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Abstract

We present in this paper some simple stochastic differential equations that leads to lower-tail and/or upper tail
power law behaviors. We also present a model with bi-directional Poisson counters that exhibits power law behavior
near a critical point, which might be of interest to statistical physics.

I. INTRODUCTION

As has been observed many times in recent years, empirical studies dealing with a variety of subject matter produce
data showing power law histograms extending over several decades or more. The diversity of application areas, and
the extent of the data have inspired researchers to look for general principles that would make it possible to trace the
individual phenomena back one or more common features. Among recent work along these lines we call attention to
[1], [3], [4], [5]. In this paper we pursue the idea that certain simple forms of first order stochastic differential equations
have steady state densities which show lower tail or upper tail power law behavior, depending on the values of the
parameters. To the extent that the form and parameters of a differential equations are often more readily identified in
the modeling process, the differential equations we describe may be thought of as providing a more direct explanation
of power law behavior.

In their interesting paper [5], Reed and Hughes consider the probability density of the value of a growing exponential
sampled at a exponentially distributed random time. As they observe, this is easily seen to give a power law distribu-
tion. Here we consider a different situation involving the steady state density associated with a stochastic differential
equation. The equation describes a situation in which the quantity of interest decays to zero following an exponential,
Ẋ = −αX , but is incremented by a fixed amount σ at random times, the times having an exponential distribution. We
show that for a range of parameter values the steady state distribution of X exhibits a power law lower tail. The fact
that we deal with the steady state property of an ongoing dynamics gives our work a different set of possibilities for
interpretation. The basic reason as to why the distribution of values in steady state has the same form as the distribu-
tion of values obtained by sampling at a random time, lies in the form of the drift term associated with the differential
equation.

When considering lower tail behavior, we find it useful to distinguish between what might be called “two sided”
lower tails and “one sided” lower tails. The latter may occur when dealing with an intrinsically nonnegative quantity,
such as queue length whereas the former might apply in a situation in which the histogram extends in both directions
from a critical value, as might be the situation for some types of populations near a phase transition. Our models
for one sided lower tail behavior focuses on the steady state behavior associated with stochastic differential equations
containing a Poisson counter N and taking the form

dX = f(X)dt+ g(X)dN.

For two sided lower tails we consider slightly more complicated models of the form

dX = f(X)dt+ g1(X)dN1 − g2(X)dN2.

We also study the more popular case of upper tail power law. A simple transformation is shown to convert one sided
lower tail power laws into upper tail power laws. In view of dynamic systems, evolutions of this type can also give
generative interpretations of many power law upper tails observed in real data.
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In Section II we first present our motivating example of a simple Poisson counter driven SDE, the steady-state
distribution of which was shown by Brockett [1] to exhibit power law behavior near the origin. We then introduce
a simple transformation to develop a similar SDE that leads to an upper tail power law. We observe that various
distributions can be generated via simple modifications of the “drift term” in the SDE. In Section III, we add a Brownian
motion term to obtain a similar result as Reed [4]. All of these cases demonstrate that “random multiplication with
exponential stopping time will lead to power law behaviors”. In Section IV we develop an SDE driven by Poisson
counters in both positive and negative directions. We show that the steady-state distribution can exhibit power law
behavior near a critical point. This may have implications in statistical physics since a discontinuity occurs in a
surprising way. Section V concludes the paper.

II. SDE DRIVEN BY A POISSON COUNTER

The following SDE was considered by Brockett [1],

dXt = −αXtdt+ σdNt (1)

where α, σ > 0 and N is a Poisson process of intensity λ. By Theorem 6.2 in [2], there is a unique adapted RCLL
process {Xt} satisfying (1) and

sup
t∈[0,T ]

E[X2
t ] <∞ (2)

for any T ∈ [0,∞). Similar arguments for the existence of solutions apply to all the other SDE’s considered in this
paper and will not be repeated.

Now let ψk(x) = eikx. By Itô’s formula,

dψk(Xt) = −iαkXtψk(Xt)dt+ [ψk(Xt− + σ)− ψk(Xt−)]dNt

= −αk∂ψk(Xt)

∂k
dt+ (eikσ − 1)ψk(Xt−)dNt

Taking expectation,
∂

∂t
ΦX(k, t) = −αk ∂

∂k
ΦX(k, t) + λ(eikσ − 1)ΦX(k, t) (3)

where ΦX(k, t) = E(ψk(Xt)) is the characteristic function of Xt and the change of the order of differentiation and
expectation can be justified by (2) and Lebesgue’s Dominated Convergence Theorem. (3) can be solved by the method
of characteristics to yield

ΦX(k, t) = ΦX(ke−αt, 0) exp

{
λ

∫ t

0

[
exp

(
ikσeα(s−t)

)
− 1
]

ds
}

(4)

After a change of variable u = σ exp(α(s− t)), (4) becomes

ΦX(k, t) = ΦX(ke−αt, 0) exp

{
λ

α

∫ σ

σe−αt

eiku − 1

u
du
}

(5)

yielding

ΦX(k,∞) = exp

{
λ

α

∫ σ

0

eiku − 1

u
du
}

By Lemma 2 of [6], the steady-state distribution is absolutely continuous and the density is continuous if and only if
λ > α.

Note that ΦX(k,∞) satisfies the following equation, obtained from (3) by setting the right-hand side to zero,

−αk d
dk

Φ(k) + λ(eikσ − 1)Φ(k) = 0

Thus the corresponding density fX(x) satisfies

α
d

dx
[xf(x)] + λf(x− σ)− λf(x) = 0 (6)
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It was shown in [7] that fX(x) = 0 for x < 0. We can arrive at the same conclusion in a more intuitive way by
examining (1). Indeed, note that X will eventually become positive and remain so from that point on. Now using
fX(x) = 0 for x ≤ 0, (6) can be solved recursively to give

fX(x) =


0, x ∈ (−∞, 0]

Cx
λ
α
−1, x ∈ (0, σ]

fX(nσ)
(
x
nσ

) λ
α
−1 − λ

αx
λ
α
−1 ∫ x

nσ u
− λ
α fX(u− σ)du, x ∈ (nσ, nσ + σ], n ≥ 1

where the constant C is determined by the normalization condition∫ ∞
−∞

fX(x)dx = 1

Note that fX(x) has a power law at its lower tail.
We briefly mention that (1) can have the following generalization,

dXt = AXtdt+ bdNt

where X is an Rn-valued process, A an n × n stable matrix and b ∈ Rn. Then the steady-state distribution has the
following characteristic function

ΦX(k,∞) = exp

{
λ

∫ ∞
0

[
exp

(
ikT eAsb

)
− 1
]

ds
}

where k ∈ Rn, and the projection of X onto a left eigenvector of A exhibits power law near the origin.
Now we introduce the simple transformation Yt = X−1t to convert the lower tail power law into an upper tail power

law. For y ≥ ε , σ−1, the steady-state density of Y is

fY (y) = fX(y−1)y−2 = Cy−
λ
α
−1, y ∈ [ε,∞)

Using Itô’s formula, we can get the equation governing the evolution of Yt,

dYt = αYtdt−
Y 2
t−

ε+ Yt−
dNt (7)

Note that at each jumping point, Y drops to Yt−
ε+Yt−

, which is smaller than one and can be arbitrarily close to zero.
We can modify the coefficient in front of dNt in (7) so that it always restores the process to a fixed point. The

equation then becomes
dZt = αZtdt+ (z0 − Zt−)dNt (8)

with the corresponding equation for the characteristic function ΦZ(k, t) of Zt being

∂

∂t
ΦZ(k, t) = αk

∂

∂k
ΦZ(k, t)− λΦZ(k, t) + λeikz0 (9)

(9) can be solved again by the method of characteristics, yielding

ΦZ(k, t) = e−λtΦZ(keαt, 0) + λ

∫ t

0
exp

{
λ(s− t) + iz0ke

α(t−s)
}
ds (10)

After a change of variable z = z0e
α(t−s), (10) becomes

ΦZ(k, t) = e−λtΦZ(keαt, 0) +
λ

αz0

∫ z0eαt

z0

(
x

z0

)− λ
α
−1
eikxdx
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from which we can read off the distribution function,

FZ(z, t) = e−λtFZ(ze−αt, 0) + (1− e−λt)G(z, t)

where G(z, t) is a truncated Pareto distribution,

G(z, t) =


0, z < z0

(1− e−λt)−1
(

1−
(
z
z0

)− λ
α

)
, z ≤ z0 ≤ z0eαt

1, z > z0e
−αt

As t→∞, the distribution FZ(z, t) approaches a Pareto distribution

FZ(z,∞) = 1−
(
z

z0

)− λ
α

, z ≥ z0.

A closely related model of deterministic exponential growth with exponential stopping time was analyzed in [5].
We note by passing that the proportional growth is critical in generating power law. Had the growth term in (8) been
αZδt dt for some δ ∈ [0, 1), the resulting distribution would have been Weibull with distribution function

FZ(z,∞) = 1− exp

{
− λ

α(1− δ)
(z1−δ − z1−δ0 )

}
, z ≥ z0

III. SDE DRIVEN BY BOTH BROWNIAN MOTION AND POISSON COUNTER

In this section, we add a Brownian motion component to (8), which becomes

dXt = µXtdt+ σXtdWt + (x0 −Xt−)dNt (11)

where µ, x0 ∈ R, σ > 0, W is a standard Brownian motion and N is a Poisson process with density λ, independent
of W . This is a geometric Brownian motion with Poisson jumps which always reset the motion to a fixed state x0. A
similar model was analyzed in Reed [4].

Let Yt = logXt and y0 = log x0. Then Itô’s formula gives

dYt =

(
µ− 1

2
σ2
)

dt+ σdWt + (y0 − Yt−)dNt

which is a Brownian motion randomly reset to y0 by Poisson jumps. Let ψk(y) = eiky as in the previous section. By
Itô’s formula,

dψk(Yt) = ikψk(Yt)

[(
µ− 1

2
σ2
)

dt+ σdWt

]
− 1

2
σ2k2ψk(Yt)dt+ (eiky0 − ψk(Yt−))dNt

Taking expectations, we get

∂

∂t
ΦY (k, t) =

[
i

(
µ− 1

2
σ2
)
k − 1

2
σ2k2 − λ

]
ΦY (k, t) + λeiky0

where ΦY (k, t) is the characteristic function of Yt. The solution is

ΦY (k, t) = ΦY (k,∞) + e−λt[ΦY (k, 0)− ΦY (k,∞)]ei(µt−
1
2
σ2t)k− 1

2
σ2tk2

where

ΦY (k,∞) =
−λeiky0

i(µ− 1
2σ

2)k − 1
2σ

2k2 − λ
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Now we can find the steady-state density of Yt as t→∞ by taking the inverse Fourier transform of ΦY (k,∞),

fY (y) =

{
αβ
α+β e

β(y−y0), y ≤ y0
αβ
α+β e

−α(y−y0), y ≥ y0

where α > 0 and −β < 0 are the two roots of the following quadratic equation,

1

2
σ2γ2 +

(
µ− 1

2
σ2
)
γ − λ = 0 (12)

Going back to X , we get the steady-state density of Xt as t→∞

fX(x) = fY (log x)x−1 =

x
−1
0

αβ
α+β

(
x
x0

)β−1
, x ∈ (0, x0]

x−10
αβ
α+β

(
x
x0

)−α−1
, x ∈ [x0,∞)

(13)

which is the double Pareto distribution of Reed [4].
Motivated by the connection between (7) and (8), we also consider the following SDE

dZt = µZtdt+ σZtdWt −
Z2
t−

Zt− + ε
dNt (14)

with Z0 > 0. Let Ut = Z−1t . Then

dUt = −(µ− σ2)Utdt− σUtdWt + ε−1dNt

By the same procedure as before, we get the equation for the characteristic function ΦU (k, t) of U ,

∂

∂t
ΦU (k, t) = −(µ− σ2)k ∂

∂k
ΦU (k, t) +

1

2
σ2k2

∂2

∂k2
ΦU (k, t) + (eik/ε − 1)ΦU (k, t)

which is the Fourier transform with respect to the variable y of the following Fokker-Planck equation for the density
fY (y, t) of Yt,

∂

∂t
fY (y, t) = (µ− σ2) ∂

∂y
[yfY (y, t)] +

1

2
σ2

∂2

∂y2
[y2fY (y, t)] + λfY (y − ε−1, t)− λfY (y, t)

In steady state, the density fY (y) satisfies

(µ− σ2) d
dy

[yfY (y)] +
1

2
σ2

d2

dy2
[y2fY (y)] + λfY (y − ε−1)− λfY (y) = 0

For y ∈ (0, ε−1], this reduces to

(µ− σ2) d
dy

[yfY (y)] +
1

2
σ2

d2

dy2
[y2fY (y)]− λfY (y) = 0 (15)

The general solution to (15) is given by

fY (y) = Cyα−1 +Dy−β−1, y ∈ (0, ε−1]

where α and β are as in (13). The integrability of fY (y) requires that D = 0, so

fY (y) = Cyα−1, y ∈ (0, ε−1]

Therefore,
fX(x) = fY (x−1)x−2 = Cx−α−1, x ∈ [ε,∞)

which has the same upper tail power law exponent as in (13). This is intuitive since the difference of the two models
lies in the range of small x.
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IV. SDE DRIVEN BY BI-DIRECTIONAL POISSON COUNTERS

In this section, we consider the following SDE driven by bi-directional Poisson counters,

dXt = α(µ−Xt)dt+ σ1dPt − σ2dNt

where µ ∈ R, α, σ1, σ2 > 0, and P,N are two independent Poisson processes with intensities λ1, λ2, respectively. By
a simple shift of the origin, we may assume without loss of generality that µ = 0 and the equation then becomes

dXt = −αXtdt+ σ1dPt − σ2dNt (16)

The characteristic function ΦX(k, t) satisfies the following equation,

∂

∂t
ΦX(k, t) = −αk ∂

∂k
ΦX(k, t) +

[
λ1(e

ikσ1 − 1) + λ2(e
−ikσ2 − 1)

]
ΦX(k, t) (17)

the solution of which is

ΦX(k, t) = ΦX(ke−αt, 0) exp

{
λ1
α

∫ σ1

σ1e−αt

eikσ1 − 1

u
du− λ2

α

∫ −σ2e−αt
−σ2

eikσ2 − 1

u
du

}
Therefore,

ΦX(k,∞) = exp

{
λ1
α

∫ σ1

0

eikσ1 − 1

u
du− λ2

α

∫ 0

−σ2

eikσ2 − 1

u
du

}
Again Lemma 2 of [6] shows that ΦX(k,∞) is the characteristic function belonging to an absolutely continuous
distribution and the density is continuous if and only if λ1 + λ2 > α. If λ1 = λ2 = λ and σ1 = σ2 = σ, the steady-
state distribution will be symmetric around the origin. If, in addition, σ = σ0λ

− 1
2 , then as λ → ∞, (16) converges to

the Ornstein-Uhlenbeck process and

ΦX(k,∞)→ exp

{
−σ

2
0

2α
k2
}

i.e. the characteristic function of the normal distribution N (0,
σ2
0
α ) as expected.

Setting the right-hand side of (17) to zero, we get the differential equation satisfied by ΦX(k,∞),

−αk d
dk

ΦX(k, t) +
[
λ1(e

ikσ1 − 1) + λ2(e
−ikσ2 − 1)

]
ΦX(k, t) = 0

Thus the steady-state density satisfies the following equation,

α
d

dx
[xf(x)] + λ1f(x− σ1)− (λ1 + λ2)f(x) + λ2f(x+ σ2) = 0 (18)

Figure 1 on page 8 shows some steady-state densities for (16) obtained from simulation, where we have set σ1 = σ2 =
1 and λ1 = λ2. Note that as λ1+λ2

α becomes larger, the density becomes smoother, consistent with Lemma 2 of [6].
As λ1+λ2

α becomes smaller, the density becomes more sharply concentrated around zero. In the case λ1 + λ2 � α,
f(x − σ1) and f(x + σ2) are negligible compared to f(x) for small x and hence (18) can be approximated by the
following equation,

α
d

dx
[xf(x)]− (λ1 + λ2)f(x) = 0

which can then be solved to give
f(x) = C|x|

λ1+λ2
α
−1, 0 < |x| � 1

Figure 2 on page 8 plots the steady-state densities in log-log scale with the reference lines of slope λ1+λ2
α − 1 super-

imposed. The approximation is very good near the origin.
This approximation can be made more rigorous. We will analyze the behavior of the density near the origin when

λ1 + λ2 ≤ α. Let

Φ1(k) = exp

{
λ1
α

∫ σ1

0

eikσ1 − 1

u
du

}
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and

Φ2(k) = exp

{
−λ2
α

∫ 0

−σ2

eikσ2 − 1

u
du

}
which are the characteristic functions of two absolutely continuous distributions. Denote their densities by g(x) and

h(x), respectively. Then [6] shows that g(x) has support on [0,∞) and g(x) = Cx
λ1
α
−1 for x ∈ (0, σ1]. Similarly,

h(x) has support on (−∞, 0] and h(x) = D|x|
λ2
α
−1 for x ∈ [−σ2, 0). Since ΦX(k,∞) = Φ1(k)Φ2(k), the density

f(x) corresponding to ΦX(k,∞) is given by

f(x) =

∫ ∞
−∞

g(y)h(x− y)dy

Let m = min{σ1, σ2} and ε ∈ (0,m). For 0 < x ≤ σ1 − ε, we have

f(x) =

∫ ∞
x

g(y)h(x− y)dy

=

∫ m

x
Cy

λ1
α
−1D(y − x)

λ2
α
−1dy +

∫ ∞
m

g(y)h(x− y)dy

= CDx
λ1+λ2
α
−1
∫ m

x

1
u
λ1
α
−1(u− 1)

λ2
α
−1du+

∫ ∞
m

g(y)h(x− y)dy

= A1x
λ1+λ2
α
−1 +A2

where A1 = CD
∫ m
x

1 u
λ1
α
−1(u− 1)

λ2
α
−1du and A2 =

∫∞
m g(y)h(x− y)dy. It is shown in [7] that g(x) is continuous

on R \ {0}. Since it is also integrable, it is uniformly bounded on [m,∞) and hence

A2 ≤ sup
y≥m

g(y)

∫ ∞
m

h(x− y)dy ≤ sup
y≥m

g(y) <∞

If λ1 + λ2 < α, then

0 < CD

∫ σ1
σ1−ε

1
u
λ1
α
−1(u− 1)

λ2
α
−1du ≤ A1 < CD

∫ ∞
1

u
λ1
α
−1(u− 1)

λ2
α
−1du <∞

A similar analysis applies for the case x ∈ (−σ2 + ε, 0). Therefore,

f(x) = Θ
(
|x|

λ1+λ2
α
−1
)
, as x→ 0

If λ1 + λ2 = α,

A1 = CD

∫ m
x

1
u
λ1
α
−1(u− 1)

λ2
α
−1du ≥ CD

∫ m
x

1
u
λ1
α
−1u

λ2
α
−1du = CD log

m

x

and for x ≤ m
2 ,

A1 = CD

∫ m
x

1
u
λ1
α
−1(u− 1)

λ2
α
−1du

≤ CD
∫ 2

1
(u− 1)

λ2
α
−1du+ CD

∫ m
x

2
u
λ1
α
−1
(u

2

)λ2
α
−1

du

= CD
α

λ2
+ CD21−

λ2
α log

m

2x

A similar analysis applies for x < 0. Therefore,

f(x) = Θ(− log |x|), as x→ 0
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Fig. 1. Steady-state densities of X in (16); σ1 = σ2 = 1, λ1 = λ2.
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Fig. 2. Log-log plot of steady-state densities of X in (16); σ1 = σ2 = 1, λ1 = λ2. The reference straight lines with slop λ1+λ2
α

− 1 are
superimposed on the plots.

V. CONCLUSIONS

We presented some simple stochastic differential equations that lead to lower tail and/or upper tail power law be-
haviors. Some of the results are known but the derivations are different. We also presented a model with two opposite
Poisson counters and an exponential decaying term. This model exhibits power law behavior near a critical point,
which might be of interest to statistical physics.
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