
Resource Management in Complex, Dynamic
Environments

Mohammad S. Raunak
∗

Leon J. Osterweil
Department of Computer Science

University of Massachusetts
Amherst, MA

{raunak, ljo}@cs.umss.edu

ABSTRACT
This paper describes an approach to the management of
resources. The paper suggests that a resource should be
viewed as a provider of a set of capabilities, where that set
may vary over time and with circumstances. This view of
resources is defined and then made the basis for the archi-
tecture of a system for storing, managing, and assigning re-
sources. The ROMEO prototype resource management sys-
tem is presented as an example of how this architecture can
be instantiated. Some case studies of the use of ROMEO are
presented and used to evaluate the architecture, the ROM-
EO prototype, and our view of the nature of resources.

1. INTRODUCTION
The systems that are of increasing importance to society

are complex collaborations among such diverse kinds of re-
sources as software systems, hardware devices, and humans.
These systems are typically highly concurrent, and highly
dynamic, often entailing the real-time identification and ac-
quisition of these resources to support the performance of
various system tasks. The most critical of these resources
will usually be in short supply, and thus the objects of con-
tention from the tasks comprising the system. An abun-
dance of such resources will improve system performance,
but will increase cost. Thus it is important to devise ap-
proaches to the judicious specification, management, and
allocation of the resources needed by such systems.

This paper presents an overall view of resource specifi-
cation, management, and assignment, and introduces tools
and methods for supporting this view. Much work in many
different domains has focused on various restricted resource-
related problems, but has lacked the generality and power
needed for adequate support of the management of the very
diverse kinds of resources needed for highly complex, dy-
namic systems. This paper uses as an example systems

∗The author is currently an Affiliate Assistant Professor at
Loyola University Maryland

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

needed in a hospital emergency department (ED). ED re-
sources range from humans such as doctors, nurses, clerks,
and patients, to software systems such as Electronic Health-
care Records (EHRs), equipment, such as X-ray machines,
and beds, blood, and medicines. The complexity of these
resources is complicated by the use of aliasing in describing
them. For example, the names doctor, pediatrician, surgeon,
attending MD, director, primary caregiver may all be at-
tached to the same individual, sometimes all at the same
time, and sometimes only in certain specific contexts. Fur-
ther complicating the situation, these different names some-
times influence the capabilities that the resource may pro-
vide. Context may have a similar effect. For example, a
physician’s assistant may prescribe medication for a patient
with chest pain in an extraordinary situation, whereas usu-
ally this would be done only by a doctor. ED resources may
also have substitution, preemption, and priority relation-
ships and constraints, often governed by complex policies.
The approach presented here addresses all of these issues,
thus suggesting how to provide key support for this growing
range of societally-essential systems.

Section 2 presents our view of the nature of resources, and
introduces terminology and notation needed to be precise
about these ideas. Section 3 describes a conceptual frame-
work for resource management, and the ROMEO prototype
built on this framework. Section 4 describes the experimen-
tal setup used for our case studies. Section 5 presents the
results of some of these case studies. Section 6 relates our
work to other work on resources. Section 7 draws some con-
clusions and suggests some future research directions.

2. APPROACH
Systems in which resource management is an issue typi-

cally function by executing activity sequences and realizing
artifact flows that define the ways that system components
and capabilities are coordinated. We refer to such speci-
fications as process definitions. Our view is that process
definitions must also specify the resources that each activity
needs. Thus, for example, the process of taking an X-ray in
a hospital ED has a central functional component that takes
X-ray film and a patient as inputs and produces the patient’s
X-ray as output. Clearly this will not happen without using
an X-ray machine as a resource. But a precise characteriza-
tion of what a resource is seems elusive. Note in particular,
that it is reasonable that the X-ray film might also be con-
sidered a resource, and even the patient might be considered
to be a resource to this activity.

It has been observed that, “a resource is an entity for

which there is contention”. This characterization seems to
be useful, but is not without problems. Note, for example,
that an X-ray machine may be subject to contention during
a busy period, but completely idle, and subject to no con-
tention, at other times. Thus, this definition of a resource
leaves it possible that some entities could be considered re-
sources at some times, but not at others. Suggesting that
a resource is any entity for which there might ever be con-
tention creates the possibility that even input parameters to
functions might have to be considered resources.

The essence of a resource, we argue, is that it is a provider
of a set of capabilities, but the set of capabilities that can
be provided may be different at different times and under
different circumstances. This potential to change the set of
capabilities offered seems to us to be inherent in the nature of
a resource. Thus, a nurse may not be able to provide the ca-
pability to authorize medication under most circumstances,
but may indeed be able to do so in an emergency. A hallway
wheelchair may not provide the capability of housing an ED
patient under ordinary circumstances, but may in an emer-
gency. Thus, each of the capabilities offered by a resource
should be thought of as being guarded by a specification of
when the capability can be provided. A resource is further
characterized by a collection of attributes (e.g. name, job
title, experience etc.) to be described more fully later. We
note that zur Muehlen has a similar view of the nature of a
resource, although he does not consider the possibility of dy-
namic change to the set of offered capabilities [33]. Russell
et al. also share this view and further suggest that context
may affect which capabilities a resource may offer [25]. In-
terestingly, we note that the term “resource” is not defined
at all in the Workflow Management Coalition’s Terminology
and Glossary document [31]. We now provide some defini-
tions that are more precise and specific about the intuitive
ideas we have just presented.

2.1 Definitions
Let D be some domain of interest, and let PD be a set of

system processes that can be executed in D. Assume T is
a finite set of all the different activities that can be carried
out in performing any of the processes in PD. Now suppose
that Σ is a specific process in PD, and let TΣ be the set of
all the different activities included in Σ. For every t ∈ TΣ

there is some finite set of nt capabilities, CAPS t, required to
support performing activity t. For notational simplicity (the
needed generalization is not hard to devise, but can be hard
to read), we assume each performance of a given activity t
in a given process Σ requires the same set of capabilities.
Thus, we define

CAPS t = {CAP t1 ,CAP t2 , · · · ,CAP tnt
}

As an example, suppose D is the hospital ED domain,
then some of the activities in TΣ might be “triage incom-
ing patient”, “assess patient condition”, and “take X-ray”.
The capabilities needed to support“triage incoming patient”
might include triaging, presumably (but perhaps not neces-
sarily) provided by a triage nurse. The capabilities needed to
support “assess patient condition” might include those pro-
vided by such resources as a doctor, a nurse, a stethoscope,
and an ED bed. The capabilities needed to support “take
X-ray” might include those provided by an X-ray machine,
and some X-ray film. For a process Σ to be performed, it
must have associated with it a pool of resources RΣ each of

which has the potential to provide one or more of the capa-
bilities needed by at least one of the activities of the process.
Thus every entity r ∈ RΣ has associated with it a set of nr

capabilities, CAPS r, which is the set of all capabilities that
r could ever possibly offer in support of a system process in
domain D. Thus,

CAPS r = {CAPr1 ,CAPr2 , · · · ,CAPrnr
}

We use a capability projection function Φ, that uses ΣSTATE ,
a specification of the execution state of a system process Σ,
to project CAPS r onto the subset of CAPS r that r can
actually provide when Σ is in the state of ΣSTATE . Thus

CAPS r,ΣSTATE ⊆ CAPS r such that

CAPri ∈ CAPS r,ΣSTATE if and only if

CAPri ∈ CAPS r and Φ(ΣSTATE ,CAPri) = TRUE

And we note that when a system process Σ in domain D
is in state ΣSTATE , then a resource r ∈ RΣ can potentially
be assigned to support the performance of an activity t ∈ TΣ

if and only if

CAPS r,ΣSTATE ∩ CAPS t 6= ∅

Thus, for example, “prescribe medication” might be an el-
ement of a nurse’s CAPS r set, but Φ might map this capa-
bility to TRUE if and only if ΣSTATE shows that all doctors
are currently unavailable, and the condition of the nurse’s
patient is critical.

We now define a set of candidate resources that can pro-
vide a capability at a system state ΣSTATE as:

CANDt,ΣSTATE = {r ∈ RΣ|CAPS r,ΣSTATE ∩ CAPS t 6= ∅}

If CANDt,ΣSTATE is empty, no resource is currently avail-
able for assignment, and if CANDt,ΣSTATE has cardinality
> 1, a decision must be made about which candidate re-
source is to be selected. This decision might be based upon
the characteristics of the alternative resources, and so each
resource specification includes a set of descriptive attributes.
Some example attributes might be name, job title, education
level, and cost. In addition each resource specification also
includes a set of skill level and effort level attributes that
quantify the quality that r achieves in providing each of
the capabilities in CAPS r, and the effort required to do so.
Most resources do not provide a limitless amount of capa-
bility, and so each resource specification also has a capacity
attribute. If the available capacity of a resource is less than
the effort level for a requested capability, then the resource
cannot provide the capability.

We define a resource assignment to be a binding to an
executing task of a resource selected to satisfy the task’s
capability request. Specifically, assume ΣACTIVITIES,STATE

is the set of activities being performed when process Σ is in
state STATE, more precisely assume

ΣACTIVITIES,STATE = {tACT,1, tACT,2, · · · , tACT,n}

where n =| ΣACTIVITIES,STATE |

Figure 1: Resource Manager Architecture

Then ASGN ΣSTATE (t,c) is a resource r ∈ RΣ such that
t ∈ ΣACTIVITIES,STATE is an activity for which capability
c ∈ CAPS t and such that c ∈ CAPS r,ΣSTATE

We now define

ASGN ΣSTATE =⋃
t∈ΣACTIVITIES,STATE

⋃
c∈CAPSt

{(t,ASGN ΣSTATE (t, c))}

3. THE ARCHITECTURE AND PROTOTYPE
IMPLEMENTATION OF A RESOURCE
MANAGEMENT SYSTEM

3.1 The Architecture
Our resource management architecture, depicted in Fig-

ure 1, is centered on four major components: Request Man-
agement, Repository Management, Assignment Management,
and Constraint Management. To understand the nature of
these components, we also hypothesize the existence of a
System State component that represents the current state of
both the executing process and the resource manager itself,
and a Resource Client component that represents resource
needs to be met. In this architecture a Resource Client
sends requests to the Request Management component to
ask for capabilities to be provided by resources managed by
this system. The Resource Client shown here is an abstract
representation of a task for which one or more capabilities
are required. Clients request such services as identification,
reservation, acquisition, or release of resources. The Re-

quest Manager sub-component of the Request Management
processes raw requests from clients into resource queries,
and places them into the Outstanding Request Pool. The
Request Scheduler sub-component selects the request or re-
quests from the Outstanding Request Pool to satisfy next.
Selection is based on factors such as the priority of the re-
questing entity, and request arrival time. Requests in the
Outstanding Request Pool can be individual requests or sets
of requests that a Resource Client might need to be fulfilled
atomically.

The Assignment Management component contains an As-
signment Manager, a Resource Selector and a Match Maker.
The Assignment Manager receives from the Request Sched-
uler requests that are to be fulfilled, and attempts to make
assignments. The Assignment Manager also releases re-
sources by unbinding them from clients, and determines the
satisfiability of assignment requests (but without making
any assignment). To fulfill assignment requests, the Assign-
ment Manager calls the Match Maker, which treats requests
as queries against the resource repository being managed.

The System State, ΣSTATE , consists of such information
as the current assignments of resources, the different types of
outstanding requests, past assignments made during the ex-
ecution of the process, etc. System State may derive many of
these information from other components. Once the Assign-
ment Manager has identified candidates to fulfill a request,
the Constraint Manager filters out resource instances that
violate any current constraints. The resulting instances are
then sent to the Resource Selector, which chooses the re-
source instance to be assigned, presumably influenced by

the attributes of the different resources.
The Repository Management component contains four sub-

components. The Resource Characteristics Model defines
the attributes, capacity, capabilities, cost, etc. of resource
instances being managed. The Resource Allocation Table
manages the set of current assignments of resource instances
to requests, and assists in gathering such derived informa-
tion as the state of all resource instances, including their
availability at any point during system execution. The Re-
source Repository Manager provides an interface to the re-
source repository that enables the addition, removal, or mod-
ification of resource instances.

Assignment decisions are reported to the Request Sched-
uler, which notifies the Resource Client. When a Resource
Client no longer requires a resource it must notify the Re-
quest Management component.

3.2 The ROMEO Prototype Resource Manage-
ment System

ROMEO is a prototype resource management service based
on the architecture just presented. Due to space limita-
tions we now describe only a few of the less obvious features
of ROMEO, omitting descriptions of such more straight-
forward components as the ROMEO repository manager,
which is implemented around an unremarkable in-memory
relational database, and the ROMEO resource assignment
component, whose details are also unremarkable.

3.2.1 Resource Model
The ROMEO Resource Characteristics Model defines the

static structure of the resources being managed, and a par-
tial specification of the dynamic behavior of each resource.
In ROMEO each resource is a uniquely identifiable object
characterized as a set of name-value attribute pairs. To em-
phasize this view, we will often use the term resource in-
stance to refer to a specific resource. Note in particular that
ROMEO does not structure resource instances as a type
hierarchy. Our experience has indicated that simple type
hierarchies are not sufficient to represent clearly and com-
pletely the complex relations among resource instances in
domains such a hospital ED. Multiple inheritance schemes
also proved to be ungainly in dealing with such potentially
conflicting issues as job titles, capability sets, and organi-
zations. Accordingly ROMEO uses a flat structure for the
resource instances it manages, making minimal assumptions
about the attributes needed to describe these resource in-
stances.

Table 1 shows an example of a resource instance speci-
fication contained in a ROMEO resource repository. The
following explains the attributes used in table 1.

Name: Each resource can be “named” by a text string
or other identifier. For resources that are humans, this at-
tribute value is likely to be the name of the person. For
inanimate resources, such as a bed or an X-ray machine,
this attribute value may be a serial number or other distin-
guishing label.

Job Title: Each resource has an attribute whose value is a
text string or identifier indicating the job that the resource
performs. Some examples of Job Title attribute values are
“Physician”, “Nurse”, “Clerk”, and “Bed”.

Location: Each resource has an attribute that indicates
the organization or physical location where the resource works.
In Table 1, the resource is specified to be located in the

Table 1: Example specifications of resource in-
stances to support resource allocations for ED pro-
cesses

Name: John Smith
Job Title: Physician
Location: MainED
Experience Level: 10
Cost: 100
Capacity: 8
Offered Capabilities: (MDInitialAssessment, true, 10,

2); (MDProcedure, true, 10,
5); (MDFinalAssessmentandDeci-
sion, true, 10, 3); (RNPaperwork,
[availability(nurse) = 0 ∧ crowd-
ing>100], 3, 1)

MainED. Usually this means that such resources can per-
form tasks in the main treatment area of the ED, but not
tasks carried out in other ED locations.

Experience Level : This attribute has a value that can be
ordered either partially or totally to indicate a level of se-
niority or experience.

Cost : This attribute has numeric value indicating the cost
of a unit of the resource’s work.

Capacity : This attribute is a numeric value that changes
over time to represent the quantity of capability that a re-
source instance can currently make available. The capacity
of a resource decreases as it is assigned to different tasks,
and increases each time it completes an assigned task.

Offered Capabilities: This attribute is a set of capabilities
that the resource is able to offer. These capabilities corre-
spond to the set CAPS r , defined earlier. Each such capa-
bility is characterized by a 4-tuple, consisting of Capability-
name, the name of a task this resource instance can sup-
port, Capability-guard, the circumstances under which the
resource instance can provide this support, Capability-skill-
level, the skill level at which this resource instance supports
this task, and Effort-needed, the amount of capacity that
this resource instance needs to perform this task.

ROMEO provides a facility for attaching additional at-
tribute types to individual resource instances.

3.2.2 Request Model
Modeling requests for resources is closely related to, but

a separate concern from, modeling resource instances. A
request model supports communicating requests for resource
instances made by a given task t, namely

CAPS t = {CAP t1 ,CAP t2 , · · · ,CAP tnt
}

An important part of such a request is a specification of
the requesting entity (i.e. the resource client, t). As noted
above ROMEO resource requests are database queries. In
particular, a resource request (e.g. for CAP ti), is essentially
a request by a task t, for a resource r, that is currently able to
provide a specific capability, c, which is the value of CAP ti .
ROMEO supports three different types of such requests:

• Capability Request: A request for any resource, r, that
is currently able to provide the requested capability, c.

• Characteristic Request: A request for a resource that
can provide capability, c, but also has all of a list of

additional desired characteristics, and a list of con-
straints that must be satisfied. ROMEO attempts to
satisfy such a request, but if there are no such resources
available, then any resource that can simply provide
the required capability is selected.

• Query-Based Request: A request for a resource that
satisfies all of a specified set of predefined queries that
are prespecified combinations of characteristics. In the
ED domain, for example, we have defined a query,
attending physician, that specifies a resource having
“MD” as the value of its Education attribute, “ED per-
manent staff” as the value of its Employment Status
attribute, and “>5” as the value of its Experience at-
tribute. Such queries seem to provide some of the ad-
vantages of a formal type system by providing a prim-
itive vehicle for characterizing properties shared by a
subset of the resources.

3.3 Constraint Management
As noted earlier, constraints can be particularly useful

in representing domain-specific policies, some of which can
be quite complex. ROMEO supports the creation and ap-
plication of many kinds of request constraints. Two types
are of particular interest, a Resource-Collection constraint,
and a Resource-Iterator constraint. A Resource-Collection
constraint is a query specification that consists of one or
more query names separated by commas. For example, a
Resource-Collection constraint named caregiver may de-
clare “doctor, nurse” as its query specification. ROMEO
instantiates this type of constraint into a union collection
of those resource instances that satisfy either the query cor-
responding to doctor or the query corresponding to nurse.
A Resource-Collection constraint can optionally include a
maximum cardinality specification. For example, the dec-
laration “doctor, nurse, 5” specifies that the resulting col-
lection’s cardinality may not exceed 5. Similarly, Resource-
Iterator constraint can also consist of a single query name
or a list of query names separated by commas. ROMEO
also supports specification of a maximum cardinality in a
Resource-Iterator constraint.

ROMEO also supports the ability to define and name re-
source request constraints hierarchically with higher level
constraints being defined in terms of lower level sub-constraints.
ROMEO stores such queries in the resource repository. The
following example shows how this capability can be used to
specify a complex, yet realistic, ED resource assignment pol-
icy. Many hospital EDs are divided into a MainED where
all patients can be treated and a FastTrackED where only
patients with low acuity levels are treated. A query named
attendingMD can be defined to select only resource instances
whose Job Description attribute is “AttendingMD” and an-
other query named resident to select only whose Job De-
scription attribute is“Resident”. A resource constraint named
fast-track-resources, for example, can be defined to select
only resource instances located in the ED fast track area.
Still another resource constraint can be specified as (at-
tending, resident) to describe resource instances that sat-
isfy either of the two queries. Let us suppose we label this
constraint as doctor. With these definitions in place, if we
now specify a request for a doctor, which is spcified as con-
strained by fast-track-resources, this constrained query will
return only resource instances who are either an attending

MD or a resident, and who are currently working in the ED
fast track section.

3.4 ROMEO Client Model
We assume that a typical ROMEO client is a task that is

part of a process or workflow model that specifies temporal
relationships, artifact flows, and resource requirements. We
assume that sequencing and coordination are accomplished
by a task interpreter facility that instantiates tasks accord-
ing to the task coordination model specification. We assume
further that each task, t, requires the services of a resource,
r, that has the capability to perform the task, which is ev-
idenced by the inclusion of t among the capability set of
r, CAPS r . We refer to this resource as the task’s agent.
ROMEO also allows for the possibility that performance of
the task may require additional capabilities that are also
specified as part of the task specification. These additional
capabilities, along with the agent capability thus comprise
what we have earlier denoted by

CAPS t = {CAP t1 ,CAP t2 , · · · ,CAP tnt
}

Supporting the assignment of these additional, non-agent,
resources to tasks adds a considerable amount of power and
complexity to ROMEO. But space limitations prevent our
describing this facility in detail in this paper. Thus sub-
sequent evaluation and examples focus only on the use of
ROMEO in supporting the assignment of agent resources to
tasks. A more detailed discussion of ROMEO is available
at [20].

For this client model to work, all candidate agent resources
are expected to have registered with ROMEO each indicat-
ing that it is available for providing a list of guarded capa-
bilities. Further it is assumed that each such agent resource
agrees to consult a to-do-list (i.e. an agenda) where tasks
are placed once ROMEO has assigned the agent resource as
the provider of a capability to a task.

4. EVALUATION SETUP
We used the Little-JIL process definition language [32],

its execution environment, Juliette [8], and a discrete event
simulation system, JSim [21], to construct an evaluation
platform for ROMEO. Little-JIL supports the precise defini-
tion of processes involving different agent and non-agent re-
sources. A Little-JIL process definition is comprised of four
orthogonal components: 1) a coordination specification, 2) a
resource specification that includes constraints, 3) a specifi-
cation of artifacts (entities such as data items, files, or access
mechanisms) and their flow and 4) a specification of the be-
haviors of those resources that can be assigned as agents.
Juliette, which supports the execution of processes defined
in Little-JIL, requires a capability for specifying and man-
aging resources, and for responding to requests for resources
to execute the steps of the process it is executing. ROM-
EO is suitable for this purpose. Thus Juliette is a vehicle
for evaluating ROMEO’s capabilities. On the other hand,
as the execution of processes (particularly human-intensive
processes) can take a considerable amount of time, we sought
ways to expedite the evaluation of ROMEO. The JSim sys-
tem, which generates discrete event simulations from Little-
JIL process definitions, proved to be useful in that regard,
as JSim supports the rapid generation of simulations that
make intensive use of ROMEO’s capabilities. As an added

Figure 2: A Simple ED process in Little-JIL

benefit, the simulations, most of which were based upon re-
alistic ED process scenarios, also generated results that were
of interest to ED domain experts. These ED experts were
thus highly motivated to participate in the close scrutiny of
the resource assignments made by ROMEO. This helped our
efforts to validate ROMEO and its effectiveness in support-
ing the modeling of ED resources and management policies
governing them.

4.1 Modeling an ED process using Little-JIL
Figure 2 shows the Little-JIL process definition, called

SimpleED, that describes how care is provided to patients
at a typical hospital ED.

In SimpleED, a patient is first seen by a triage-nurse
(TriagePatient step) who assigns a triage acuity level. The
patient then goes to the registration clerk (RegisterPatient
step), who collects information about insurance and other
details and stores it into the patient’s record. The regis-
tration clerk also generates an id-band and places it on the
patient. The patient then goes inside the treatment area of
the ED if a bed is available, or waits in the waiting room
until a bed becomes available. This is modeled by a block-
ing acquisition request for a bed resource in the Patient-
InsideEDScope step. Once a bed is successfully acquired,
the patient is placed in it (PlacedInBed step). A nurse re-
source is specified as the agent for the bed placement step.
The patient is then assessed by a nurse in the RNAssessment
step, and then by the attending doctor (MDInitialAssessment
step). The doctor assessment may result in ordering tests.
The resulting test related activities have been represented as
a single abstract step named TestsScopeAbstract, which will
be elaborated upon subsequently. Some bedside procedures
may also be performed on the patient in the ProceduresS-
cope step. Figure 3 shows the elaboration of DischargeOrA-
dmitScope. After all of this, the doctor makes a final assess-
ment and decides whether to admit or discharge the patient
(the MDFinalAssessmentAndDecision step), which is not elab-
orated here. Finally, the RNPaperWork step is performed by
a resource whose job title is Nurse.

Figure 3: Discharge part of ‘SimpleED’ process

In addition to undergoing tests, the patient may also be
treated with additional bedside procedures that may include
suturing, casting, or intubation. Some of these procedures
could be done by a nurse (RN) and others must be done by
a doctor (MD). Predefined queries specify the constraints on
the resources required for these steps. Throughout this pro-
cess, a parameter named patientInfo (not explicitly shown
in Figure 2) is passed into and out of each step. This param-
eter carries information related to the current state of the
patient. As agents carry out different steps, they may use
this information and insert additional information for use by
subsequent steps and their agents. This information may be
used to determine the sequence of process steps executed.

4.2 JSim: Generating Discrete Event Simula-
tions from Little-JIL Process Definitions

JSim discrete event simulations are generated from Little-
JIL process definitions [21]. A JSim simulation proceeds as
an iteration through the steps of a process definition. Simu-
lation of the SimpleED process is begun by an initial Patient
Arrival event, but then continued by subsequent patient ar-
rivals, and by the fact that the simulation of each step cre-
ates one or more new events, each representing something
to be simulated, such as step completion, spawning of sub-
steps, etc. Of particular interest for evaluation of ROMEO,
the Resource Manager is consulted during each step simula-
tion to obtain the agent resource needed to determine how
step performance is to be modeled. The JSim Agent Behav-

ior Specification (JABS) language is used to specify such
behavior as how long a given agent will require to perform
a given step, which additional simulation events are to be
scheduled, how likely it is that a particular choice will be
made, or that a particular exception will be thrown. In sim-
ulating the ED patient care process, these estimates were
based on interviews with ED professionals, and analysis of
statistical data. Space does not allow a detailed description
of JABS, but full details can be found in [20].

JSim execution produces a trace file that holds such in-
formation as which agent resource instance was assigned to
which task at what time, when the agent resource instance
started working on that task, and when the agent resource
instance completed the task. ROMEO also produces an al-
location file that lists the resource that was assigned in re-
sponse to every request, and the capacity that the resource
had at the time of its assignment. These outputs were the
basis for both validating the simulation, and for evaluating
the effectiveness of ROMEO in managing resources in ways
consistent with defined policies, preferences, and constraints.

5. CASE STUDIES AND EXPERIENCES
Space limitations allow for the description of only a very

small number of the simulations used to evaluate ROMEO.
We describe them here both to show the use of features of
ROMEO, and to demonstrate how those features were effec-
tive in supporting the evaluation of some potential resource
changes in rather complex hospital ED systems.

5.1 Dynamic Changes in the Capabilities Of-
fered by Resources

One key hypothesis of this research is that it is impor-
tant to model the way in which resources change the set of
capabilities that they offer depending upon the state of the
execution of a system. To evaluate this, we considered the
SimpleED process shown in Figure 2, and set up a simula-
tion experiment with the following capability modification
scenario. We hypothesized that the steps PlacePatientInBed
and RNPaperwork do not always have to be done by a reg-
istered nurse (RN), but that triage nurses who ordinarily
perform only triage operations might substitute an RN in
placement of a patient in a bed or in discharge paperwork
when all of the following conditions hold: 1) the ED is over-
crowded, 2) all RNs are busy, and 3) a resource instance of
type TriageNurse is available. We further suggested that
the step RNPaperwork might also be performed by a regis-
tration clerk when all of the following conditions hold: 1)
the ED is overcrowded, 2) the clerk is idle, and 3) there
is no nurse available for performing the discharge paper-
work. We measured the crowdedness of the ED based on
the number of patients who have gone through the Triage-
Patient and RegisterPatient steps but are currently waiting
for a bed to become available. To simulate this scenario,
we changed the agent resource request for PlacePatientInBed
and RNPaperwork from Nurse to default (a request for any
resource instance that is capable of providing the capability).
Here the capability required is specified implicitly as being
the activity itself, i.e. PlacePatientInBed or RNPaperwork.

Table 2 shows the guard functions on the capabilities for
nurses and registration clerks that support the scenario just
described. Other experimentation, and consultation with
the ED domain expert, had suggested that a realistic mix of
ED resources would consist of 13 beds, 4 doctors, 4 nurses,

Table 2: Partial definition of guard function condi-
tions under which resources can offer capabilities
Capability-
Name

Resource-
Group

Condition

PlacePatient-
InBed

Nurse true

PlacePatient-
InBed

TriageNurse StateServer.-
Pending-
Requests-
(“bed”)>N

RNPaperwork Nurse true
RNPaperwork TriageNurse StateServer.-

Pending-
Requests-
(“bed”)>N

RNPaperwork Clerk StateServer.-
Pending-
Requests-
(“bed”)>N

2 triage nurses and 2 clerks. Once this resource mix and
these resource capability modification policies were decided,
the work required to implement them as ROMEO resource
management policies took less than thirty (30) minutes. It is
interesting to note, however, that we were not immediately
able to define either the specific resource mix or the set of re-
source substitution rules that were very effective in reducing
ED Length of Stay (LOS). This required trying many differ-
ent combinations of parameters. It underscores the value of
a powerful and flexible system for specifying resource capa-
bility modification policies, as arriving at effective policies
may require considerable experimentation. The simulations
suggested that the policies described here can indeed sup-
port a significant reduction in the average LOS. For example,
we specified that the times taken to perform each step be
provided by a triangular distribution, and that patient ar-
rivals be simulated with a Poisson distribution with a mean
inter-arrival time of nine (9) minutes. We then ran the sim-
ulation five times, each with 300 patients. The data, plotted
in Figure 4, shows the reduced patient LOS achieved using
the dynamic capability modification rules we specified.

Figure 4: The impact of dynamic substitution

We then modeled a more complex, but more realistic, do-
main policy stating that a triage nurse is allowed to sub-

stitute for a regular nurse only when there is at least one
triage nurse left available to attend to a newly arrived pa-
tient. To model this, we took less than five minutes to add
the capability guard function shown in in Table 3.

Table 3: Elaboration of substitution condition for
triage nurses
Capability-
Name

Resource-
Group

Condition

PlacePatient-
InBed

TriageNurse StateServer.-
Pending-
Requests-
(“bed”)>N &&
StateServer.-
Available-
(“TriageNurse”)>1

This change still reduced the average patient LOS, but not
by as much as the previously described policy. Scrutiny of
ROMEO’s behavior confirmed that it was faithfully enforc-
ing the new policy. The results obtained, however, suggested
that more experimentation might be desirable to assure that
the results were not an artifact of the particular experimen-
tal scenario.

5.2 Constraining Resource Choice
In another case study we used ROMEO and JSim to model

the following constraint:

In a hospital ED, the doctor who performs
InitialAssessment on a patient must be the same
as the doctor who performs the FinalAssessment
and makes the decision regarding discharging or
admitting the patient.

We used the Resource-Collection constraint, described pre-
viously, to implement this policy. A Little-JIL resource-
collection constraint was used to specify in the SimpleED
process that the steps MDInitialAssessment, MDProcedure,
and MDFinalAssessmentAndDecision not only require a doc-
tor, but that the doctor required for each of these steps
has to be the same as for the other steps. We specified
this by making use of the fact that Resource-Collection (and
Resource-Iterator) constraints can be copied from a Little-
JIL parent step to a child step. Thus, by using a parame-
ter named Doctor-Constraint as a Resource-Collection con-
straint for the PatientInsideEDScope non-leaf step, this con-
straint was copied down the Little-JIL step hierarchical de-
composition tree from this parent step to its children steps.
ROMEO ensured that all resources returned actually did
satisfy the constraint because the constraining collection was
defined to have maximum cardinality of 1, assuring that the
same resource instance was assigned to all these steps. The
effort needed to specify this case study took about 35 min-
utes of modeling time. It took only a few minutes to set
up a comparison simulation in which there were no con-
straints on which doctor was assigned to any of the steps.
Space limitations prevent the presentation of the full details
of these simulation runs. They can be found in [20]. But,
as intuitively expected, the actual simulations showed that
adding the constraint increases the average LOS. In the spe-
cific simulations we ran, having the constraint maintained all
the time adds an average of 25.85% to overall patient LOS.

5.3 Other simulation case studies
Additional case studies demonstrated how ROMEO could

help determine the effect of separating ED resources into
separate areas and using different policies to govern when re-
sources from one area could be used in another area. ROM-
EO constraint specifications were readily used to model a
range of such policies. In other case studies, we showed
that it was relatively easy to model how the actual execu-
tion of a process can be changed based upon such context
conditions as the availability of resources [20]. This capabil-
ity was facilitated by the maintenance of process execution
state information for use by ROMEO, and also by ROMEO’s
own internal resource utilization state management facilities.
Other case studies showed that it was relatively straightfor-
ward to specify different priorities for different steps and
different patients, and to then use that priority information
to affect the decisions ROMEO made about allocation of
resources. Still other simulations exploited ROMEO’s facil-
ities for supporting the assignment of multiple resources to
individual tasks, for allowing the possibility that such re-
quests may need to be atomic, and for supporting blocking
requests. Finally we note that ROMEO has also been used
to support the execution of processes in domains other than
hospital EDs. In particular ROMEO was used to manage
the resources needed by processes in the domain of labor-
management dispute resolution.

5.4 Validation activities
Extensive efforts were made to assure that ROMEO’s be-

havior was consistent with its specifications. Some of these
efforts amounted simply to careful visual scrutiny of the re-
source assignment decisions ROMEO made. Both ROM-
EO’s developers and our ED domain expert spent consider-
able amounts of time looking at simulation results to verify
ROMEO’s decisions. In addition we compared the simula-
tion results obtained from ROMEO-JSim to the results of
simulations supported by other simulation systems. We ran
several batteries of simulations using the popular Arena [4]
discrete event simulation system, and compared the results
obtained to the results provided by ROMEO-JSim. The re-
sults obtained were the same for both systems, but these
comparisons were on simulations for which the resource as-
signment choices were relatively straightforward, as the re-
source management capabilities of Arena are far more re-
strictive than those provided by ROMEO-JSim. Additional
comparisons of more complex simulations should be carried
out to increase our confidence in ROMEO’s behavior. In
addition we compared the results obtained from ROMEO-
JSim to those predicted by Little’s Law [6, 20], a well-known
“rule of thumb” used to estimate and validate the overall be-
haviors of queue-based simulations. We examined the qual-
itative outputs of our simulation runs and assured that the
results obtained were consistent with expectations and with
the predictions of Little’s Law.

6. RELATED WORK
There has been a great deal of investigation of different

aspects of managing resources in a wide variety areas. In
this section, we present a necessarily brief summary of that
work.

Managing resources is at the heart of much operating sys-
tems and networking research. Most of this work, how-
ever, is concerned primarily with allocation strategies and

scheduling, and has dealt with relatively homogeneous types
of resources such as processor time, memory/disk space, net-
work bandwidth, Internet hosting servers etc.[9, 22, 30]. Dis-
tributed computational platforms like grid computing and
server clusters are concerned with managing distributed and
somewhat more heterogeneous types of resources [19, 16].

Workflow and process languages provide various mech-
anisms for resource specification and utilization [3, 1, 2].
Some of the workflow and process languages that address re-
source management issues include APEL [11], MVP-L [23],
APPL/A [29], Process Weaver [7], and BPEL4WS [1]. How-
ever, the modeling capabilities in these languages are restric-
tive, and their support for describing resource relationships,
constraints, request specification and resource allocation are
minimal. In particular, BPEL4WS focuses mainly on web
services as resource objects, and BPEL4People [15] focuses
on human participation in web services. [25] introduce the
concept of “workflow resource patterns”, which seem close to
the resource request specification approach presented here.
But their work does not address the need for resource as-
signment.

Artificial Intelligence research has primarily been concerned
with scheduling resource objects [28], but much of that work
treats scheduling as a static, well-defined optimization task,
where our approach addresses the inherent need for dy-
namism. The operations research (OR) community has his-
torically explored solutions to resource management prob-
lems using a combination of dynamic programming and com-
binatorics [27]. Ontology research is relevant as it supports
creating knowledge structures that could be used to model
resources [13]. Most ontological frameworks use some sort of
logic language to express these concepts and their relation-
ships. The semantic web [5] makes heavy use of ontologies.
Languages like DAML [14], DAML+OIL and OWL [17] are
good examples of this approach. Such languages can be use-
ful in describing structures and relationships of resource ob-
jects, but they fall short in describing resource constraints,
which we have found to be essential to modeling many real-
world resource utilization policies.

There has been considerable work in modeling and sim-
ulating hospital processes. Connelly and Bair [10] presents
a discrete event simulation system that predicts actual pa-
tient care times using simulation. Their model does not
allow for dynamically changing the capabilities offered by
resources, however, and their predictions of patient service
times were correct to within less than one hour for only 28%
of their simulated patients. Draeger [12] developed simula-
tions to assess nurse staffing concerns and alternatives for
improvements. McGuire [18] discusses the use of simulation
to test process improvement alternatives aimed at reducing
the length of stay for ED patients. Rossetti [24] looks at the
use of computer simulation to test alternative ED attending
physician staffing schedules and to analyze the correspond-
ing impacts on patient throughput and resource utilization.
Samaha [26] uses ED simulation studies to perform ‘what-
if’ analysis regarding the effect of process change and staff
level change on LOS. All these simulation studies have taken
a factory view of the ED, where patients come in like orders
on a factory floor with fixed priority and drive the process by
requesting resources. Many of these studies were concerned
with only one type of resource, i.e. either the attending
physician or nurse and focused on only one issue of resource
management, such as scheduling.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

Modeling and managing resources is a problem for sys-
tems in many domains. This paper identified key prob-
lems in defining, managing, and assigning heterogeneous re-
sources in environments that are very complex and highly
dynamic. We proposed a novel characterization of the na-
ture of resources, suggested a generic resource management
service architecture, built a prototype, and evaluated our
characterization and approach primarily by driving discrete
event simulations of patient care in a hospital ED. The re-
sults obtained support our suggestion that resources should
be characterized as having dynamically changing capability
sets. Further experience demonstrated the value of focusing
on constraint management as a key issue in implementing
complex resource management policies. These approaches
greatly facilitated the work of contriving simulations of dif-
ferent resource assignment strategies, leading to suggestions
for potentially significant improvements in the functioning
of a hospital ED. More case studies in the ED and additional
domains are needed to provide a clearer view of which fea-
tures of our approach seem most effective. Finally, we note
that the resource assignment described here is done on a
first-come-first-served basis. It seems clear that scheduling
resources in advance could help to avoid resource bottle-
necks and other inefficiencies. Integrating a resource man-
ager with an explicitly defined process, such as we have done
in our work with JSim, creates the possibility of obtaining
and exploiting look ahead information that could lead to
these kinds of improvements in resource assignment.

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge the important contri-

butions made to this work by many conversations and dis-
cussions with Sandy Wise, who made many valuable sugges-
tions about the architecture of ROMEO. Guillaume Viguier-
Just and Tiffany Chao provided very important support for
the construction of case studies and other evaluative activ-
ities. Dr. Philip L. Henneman, MD, was an indispensable
source of information about the nature of hospital EDs and
the processes carried out there. Hari Balasubramanian, Bar-
bara Lerner, Bobby Simidchieva, Lori Clarke, Matt Marzilli,
and George Avrunin provided a great deal of help and sup-
port through their continuing interaction about this work.

This work was supported by the US National Science
Foundation under Award Nos. CCR-0427071, CCR-0204321
and CCR-0205575. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of The National Science
Foundation, or the U.S. Government.

9. REFERENCES
[1] BPEL4WS Specification, Version 1.1. IBM, 2005.

[2] BPMN 1.0: OMG Final Adopted Specification. Object
Management Group, 2006.

[3] W. M. P. v. d. Aalst and A. H. M. t. Hofstede. Yawl:
Yet another workflow language. Technical report,
Eindhoven University of Technology, 2002.

[4] V. Bapat and D. T. Sturrock. The arena product
family: enterprise modeling solutions: the arena

product family: enterprise modeling solutions. In
Proceedings of the 35th conference on Winter
simulation, pages 210–217, 2003.

[5] T. Berners-Lee, J. Wendler, and O. Lassila. The
semantic web: A new form of web content that is
meaningful to computers will unleash a revolution of
new possibilities. Scientific American, 284:34–43, 2001.

[6] D. Bertsimas and D. Nakazato. The distributional
little’s law and its applications. Operations Research,
43:298–310, 1995.

[7] M. L. Brasseurl and G. Perdreaul. Process weaver:
from case to workflow applications. In IEEE
colloquium on CSCW and Software Process, 1995.

[8] A. G. Cass, B. S. Lerner, S. M. Sutton, E. K. McCall,
A. E. Wise, and L. J. Osterweil. Little-jil/juliette: a
process definition language and interpreter. In
International Conference on Software Engineering
(ICSE), pages 754–757, 2000.

[9] A. Chandra. Allocation for Self-managing Servers.
PhD dissertation, University of Massachusetts
Amherst, Department of Computer Science, 2005.

[10] L. G. Connelly and A. E. Bair. Discrete event
simulation of ED activity: A platform for system-level
operations research. Academic Emergency Medicine,
11(11):1177–1185, 2004.

[11] S. Dami, J. Estublier, and M. Amiour. Apel: A
graphical yet executable formalism for process
modeling. Automated Software Engineering: An
International Journal, 5(1):61–96, 1998.

[12] M. A. Draeger. An emergency department simulation
model used to evaluate alternative nurse staffing and
patient population scenarios. In Proceedings of the
24th Conference on Winter Simulation, pages
1057–1064, Arlington, VA, USA, 1992.

[13] T. R. Gruber. Toward principles for the design of
ontologies used for knowledge sharing. Intl. Journal of
Human-Computer Studies, 43:907–928, 1995.

[14] J. Hendler and D. L. McGuinness. The darpa agent
markup language. IEEE Intelligent Systems,
15(6):67–73, 2000.

[15] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau,
A. Rickayzen, C. Riegen, P. Schmidt, and I. Trickovic.
WS-BPEL extension for people. Technical report,
IBM, August 25 2005.

[16] C. Liu and I. Foster. A constraint language approach
to grid resource allocation. In Twelfth IEEE
International Symposium on High Performance
Distributed Computing (HPDC-12), 2003.

[17] D. L. McGuinness and F. v. Harmelen. Owl web
ontology language.
http://www.w3.org/TR/owl-features/, 2004.

[18] F. McGuire. Using simulation to reduce length of stay
in emergency departments. In J. T. Seila,
S. Manivannan, D. Sadowski, and A.F., editors, IEEE
Winter Simulation Conference, pages 861–867, 1994.

[19] R. Raman, M. Livny, and M. Solomon. Matchmaking:
An extensible framework for distributed resource
management. Cluster Computing, 2(2):129–138, 1999.

[20] M. S. Raunak. Resource Management in Complex
Dynamic Environments. PhD thesis, University of
Massachusetts Amherst, Department of Computer

Science, 2009.

[21] M. S. Raunak, L. J. Osterweil, A. Wise, L. A. Clarke,
and P. L. Henneman. Simulating patient flow through
an emergency department using process-driven
discrete event simulation. In Proceedings of the
Software Engineering in Health Care (SEHC) 2009,
Vancouver, Canada, May 2009.

[22] M. S. Raunak, P. Shenoy, P. Goyal, and
K. Ramamritham. Implications of proxy caching for
provisioning networks and servers. In Proceedings of
the ACM SIGMETRICS, pages 66–77. ACM, 2000.

[23] H. D. Rombach. MVP-L: a language for process
modeling in-the-large. Technical report, University of
Maryland, College Park, MD, USA, 1991.

[24] M. D. Rossetti, G. F. Trzcinski, and S. A. Syverud.
Emergency department simulation and determination
of optimal attending physician staffing schedules. In
1999 Winter Simulation Conference, 1999.

[25] N. Russell, W. v. d. Aalst, A. Hofstede, and
D. Edmond. Workflow resource patterns. In 17th
International Conference on Advanced Information
Systems Engineering (CAISE ’05), volume 3520 of
Lecture Notes in Computer Science, pages 216–232,
Portugal, 2005. Springer Verlag.

[26] S. Samaha, W. S. Armel, and D. W. Starks. The use
of simulation to reduce the length of stay in an ed. In
Proceedings of the 35th conference on Winter
simulation, pages 1907–1911, 2003.

[27] D. W. Sellers. A survey of approaches to the job shop
scheduling problem. In Proceedings of the 28th
Southeastern Symposium on System Theory, 1996.

[28] S. Smith. Is scheduling a solved problem? In P. C.
Kendall and Graham, editors, The Next Ten Years of
Scheduling Research, pages 116–120, 2003.

[29] S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil.
Appl/a: a language for software process programming.
ACM Transactions on Software Engineering and
Methodology, 4(3):221–286, 1995.

[30] B. Urgaonkar. Dynamic Resource Management in
Internet Hosting Platforms. PhD dissertation,
University of Massachusetts Amherst, Department of
Computer Science, 2005.

[31] WFMC. Workflow management coalition terminologh
& glossary. Technical Report WFMC-TC-1011,
Workflow Management Coation, February 1999.

[32] A. Wise. Little-jil 1.5 language report. Technical
Report 2006-051, University of Massachusetts
Amherst, October 2006.

[33] M. zur Muehlen. Resource modeling in workflow
applications. In Proccedings of Workflow Management
Conference (WFM99), pages 137–153, 1999.

