.

However, as mentioned earlier, the presence of one instance of
false sharing does not necessarily indicate a performance problem.
A single transaction may run for a long period of time (seconds or
more), and one false sharing instance in this period is not a problem.

4.2 Identifying Problematic False Sharing
To precisely measure the impact of observed false sharing in-
stances, Sheriff uses a sampling-based approach. There is a bal-
ance between choosing a finer sampling period and performance
overhead. Sheriff currently uses 10 microseconds as its sampling
interval.

Sheriff counts the number of writes by associating a temporary
twin page with each shared dirty page (see Figure 1). Handling of
these temporary twin pages is slightly different than for the original
twin pages. First, they are created in the sampling timer handler
whenever a page is found to be shared by multiple threads (no
temporary twins are created for pages only accessed by one thread).
Sheriff records the users of each page in a global array. Second,
temporary twin pages are updated with the working version at every
sampling interval (triggered by a timer).

4.3 Capturing Cache Invalidations
Only repeatedly interleaved writes can cause a performance prob-
lem by causing repeated cache line invalidations. Sheriff monitors
interleaved writes across different threads in order to capture the
effect of cache invalidations.

In order to capture interleaved writes on caches, Sheriff uses
virtual cache line status words (Figure 1). Sheriff assigns one status
word to every cache line under protection. Each status word has two
fields. The first field points to the last thread to write to this cache
line, and the second field records the number of invalidations (a
version number) to the cache line.

Every time a different thread writes to a cache line, Sheriff
updates the associated status word with both the thread id and the
version number. In the current implementation, Sheriff splits the
status word into two different arrays to allow the use of atomic
operations instead of locks (see Figure 4).

4.4 Identifing Objects inside Cache Lines
At this point, Sheriff has detected individual cache lines that are
responsible for a large number of invalidations, and thus potential

4 2010/8/24

void recordCacheInvalidates(int cacheNo) {
int myTid = getpid();
int lastTid;

// Try to check last thread to modify this cache.
lastTid = atomic_exchange(&LastThreadModifyCache[cacheNo], myTid);
if(lastTid != myTid) {

// Increment cache invalidation only when current thread is different.
atomic_increment(&cacheInvalidation[cacheNo]);

}
}

Figure 4. Record the cache invalidation atomically.

sources of slowdowns. The next step is identifying the culprit
objects.

Sheriff identifies globals directly by using debug information
that associates the address with the name of the global.

For heap objects, Sheriff instruments memory allocation to at-
tach the call site to the header of each heap object. This calling con-
text indicates the sequence of function calls that led to the actual al-
location request, and is useful to help the programmer identify and
correct false sharing problems, as the case study in Section 7.1.3
demonstrates. Any heap object responsible for a large number of
invalidations is not deallocated so that it can be reported at the end
of program execution.

4.5 Avoiding False Positives
Sheriff also instruments memory allocation operations to clean up
cache invalidation counts whenever an object is de-allocated. This
approach avoids the false positives caused by incorrectly aggregat-
ing counts when one address is re-used for other objects.

To further reduce false positives, Sheriff uses another global
array to record which threads have written each word, and the
version numbers of each word. Threads writing on each word
can tell whether one cache line is false sharing or true sharing.
Associating a version number with each word allows Sheriff to
avoid reporting those objects which do not contribute much on
cache invalidations when there are multiple objects in the same
cache line. In order to save space, Sheriff use one word’s higher
16 bits to store the thread id, and uses the lower 16 bits to store the
word’s version number. When one word is detected to have been
modified by more than two threads, we set the thread id field to
0xFFFF.

4.6 Reporting Falsely Shared Objects
At the end of program, Sheriff reports those objects causing false
sharing problems. Sheriff scans the cache invalidation array for
cache lines with invalidation times larger than a fixed threshold
(currently 100). The corresponding invalidation times and offset
of this cache line are added to a global linked list sorted by invali-
dation times. Later, Sheriff ranks the falsely shared objects by the
number of invalidations they caused.

After scanning the cache invalidation array, Sheriff obtains ob-
ject information for all cache lines in the linked list, and reports the
allocation site and updated offsets of all falsely-shared allocated
objects.

5. Optimizations
To reduce overhead, Sheriff employs the following performance
optimizations:

• Applying memory protection to the entire heap is expensive.
To reduce this cost, Sheriff uses a protected heap only for

allocations smaller than the number of cores times the cache
line size. This heuristic is effective since small objects are more
likely to be the source of false sharing because they fit on a
cache line.

• Sheriff does not apply memory protection at all when there
is just one thread running: when there is only one thread,
false sharing cannot occur. Sheriff only initiates protection af-
ter a pthread create() call to start a new thread. Also,
Sheriff disables protection as soon as it detects that there is
only one thread running, which it checks after each call to
pthread join().

• Sheriff uses sampling to capture continuous writes in the same
transaction. In the timer handler, Sheriff must compare writ-
ten pages (dirty) to the committed pages. Since false sharing
problems can happen on those pages that are shared by multiple
process simultaneously, Sheriff only checks those shared pages
to reduce the checking overhead. Thus, Sheriff uses a shared
page-based array to track the status of all pages. When one page
is faulted because of a write operation, Sheriff increments the
number of writers to this page.

• Sheriff uses the shared page version number to improve perfor-
mance on commits. Notice that Sheriff must compare the cor-
responding twin page and working page in order to locate and
commit only the modifications to the shared mapping. In fact, if
one private page’s corresponding shared mapping has not been
modified by other threads, it is safe to commit the entire content
of this page to the shared mapping. Copying the entire page is
faster than diffing, so Sheriff does this whenever possible.
To detect whether there are potential conflicts that would pre-
clude copying, Sheriff associates a version number with each
page in shared mapping. Sheriff increments each page’s version
number after every commit of that page. Before the creation of
each twin page, Sheriff saves the corresponding page version
number for one page. In the end of transaction, if the saved
page version number is still the same as the shared page version
number, that means that no one else has committed a new ver-
sion to corresponding shared mapping, so it is safe to copy the
entire working page as next version of shared mapping.

6. Discussion
This section describes some of Sheriff’s limitations, which slightly
restrict its ability to run certain programs and to find all instances
of false sharing.

6.1 Limits on Application Class
As Section 3.2 describes, Sheriff does not share the stack between
different threads. When using pthreads, it is possible for different
threads to share stack variables allocated by their parent. Sher-

5 2010/8/24

iff currently is not able to run correctly with applications whose
threads modify stack variables from their parent thread.

6.2 Precision
Unlike previous tools, Sheriff has no false positives. It can differen-
tiate true sharing and false sharing (see Section 4.5) and avoid false
positives caused by heap objects (Section 4.4).

However, a key question is to what extent Sheriff has false
negatives; that is, when does it fail to report false sharing (that is,
when such false sharing can lead to performance degradation)?

• Heap-induced false sharing. Sheriff is based on a Hoard-like
memory allocator, instead of using pthreads memory alloca-
tor. That means that any false sharing problem introduced by
pthreads memory allocator can be undetected by Sheriff. Since
the use of a memory allocator like Hoard that avoids heap-
induced false sharing easily resolves this problem, this limita-
tion is not a problem in practice.

• According to previous section, Sheriff chooses to protect small
objects only in order to improve performance. If one false
sharing problem unfortunately happens on those large objects,
then Sheriff cannot detect the false sharing problems. For the
suite of benchmarks explored here, this problem does not arise.

• Since it uses sampling to capture continuous writes from differ-
ent threads, Sheriff can miss writes that occur in the middle of
sampling intervals. We hypothesize that false sharing problems
that affect performance are unlikely to only perform frequent
writes during that time.

7. Evaluation
We perform our evaluations on a quiescent 8-core system (dual
processor with 4 cores), and 8GB of RAM. Each processor is a 4-
core 64-bit Intel Xeon running at 2.33 Ghz with a 4MB L2 cache.
Note that those applications are generated for a 32bit environment
using “-m32”.

All performance data in this section are the average of 10 ex-
ecutions, with the maximum value and minimum values excluded
here.

In this section, we are going to answer the following questions:

• How effective is Sheriff at finding false sharing problems?
• What is the performance of Sheriff compared to pthreads?
• What application characteristics affect Sheriff’s performance?

7.1 Effectiveness
This section evaluates whether Sheriff can be used to find false
sharing problems both in synthetic test cases and in actual appli-
cations.

7.1.1 Micro-benchmarks
As Section 2.1 describes, Sheriff can be used to detect false sharing
problems including false sharing, pseudo sharing. We first devel-
oped test cases that exemplify these problems and evaluate whether
Sheriff can successfully detect them. For comparison, we also
present the corresponding results of Intel’s Performance Tuning
Utility (PTU), version 3.2.

Table 1 presents results of this evaluation. We can see that Sher-
iff reports both false sharing (Figure 5) and pseudo sharing (Fig-
ure 6) problems successfully, and correctly ignores the benchmarks
(3–5) with no actual false sharing performance impact). However,
PTU reports false sharing for benchmark 4 and benchmark 5. Note
that benchmark 5 (Figure 9) triggers the typical false positives due

int count1 = 0; int count2 = 0;
void * thread1(void * param) {
for(i = 0; i < COUNT_NUM; i++)
count1++;

}
void * thread2(void * param) {
for(i = 0; i < COUNT_NUM; i++)
count2++;

}

Figure 5. Benchmark 1 (false sharing)

int count[CORE_NUM];
void * thread(void * param) {
int tid = (int)param;
for(i = 0; i < COUNT_NUM; i++)
count[tid]++;

}

Figure 6. Benchmark 2 (pseudo sharing)

int count = 0;
void * thread(void * param) {
for(i = 0; i < COUNT_NUM; i++)
count++;

}

Figure 7. Benchmark 3 (true sharing)

int count1 = 0; int count2 = 0;
void * thread1(void * param) {
for(i = 0; i < COUNT_NUM; i++)
count1++;

}
void * thread2(void * param) {
for(i = 0; i < COUNT_NUM; i++)
count2++;

}
int main() {

spawn(&tid[0], thread1); join(tid[0]);
spawn(&tid[1], thread2); join(tid[1]);

}

Figure 8. Benchmark 4 (noninterleaving-falsesharing).

to dynamic heap object reuse: the two different allocations hap-
pen to occupy the same address. Sheriff avoids this false posi-
tive by cleaning up invalid counting information (after the call to
free(pcount1)).

7.1.2 Actual Applications
In order to verify whether Sheriff can be used to detect false sharing
problems in actual applications, we run Sheriff against phoenix [20]
and PARSEC [6] benchmark suite.

We used the simlarge inputs for all applications of PARSEC.
For Phoenix, we chose parameters that allow the programs to run
as long as possible. 1

According to our experiments, Sheriff have found that four
benchmarks (of a total 16) have some false sharing issues. In

1 As of this writing, we were unable to successfully compile raytrace
and vips, and Sheriff is currently unable to run x264, bodytrack, and
facesim.

6 2010/8/24

int * pcount1; int * pcount2;
void * thread1(void * param) {
for(i = 0; i < COUNT_NUM; i++)

pcount1[0]++;
}
void * thread2(void * param) {
for(i = 0; i < COUNT_NUM; i++)

pcount2[1]++;
}
int main() {

pcount1 = malloc(16);
spawn(&tid[0], thread1); join(tid[0]);
free(pcount1);
// New allocation here.
pcount2 = malloc(16);
spawn(&tid[1], thread2); join(tid[1]);

}

Figure 9. Benchmark 5 (heap-induced false positive).

Microbenchmark Perf-Sensitive Sheriff PTU
False Sharing

Benchmark 1 X True True
Benchmark 2 X True True
Benchmark 3 False False
Benchmark 4 False True
Benchmark 5 False True

Table 1. False sharing detecting results using PTU and Sheriff.
True indicates the tool reported false sharing, while False indicates
no reports. Sheriff correctly reports only actual false sharing in-
stances with a performance impact.

int * use_len;
void insert_sorted(int curr_thread) {

......
// After finding a new link
(use_len[curr_thread])++;
......

}

Figure 10. reverse index example. Here different threads can
modify the same use len array when there is a new link found.

reverse index and word count, multiple threads repeatedly
modify the same heap object. The pseudo code for these two bench-
marks are listed in Figure 10. We can use thread-local copy to avoid
the false sharing problem here; each thread can modify a temporary
variable first and then modify the global use len in the end of
thread.

Linear regression’s false sharing problem is a little dif-
ferent (see Figure 11. Two different threads write to the same cache
line when the structure lreg args is not cache line aligned.
This problem can be avoided easily by padding the structure
lreg args.

The false sharing problem detected in streamcluster (one
of the PARSEC benchmarks) is similar to the false sharing problem
in linear regression; two different threads are writing on the
same cache line. But the reason is different. In fact, the author tried
to avoid false sharing problems and make every stride a multiple
times of cache line size. But the default cache line size is 32
bytes, which is different from the actual physical cache line size
that we are used in evaluation (64 bytes). By simply setting the

struct {
long long SX;
long long SY;
long long SXX;
......

} lreg_args;
void *lreg_thread(void *args_in) {
struct lreg_args * args = args_in;
for(i = 0; i < args->num_elems; i++) {
args->SX += args->points[i].x;
args->SXX += args->points[i].x

* args->points[i].x;
}
......

}

Figure 11. linear regression false sharing example code.
In the creation of thread, each thread will be passed in a different
address (struct lreg args) and each thread can work on its
corresponding args in. But unfortunately, the size of struct
lreg args is not cache line aligned (52 bytes) and that causes
two different threads to write to the same cache line simultaneously.

Benchmark Old New Speedup Updates
(s) (s) (M)

linear regression 9.116 0.89 1024.3% 1323.6
reverseindex 5.449 5.427 100.41% 0.4
word count 2.188 2.151 101.72% 0.3
streamcluster 2.825 2.501 112.95% 28.7

Table 2. Performance data for 4 false sharing benchmarks. “Old”
column shows the runtime (s) before we fix the false sharing prob-
lem and “New” column shows the runtime (s) after fix. All data are
got based on the same pthreads library. “Updates” shows how many
million updates (in total) occurred on falsely-shared cache lines.

CACHE LINE macro to 64 bytes, it is possible to avoid this false
sharing problem completely.

The performance of these four benchmarks is listed in Table 2,
before and after fixing the false sharing issues that Sheriff identi-
fied. To explain why there is so much difference in performance im-
provement, we also modified the code to count the possible updates
caused by these false sharing objects. Updates listed here are the
maximum possible number of interleaving writes of these objects
(the actual number of interleaving writes depending on scheduling
issues).

The benchmarks reverse index and word count do not
exhibit substantial improvements after fixing false sharing because
the number of updates is not very large. For example, the maximum
number of interleaved updates for reverse index is 416,000.
However, for linear regression, the number of updates is
much larger: over 1 billion. However, even the relatively low num-
bers of updates indicates that eventually (as the number of threads
grow, or for NUMA architectures), this false sharing will become
problematic.

7.1.3 Comparison between Sheriff and PTU
In order to show how effectively Sheriff can find false sharing prob-
lems, we compare the results with Intel’s Performance Tuning Util-
ity (PTU). PTU is a comercial product which we believe represents
the state of art for detecting false sharing problems.

We focus on two things in this comparison:

• How many items are reported by different tools?

7 2010/8/24

Benchmark PTU Sheriff
Cachelines # Objects

histogram 0 0
kmeans 1916 0
linear regression 5 1
matrix multiply 468 0
pca 45 0
reverseindex N/A 1
string match 0 0
word count 4 1
blackscholes 0 0
canneal 1 0
dedup 0 0
ferret 0 0
fluidanimate 3 0
freqmine 0 0
streamcluster 9 1
swaptions 196 0
Total 2647 4

Table 3. Detection results of PTU and Sheriff. For PTU, we show
how many cache lines are marked as falsely shared. For Sheriff, we
show how many objects are reported by Sheriff (with interleaving
writes larger than 100). The item marked as “N/A” means PTU fails
to show results because it runs out of memory.

• How effective is the tool at helping us find actual false sharing
problems?

Reporting Items For PTU, we list the numbers of cache line
having false sharing problems (marked with pink color by the tool).
To locate one false sharing problem, a programmer must examine
every one of these reports. For Sheriff, we list the number of objects
reported by Sheriff.

From the results listed in Table 3, we can see that Sheriff will
impose much less manual effort to check those false sharing prob-
lems. Across all of the benchmarks, PTU indicates the need to ex-
amine 2647 cache lines overall, (not including reverse index)
but Sheriff only indicates the need to examine 4 cache lines: all of
which are actually false sharing problems.

Several factors lead to this difference. First, Sheriff distin-
guishes true from false sharing, dramatically reducing the number
of reported items. Second, Sheriff only reports those objects with
interleaving writes larger than a threshold number, which signif-
icantly reduces the number of reports. Third, Sheriff reports cor-
responding objects instead of cache lines, which also reduces the
number of reports if one object spans multiple cache lines.

Ease of locating false sharing problems To illustrate how Sheriff
can precisely locate false sharing problems, we use one benchmark
(word count, a Phoenix benchmark) as an example. Our experi-
ence with diagnosing other false sharing issues is similar.

Here is an example output from Sheriff from word count.

1st object, cache interleaving writes
13767 times (start at 0xd5c8e140).
Object start 0xd5c8e160, length 32.
It is a heap object with callsite:
callsite 0:./wordcount_pthreads.c:136
callsite 1:./wordcount_pthreads.c:441

Line 136 (wordcount pthreads.c), contains the follow-
ing memory allocation call:

use_len=malloc(num_procs*sizeof(int));

Grepping for use len, a global pointer, quickly leads to this
line:

use_len[thread_num]++;

Now it is clear that different threads are modifying the same
object (use len). Fixing the problem by using the thread-local data
copies is now straightforward [13].

By contrast, compare PTU’s output in Figure 12. Finding this
problem is far more complicated with PTU, since it only presents
functions using each cache line, not to mention the fact that PTU
can report huge numbers of false positives. Another shortcoming
of PTU is that “Collected Data Refs” number cannot be used as a
metric to evaluate the significance of false sharing problems. For
this example, PTU only reports 12 references (versus 13767 times
for Sheriff).

7.2 Performance of Sheriff
We have evaluated Sheriff in both modes (eliminating and detect-
ing) on two multithreaded benchmarks suites, Phoenix and PAR-
SEC. The results can be seen from Figure 13. There are two out-
liers in the results. One is linear regression, which exhibits
almost a 10X speedup against the one using pthreads library. There
is a serious false sharing problem inside (see Table 2) which Sher-
iff eliminates automatically. Even in detection mode, with the over-
head of sampling, etc., Sheriff achieves a significant performance
benefit. Another outlier is the ferret benchmark. The performance
overhead of Sheriff on this benchmark is about 4.97X slower than
the one using pthreads library.

In order to find out what can affect Sheriff’s performance, we
measured charecteristics of our benchmark suites in Table 4. Ac-
cording to our analysis, the following parameters can affect the
performance of Sheriff.

• Pages written: each write on a protected page imposes addi-
tional overhead to unprotect the page in the page fault handler.
In the sampling handler, Sheriff must check for cache writes for
each shared written page, and at the end of transaction, Sheriff
must check cache writes for each page and commit the modifi-
cation to the shared space.

• Transaction length: Sheriff introduces overhead in the begin-
ning of transaction and in the end of each transaction. Longer
transactions amortizes this overhead.

• Allocation times: Sheriff (in detection mode) attaches callsite
information for every allocated object, slowing allocation.

• Cache cleanup size: Sheriff cleans up the invalid cache count-
ing information in the memory allocation if one allocation is
involving in the re-usage of memory of those freed memory ob-
jects.

From the results from Table 4, we can confirm our analysis.
Allocation times and cache cleanup size have little impact on per-
formance. However, when the number and rate of pages written is
large, performance suffers.

Figure 13 shows that Sheriff’s overhead is highest for the fol-
lowing four benchmarks: benchmarks ferret, reverse index,
dedup and fluidanimate. Characteristics showed in Table 4
that the first three benchmarks have a very high rate of page up-
dates (PagesPerMs). fluidanimate is an outlier if we are just
using the PagesPerMs metrics. The reason of fluidanimate
has a high overhead is that there are huge amounts of transactions
inside (about 10M). Examination of the source code revealed a
large number of lock calls in this application. Sheriff replaces lock
calls with their interprocess variants and triggers a transaction end
and begin for each, adding overhead. The worst case for Sheriff is
exemplified by ferret, which modifies a huge number of pages
(about 3.45G) and has a large number of transactions (about 1M).

8 2010/8/24

Figure 12. PTU output for word count.

 0

 0.5

 1

 1.5

 2

Geometric_mean

swaptions

streamcluster

freqmine

fluidanimate

ferret
dedup

canneal

blackscholes

word_count

string_match

reverse_index

pca
matrix_multiply

linear_regression

kmeans

histogram

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Sheriff Runtime Overhead

3.97

4.73

pthreads
Sheriff(runtime)
Sheriff(detection)

Figure 13. Runtime overhead for Sheriff (in both modes) across a suite of benchmarks, normalized to the performance of the pthreads library
(see Section 7.2). In case of catastrophic false sharing, Sheriff dramatically increases performance; with the exception of a notable outlier, its
overhead is acceptably low.

8. Related Work
8.1 Code Profiling and Data Profiling
While most existing profilers can identify cache misses (e.g., OPro-
file [17]), they typically cannot distinguish between false sharing
and true sharing.

The closest related work to this paper not mentioned previously
is DProf [19]. DProf attempts to associate memory addresses with
data types to locate cache problems related to the same type of
object and is designed to help identify the flow of data moving from
one core to the other. DProf requires some manual annotation to
locate data types and object fields, and cannot detect false sharing
when multiple objects reside on the same cache line. By contrast,
Sheriff requires no manual intervention and precisely identify false
sharing regardless of the flow of data or which data types involved.

8.2 False Sharing Detection
Intel’s performance tuning utility (PTU) [12, 13] utilizes event-
based sampling to discover instructions sharing physical cache
lines, and can give some indication about possible false sharing
problems caused by different functions. Unlike Sheriff, PTU can
suffer from numerous false positives caused by aliasing (due to
reuse of heap objects) and reports false sharing instances that have

no impact on performance. Also unlike Sheriff, PTU cannot differ-
entiate true from false sharing.

8.3 False Sharing Avoidance
It is well-known that false sharing problems can affect the perfor-
mance of application greatly [14, 8]. Jeremiassen and Eggers [14]
describe a compiler transformation that adjusts the memory layout
of applications though the computation of memory access pattern.
Chow et al. [8] select different scheduling parameters for paral-
lel loops. Berger et al. describe Hoard, a scalable memory alloca-
tor that eliminate false sharing caused by collocation of heap ob-
jects [3]. None of these tools can avoid false sharing to the extent
that Sheriff does.

8.4 Processes-as-threads
As described earlier, Sheriff borrows and significantly extends the
process-as-thread model first employed by Grace [4]. Grace is a
process-based approach designed to tolerate concurrency errors,
such as deadlock, race conditions, and atomicity errors by impos-
ing a sequential semantics on multithreaded programs. Like Sher-
iff, Grace exploits the use of processes as threads to provide com-
plete separation and to capture read/write information from differ-
ent threads. However, Grace has an entirely different target and is

9 2010/8/24

Benchmark PagesWritten Commits Allocs CleanupSize TranLength(ms) PagesPerTran PagesPerMs
histogram 0 24 2 0 12.5 0 0
kmeans 1312 3836 101002 0 4.15 0.34 0.08
linear regression 16 24 3 0 38.6 0.67 0.02
matrix multiply 16 24 11 0 313.23 0.67 0.0
pca 0 47 2 0 450.69 0 0.0
reverseindex 260201 156409 250927 0 0.05 1.66 30.99
string match 0 24 7 0 104.75 0 0.00
word count 145 89 38 32 25.08 1.63 0.06
blackscholes 0 23 4 0 453.51 0 0.0
canneal 8 1056 5974612 0 10.32 0.01 0.0
dedup 76184 45636 8291 0 0.04 1.67 44.9
ferret 904381 1072258 110558 0 0.01 0.84 76.04
fluidanimate 8 10018550 135430 352 0.00 0.00 0.00
freqmine 0 1 33 0 11524.6 0 0.0
streamcluster 32824 128557 12 294 0.02 0.26 10.42
swaptions 48 24 388 0 167.23 2 0.01

Table 4. Characteristics of benchmarks.

restricted to fork-join programs without inter-thread communica-
tion. Sheriff extends the key insight of Grace of using processes to
replace threads, but generalizes it to handle arbitrary multithreaded
programs.

9. Future Work
We plan to extend Sheriff to find more performance related prob-
lems in multithreaded programs. For example, if one frequently-
read word happens to be in the same cache line with one frequently-
written word, it would be better to separate those two words. But
in the current framework, Sheriff can not detect the memory read
operation using the twin page mechanism. We are examining the
combination of hardware watchpoints to help us locate this kind of
performance error. In addition, we plan to exploit watchpoints to
capture those program counters that touch specific addresses so as
to point the programmer to specific lines of code responsible for
false sharing.

10. Conclusion
This paper presents Sheriff, a software-only system that elimi-
nates and precisely detects false sharing in multithreaded programs.
Sheriff accomplishes this by converting threads into processes, iso-
lating writes, and merging updates using a twinning mechanism in-
spired by distributed shared memory systems that both allows it to
avoid false sharing and to distinguish true from false sharing. Sher-
iff uses sampling to identify false sharing instances responsible for
actual performance degradation, and avoids the false positives of
previous tools by intercepting memory allocation operations. Sher-
iff reports allocation call site information for any heap object re-
sponsible for false sharing problems with a possible performance
impact. We show that Sheriff is useful in tracking down and resolv-
ing false sharing problems in an existing benchmark suite, in one
case allowing us to increase performance by 10X.

Sheriff can operate directly on unaltered binaries, making de-
ployment simple. Since Sheriff does not require advanced hard-
ware support, it can be used to find false sharing problems for those
legacy applications running on commodity hardware. For most of
applications, Sheriff incurs reasonable runtime overhead.

References
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. HPCTOOLKIT: tools for performance
analysis of optimized parallel programs. Concurr. Comput. : Pract.
Exper., 22(6):685–701, 2010.

[2] D. Bacon. SETL for Internet Data Processing. PhD thesis, New York
University, January 2000. Section 2.12, Passing File Descriptors.

[3] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications.
In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-IX), pages 117–128, Cambridge, MA, Nov. 2000.

[4] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multi-
threaded programming for C/C++. In OOPSLA ’09: Proceeding of
the 24th ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 81–96, New York, NY,
USA, 2009. ACM.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, June 2001.

[6] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[7] W. J. Bolosky and M. L. Scott. False sharing and its effect on shared
memory performance. In Sedms’93: USENIX Systems on USENIX
Experiences with Distributed and Multiprocessor Systems, pages 3–3,
Berkeley, CA, USA, 1993. USENIX Association.

[8] J.-H. Chow and V. Sarkar. False sharing elimination by selection
of runtime scheduling parameters. In ICPP ’97: Proceedings of the
international Conference on Parallel Processing, pages 396–403,
Washington, DC, USA, 1997. IEEE Computer Society.

[9] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, 1982.

[10] S. M. Günther and J. Weidendorfer. Assessing cache false sharing
effects by dynamic binary instrumentation. In WBIA ’09: Proceedings
of the Workshop on Binary Instrumentation and Applications, pages
26–33, New York, NY, USA, 2009. ACM.

[11] R. L. Hyde and B. D. Fleisch. An analysis of degenerate sharing and
false coherence. J. Parallel Distrib. Comput., 34(2):183–195, 1996.

[12] Intel. Intel Performance Tuning Utility 3.2 Update, November 2008.

[13] Intel. Avoiding and identifying false sharing among threads. http://
software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/,
February 2010.

[14] T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared
memory multiprocessors through compile time data transformations.
In PPOPP ’95: Proceedings of the fifth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 179–188,
New York, NY, USA, 1995. ACM.

10 2010/8/24

[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
marks: distributed shared memory on standard workstations and oper-
ating systems. In WTEC’94: Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994 Technical Conference,
pages 10–10, Berkeley, CA, USA, 1994. USENIX Association.

[16] J. Larus and R. Rajwar. Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan & Claypool Publishers, first edition,
2007.

[17] J. Levon. Oprofile internals. http://oprofile.sourceforge.net/doc/
internals/index.html, 2003.

[18] C.-L. Liu. False sharing analysis for multithreaded program. Master’s
thesis, National Chung Cheng University, July 2009.

[19] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache
performance bottlenecks using data profiling. In EuroSys ’10:
Proceedings of the 5th European conference on Computer systems,
pages 335–348, New York, NY, USA, 2010. ACM.

[20] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for multi-core and multi-
processor systems. In HPCA ’07: Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architec-
ture, pages 13–24, Washington, DC, USA, 2007. IEEE Computer
Society.

[21] M. Schindewolf. Analysis of cache misses using simics. Master’s
thesis, Institute for Computing Systems Architecture, University of
Edinburgh, 2007.

11 2010/8/24

