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Abstract. We introduce a novel approach to multiscale manifold align-
ment. Our approach goes beyond the previously studied approaches in
that it yields a hierarchical alignment that preserves the local geometry of
each manifold and matches the corresponding instances across manifolds
at different temporal and spatial scales. The proposed approach is non-
parametric, data-driven, and automatically generates multilevel align-
ments by analyzing the intrinsic (or latent) hierarchical shared structure
of the given data sets. We describe and evaluate our approach both the-
oretically and experimentally, and present results showing useful knowl-
edge transfer in several real-world tasks.
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1 Introduction

In many situations, we want to adapt the knowledge learned in a source domain
for use in a target domain, where the source and target domains may be differ-
ent but related. This problem arises in a variety of applications in information
retrieval, e-commerce, computer vision, and many other areas.
The area of transfer learning in general, and domain adaptation in particu-

lar, has recently seen a surge of activity [1–5]. However, one limitation that has
not been fully addressed is that most existing domain adaptation approaches
assume that the source and target domains are defined by the same features,
and the difference between domains primarily arises due to the difference be-
tween data distributions. This assumption is not valid in many scenarios such as
cross-lingual retrieval, where the source and target domains are represented in
different languages and do not share any features. Recently, a new approach to
transfer learning called manifold alignment was proposed to address the problem
of learning correlations across domains defined by different features. Manifold
alignment builds mappings between two or more disparate data sets by aligning
their underlying manifolds and provides a geometric framework for knowledge
transfer across data sets. More formally, given data sets X = {x1, · · · , xm}
(from manifold X ) and Y = {y1, · · · , yn} (from manifold Y) together with a
small fraction of samples labeled with known correspondences, we want to find a
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correspondence between them. Directly working with the original data instances
can be quite difficult, since they are in high dimensional spaces and might be
defined by different features. The solution is to map X and Y to a new latent
space Z, where instances xi and yj can be directly compared.

Existing manifold alignment approaches can be categorized into two types.
In two-step alignment approaches, such as diffusion-maps based alignment [6]
and Procrustes alignment [7], the first step maps the data sets to low dimen-
sional spaces reflecting their intrinsic geometries using standard dimensionality
reduction approaches. Then, a subsequent step eliminates some components (like
rotational and scaling components) from one set so that the alignment of two
sets can be achieved. In one-step alignment methods, such as semi-supervised
alignment [8], semi-definite alignment [9], and manifold projections [10], the em-
bedding projection and alignment steps are combined into one. Semi-supervised
alignment first creates a joint manifold representing the union of both manifolds
X and Y. Then it maps the joint manifold to a lower dimensional latent space
preserving local geometries of both X and Y, and matching instances in cor-
respondence. Semi-supervised alignment is based on eigenvalue decomposition.
Semi-definite alignment solves a similar problem using a semi-definite program-
ming framework. Manifold projections extends semi-supervised alignment by
considering many to many correspondences, and assumes that linear mapping
functions are used to compute alignments. Manifold projections directly builds
connections between features rather than instances and can naturally handle
new test instances.

Many real-world data sets exhibit non-trivial regularities at multiple levels,
which correspond to their underlying intrinsic structure. For example, in the
NIPS conference paper data set (www.cs.toronto.edu/∼roweis/data.html), at
the most abstract level, the set of all papers can be categorized into two main
topics: machine learning and neuroscience. At the next level, the papers can be
categorized into a number of areas, such as dimensionality reduction, reinforce-
ment learning, etc. To transfer knowledge across domains taking consideration
of their intrinsic multilevel structures, we need to provide ways to do multiscale
manifold alignment, which has not been studied yet. We formulate the problem
of multiscale alignment using the framework of multiresolution wavelet analy-
sis [11]. Compared to single-level alignment, multiscale alignment automatically
generates alignment results at different levels by discovering the shared intrinsic
multilevel structures of the given data sets. In contrast to previous “flat” align-
ment methods, where users need to specify the dimensionality of the new space,
the multilevel approach automatically finds alignments of varying dimensional-
ity. In addition to the theoretical analysis of the algorithm, we also evaluate
our approach in several real-world domains, including cross-lingual information
retrieval and corpora alignment.

The rest of this paper is as follows. In Section 2 we describe the problem and
the main algorithm. In Section 3 we provide a theoretical analysis of our ap-
proach. We describe some applications and summarize our experimental results
in Section 4. Section 5 provides some concluding remarks.



Multiscale Manifold Alignment 3

2 Multiscale Manifold Alignment

In this section, we introduce the framework of multiscale alignment. The notation
used in this paper is summarized in Figure 1.

xi ∈ R
p; X = {x1, · · · , xm} is a p×m matrix; Xl = {x1, · · · , xl} is a p× l matrix.

yi ∈ R
q; Y = {y1, · · · , yn} is a q × n matrix; Yl = {y1, · · · , yl} is a q × l matrix .

Xl and Yl are in correspondence: xi ∈ Xl ←→ yi ∈ Yl.

Wx is a similarity matrix, e.g. W i,j
x = e

−

||xi−xj ||
2

2σ2 .
Dx is a full rank diagonal matrix: Di,i

x =
∑

j
W i,j
x ;

Lx = Dx −Wx is the combinatorial Laplacian matrix.
Wy, Dy and Ly are defined similarly.
Ωi is a diagonal matrix having µ on the top l elements of the diagonal (the other elements are 0);
Ω1 is an m×m matrix; Ω2 and ΩT

3 are m× n matrices; Ω4 is an n× n matrix.

Z =

(

X 0
0 Y

)

is a (p+ q)× (m+ n) matrix.

D =

(

Dx 0
0 Dy

)

and L =

(

Lx +Ω1 −Ω2

−Ω3 Ly +Ω4

)

are both (m+ n)× (m+ n) matrices.

F is a (p+ q)× r matrix, where r is the rank of ZDZT and FFT = ZDZT . F can be constructed
by SVD.
(·)+ represents the Moore-Penrose pseudoinverse.
At level k: αk is a mapping from any x ∈ X to a pk dimensional space: αTk x (αk is a p×pk matrix).
At level k: βk is a mapping from any y ∈ Y to a pk dimensional space: βTk y (βk is a q× pk matrix).

Fig. 1. Notation used in this paper.

2.1 Single-Level Manifold Alignment

We review two approaches to single-level manifold alignment: semi-supervised
alignment learns an instance-level alignment by constructing nonlinear embed-
dings; manifold projections learns a feature-level alignment by constructing lin-
ear embedding functions. In both cases, we are given two data sets X,Y along
with additional pairwise correspondences.

Semi-supervised alignment [8] finds the best alignment mapping for in-
stances xi and yi by minimizing the following cost function:

C(f, g) = µ

l
∑

i=1

(fi − gi)
2 + 0.5

∑

i,j

(fi − fj)
2W i,j

x + 0.5
∑

i,j

(gi − gj)
2W i,j

y ,

where fi is the embedding of xi, gi is the embedding of yi and µ is the weight
of the first term. The first term penalizes the differences between X and Y

on the embeddings of the corresponding instances. The second and third terms
ensure that the local geometries within X and Y will be preserved. To remove
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an arbitrary scaling factor in the embedding, an extra constraint is imposed:
fTDxf + gTDyg = γTDγ = I. Then, the d dimensional alignment result is
given by

[

f

g

]

= [γ1 · · · γd],

where γ1 · · · γd are eigenvectors of Lγ = λDγ corresponding to the d smallest
non-zero eigenvalues.

Manifold projections [10] learns mapping functions α and β for alignment.
When the correspondence is given, its cost function is given as: 1:

C(α, β) = µ

l
∑

i

(αTxi − βT yi)
2 + 0.5

∑

i,j

(αTxi − αTxj)
2W i,j

x + 0.5
∑

i,j

(βT yi − βT yj)
2W i,j

y .

To remove an arbitrary scaling factor in the embedding, an extra constraint is
needed: αTXDxX

Tα+βTY DyY
Tβ = γTZDZT γ = I. Then, the d dimensional

mapping function is given by

[

α

β

]

= [γ1 · · · γd],

where γ1 · · · γd are the eigenvectors of ZLZ
T γ = λZDZT γ corresponding to the

d smallest non-zero eigenvalues. Manifold projections builds connections between
features (rather than instances) across manifolds, so it can handle new test
instances and makes direct knowledge transfer possible.
Semi-supervised alignment and manifold projections are based on a similar

idea. Given samples from two manifolds X and Y, they first create a joint man-
ifold represented by the Laplacian matrix L. L has the information from both
Lx and Ly. Such information models the local geometries of both X and Y. The
submatrices Ω1 − Ω4 in L play a key role in joining the two manifolds. They
force the instances in correspondence (from different manifolds) to be neighbors
in the joint manifold. The joint manifold is then mapped to a lower dimensional
space preserving its local geometry.

2.2 Multiscale Manifold Alignment Problem

Both semi-supervised manifold alignment [8] and manifold projections [10] start
with a cost function. It can be shown that the solution to minimize the cost
function is also the best solution to achieve alignment of the input manifolds. In
this section, we present another way to understand those algorithms and explain
how that helps achieve multiscale manifold alignment. Let

Wjoint =

(

Wx Wx,y

WT
x,y Wy

)

,

1 When no correspondence is given or when one instance can match multiple instances
in another data set, the loss function can be specified in a more general manner.
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where W i,j
x,y = µ, if xi and yj are in correspondence; 0, otherwise. If we define

a diagonal matrix Djoint as D
i,i
joint =

∑

jW
i,j
joint, then the matrix L defined in

Figure 1 can also be written as

L = Djoint −Wjoint.

Obviously, L is the graph Laplacian matrix corresponding to the joint weight
matrix Wjoint, reflecting the joint manifold constructed from two input mani-
folds and the given corresponding pairs. From the joint manifold, we can learn
lower dimensional embedding of each instance using Laplacian eigenmaps [12]
resulting in semi-supervised manifold alignment [8], or locality preserving pro-
jections [13] resulting in manifold projections [10]. A key problem in manifold
alignment that has not been addressed so far is that the dimensionality of the
alignment needs to be decided by the users. In previous approaches, this quantity
is specified using an arbitrary number. In this paper, we design an algorithm to
simultaneously find the most appropriate scales (dimensionalities) for align-
ments and the corresponding alignment results. This approach is based on an
intrinsic structure analysis of the joint manifold (represented by L). Note that
multiscale manifold alignment does not use eigenvalue decomposition. Rather,
it uses a multiresolution method called diffusion wavelets [11]. Given an input
dataset, diffusion wavelets (DWT) is able to automatically identify the multi-
level intrinsic structure of the data. If the input data is a joint manifold, then
those levels will correspond to the most appropriate scales to align the input
manifolds.
In this paper, we explain how manifold projections problem can be solved

at multiple scales. The same idea can be easily generalized to semi-supervised
alignment problem. The multiscale manifold alignment problem is formally de-
fined as follows: given two data sets X,Y along with partial correspondence
information xi ∈ Xl ←→ yi ∈ Yl, compute mapping functions Ak and Bk at
level k that project X and Y to a new space preserving local geometry of each
set and matching instances in correspondence. Here k = 1, . . . , h represents each
level of the joint manifold hierarchy.
To apply DWT to multiscale analysis of the given manifold, we need to ad-

dress the following challenge: DWT can only handle regular eigenvalue decom-
position in the form of Aγ = λγ, where A is the given matrix, γ is an eigenvector
and λ is the corresponding eigenvalue. However, the problem we are interested
in is a generalized eigenvalue decomposition: Aγ = λBγ, where we have two
input matrices A and B. It is non-trivial to convert the latter problem to the
former such that two problems have the same solution. We prove three theorems
in Section 3 to make it happen.

2.3 An Overview of Diffusion Wavelets

The diffusion wavelets algorithm constructs a compressed representation of the
dyadic powers of a (symmetric or non-symmetric) square matrix by representing
the associated matrices at each scale not in terms of the original (unit vector)
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{[φj ]φ0
, [ψj ]φ0

} = DWT (T, ε)
//INPUT:
//T : The input matrix.
//ε: Desired precision, which can be set to a small number or simply machine precision.
//OUTPUT:
//[φj ]φ0

: extended diffusion scaling functions at scale j.
//[ψj ]φ0

: extended diffusion wavelet functions at scale j.
φ0 = I;
For j = 0 to J − 1
{

([φj+1]φj , [T
2
j

]
φj+1

φj
)← QR([T 2

j

]
φj
φj
, ε);

[φj+1]φ0
= [φj+1]φj [φj ]φ0

;
[ψj ]φj ← QR(I<φj> − [φj+1]φj [φj+1]

T
φj
, ε);

[ψj+1]φ0
= [ψj+1]φj [φj ]φ0

;

[T 2
j+1

]
φj+1

φj+1
= ([T 2

j

]
φj+1

φj
[φj+1]φj )

2;

}

Fig. 2. Diffusion Wavelets constructs multiscale representations of the input matrix at
different scales. QR is a modified QR decomposition. J is the max step number (this is
optional, since the algorithm automatically terminates when it reaches a matrix of size
1× 1). The notation [T ]φbφa denotes matrix T whose column space is represented using
basis φb at scale b, and row space is represented using basis φa at scale a. The notation
[φb]φa denotes basis φb represented on the basis φa. At an arbitrary scale j, we have
pj basis functions, and length of each function is lj . The number of pj is determined
by the intrinsic structure of the given dataset in QR routine. [T ]

φb
φa

is a pb× la matrix,
and [φb]φa is an la × pb matrix.

basis, but rather using a set of custom generated bases [11]. Figure 2 summarizes
the procedure to generate diffusion wavelets. Given a matrix T , the QR (a mod-
ified QR decomposition) subroutine decomposes T into an orthogonal matrix Q
and a triangular matrix R such that T ≈ QR, where |Ti,k − (QR)i,k| < ε for
any i and k. Columns in Q are orthonormal basis functions spanning the column
space of T at the finest scale. RQ is the new representation of T with respect
to the space spanned by the columns of Q (this result is based on the matrix
invariant subspace theory). At an arbitrary level j, DWT learns the basis func-

tions from T 2j using QR. Compared to the number of basis functions spanning
T 2j ’s original column space, we usually get fewer basis functions, since some
high frequency information (corresponding to the “noise” at that level) can be

filtered out. DWT then computes T 2j+1

using the low frequency representation
of T 2j and the procedure repeats. This procedure is illustrated in Figure 3.

Running DWT is equivalent to running a Markov chain on the input data for-
ward in time, integrating the local geometry and therefore revealing the relevant
geometric structures of data at different scales. At scale j, the representation of
T 2j+1

is compressed based on the amount of remaining information and the de-
sired precision. Two sets of basis functions are constructed: “scaling” functions
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Fig. 3. Construction of Diffusion Wavelets.

span the column space of the input matrix at a given level; “wavelet” functions
(not discussed in this paper) span the orthogonal complement of the matrix
column space. These terms are motivated by analogy to the regular wavelet
transform.

2.4 The Main Algorithm

Given X,Xl, Y, Yl, using the notation defined in Figure 1, the algorithm is as
follows:

1. Construct a matrix representing the joint manifold: T = F+ZLZT (FT )+.
2. Use diffusion wavelets to explore the intrinsic structure of the joint

manifold:
[φk]φ0

= DWT (T+), where DWT () is described in Section 2, [φk]φ0
are the scaling

function bases at level k represented as an r × pk matrix, k = 1, · · · , h represents
the level in the joint manifold hierarchy. The value of pk is determined in DWT ()
based on the intrinsic structure of the given dataset.

3. Compute mapping functions for manifold alignment (at level k):
[

αk
βk

]

= (FT )+[φk]φ0
is a (p+ q)× pk matrix.

4. At level k: apply αk and βk to find correspondences between X and Y :
For any i and j, αTk xi and β

T
k yj are in the same pk dimensional space and can be

directly compared.

To use the multiscale framework to solve the semi-supervised alignment prob-
lem, we need to minimize the cost function C(f, g) instead. This requires making
two changes to our main algorithm. Step 1: T = H+L(HT )+, where D = HHT .
Step 4: At level k, row i of αk and row j of βk are in the same pk dimensional
space and can be directly compared.
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3 Theoretical Analysis

One significant advantage of wavelet analysis is that it directly generalizes to
non-symmetric matrices, which are often encountered when constructing graphs
using k-nearest neighbor relationships, in directed citation and web graphs, and
Markov decision processes. If the matrix is symmetric, there is an interesting
connection between our algorithm and manifold projections. Theorem 3 below
proves that the proposed alignment result at level k and the result from manifold
projections (with top pk eigenvectors) are both optimal with respect to the loss
function C(α, β) described in Sec 2.1. Theorems 1 and 2 prove some intermediate
results, which are subsequently used in Theorem 3.

Theorem 1. The solution to the generalized eigenvalue decomposition
ZLZT γ = λZDZT γ is given by ((F T )+x, λ), where x and λ are eigenvec-
tor and eigenvalue of F+ZLZT (FT )+x = λx.
Proof: Using the notation summarized in Figure 1, ZDZT = FFT , where F is
a (p+ q)× r matrix of rank r and can be constructed by singular value decom-
position. It is obvious that ZDZT is positive semi-definite.
Case 1: when ZDZT is positive definite:
It is trivial to see that r = p+ q. This implies that F is a (p+ q)× (p+ q) full
rank matrix: F−1 = F+.
ZLZT γ = λZDZT γ =⇒ ZLZT γ = λFF T γ =⇒ ZLZT γ = λF (F T γ)
=⇒ ZLZT (FT )−1(FT γ) = λF (F T γ) =⇒ F−1ZLZT (FT )−1(FT γ) = λ(F T γ)
=⇒ Solution to ZLZT γ = λZDZT γ is given by ((F T )+x, λ), where x and λ are
eigenvector and eigenvalue of F+ZLZT (FT )+x = λx.
Case 2: when ZDZT is positive semi-definite but not positive definite:
In this case, r < p+ q and F is a (p+ q)× r matrix of rank r.
Since ZD0.5 is a (p+q)×(m+n) matrix, F is a (p+q)×r matrix, there exits a ma-
trix G such that ZD0.5 = FG. This implies Z = FGD−0.5 and GD−0.5 = F+Z.
ZLZT γ = λZDZT γ

=⇒ FGD−0.5LD−0.5GTFT γ = λFF T γ =⇒ FGD−0.5LD−0.5GT (FT γ) = λF (F T γ)
=⇒ (F+F )GD−0.5LD−0.5GT (FT γ) = λ(F T γ)
=⇒ GD−0.5LD−0.5GT (FT γ) = λ(F T γ) =⇒ F+ZLZT (FT )+(FT γ) = λ(F T γ)
=⇒ One solution to ZLZT γ = λZDZT γ is ((F T )+x, λ), where x and λ are
eigenvector and eigenvalue of F+ZLZT (FT )+x = λx. Note that eigenvector so-
lution to Case 2 is not unique.

Theorem 2. The matrix L is positive semi-definite.
Proof:
Assume s = [s1:p, sp+1:p+q] is an arbitrary vector, where s1:p = [s1, · · · , sp],

sp+1:p+q = [sp+1, · · · , sp+q]. Let L1 =

(

Lx 0
0 Ly

)

, L2 =

(

Ω1 −Ω2

−Ω3 Ω4

)

, then

sLsT = sL1s
T + sL2s

T .

Firstly, sL1s
T = s1:pLxs

T
1:p + sp+1:p+qLys

T
p+1:p+q ≥ 0.

The reason is as follows: Lx is a graph Laplacian matrix, so it is positive semi-
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definite. This implies that s1:pLxs
T
1:p ≥ 0. Similarly, sp+1:p+qLys

T
p+1:p+q ≥ 0.

Considering the fact that sL2s
T = µ

∑l

i=1(si − si+p)
2, we have sL2s

T ≥ 0. So
sLsT = sL1s

T + sL2s
T ≥ 0.

Since s is an arbitrary vector, L is positive semi-definite. ut
It is well known that the alignment result from manifold projections (using

pk eigenvectors corresponding to the smallest non-zero eigenvalues of ZLZ
T γ =

λZDZT γ) is optimal with respect to the loss function C(α, β). Theorem 3 shows
that the proposed multiscale algorithm also achieves the optimal result.

Theorem 3: At level k, the multiscale manifold alignment algorithm
achieves the optimal pk dimensional alignment result with respect to
the cost function C(α, β).
Proof: Let T = F+ZLZT (FT )+. Since L is positive semi-definite (Theorem 2),
T is also positive semi-definite. This means all eigenvalues of T ≥ 0, and eigen-
vectors corresponding to the smallest non-zero eigenvalues of T are the same
as the eigenvectors corresponding to the largest eigenvalues of T+. From Theo-
rem 1, we know the solution to generalized eigenvalue decomposition ZLZT γ =
λZDZT γ is given by ((F T )+x, λ), where x and λ are eigenvector and eigenvalue
of Tx = λx. Let columns of PX denote the eigenvectors corresponding to the
pk largest non-zero eigenvalues of T

+. Then the manifold projections solution is
given by (F T )+PX .
Let columns of PY denote [φk]φ0

, the scaling functions of T+ at level k and
pk be the number of columns of [φk]φ0

. In our multiscale algorithm, the solution
at level k is provided by (F T )+PY .
From [11], we know PX and PY span the same space. This means PXP

T
X =

PY P
T
Y . Since the columns of both PX and PY are orthonormal, we have P

T
XPX =

PT
Y PY = I, where I is an pk×pk identity matrix. Let Q = P T

Y PX , then PX =
PXI = PXP

T
XPX = PY P

T
Y PX = PY (P

T
Y PX) =⇒ PX = PYQ.

QTQ = QQT = I and det(QTQ) = (det(Q))2 = 1, det(Q) = 1. So Q is a
rotation matrix.
Combining the results shown above, multiscale alignment algorithm at level

k and manifold projections with pk smallest non-zero eigenvectors achieve the
same alignment results up to a rotation Q. ut

4 Experimental Results

In this section, we apply our approach to transfer knowledge from one domain
to another in three real-world problems on corpora alignment and cross-lingual
information retrieval. µ = 1 for all experiments except EU parallel corpus test,
where µ = 10.
The criterion for success can be defined in several ways, e.g., the interpretabil-

ity of the constructed multiscale alignment or the performance at some ultimate
task. For an example of the first criterion of interpretability to be satisfied, we
can check to see if the proposed approach returns a multilevel alignment result
that matches our prior knowledge. Section 4.1 is an example of this. For the
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second criterion of performance at some task, we can test to see if the approach
helps in finding the correspondence between the unlabeled data. In Sections 4.2
and 4.3, we compare the performance of the proposed method on the alignment
task to other state-of-the-art manifold alignment approaches.

4.1 Multiscale Alignment of Corpora/Topics

One application of manifold alignment in information retrieval is corpora align-
ment, where corpora can be aligned so that knowledge transfer between different
collections is possible. In this test, we applied our approach to align corpora rep-
resented in different topic spaces. Interestingly, our approach was also shown to
be useful in finding topics shared by multiple collections.
Given two collections: X1 (a |W1| × |D1| matrix) and X2 (a |W2| × |D2|

matrix), where |Wi| is the size of the vocabulary set and |Di| is the number of the
documents in collection Xi. Assume the topics learned from the two collections
are given by S1 and S2, where Si is a Wi× ri matrix and ri is the number of the
topics inXi. Then the representations ofXi in the topic space is S

T
i Xi. Following

our main algorithm, ST1 X1 and S
T
2 X2 can be aligned in the latent space at level

k by using mapping functions αk and βk. The representations of X1 and X2

after alignment become αTk S
T
1 X1 = (S1αk)

TX1 and βTk S
T
2 X2 = (S2βk)

TX2.
Obviously, the document contents (X1 and X2) are not changed. The only thing
that has been changed is Si- the topic matrix. Recall that the columns of Si are
topics of Xi. The alignment algorithm changes S1 to S1αk and S2 to S2βk. The
columns of S1αk and S2βk are still of the length |Wi|. Such columns are in fact
the new “aligned” topics.
The data set we used is the NIPS (1-12) full paper data set, which includes

1,740 papers and 2,301,375 tokens in total. We first represented this data set
using two different topic spaces: LSI space [14] and LDA space [15]. In other
words, X1 = X2, but S1 6= S2 for this set. The reasons for aligning these two
data sets is that while they define different features, they are constructed from
the same data, and hence admit a correspondence under which the resulting
data sets should be aligned well. Also, LSI and LDA topics can be mapped back
to the English words, so the mapping functions are semantically interpretable.
This helps us understand how the alignment of two collections is achieved (by
aligning their underlying topics). We extracted 400 topics from the data set
with both LDA and LSI models (r1 = r2 = 400). The top 8 words of topic
1-5 from each model are shown in Figure 4 and Figure 5. It is clear that none
of those topics are similar across the two sets. Following the main algorithm
using 20% uniformly selected documents as correspondences, we identified a 3
level hierarchy of mapping functions and the number of basis functions spanning
each level was: 800, 91, 2. These numbers correspond to the intrinsic structure
of the underlying joint manifold. At the finest scale, the manifold is spanned
by 800 vectors. This makes sense, since the joint manifold is definitely spanned
by 400 LSI topics+ 400 LDA topics. At level 3, the joint manifold is spanned
by 2 vectors. To see how the original topics were changed can help us better
understand the alignment algorithm. In Figure 6 and 7, we show 5 corresponding
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Top 8 Terms

generalization function generalize shown performance theory size shepard

hebbian hebb plasticity activity neuronal synaptic anti hippocampal

grid moore methods atkeson steps weighted start interpolation

measure standard data dataset datasets results experiments measures

energy minimum yuille minima shown local university physics

Fig. 4. Topic 1-5 (LDA) before alignment.
Top 8 Terms

fish terminals gaps arbor magnetic die insect cone

learning algorithm data model state function models distribution

model cells neurons cell visual figure time neuron

data training set model recognition image models gaussian

state neural network model time networks control system

Fig. 5. Topic 1-5 (LSI) before alignment.
Top 8 Terms

road car vehicle autonomous lane driving range unit

processor processors brain ring computation update parallel activation

hopfield epochs learned synapses category modulation initial pulse

brain loop constraints color scene fig conditions transfer

speech capacity peak adaptive device transition type connections

Fig. 6. 5 LDA topics at level 2 after alignment.
Top 8 Terms

road autonomous vehicle range navigation driving unit video

processors processor parallel approach connection update brain activation

hopfield pulse firing learned synapses stable states network

brain color visible maps fig loop elements constrained

speech connections capacity charge type matching depth signal

Fig. 7. 5 LSI topics at level 2 after alignment.
Top 8 Terms

recurrent direct events pages oscillator user hmm oscillators

false chain protein region mouse human proteins roc

Fig. 8. 2 LDA topics at level 3 after alignment.
Top 8 Terms

recurrent belief hmm filter user head obs routing

chain mouse region human receptor domains proteins heavy

Fig. 9. 2 LSI topics at level 3 after alignment.

topics (corresponding columns of S1α2 and S2β2) at level 2. From these figures,
we can see that the new topics in correspondence are very similar to each other
across the data sets, and interestingly the new aligned topics are semantically
meaningful to represent some areas in either machine learning or neuroscience.
At level 3, there are only two aligned topics (Figure 8 and 9). Clearly, one of
them is about machine learning and another is about neuroscience. These two
topics are the most abstract topics of NIPS conference. From these results, we
can see that our algorithm can automatically align the given data sets at different
scales following the intrinsic structure of the joint manifold. Since the alignment
of collections is done via topic alignment, the new approach is also useful to
find the common topics shared by the given collections. We also ran a test to
directly compare the embedding of xi (a document defined in LDA space) and



12 Chang Wang and Sridhar Mahadevan

Top Terms

february gender violence april ngos equality mechanisms obstacles

copenhagen china barcelona swedish balkans secretary wording

ratification petitions pillar hundreds applause barcelona prosperity seven

racism secretary dignity globalisation pact everybody portugal meetings

examples credible prosperity sovereignty texts seven users sincerely

Fig. 10. 5 selected mapping functions at level 2 (English)
Top Terms

febbraio violenza aprile dichiarazione ong genere donne definiti

cina copenaghen barcellona svedese asia maastricht discarico sostenibilita

ratifica applausi barcellona sette centinaia petizioni pilastro rurali

razzismo riunioni segretario dignita globalizzazione convenzioni portogallo

prosperita esempi deplorevole sette organizzata sovranita ottobre utenti

Fig. 11. 5 selected mapping functions at level 2 (Italian)
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Fig. 12. EU parallel corpus test.

Italian Words francese francesi governo bovina fiscale carne imposta

English Translations French French government beef fiscal/tax meat impose

Contributions 0.494416 0.33942 0.305621 0.208814 0.198853 0.185615 0.143339

Fig. 13. 7 Italian words that make the largest contributions to the Italian query gen-
erated by α2β

+

2 from English query “French government beef tax”.

yj (a document defined in LSI space) at level 2 and found that the true match of
xi has a 86% probability of being the nearest neighbor of xi in that new latent
space.

4.2 European Parliament Proceedings Parallel Corpus Test

The data we use in this test is a collection of the proceedings of the European
Parliament [16], dating from 04/1996 to 10/2006. The corpus includes versions
in 11 European languages: French, Italian, Spanish, Portuguese, English, Dutch,
German, Danish, Swedish, Greek and Finnish. Altogether, the corpus comprises
of about 30 million words for each language.
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The data for our experiments comes from the English-Italian parallel corpora,
each of which has more than 36,000,000 words. The data set has many files, each
file contains the utterances of one speaker in turn. We treat an utterance as a
document. We first extracted English-Italian document pairs where both docu-
ments have at least 100 words. This resulted in 59,708 document pairs. We then
represented each English document with the most commonly used 2,500 English
words, each Italian document with the most commonly used 2,500 Italian words.
The documents were represented as bags of words, and no tag information was
included. 10% resulting document pairs were used for training and the remaining
90% document pairs were held for testing.
We applied our algorithm to this data set and determined a 4 level hierarchy

of mapping functions. The number of basis functions at each level was: 5000, 845,
2, 1. In Figure 10 and 11 we show the words that make the largest contributions
to each of the 5 selected corresponding mapping functions at level 2. Our result-
ing tables resemble inter-language dictionaries, since they have roughly the same
contents but in different languages. Note that we did not use any dictionary or
ad hoc information retrieval technique in this alignment process. To compare
our approach to the other state of the art approaches, we also tried diffusion
maps based alignment [17] in the same setting, where 845 dimensional embed-
dings were used for comparison. Our testing scheme was as follows: for each
given English document, we retrieved its top K most similar Italian documents.
The probability that the true match is among the top K documents was used
to show the goodness of the method. The results are summarized in Figure 12.
The proposed multiscale approach beats diffusion maps based alignment by a
large margin.
Interestingly, αkβ

+
k can automatically translate any unseen instance from

domain X (English) to domain Y (Italian), where β+k is the inverse of βk. Such
a translation is via the latent space, so the information that is only useful for
domain X will not be transferred. To illustrate how αkβ

+
k works, we randomly

generate an English query “French government beef tax”, and use α2β
+
2 to trans-

late this query into Italian. The English query is represented by a vector of length
2,500, corresponding to 2,500 English words. Only 4 entries on that vector are 1s,
all the other entries are 0s. The resulting Italian query is also a vector of length
2,500, corresponding to 2,500 Italian words. The numbers on the resulting vec-
tor show the contribution from each Italian word to the query. We print out top
7 Italian words in Figure 13. The result shows that the resulting Italian query
can be treated as a translation of the English query, and used for cross-lingual
information retrieval.

4.3 Cross-Lingual IR (English-Arabic)

In this section, we compare our multiscale approach with Procrustes alignment
and semi-supervised alignment using a real world cross-lingual information re-
trieval data set. The task here is to find exact correspondences between the
documents in different languages, enabling users to query a document in their
native language and retrieve documents in a foreign language. The data set used
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below was originally from [18]. It includes two document collections: one in En-
glish and one in Arabic (manually translated). The topical structure of each
collection can be thought as a manifold over documents. Each document is a
sample from the manifold. In this experiment, each of the two document collec-
tions has 2,119 documents. Correspondences between 20% of them are given and
used to learn the alignment. The remaining 80% are held for testing. Our testing
scheme is the same as that used in EU parallel test. We first applied multiscale
approach to this problem and achieved the alignment results at 6 levels. The
dimensionality of each level was: 240, 39, 6, 3, 2, 1. We chose level 2 for com-
parison. We tested Procrustes alignment using this data. Procrustes alignment
consists of two steps: learning low dimensional embeddings of the two manifolds
and aligning the low dimensional embeddings. In the first step, we tried both
Laplacian eigenmaps [12] and LPP [13], where the top 39 eigenvectors were used
to construct the embeddings. We also used the same data set to test the semi-
supervised manifold alignment method [8], where top 39 eigenvectors were used
for low dimensional embeddings. In Procrustes alignment (with Laplacian eigen-
maps): for each given Arabic document, if we retrieve 5 most relevant English
documents, then the true match has a 35% probability of being among the 5.
In Procrustes alignment (with LPP): if we retrieve the 5 most relevant English
documents, then we have a 40% probability of getting the true match. The per-
formance of semi-supervised alignment is not very good compared to the other
approaches. Semi-supervised alignment can map instances in correspondence to
the similar locations in the new space, but the instances outside of the corre-
spondence are not aligned well. The multiscale approach performs the best on
this task, achieving roughly 5% improvement over Procrustes alignment when
K = 5 and 1.
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Fig. 14. Cross-lingual information retrieval test.
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4.4 Discussions

In previous manifold alignment approaches, the users need to specify the dimen-
sionality of the intended alignment. Finding an appropriate value for this is quite
difficult. The proposed approach constructs multilevel alignment results based
on the common underlying intrinsic structures of the given data sets, leaving
the users with a small number of levels to consider (often < 10) even when the
underlying problem may be defined by tens of thousands of features. Also, some
levels are defined by either too many or too few features. This eliminates from
consideration additional levels, usually resulting a handful of levels as possible
candidates. The users can select the level that is the most appropriate for their
applications. For example, in parallel corpus test presented in Section 4.2, we
only have alignment results at 4 levels involving 5000, 845, 2, 1 dimensional
spaces. Choosing the space defined by 845 features is a natural choice, since the
levels below and above this have too few or too many features, respectively. A
user can also select the most appropriate level by testing his/her data at different
levels.

5 Conclusions

In this paper, we introduce a novel approach to multiscale manifold alignment
based on multiresolution wavelet analysis. Our approach extends previously
studied approaches in that it produces a hierarchical alignment that preserves
the local geometry of each given manifold and matches the corresponding in-
stances across manifolds at multiple scales. In addition to a theoretical analysis,
we also presented real-world applications of our approach to corpora alignment
and cross-lingual information retrieval.
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