
Process-based Derivation of Requirements for Medical
Devices

Heather M. Conboy
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003 USA
hconboy@cs.umass.edu

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003 USA
avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003 USA
clarke@cs.umass.edu

ABSTRACT
One goal of medical device certification is to show that
a given medical device satisfies its requirements. The re-
quirements that should be met by a device, however, de-
pend on the medical processes in which the device is to be
used. Such processes may be complex and, thus, critical
requirements may be specified inaccurately or incompletely,
or even missed altogether. We are investigating a require-
ment derivation approach that takes as input a model of
the way the device is used in a particular medical process
and a requirement that should be satisfied by that process.
This approach tries to produce a derived requirement for
the medical device that is sufficient to prevent any viola-
tions of the process requirement. Our approach combines
a method for generating assumptions for assume-guarantee
reasoning with one for interface synthesis to automate the
derivation of the medical device requirements. The proposed
approach performs the requirement derivation iteratively by
employing a model checker and a learning algorithm. We
implemented this approach and evaluated it by applying it
to two small case studies. Our experiences showed that the
proposed approach could be successfully applied to abstract
models of portions of real-world medical processes and that
the derived requirements of the medical devices appeared
useful and understandable.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Software/Program
Verification – model checking

General Terms
Design, Verification

Keywords
Requirement specifications, medical devices, medical pro-
cesses, model checking, learning algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IHI’10, November 11–12, 2010, Arlington, Virginia, USA.
Copyright 2010 ACM 978-1-4503-0030-8/10/11 ...$10.00.

1. INTRODUCTION
Medical devices need to be certified to show that they sat-

isfy their specified requirements. But, often these require-
ments are determined with respect to a particular plan of
use, referred to here as a medical process, without taking
into account the various alternative ways in which the de-
vice may be employed. Even when these alternatives are
taken into account, it may be challenging to determine the
appropriate device requirements since the medical process
may be large and complex, especially when exceptional con-
ditions and concurrent activities are considered. Hence, it
may be difficult to reason about all potential behaviors of
the medical process and their interactions with the medical
device. For clarity, we use the term overall process to refer to
the combination of a device and a medical process in which
that device is used. This paper describes an approach for
automatically deriving the requirements for a device given
an overall process model, composed of a model of how that
device will be used in a particular medical process and a
simple model of the device’s behaviors, along with the re-
quirements for that overall process.

As an example, consider the combination of an infusion
pump and a medical process for an in-patient surgery where
the infusion pump is used in that medical process to ad-
minister intravenous fluids and medications. These pumps
are used over a wide range of dosages and rates, from a
milliliter or two per hour to many liters per hour, and may
have several channels infusing different medications. Errors
in setting a pump can lead to the administration of 1000
times the intended dose of medication in a short period.
In response to this risk, manufacturers have introduced a
new generation of “smart” pumps. A smart pump would be
programmed with a library giving the usual concentrations,
dosing units, and dosing limits for the drugs in use in a par-
ticular area of the hospital, such as an operating room or
an intensive care unit. The allowed drugs and dosing limits
differ for different areas; for instance, the drug library for
an operating room typically allows a wider range of dosing
limits than that for an intensive care unit. The pumps may
also include information about drug interactions and provide
patient monitoring functions. The clinician using the pump
selects the drug, concentration, etc. and the pump alerts
the clinician if the dose exceeds the limits in the library, the
drug is already being administered on another channel, or
some other hazardous condition is identified.

One important requirement for any overall process in which
an infusion pump is used is that a patient never be adminis-
tered a drug overdose. This might be reflected as an overall

process requirement that states that if the selected dosage
is outside the range, the pump must issue an alert. If the
pump developers do not consider alternative usages where a
pump can be moved from one area in the hospital to another,
then the device requirement that the pump must be recon-
figured when it is moved might be overlooked. Or, perhaps
more likely, even after carefully considering such alternative
usages, the device requirement might contain some subtle
errors.

We are investigating a requirement derivation approach
that takes a model of the overall process and a requirement
that process is intended to satisfy. The proposed approach
considers all potential behaviors allowed by the overall pro-
cess model and outputs a derived requirement for the med-
ical device that is sufficient to prevent any violation of the
overall process requirement. This approach could identify
inadequacies in existing device requirements or device re-
quirements that have been missed.

Our approach builds on requirement derivation approaches
developed for software engineering. Specifically to automate
the derivation of the medical device requirements, we com-
bine two previous approaches, an assumption generation
algorithm and an interface synthesis algorithm, that both
make use of model checking and learning algorithms. Model
checking techniques typically take as input a system model
and a requirement of that system and verify whether or not
all potential executions of the system model satisfy that re-
quirement. If not, a counterexample execution is provided
that demonstrates how the system could violate its require-
ment. The proposed approach iteratively uses model check-
ing to determine if the behaviors of the overall process that
satisfy the current derived requirement satisfy the overall
process requirement. If not, the learning algorithm refines
the device requirement based on the generated counterexam-
ple. Although the approach is described from the perspec-
tive of deriving requirements for the device, this approach is
more general in that it actually derives requirements about
the interaction between the device and the medical process
and, thus, could provide insights about the requirements for
the device, for the medical process, or both. This paper de-
scribes this approach, the toolset developed to support this
approach, and the results of a preliminary evaluation using
two small case studies.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of previous work on software-
based requirement derivation approaches. The proposed ap-
proach is discussed in Section 3, and the toolset implement-
ing it is described in Section 4. Section 5 summarizes our
evaluation, and Section 6 discusses our contributions and
some possible directions for future work.

2. RELATED WORK
In the medical domain, special purpose languages and no-

tations have been developed to model medical guidelines and
protocols. Peleg et. al [25] provide a recent survey of guide-
line and protocol models. These medical process models
are usually expressive enough to easily capture the normal
behaviors but can be cumbersome when expressing aspects
such as exceptional situations and healthcare professionals
communicating with each other and various software appli-
cations and devices. Moreover, many of these medical pro-
cess models do not have precisely defined semantics so they

can not be formally analyzed. Our approach requires medi-
cal process models that are both expressive and precise.

For hardware and software systems, there has been exten-
sive previous work on model checking techniques, e.g., [11,
23]. Model checking techniques, however, suffer from the
state explosion problem, where the size of the system model
or the cost of the verification algorithm may grow exponen-
tially with the size of the system, so model checkers incor-
porate a number of optimizations to ameliorate this state
explosion. Model checking tools differ with regard to the
modeling language, the requirement specification language,
the verification algorithm, and the supported optimizations.
Compositional verification approaches try another way to
reduce the impact of the state explosion problem, by using
a divide and conquer strategy to decompose the verification
of the entire system into the individual verification of each
component of that system. A system component, however,
often satisfies a requirement only in certain environments.
Assume-guarantee reasoning techniques, e.g., [26], have been
developed to utilize an assumption about the environments
in which a system component is used. But appropriate as-
sumptions are often difficult to provide.

As stated in the introduction, our approach builds on as-
sumption generation methods, e.g., [2, 8, 12], developed to
support assume-guarantee reasoning techniques. The as-
sumption generation methods mentioned here employ a learn-
ing algorithm and a model checker to learn the assumptions.
Like these approaches, ours also considers a decomposition
of the overall system model. We separate the overall process
model into the medical process model and the device model,
and then the assumption learned is a derived requirement
of the device. Since the assumption generation methods are
performing verification, these methods often stop learning
the assumption after encountering the first execution of the
system model that violates the given requirement of that
system. In our case, this means that the learned assump-
tions would be too strong to be useful, and thus we extended
these approaches.

For that extension, our approach builds on interface syn-
thesis methods, e.g., [3, 6, 19]. These methods take as input
a software component and a requirement of that component
and output an interface that captures the most general way
to use that component without violating the given require-
ment; conceptually, these methods are performing assump-
tion generation where the system component is known but
the particular environment in which that component is used
is unknown. Unlike the assumption generation methods,
the interface synthesis algorithms do not stop when the first
violation is found and thus the interfaces should be weak
enough to be useful requirements. While some interface
synthesis methods use a combination of learning and model
checking, as in the assumption generation techniques, other
interface synthesis methods have been developed that are
based on game theory or counterexample guided abstraction
refinement, e.g., [6, 20]. In particular, the interface synthesis
techniques employ different strategies to weaken the gener-
ated interfaces. Our approach uses the same strategy as the
interface synthesis approach developed by Giannakopoulou
and Păsăreanu [19], but differs with regard to the modeling
language and the model checker employed.

Interactive requirement elaboration techniques, e.g., [1,
24], input a set of low-level requirements for a system, where
those requirements are represented as conditional actions,

and then iteratively refine those requirements to meet a
high-level system requirement. On each iteration, the user
must provide positive and negative scenarios of the sys-
tem’s behavior and then must select from among refine-
ments suggested based on those scenarios. The suggested re-
finements are computed by employing a learning algorithm.
These techniques and our proposed requirement derivation
approach share the goal of deriving requirements that help
to ensure the overall system meets its requirement. But our
approach focuses on the interactions between the device and
the medical process and does not need to be provided with
additional information from the user on each iteration.

Previous work has analyzed medical process models by ap-
plying theorem proving, e.g., [28], and model checking, e.g.,
[9, 10, 15]. With the model checkers, if a medical process
model may violate its requirement then a counterexample is
generated that demonstrates that violating behavior. The
counterexample can be used to modify the behavior of the
medical process. In our work, if an overall process model,
composed of a model of a given device and a model of a par-
ticular medical process that uses that device, may violate its
requirement then a derived device requirement is produced
that restricts the interactions of the medical process and the
device to ensure that the overall process requirement is sat-
isfied. The derived requirement can be used to modify the
behavior of the medical process, the device, or both.

3. REQUIREMENT DERIVATION
APPROACH

Assume that for a given overall process, we know the over-
all process requirements and understand the medical process
that defines how each device should be used. What are the
requirements on the devices that will assure that the overall
process satisfies its requirements? To simplify the problem,
we assume that all human agents in the medical process
(e.g., doctors, nurses, technicians, etc.) perform their activ-
ities correctly and that there is a single device and a single
overall process requirement. The process-based requirement
derivation approach we present here takes as inputs an over-
all process model and one of its requirements. In more detail,
the overall process model is composed of a formal model of
the medical process in which the device is represented only
by the interface it presents to the rest of the medical pro-
cess and a simple device model that, in the most permissive
case, essentially allows the device to behave in an arbitrary
fashion. For the infusion pump example, for instance, the
medical process model would describe the activities of the
medical personnel and include a representation of the way in
which they set the pump and receive alerts from it. But, the
pump device model could abstract away any details about
the internal logic by which the pump determines when to
issue alerts, etc.

At a high-level, the requirement derivation algorithm first
determines if a derived requirement for the device is needed
to assure that the overall process model satisfies its require-
ment. If so, it creates a very permissive initial version of
that requirement, i.e., one that allows essentially arbitrary
behavior of the pump. This algorithm then tries to find a
stronger requirement that ensures that the overall process
requirement will be satisfied. At the same time, it tries not
to overrestrict the behavior of the device. This is because
the derived requirement of the medical device must be re-

strictive enough to prevent violations of the overall process
requirement but permissive enough to be useful as a device
requirement. For instance, a derived requirement of the infu-
sion pump that prevents the pump from administering any
medication ensures that an overdose is not administered,
since the pump can administer no doses at all. But that de-
rived requirement is too restrictive to be useful since it also
prevents the administration of necessary medications at the
correct dosage.

The iterative improvement is done by first attempting to
disallow behaviors of the overall process model that vio-
late the given requirement of that process. This is called
“strengthening” the derived requirement. For the pump ex-
ample, for instance, a behavior in which a dose that exceeds
the library limits is entered and the pump does not issue
an alert would violate the overall process requirement and
should be disallowed by the derived requirement. A model
checker is employed to query the overall process model for
counterexamples that cause a violation of the overall pro-
cess requirement. A learning algorithm, called the learner,
is then employed to refine the derived requirement based on
those counterexamples. Second, the algorithm attempts to
allow as many behaviors of the overall process model as pos-
sible that do not violate the overall process requirement by
modifying the device requirement to allow those behaviors.
This is called “weakening” the derived requirement. For in-
stance, a behavior in which a dose that is within the library
limits is entered and the pump does not issue an alert should
be allowed.

Figure 1 shows the requirement derivation algorithm as
a flowchart. This algorithm has three main steps. At a
high-level, the model checker is responsible for Step 1 and
the Step 3 queries while the learner is responsible for Step
2 and the Step 3 refinements. In the following, each step is
described in more detail.

Step 1 does an initial screening to determine if a device
requirement should be derived. This step first employs the
model checker to check if all of the potential executions of the
overall process model satisfy its requirement. If that check
succeeds, then this algorithm reports that “Overall process
model satisfies its requirement; so a derived requirement is
not needed.” On the other hand, if that check fails for all of
the potential executions of the overall process model, then
restricting the behavior of the device cannot produce execu-
tions of the overall process model satisfying the requirement
of that process. In this case, the algorithm reports that the
“Overall process model violates its requirement; no derived
requirement could lead to the overall process model satisfy-
ing its requirement.” If the check succeeds for some of the
potential executions of the overall process model, then this
algorithm proceeds to Step 2 to propose an initial derived
requirement and then to Step 3 to refine it.

Step 2 employs the learner to create an initial derived
requirement. We currently create a very simple, permissive
initial requirement that is described in more detail in the
toolset section.

Step 3 iteratively performs the requirement derivation where
each iteration has two phases. The goal of Phase 1 is to make
the derived requirement strong enough so that if the device
satisfies the derived requirement then the overall process
model will satisfy its requirement. Phase 1 first performs
Query 1, which employs the model checker to search for a
counterexample where the overall process requirement is vi-

Figure 1: Flowchart for the requirement derivation algorithm

olated but the derived requirement is satisfied. Next, Refine-
ment 1 checks whether such a counterexample is found. If
so, the learner strengthens the derived requirement by disal-
lowing the behavior corresponding to that counterexample.
The algorithm then returns to the start of Step 3. For Re-
finement 1, if such a counterexample is not found then the
algorithm proceeds to Phase 2.

The goal of Phase 2 is to weaken the derived requirement
enough to make it a useful requirement. Phase 2 first per-
forms Query 2, which employs the model checker to search
for a counterexample where the overall process requirement
is satisfied but the derived requirement is violated. Refine-
ment 2 then checks whether such a counterexample is found.
If so, the learner weakens the derived requirement by al-
lowing the behavior corresponding to that counterexample.
Since the derived requirement may now be too weak, this
algorithm then repeats Step 3. If no such counterexample is
found, the algorithm outputs the derived requirement and
reports that the “Overall process model, when restricted by
the derived requirement, satisfies the overall process require-
ment.”

We note that the requirement derivation algorithm de-
pends on the initial model for the device. Rather than use
a permissive initial model of the device that allows it to be-
have in an essentially arbitrary fashion, one could start with
a more concrete model that imposes reasonable restrictions
on the device’s behavior. This could be based on an existing
device, or simply on plausible restrictions such as requiring
the device to be turned on before it produces any output.
While using more restrictive device models may decrease the
derivation time and produce more understandable derived
requirements (because they need to restrict less behavior),
it may also hide issues that would only be exposed when
considering more general device behavior.

The key difference between our approach and the assump-
tion generation methods used for assume-guarantee com-
positional verification is in Phase 2. Once a derived re-

quirement that is strong enough to ensure satisfaction of
the overall process requirement has been found, the assume-
guarantee reasoning approaches check whether the device
model satisfies the derived requirement. Since the initial
model for the medical device may be imprecise, we expect
this check to fail, but if the counterexample showing how the
device model could violate the derived requirement leads to
a violation of the overall process requirement, the assume-
guarantee approaches will simply report that the overall pro-
cess model can violate the overall process requirement and
stop. Since those approaches are simply trying to determine
whether the composed system satisfies the given overall re-
quirement, this is sufficient. But it may be that the derived
requirement generated at this point is too strong, and that
there are device behaviors that violate the derived require-
ment but do not lead to a violation of the overall process
requirement. In this case, we need to weaken the derived
requirement to allow these behaviors, and we adopted an
approach from interface synthesis to accomplish this.

4. REQUIREMENT DERIVATION
TOOLSET

We have constructed a prototype toolset implementing
the approach described in the previous section. This toolset
takes as input an overall process requirement specified as a
finite state automaton (FSA) and an overall process model
composed of a medical process model and a permissive de-
vice model. When a less permissive device model is desired,
it also takes as input additional device requirements speci-
fied as FSAs. This toolset outputs whether or not the over-
all process model satisfies its requirement and, if not, then
when possible it provides a derived requirement of the de-
vice, specified as an FSA, that prevents the overall process
model from violating its requirement.

The requirements for a process or device describe how that
process or device should behave, addressing critical aspects
such as safety, security, and privacy. We use FSAs to specify

the requirements; they are expressive enough to capture a
wide range of interesting requirements, they are supported
by the PROPEL tool [13] we used to help elicit precise re-
quirements from domain experts, and the learning algorithm
we use learns a regular language.

The medical process model must reflect the complexity of
medical processes, capturing the various responses to excep-
tional conditions, concurrent activities, and the communi-
cation between human agents and various software systems
and devices. It must have precisely defined semantics to
support formal analysis. We use the Little-JIL process def-
inition language [7] since Little-JIL has successfully been
used to model medical processes (e.g., [9, 10]), including
such aspects of those processes as exceptional behavior and
concurrency. Our group had previously developed a trans-
lator from Little-JIL to the input formalisms of two model
checkers.

For the requirement derivation algorithm, we implemented
a combination of the assumption-generation algorithm de-
veloped by Cobleigh et al. [12] and the interface synthesis
algorithm developed by Beyer et el. [6]. We utilized the L∗

learning algorithm [4, 27] with the FLAVERS model checker
[16] for Little-JIL to answer queries.

In what follows, we first provide some background on
FSAs, Little-JIL, FLAVERS, and the L∗ algorithm. Then,
we describe the requirement deriver tool in more detail.

4.1 Background

Figure 2: Pump example: Overall process require-
ment as an FSA

A requirement specified as an FSA captures the intended
behaviors as a set of event sequences. Figure 2 shows an
FSA representing the overall process requirement for the
pump example described in the introduction. For brevity
in the following, we shorten operating room to OR and in-
tensive care unit to ICU. This overall process requirement
says that when the pump is in an ICU and is set to deliver a
dose over the allowed limit, it must issue an alert. For this
requirement, the alphabet, or set of events, is: enter ICU,
leave ICU, setDose HIGH, dose alert, dose ok. There are 3
states and 6 transitions. Each state is shown as a circle. The
states are labeled with the physical location of the pump
in the hospital, specifically either loc-OR or loc-ICU, and
may be labeled with the dose entered by a healthcare clin-
ician, e.g., dose-HIGH. Since in the medical process model
the healthcare practitioners first perform the surgery in the
OR, the start state is “loc-OR” (designated by the incoming
arrowhead). Additionally since the medical process model
allows the pump to remain in the OR, state “loc-OR” is also
an accepting state (designated by the inner concentric cir-
cle). Each transition from a state on a given event to a

specified state is shown as an arc between those two states
annotated with that event. To illustrate, the pump may be
moved from the OR to the ICU so there is a transition from
the start state “loc-OR” to state “loc-ICU” annotated with
event enter ICU. For this work, we use FSAs that are deter-
ministic and total. To make the requirement FSAs total, we
add a special violation state that is a trap state, meaning
the violation state is non-accepting and for every event in
the alphabet has a transition to itself. Therefore any event
sequence that reaches the violation state will remain in the
violation state. For simplicity, the figures that show the
FSAs do not show the violation state. Thus if a state does
not show a transition annotated with a particular event in
the alphabet, then there is implicitly a transition on that
event to the violation state. For example, state “loc-ICU,
dose-HIGH” implicitly has a transition on event dose ok to
the violation state. One event sequence that satisfies this
overall process requirement is enter ICU, leave ICU. Alter-
natively, an event sequence that violates this requirement is
enter ICU, setDose HIGH, dose ok.

The medical process model and the device model are de-
scribed using the Little-JIL process definition language [7].
A Little-JIL process model precisely captures how to per-
form a particular task and contains three main components,
a resource repository, an artifact collection, and a coordi-
nation specification. The resource repository defines which
agents, either human agents or computational agents (e.g.,
hardware devices, software applications), perform the activ-
ities. The artifact collection defines what artifacts are con-
sumed and/or produced by the activities. A coordination
specification precisely defines how the agents perform the
activities that consume and/or produce the artifacts. Since
we are primarily interested in the humans’ interactions with
the devices and each other, we focus here on the coordi-
nation specifications. The Little-JIL coordination specifica-
tions provide support for high-level language features such
as abstraction, parallelism, synchronization, and exceptional
conditions. A coordination specification has a visual rep-
resentation that consists of a hierarchical decomposition of
steps where each step represents an activity to be performed
by a particular agent.

The FLAVERS model checker [16] verifies whether or not
any potential execution of a system can violate a given prop-
erty. The input to FLAVERS is a representation of the
system as a collection of control flow graphs and a specifi-
cation of the property as an FSA. The user can also spec-
ify additional constraints as FSAs; in that case, FLAVERS
checks whether any potential execution adhering to those
constraints can violate the property. FLAVERS analysis is
conservative; to make the analysis tractable, the collection of
control flow graphs may allow paths that do not correspond
to actual executions of the system. Thus, if FLAVERS de-
termines that no path can lead to a violation of the property,
we know that no actual system execution can violate it. But
when FLAVERS finds a path that leads to a violation, we
do not know for certain that this path corresponds to an
actual execution of the system.

The L∗ algorithm learns an unknown regular language
U over an alphabet Σ and returns a minimal deterministic
FSA M such that the language L(M) is equivalent to U .
For the requirement derivation, U should correspond to a
device requirement that is strong enough so that the overall
process requirement is satisfied. In addition, U should be

weak enough so that the derived requirement is useful. The
L∗ algorithm learns by interacting with a “minimally ade-
quate teacher,” for brevity shortened here to teacher, that
is essentially an oracle that is capable of answering queries
about U . The teacher must be able to answer two types
of queries, a membership query and an equivalence query.
A membership query inputs an event sequence σ from Σ∗

and outputs whether or not σ is in U . An equivalence query
inputs an FSA Mi and checks whether or not L(Mi) is equiv-
alent to U . When L(Mi) is equivalent to U , it outputs true.
Otherwise, it outputs false and a counterexample event se-
quence from the symmetric difference of L(Mi) and U , i.e.,
an event sequence that belongs to L(Mi) but not U , or one
that belongs to U but not L(Mi).

4.2 Requirement Deriver Tool
At a high-level, the requirement deriver tool implements

the requirement derivation algorithm described in the pre-
vious section by employing the L∗ algorithm and a teacher
that uses FLAVERS to answer the two query types. To
be able to apply FLAVERS, we used the existing transla-
tion tool to construct FLAVERS input from Little-JIL. This
translation supports a subset of Little-JIL and incorporates
several optimizations. For the two case studies described in
the next section, we needed to extend the existing transla-
tion since a larger subset of Little-JIL was needed to model
the medical processes used in those case studies. Next, we
briefly describe each step of the requirement derivation al-
gorithm.

For Step 1, FLAVERS verifies whether or not the overall
process model satisfies its requirement. The result of that
verification provides enough information to ascertain if all,
none, or some of the potential executions of the overall pro-
cess model satisfy the given requirement. For Step 2, the L∗

algorithm creates a very basic initial derived requirement. It
considers an initial set of event sequences that contains the
empty event sequence and every event sequence of length
one from the alphabet. For each event sequence in that set,
the L∗ algorithm performs a membership query on σ that
essentially checks whether or not σ is a prefix of any event
sequence in regular language U that is being learned. If the
answer to that membership query is true, then the initial
derived requirement allows the behaviors corresponding to
σ. Otherwise, the initial derived requirement disallows the
behaviors corresponding to σ.

Step 3 performs the requirement derivation by employing
the L∗ algorithm. On each iteration i, Step 3 uses FLAVERS
to check whether any execution of the overall process in
which the device’s behavior satisfies the current derived re-
quirement Mi can violate the overall process property. (If
constraints on the behavior of the device have been sup-
plied by the user, these constraints are used by FLAVERS
to restrict the executions considered.) If such an execution
is found, the learning algorithm produces a new derived re-
quirement Mi+1 that excludes this execution and starts an-
other iteration. If no such execution is found, it proceeds
to Phase 2. In this phase, Query 2 checks whether any exe-
cution of the overall process in which the device’s behavior
violates Mi satisfies the property of the overall process. If
such an execution is found, the learning algorithm produces
a new derived requirement Mi+1 that allows this behavior.

Query 1 corresponds to Oracle 1 of the assumption gener-
ation algorithm in [12]. Because the work in [12], however,

was directed at compositional verification rather than re-
quirement derivation, Oracle 2 of that paper simply checked
whether one component of the system satisfies the analog
of Mi. If a counterexample is found, Cobleigh et al. check
whether that counterexample corresponds to a violation of
the analog of the overall process requirement, in which case
they report that the system under analysis violates the re-
quirement being checked. For our purposes, it is necessary
to keep refining the derived requirement in this case. Thus
our Phase 2 is an adaption of the permissiveness check from
[6], as is the interface synthesis method developed by Gian-
nakopoulou and Păsăreanu [19].

5. CASE STUDIES
We applied the requirement deriver tool described in the

previous section to two small case studies, one involving
a smart infusion pump and one involving an implantable
cardioverter-defibrillator (ICD). For each case study, we iden-
tified an overall process requirement (specified as an FSA)
and constructed an overall process model (written in Little-
JIL) that is a combination of a small medical process model
and a simple device model. The requirement derivation
toolset is implemented in Java. The experimental platform
was a laptop PC with a 2.4 GHz processor and 4 GB of
RAM. For each requirement derivation toolset run, we mea-
sured the space used in megabytes (MB) and the time taken
in seconds. The approach, toolset, and case studies are ex-
plained in more detail in [14].

5.1 Pump Case Study
As mentioned in the introduction, the pump case study

considers a device model for a pump and a medical process
model for an in-patient surgery based on scenarios described
in [5]. In general within the medical process model, we elab-
orated those steps where the healthcare practitioners inter-
acted with the pump, based on a demonstration given by
Professor Elizabeth Henneman from the University of Mas-
sachusetts School of Nursing. The overall process require-
ment was taken directly from the safety goals discussed in
[5].

For the pump device model, we made several simplifying
assumptions. There are only two drug libraries modeled, a
drug library for an OR and a drug library for an ICU. Each
drug library contains a single drug, and the only dosing pa-
rameters modeled are a minimum dosing limit and a maxi-
mum dosing limit. The drug doses are abstracted as either
low or high. For the pump, we consider only the command
setLib that inputs a care area and configures the pump with
the drug library associated with that area and the command
setDose that inputs a drug dose (either low or high), checks
whether or not that dose is within the dosing limits for the
configured drug library and if not reports a dose alert. The
pump device model uses a FLAVERS constraint to capture
the pump’s internal behavior (which library is it configured
for) and the logic of the check for potential overdoses and
underdoses.

At a high-level of abstraction, a medical process for an
in-patient surgery consists of five major phases: checking
the patient into the hospital, performing the operation on
that patient, administering ICU care if needed, monitoring
the patient during recovery, and checking that patient out of
the hospital. The patient is initially hooked up to the pump
in the OR and then the patient and pump may be moved to

the ICU if needed. The following sequence of steps defines
how to use the pump to administer an infusion in a given
area in the hospital. First, a clinician has the option to
set the pump to the drug library associated with that area.
Next, the clinician must set the pump for the dosage to be
infused by entering the appropriate number. Lastly, if the
pump does not report a dose alert, then the medical clinician
employs the pump to infuse the entered dosage. Otherwise if
the pump does report a dose alert then the clinician decides
either to restart this entire sequence, assuming the dosage
was not entered correctly (i.e. mistyped a number), or to
not administer the infusion at all until double checking with
someone else that the entered dosage was the appropriate
one. In total, the overall process model written in Little-JIL
contains 76 steps; more details are provided in [14].

For the pump case study, the requirement derivation toolset
was given the overall process requirement shown in Figure
2 and the overall process model described above that is a
combination of the medical process model for an in-patient
surgery and the device model of the pump, including the
constraint that captures the pump’s internal behavior. The
toolset reports that the overall process model may violate
its requirement and produces a derived requirement of the
pump. The requirement derivation used 22 MB and took
152 seconds.

Figure 3: Pump derived requirement as an FSA

Figure 3 shows the derived requirement of the pump as an
FSA. Each state is labeled with the configured drug library
of the pump and the physical location of that pump. The
pump is initialized with the most restrictive drug library,
which in this model is the ICU’s drug library. Within the in-
patient surgery medical process, the pump is initially physi-
cally located in the OR as described above. Thus for the de-
rived requirement of the pump, the start state is labeled“lib-
ICU, loc-OR.” Each transition is annotated with an event
that corresponds to either a pump command (e.g., event
setLib OR succ designates that the pump command setLib
to the OR completed successfully) or moving the pump from
one location to another (e.g., event enter ICU designates
when the pump moves from an OR to an ICU). Informally,
the derived requirement of the pump states that after the

pump is moved into the ICU that pump must be configured
with the ICU’s drug library before that pump is used to
administer infusions in the ICU. This is illustrated by the
event sequence enter ICU, setDose HIGH fail and the event
sequence setLib OR succ, enter ICU, setLib ICU succ, set-
Dose HIGH fail.

This derived requirement could be added to the set of re-
quirements for a real-world pump being developed. Then to
satisfy the pump derived requirement, the pump developers
could modify the pump to make it location sensitive (e.g., by
having the pump query a central computer in the hospital or
employ radio-frequency identification tags) so the pump can
ascertain the care area in which it is located and then con-
figure itself for that area. Since the modified pump would
satisfy the pump derived requirement, this would help to en-
sure that the overall process satisfies its requirement about
a potential overdose leading to a pump alert. Alternatively
the medical process model for an in-patient surgery could
be modified so that after a pump is moved into the ICU the
healthcare professionals always reconfigured that pump for
the ICU before using it. Thus an overall process model, com-
posed of the modified medical process model and the orig-
inal pump device model, would satisfy the overall process
requirement. In addition, the real-world medical process for
an in-patient surgery would need to similarly be modified
and the hospital administration would have to ensure that
the healthcare professionals are adhering to this modified
medical process.

5.2 ICD Case Study
The ICD case study considers an overall process model

composed of a device model for an ICD and a medical pro-
cess model that describes an ICD patient’s care. The over-
all process requirement was taken directly from the security
and privacy goals discussed in [21]. The ICD device model
is based on the description provided in [22]. The ICD medi-
cal process model is based on the observations by Professor
Kevin Fu and his colleagues of an implantation of a new ICD
and a battery replacement for an existing ICD performed at
a local area medical center [18]. The overall process require-
ment involves security, specifically this requirement specifies
that “an outsider should not be able to trigger an ICD’s test
mode, which could induce heart failure” [21].

An ICD is implanted in a patient’s chest cavity and is
connected to that patient’s heart with electrical leads. Once
the ICD is implanted, an external programming device may
be employed to access and program the ICD by sending ra-
dio commands from the programming device to the ICD.
To simplify the ICD device model, we only modeled four
commands. Initially, the ICD rejects commands from the
programming device. A wand is employed to send the com-
mand to activate the ICD so that it accepts commands from
the programming device. The wand may use a magnet or a
radio signal for the activation. Additionally, there is a com-
mand to deactivate the ICD so that it returns to the mode in
which it rejects further commands. The command testmode
administers a shock to stop the heart and the command
readdata reads the internal ICD settings and also telemetry
about the heart. Additionally, the ICD device model em-
ploys a FLAVERS constraint to capture some of the ICD’s
internal behavior (whether the ICD is activated or deacti-
vated) and the logic for whether or not to accept commands
from a programming device. At a high-level, the ICD medi-

cal process model describes three alternatives usages of the
ICD: an implantation performed in a hospital of an ICD in
a patient, a follow up in a clinic, or an attack from outside
a healthcare facility where the outsider attempts to trigger
the ICD’s test mode. We elaborated those steps where the
humans interacted with the ICD. In total, the overall pro-
cess model, composed of the simplified ICD model and the
medical process model described above, contains 66 steps.

Figure 4: ICD derived requirement as an FSA

The requirement derivation toolset reports that the over-
all process model may violate its requirement and produced
the derived requirement of the ICD shown in Figure 4. Each
state is labeled with whether the ICD is activated or deacti-
vated (either act or deact) and the physical location of that
ICD (either inside or outside a healthcare facility). Initially,
the ICD is deactivated as described above and is physically
located outside of a healthcare facility (HCF) thus the start
state is labeled “deact, outside HCF.” As in the derived re-
quirement of the pump, each transition is annotated with an
event that corresponds to either an ICD command (e.g., ac-
tivate succ designates that the ICD command activate com-
pleted successfully) or the ICD switching physical locations
(e.g., enter HCF). The ICD derived requirement states that
if the ICD is outside a healthcare facility (designated by the
two states “deact, outside HCF” and “act, outside HCF”)
then the command testmode must not succeed (designated
by the implicit transitions from each of those two states to
the violation state on the event testmode succ). In total,
the requirement derivation toolset used 113 MB and took
260 seconds.

Additionally, the ICD derived requirement captures that if
the ICD is deactivated (designated by the two states “deact,
outside HCF” and “deact, inside HCF”) then the command
testmode does not succeed (designated by both those states
having self-loop transitions on event testmode fail). There-
fore to satisfy the ICD derived requirement, the ICD device
model or the ICD medical process model could be modified
in such a way so that the ICD can never be activated out-
side of a healthcare facility (designated by state“act, outside
HCF”). Specifically, the ICD derived requirement highlights
two potential failures in the use of the ICD that could lead

to the ICD being activated outside of a healthcare facil-
ity. There are the “intentional” failures due to the attacker
activating the ICD (e.g., event sequence activate succ, test-
mode succ) and the “unintentional” failures due to a health-
care practitioner not deactivating the ICD before the pa-
tient leaves the healthcare facility (e.g., event sequence en-
ter HCF, activate succ, leave HCF, testmode succ). The
ICD device model could be modified so that after a certain
condition is met the ICD must deactivate itself before the
patient leaves the healthcare facility. For example, Halperin
et al. [21] suggest that the condition could be either when
the patient sits up or when the patient leaves the operat-
ing/exam room. After deriving this requirement, we learned
that many ICDs deactivate themselves after a short period of
time, apparently to reduce power consumption. This time is
short enough (several minutes) to prevent, or at least greatly
reduce, problems caused by both the unintentional and in-
tentional failures. Alternatively, the medical process model
for an ICD patient’s care could be modified so that a medical
professional must always deactivate a patient’s ICD before
that patient leaves the healthcare facility.

5.3 Discussion
This work explores a process-based requirement deriva-

tion approach that takes as input an overall process require-
ment and an overall process model composed of a model of
the medical process and a model of the device, and, when
possible, outputs a derived requirement for that device that
prevents the overall process model from violating its require-
ment. To automate the requirement derivation, we com-
bined a method for assumption generation with one for inter-
face synthesis. The device requirements are iteratively de-
rived using a learning algorithm and a model checker. This
approach could be implemented for other process modeling
languages, requirement specification languages, assumption
generation algorithms, interface synthesis algorithms, learn-
ing algorithms, and model checkers. Our primary goal for
this work was to provide “proof of concept” for such a re-
quirement derivation approach by performing the prelimi-
nary evaluation on the two small case studies.

For this approach, we need medical process models that
define how particular medical devices are used. To gain as-
surance about the quality of such medical process models,
we could apply validation techniques such as manual reviews
and formal methods (e.g., theorem proving and model check-
ing). Although other work, e.g., [9, 10], has shown that
the effort to define and validate medical process models is
challenging and time consuming, this effort is worthwhile
since these medical process models could also potentially
be employed to train medical personnel, be the subject of
other formal methods, produce simulation data, and sup-
port process guidance in the clinical setting. The medical
processes in our preliminary evaluation were easily captured
with Little-JIL. For each case study, the overall process
model and the interactions between the medical profession-
als and the medical device were specified using Little-JIL’s
capabilities for parallelism and synchronization. Within the
medical process models, we took advantage of Little-JIL’s
facilities for expressing abstraction and exceptional control
flow.

Our preliminary evaluation applied this approach to rel-
atively small parts of medical processes modeled at a high
level of abstraction and used overall process requirements

involving both safety and security. The derived require-
ments for the medical devices are understandable and ap-
pear to be useful for providing insight into the interactions
between the medical processes and medical devices. To fur-
ther assist the medical device developers, the derived device
requirement FSAs could be used to generate positive sce-
narios (i.e. sequences from the start state to an accepting
state) and negative scenarios (i.e. sequences from the start
state to a non-accepting state). Alternatively, a particular
device model and/or medical process model could be vali-
dated against the derived device requirement by employing
such techniques as testing or model checking. Any failed
test results from testing or counterexamples from the model
checker could then be used to localize the failure.

In general, the performance of the requirement deriver
tool scaled well in terms of space and time when the overall
process model had more details added but those additions
did not involve interactions between the healthcare practi-
tioners and the medical device (e.g., the in-patient surgery
medical process had more details added about checking in a
patient to the hospital). Since our tool combines a learning
algorithm with a model checker, it benefited from the model
checker’s optimizations. On the other hand, this tool’s per-
formance did not scale as well when any additions involved
interactions between the clinicians and the device (e.g., the
medical process for an ICD patient’s care had more details
added to support a larger set of ICD commands). For each
of the two case studies, the requirement deriver tool needed
less than 150 MB of space and under 5 minutes for time. For
this approach, the case studies suggest that space is more of
an issue than time. In future work, the requirement deriver
toolset’s performance could be improved by employing ad-
ditional optimizations supported by the learning algorithm,
the model checker, or the translator from a process model
to the input formalism of the model checker,

6. CONCLUSION AND FUTURE WORK
A medical device must be certified to gain assurance that

it satisfies its requirements. But since that device may be
used in alternative ways within a large and complex medi-
cal process, it may be challenging to accurately determine
all of the necessary device requirements such that the over-
all process satisfies its requirements. Specifically, critical
requirements of the medical device may be specified inac-
curately or incompletely or the device requirement may be
missed entirely. In this paper, our contributions are the
proposed process-based requirement derivation approach, a
toolset developed to support this approach, and a prelimi-
nary evaluation on two small case studies.

Based on this preliminary evaluation, we believe the ap-
proach is promising. For each case study, this approach
derived a medical device requirement that was readily un-
derstandable and useful. A derived requirement for a par-
ticular medical device could be utilized to gain a better un-
derstanding of the interaction between that device and the
given medical process in which that device is used. Then,
the medical process model, device model, or both could be
modified to satisfy the derived requirement to help ensure
that the overall process model satisfies its requirement. In
the future, the developers of real-world medical devices and
medical processes could be provided with the derived device
requirements that could illustrate when existing device re-

quirements are either inaccurate or incomplete or when new
device requirements are needed because they were missed.

For a better understanding of this approach, a more ex-
tensive evaluation is needed. Further evaluation should con-
sider medical process models that are more detailed, a larger
range of overall process requirements, and other medical
processes than the two discussed here. For this work, we
built on one assumption generation method and one inter-
face synthesis method that employ a learning algorithm.
Other methods, such as those that use game-theoretic ap-
proaches or counterexample-guided abstraction-refinement
techniques, could also be used. In theory, such methods have
the same worst case complexity. But in practice, these meth-
ods vary widely with regard to the performance (in terms
of space and time) and the output derived requirements (in
terms of size and complexity) and it would be interesting to
compare the performance of tools based on such approaches.

As noted earlier, the derived requirements characterize the
interaction between the rest of the medical process and the
device and could be met by various combinations of device
features and modifications to the medical process. Indeed,
the approach could be used with a detailed model of the
device (e.g., one constructed to represent the behavior of
an existing device) and used to derive requirements that
must be satisfied by medical processes in which the device
is used. Such requirements could give a characterization of
the class of medical processes in which it is safe to use the
device. The devices we considered in our case studies are
relatively small units, but the approach could also be applied
to more complex devices or to larger software systems such
as computerized order entry systems.

7. ACKNOWLEDGEMENTS
The authors thank Professor Kevin Fu and Professor Eliz-

abeth Henneman, for their help with putting together the
case studies, and Jamieson Cobleigh, for sharing his knowl-
edge about the assumption generation methods. This mate-
rial is based upon work supported by the National Science
Foundation under Awards CCF-0820198, CCF-0905530 and
IIS-0705772, and by a Gift from the Baystate Medical Cen-
ter, Rays of Hope Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this publica-
tion are those of the authors and do not necessarily reflect
the views of the NSF.

8. REFERENCES
[1] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel.

Learning operational requirements from goal models.
In ICSE ’09: Proc. of the 2009 IEEE 31st Int. Conf.
on Software Eng., pages 265–275, Washington, DC,
USA, 2009. IEEE Computer Society.

[2] R. Alur, P. Madhusudan, and W. Nam. Symbolic
compositional verification by learning assumptions. In
Etessami and Rajamani [17], pages 548–562.

[3] R. Alur, P. Černý, P. Madhusudan, and W. Nam.
Synthesis of interface specifications for Java classes.
SIGPLAN Not., 40(1):98–109, 2005.

[4] D. Angluin. Learning regular sets from queries and
counterexamples. Inf. Comput., 75(2):87–106, 1987.

[5] G. S. Avrunin, L. A. Clarke, E. A. Henneman, and
L. J. Osterweil. Complex medical processes as context
for embedded systems. SIGBED Rev., 3(4):9–14, 2006.

[6] D. Beyer, T. A. Henzinger, and V. Singh. Algorithms
for interface synthesis. In W. Damm and
H. Hermanns, editors, CAV, volume 4590 of Lecture
Notes in Computer Science, pages 4–19. Springer,
2007.

[7] A. G. Cass, B. S. Lerner, S. M. Sutton, Jr., E. K.
McCall, A. Wise, and L. J. Osterweil.
Little-JIL/Juliette: a process definition language and
interpreter. In ICSE ’00: Proc. of the 22nd Int. Conf.
on Software Eng., pages 754–757, New York, NY,
USA, 2000. ACM.

[8] S. Chaki, E. Clarke, N. Sinha, and P. Thati.
Automated assume-guarantee reasoning for simulation
conformance. In Etessami and Rajamani [17], pages
534–547.

[9] B. Chen, G. S. Avrunin, E. A. Henneman, L. A.
Clarke, L. J. Osterweil, and P. L. Henneman.
Analyzing medical processes. In ICSE ’08: Proc. of
the 30th Int. Conf. on Software Eng., pages 623–632,
New York, NY, USA, 2008. ACM.

[10] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke,
L. J. Osterweil, D. Brown, L. Cassells, and
W. Mertens. Formally defining medical processes.
Methods of Information in Medicine, 47(5):392–398,
2008.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[12] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Păsăreanu. Learning assumptions for compositional
verification. In TACAS ’03: Proc. of the Ninth Int.
Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, volume 2619 of Lecture Notes
in Computer Science, pages 331–346, New York, NY,
USA, 2003. Springer-Verlag Berlin Heidelberg.

[13] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User
guidance for creating precise and accessible property
specifications. In SIGSOFT ’06/FSE-14: Proc. of the
14th ACM SIGSOFT Int. Symp. on Foundations of
Software Eng., pages 208–218, New York, NY, USA,
2006. ACM Press.

[14] H. Conboy. Process-based requirement derivation,
Department of Computer Science, University of
Massachusetts, Amherst, MA 01003
(UM-CS-2010-034), 2010.

[15] C. Damas, B. Lambeau, F. Roucoux, and A. van
Lamsweerde. Analyzing critical process models
through behavior model synthesis. In ICSE ’09: Proc.
of the 2009 31st Int. Conf. on Software Eng., pages
441–451, Washington, DC, USA, 2009. IEEE
Computer Society.

[16] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. on
Software Eng. and Methodology, 13(4):359–430, 2004.

[17] K. Etessami and S. K. Rajamani, editors. Computer
Aided Verification, 17th Int. Conf., CAV 2005,
Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings, volume 3576 of Lecture Notes in
Computer Science. Springer, 2005.

[18] K. Fu. Research notes about implantable medical
devices, 2006.

[19] D. Giannakopoulou and C. S. Păsăreanu. Interface

generation and compositional verification in
JavaPathfinder. In FASE ’09: Proc. of the 12th Int.
Conf. on Fundamental Approaches to Software Eng.,
pages 94–108, Berlin, Heidelberg, 2009.
Springer-Verlag.

[20] D. Giannakopoulou, C. S. Păsăreanu, and
H. Barringer. Assumption generation for software
component verification. In ASE ’02: Proc. of the 17th
IEEE Int. Conf. on Automated Software Eng., pages
3–12, Washington, DC, USA, 2002. IEEE Computer
Society.

[21] D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno,
and W. H. Maisel. Security and privacy for
implantable medical devices. IEEE Pervasive
Computing, 7(1):30–39, 2008.

[22] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S.
Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and
W. H. Maisel. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power
defenses. In SP ’08: Proc. of the 2008 IEEE Symp. on
Security and Privacy, pages 129–142, Washington,
DC, USA, 2008. IEEE Computer Society.

[23] G. J. Holzmann. The SPIN Model Checker.
Addison-Wesley, 2004.

[24] P. G. Kelley, P. Hankes Drielsma, N. Sadeh, and L. F.
Cranor. User-controllable learning of security and
privacy policies. In AISec ’08: Proc. of the First ACM
Workshop on AISec, pages 11–18, New York, NY,
USA, 2008. ACM.

[25] M. Peleg, S. W. Tu, J. Bury, P. Ciccarese, J. Fox,
R. A. Greenes, R. Hall, P. D. Johnson, N. Jones,
A. Kumar, S. Miksch, S. Quaglini, A. Seyfang, E. H.
Shortliffe, and M. Stefanelli. Comparing
computer-interpretable guideline models: A case-study
approach. JAMIA, 10:2003, 2002.

[26] A. Pnueli. In transition from global to modular
temporal reasoning about programs. In K. Apt, editor,
Logic and Models of Concurrent Systems, volume 13,
pages 123–144, New York, NY, USA, 1984.
Springer-Verlag.

[27] R. L. Rivest and R. E. Schapire. Inference of finite
automata using homing sequences. In STOC ’89:
Proc. of the 21st annual ACM Symp. on Theory of
Computing, pages 411–420, New York, NY, USA,
1989. ACM.

[28] A. ten Teije, M. Marcos, M. Balser, J. van
Croonenborg, C. Duelli, F. van Harmelen, P. Lucas,
S. Miksch, W. Reif, K. Rosenbrand, and A. Seyfang.
Improving medical protocols by formal methods.
Artificial Intelligence in Medicine, 36(3):193–209,
2006.

