
Supporting Human-Intensive Systems

Lori A. Clarke
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003

+1 413-545- 1328
clarke@cs.umass.edu

Leon J. Osterweil
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003

+1 413-545- 2186
ljo@cs.umass.edu

George S. Avrunin
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003

+1 413-545- 0510
avrunin@cs.umass.edu

ABSTRACT
Executing critical systems often rely on humans to make
important and sometimes life-critical decisions. As such systems
become more complex, the potential for human error to lead to
system failures also increases. In the medical domain, for
example, sophisticated technology has been introduced in the last
decade without adequately considering the impact and role of the
medical professionals. This is just one of many domains, where
human agents, hardware devices, and software systems must
interact with each other, and where humans are expected to make
important, and sometime life-critical, decisions. This position
paper argues that human-intensive systems should be a major
concern of software engineering in the future and describes some
of the research issues that need to be addressed.

Categories and Subject Descriptors
D.2 [Software Engineering]: Requirements/Specifications, Design
Tools and Techniques, Verification; H.1 [Models and Principles]:
User/Machine Systems.

General Terms
Documentation, Design, Verification.

Keywords
Human-intensive systems, process improvement, life-critical
systems.

1. INTRODUCTION
Systems where the human contributions require considerable
domain expertise and have a significant impact on the success or
failure of the overall mission, are referred to here as Human-
Intensive Systems. We believe that the role of humans in such
systems needs to be taken into account as a first class concern. As
such, human behavior should be modeled and evaluated during
the earliest stages of development, carefully considering the
interactions and constraints between humans and their
collaborating hardware and software components. Moreover, we
believe that development and deployment environments must
include support for representing and reasoning about human
behavior, for monitoring and guiding human behavior, and for
accumulating data about erroneous behaviors, past failures, and

near misses. Based on such accumulated data, process
improvements can be recommended, requirements and test cases
enhanced, and probabilistic analysis updated. Thus, we are
proposing a new paradigm for the development and improvement
of human-intensive systems that is driven by a detailed
understanding and evaluation of the coordination among human
agents, software systems, and hardware devices. Since these
coordinating process models are software too [11], we believe
that the study of the development, evaluation, evolution, and
execution of human-intensive systems is an important area for
future software engineering research.

Numerous systems that are the backbone of our societal
infrastructure are human intensive systems. As these systems
become more complex, there is increased opportunity for human-
errors to lead to serious system failures. Perhaps some of the
most prominent examples of this come from the healthcare
domain. The news media frequently report on medical mishaps,
where lives are lost, healthy organs removed, or other adverse and
avoidable negative outcomes occur. An Institute of Medicine
report [6] estimated that there were about 98,000 deaths each year
in the US due to avoidable medical errors, making this one of the
leading causes of death. Although human error is often involved,
the real culprits are often the complex processes being applied.
As stated in a recent US National Research Council report about
healthcare [13]:

"persistent problems do not reflect incompetence on the
part of health care professionals - rather, they are a
consequence of the inherent intellectual complexity of
health care taken as a whole and a medical care
environment that has not been adequately structured to
help clinicians avoid mistakes or to systematically
improve their decision making and practice."

These findings should not be surprising. Medical processes are
excellent examples of rapidly changing, complex systems
involving many different types of human agents (e.g., doctors and
nurses with different specializations and roles, pharmacists, lab
technicians, and support staff), hardware devices (e.g., infusion
pumps, radiation therapy machines, and patient monitoring
devices), and software systems (e.g., computerized physician
order entry systems, decision support systems, and electronic
healthcare records). Coordination is particularly key in these
systems, as humans are often participating simultaneously in
several different processes at any given time, and their
participation in each process may entail the parallel performance
of many different subtasks as well as interaction with several
different hardware and software components. In performing these
tasks, it is common for exceptional conditions to arise, requiring
specialized actions that may vary considerably depending upon
the circumstances. Continual change is also a key issue in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

medical processes. Changes may result from the introduction of
new devices, new software systems, new personnel, or even
personal preferences. New research findings may lead to new
guidelines or standards of care. Still other changes come about as
reactions to errors encountered in local practice. Regrettably,
changes are sometimes made based only on informal analysis of
poorly understood processes, leading to ill-advised changes that
may slow the delivery of care, fail to address the root cause of the
error, or lead to poor outcomes.

In this position paper, our examples are drawn from the
healthcare domain, but the problems are prevalent in many
domains. For example, there are similar concerns about complex
military systems and the recent oil spill in the Gulf coast has
been, at least partially, attributed to human errors in a complex,
ill-understood, computer-supported process.

2. RESEARCH ISSUES
Some of the issues that need to be addressed to support the
development, maintenance, evaluation, and deployment of such
human-intensive systems are discussed in the ensuing
subsections. Specifically, we look at modeling support to capture
the human element in such systems; static analysis approaches
that consider this human behavior in their reasoning;
requirements engineering approaches that address the boundaries
between software, hardware, and human agents; simulation
approaches that evaluate effectiveness, and on-line guidance to
assist human participants and help reduce human errors.

2.1 Modeling Human-Intensive Processes
The specification of how such a system coordinates human
agents, hardware devices, and software components, if it is
provided at all, is usually expressed only informally, in natural
language documents, in hard-coded interfaces, and in the
behavior of the hardware and application software components.
Nonetheless, it is only through the coordination of the human
participants, hardware devices, and software systems that the
overall goals of the system are achieved. This suggests the value
of treating coordination as a separate and key part of such
systems.

We propose an approach to the development and improvement of
human-centered systems in which coordination is explicitly
separated out from the other aspects of the system and is precisely
modeled in an executable language. Such an executable model of
coordination has been called a process definition and, in prior
work, it has been shown that rigorous analysis of such models can
detect defects and vulnerabilities, as well as mismatches with the
hardware and software components [2]. Based on such analyses,
modifications and improvements in the coordination model,
hardware devices, and software components of the system can be
proposed and evaluated. In addition, such validated process
definitions can be used to drive simulations, train agents, and
proactively provide real-time, on-line guidance, thus amortizing
the cost of developing and maintaining such models.

The process definition languages used to specify such
coordination will need to provide rich semantic capabilities. In
addition to the capabilities that programming language research
has demonstrated should be available in programming languages,
such as support for abstraction, composition, typing, and
restricted, well-formed control flow constructs, process languages

need to support the rich control models needed for human
behavior.

The handling of exceptional situations is one area where such
support is needed. Most current workflow and process languages
tend to focus on normative flow. Since the response to
exceptional situations is the source of most errors, process
languages need to provide rich semantic mechanisms for handling
the detection and responses to non-normative circumstances [7].

Concurrency is another area where richer semantic models are
needed. Since humans often multi-task and want to have
flexibility in deciding where to focus their attention, complex
concurrency control needs to be provided, including support for
selective pre-emption (e.g., a medical emergency pulls doctors
away from their current task) and resumption or reassignment.

Resource management is another area of concern. Processes
involving humans often have to manage resources, entities that
may be under contention. Deciding how best to specify the
resources that are available and how to select the one(s) used to
respond to a request are challenging issues. A medical process,
for instance, may involve the participation of many types of
resources, such as devices and people, with each type consisting
of instances that have different capabilities, titles, skill levels, etc.
Thus, doctors would be viewed as resources, but doctors have
many different specialties. Further, different doctors have
different skills and skill levels. Complicating matters is the fact
that, especially in emergencies, medical professionals may
sometimes be allowed to perform certain tasks that would
ordinarily require more specialized training, and therefore context
must be taken into consideration. Thus, process languages will
need to support the declaration of available resources and their
usage constraints and, during execution, manage resource
requests, and perhaps incorporate resource scheduling and task
planning into the execution framework.

All processes that execute in the real world have constraints on
the speed with which they must execute. In medicine, for
instance, these constraints are particularly important, as failing to
meet one may mean the difference between life and death. It is
interesting to note that very few process and workflow languages
currently incorporate timing constraints, although such
capabilities are clearly needed for human-intensive systems.

As is often the case in language design, there needs to be serious
consideration given to human understanding. Since process
definitions should be reviewed by the domain expert, process
definitions or views of those definitions must be comprehensible
by non-computer scientists. Unfortunately, there is often a tension
between powerful language mechanisms and understandability
that needs to be taken into consideration.

2.2 Static Analysis
There has been considerable success lately in using static analysis
techniques to analyze hardware systems, software systems, and
process definitions (e.g., [3, 5]). We believe that this success can
be pushed even further so that mixed models, involving hardware,
software, and human process definitions can be evaluated to
assure that these various aspects are working together to assure
that important safety requirements are met. This will require
improvements to compositional approaches as well as to cross
model analysis.

In addition, there is considerable synergy forming around using
probabilistic model checking approaches and safety analysis
techniques, such as Fault Tree Analysis (FTA) and Failures Mode
and Effects Analysis (FMEA).

In probabilistic model checking [14], the property specification
language is typically extended to allow probabilistic path
quantifiers (and sometimes additional features, such as costs) and
the underlying model of the system is a Markov chain or Markov
decision process. Where a standard model checker might check
that a particular fault never occurs, a probabilistic model checker
checks that the probability of a fault occurring is less than some
value. The techniques currently used extend standard model
checking techniques with methods from numerical linear algebra
and Markov chains. For human-intensive systems, this checking
will need to be expanded to consider contexts, since as noted
above, expected responses can often be impacted by the context
in which a situation occurs.

In safety engineering, a hazard is a state or set of conditions of a
system that, together with certain other conditions in the
environment of the system, will lead inevitably to an accident
causing loss. FTA [15] is a technique used to identify the
possible causes of a hazard. Once a fault tree has been
constructed, techniques from Boolean algebra can be used to
identify minimal cut sets, minimal sets of basic and undeveloped
events that are sufficient to cause the hazard to occur. If sufficient
information about the probabilities and independence of the
various faults is available, the tree can also be used to derive
quantitative information about the probability of the hazard. For
large systems, fault trees can be extremely complex. Further, they
typically are constructed by human experts who must identify all
possible causes of a fault; if the experts fail to think of a possible
cause, the fault tree will be incomplete. One of the advantages of
a process definition is that FTA representations can be
automatically generated for hazards that can be identified in the
process definition. Although omissions or errors in the process
model will also lead to incomplete or inaccurate fault trees,
careful analysis of the process can help eliminate those problems.
Importantly, a single, carefully developed process model can be
used to derive many fault trees.

Instead of going from a potential hazard to the causes of a hazard,
FMEA [12] traces the impact of an individual failure on the
overall system. For each way in which an entity could fail (a
failure mode), FMEA inductively identifies the resulting entity
and system failures that could be caused by that failure mode,
using a forward search based on the underlying dependency
between entities. As with fault tree information, FMEA tables can
be automatically generated from process definitions.

An interesting research direction is to explore how these different
analysis approaches can be combined to leverage each other. For
example, FMEA analysis could be used to suggest hazards to be
subsequently explored via FTA. The FTA analysis could then use
the probabilities from probabilistic model checking to predict the
probabilities of component failures or the severities of system
failures. Model checking could then be applied to determine the
violations that might arise if failures occur. Although there has
been some work in this direction (e.g., [8-10]), it needs to be
further developed and carefully evaluated, especially for real
applications involving human participants.

2.3 Generating Requirements
Model checking is concerned with verifying that important
properties or requirements hold for any possible trace or
execution of a system. Although we may know the overall
requirements for a system, it may not be clear what the
requirements are for the individual components of that system
that must work together to satisfy the overall system
requirements. Thus, when using a device in a medical procedure,
it might not be fully known how that device must be applied to
guarantee that the overall system properties are satisfied.

As a motivating example, consider a “smart” infusion pump
responsible for intravenously administering medications. Such
pumps employ a drug library to obtain information about the
recommended dosage limits. These limits depend on the
procedure and location of the pump. For example, larger dosages
are usually allowed in operating rooms than in recovery rooms.
One important requirement for medical procedures is that a
patient is never administered a drug overdose. This might be
reflected as a requirement on the infusion pump stating that if a
selected dosage is within the dosing range provided by the
configured drug library, then the pump administers that dosage;
otherwise it reports a dose alert. For hospitals that share pumps
among different areas, it is necessary to also include a
requirement that the pump must be reconfigured whenever it is
moved from one area to another. This requirement might be
overlooked unless that usage scenario is explicitly considered.

Although this is a simple example, it is easy to envision situations
where user processes might change or vary, where new versions
of software are applied, or where different hardware is employed.
Although we might expect the overall requirements to remain the
same in such situations, do these changes impose new or
modified requirements on the human agents, hardware devices, or
software components used in that process? And if so, what are
those requirements? One area of future work is to explore the
generation of component requirements based on the context in
which they might be used. This work would most likely build
upon recent advances in automatic assumption and interface
specification generation techniques which use a combination of
model checking and learning algorithms [1, 4].

Returning to the infusion pump example, a learned requirement
might be that the pump must be initialized after it is moved. This
could be represented in the device by requiring initialization after
any movement of the pump, or in the human process by requiring
that the user always checks for the appropriate drug library before
proceeding, or in both the pump and the process to provide some
level of fault tolerance. Areas of future research include exploring
how to systematically develop requirements based on process
definitions of the users' behaviors and how to better understand
the implications of process, device, or software modifications.

2.4 Process Definition Driven Simulations
Simulation languages and engines have been in existence as far
back as the 1960s. There is a thriving marketplace of languages
and systems aimed at supporting the simulation of various
domains, including healthcare. Most of these systems, however,
suffer from the lack of flexibility in specifying the process to be
simulated, the resources to be used, or both. As a consequence
these systems are often difficult to use to explore such questions
as how best to design an emergency department process and a
resource scheduling approach that complement each other to

produce optimal utilization of resources. Interesting research
question are whether process definitions can serve as drivers for
discrete event simulation and will the added detail lead to
predictions that are more accurate.

In addition to using more detailed and carefully verified models
on which to base the simulations, simulation validity depends on
the accuracy of the input probabilities. By providing an
environment in which execution results can update our
understanding of the probability of events, simulation results
should be improved. In addition, simulation results can then be
used to influence resource allocation decisions and process
scheduling during process execution, improving both run time
performance and our understanding of runtime performance. As
is always the case with simulations, there are also difficult
questions to be addressed about simulation validity that are
magnified here if simulation results are used to impact runtime
performance, which will then be used to impact simulation inputs,
and so on.

2.5 Process Guidance
Process guidance can be thought of as the provision of
information that helps human agents to be more effective while
they are actually participating in the process. Work needs to be
done to investigate how to provide information that can help
agents to perform their tasks better in real time.

One concern is how to provide participants with a view of the
executing process so that they understand the relevant past
history, current context, pending tasks, and options available to
them. Clearly, this must be done in a way that provides a highly
summarized view of this process state. This view should be
relevant to the participants with respect to their role in the
process. For example, a nurse's sphere of concern may be quite
different from one for an anesthesiologist. For life critical
situations, there should be support for ensuring that participants
remain well within the envelop of safety. Determining what this
envelop is and when its boundaries are being approached, as well
as support for safely returning to its fold, if it is ever breached,
are important issues.

In some cases, on-the-fly analysis results might be extremely
helpful in making decisions. For example, scheduling and
planning analyses might suggest possible advantages or
disadvantages of selecting certain alternatives in the performance
of a task. In some cases, we anticipate that human participants
may be empowered to request such analyses. In other cases,
relevant analyses may be implemented as part of the defined
process to ensure that the results will be presented to human
participants proactively. These cases will require linkages
between the analyzers and the execution framework and careful
evaluation of when such guidance will be beneficial.

Monitoring process progress and maintaining an accurate
representation of process state can be extremely difficult.
Participants often do not explicitly indicate when they are done
with a task or announce the cognitive activity they undertaking.
Although sophisticated capabilities using various kinds of sensors
have been proposed for detecting process progress, we expect that
most progress can be captured by low-tech means, such as a click
on a screen or the entry of data. The ways in which these
proactive activities are to be initiated and the ways in which their
results are to be presented to participants will undoubtedly have
an impact upon the acceptance of process guidance. Thus, these

issues need to be studied in cooperation with experts in dealing
with human behavior, perhaps drawing upon research in such
areas as human factors, human computer interface design,
industrial engineering, and psychology.

3. CONCLUSIONS
This position paper calls on software engineering to broaden its
focus on software to include interactions with hardware devices
as well as human participants. Software now dominates many of
the systems that were once primarily hardware based, such as
transportation and communications, as well as many of the
processes that were once human-centric, such as medicine and
banking. Software engineers have long complained that hardware
engineers leave software issues to the end, when it is too late to
develop the most effective alliance between the two. Now that
software is starting to be seen as the dominant component of such
systems, we need to develop the appropriate paradigms for
designing and building the appropriate alliances with hardware
components and human participants.

Here we argue that human participants are often overlooked; yet,
for human-intensive systems, humans play a critical role. Systems
that are developed without carefully considering how to support
their role may be error prone, with possibly catastrophic
consequences. To incorporate support for humans, software
engineers will need to work with experts in a number of domains.
In this paper, we have highlighted some of the areas in software
engineering that will need to be extended.

4. ACKNOWLEDGMENTS
We appreciate the many contributions of those involved in the
UMASS Medical Safety Project, including computer scientists
Ben Chen, Rachel Cobleigh, Huong Phan, M.S. Raunak, Danhua
Wang, and Sandy Wise, and medical professionals Lucinda
Cassells, David Brown, Elizabeth Henneman, Philip Henneman,
and Wilson Mertens.

This material is based upon work supported by the National
Science Foundation under Awards CCF-0820198, CCF-0905530
and IIS-0705772, and by a Gift from the Baystate Medical
Center, Rays of Hope Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the
NSF.

5. REFERENCES
[1] Beyer, D., Henzinger, T. and Singh, V., 2007. Algorithms for

Interface Synthesis. In Proceedings of the Computer Aided
Verification, Lecture Notes in Computer Science, Springer
Verlag, 4-19.

[2] Chen, B., Avrunin, G.S., Henneman, E.A., Clarke, L.A.,
Osterweil, L.J. and Henneman, P.L., 2008. Analyzing
Medical Processes. In Proceedings of the 30th International
Conference on Software Engineering, (Leipzig, Germany,
May), 623-632.

[3] Clarke, E.M., Grumberg, O. and Peled, D.A. 2000. Model
Checking. MIT Press.

[4] Giannakopoulou, D., Pasareanu, C.S. and Barringer, H., 2002.
Assumption Generation for Software Component
Verification. In Proceedings of the 17th International
Conference on Automated Software Engineering,,
(Washington, DC), 3-12.

[5] Holzmann, G.J. 2004. The Spin Model Checker. Addison-
Wesley

[6] Kohn, L.T., Corrigan, J.M. and Donaldson, M.S. (eds.). To
Err Is Human: Building a Safer Health System. National
Academies Press, Washington DC, 1999.

[7] Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R.,
Kannengiesser, U. and Wise, A. 2010. Exception Handling
Patterns for Process Modeling. IEEE Transactions on
Software Engineering, 99 (2010), 162-183.

[8] Leveson, N.G. 1986. Software Safety: What Why and How.
ACM Computing Surveys, 18 (2. 1986), 125-163.

[9] Leveson, N.G. and Turner, C.S. 1993. An Investigation of the
Therac-25 Accidents. Computer (1993), 18-41.

[10] Lutz, R., 2000. Software Engineering for Safety: A
Roadmap. In Proceedings of the 22nd International
Conference on Software Engineering, (Limerick, Ireland,
2000), 215-224.

[11] Osterweil, L.J., 1987. Software Processes Are Software,
Too. In Proceedings of the Ninth International Conference on
Software Engineering, (Monterey, CA, March 30-April 2),
IEEE Computer Society Press, 2-13.

[12] Stamatis, D.H. 1995. Failure Mode and Effect Analysis:
FMEA from Theory to Execution. American Society for
Quality (1995).

[13] Stead, W.W. and Lin, H.S. 2009. Computational
Technology for Effective Health Care: Immediate Steps and
Strategic Directions. Committee on Engaging the Computer.
Science Research Community in Health Care Informatics.
National Academies Press, Washington, D.C.

[14] Vardi., M., 1985.Automatic Verification of Probabilistic
Concurrent Finite State Programs. In Proceedings of the 26th
Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, 327-338.

[15] Vesely, W., Goldberg, F., Roberts, N. and Haasl, D. Fault
Tree Handbook U.S. Nuclear Regulatory Commission,
Washington, D.C., 1981.

