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ABSTRACT 
Executing critical systems often rely on humans to make 
important and sometimes life-critical decisions. As such systems 
become more complex, the potential for human error to lead to 
system failures also increases. In the medical domain, for 
example, sophisticated technology has been introduced in the last 
decade without adequately considering the impact and role of the 
medical professionals. This is just one of many domains, where 
human agents, hardware devices, and software systems must 
interact with each other, and where humans are expected to make 
important, and sometime life-critical, decisions. This position 
paper argues that human-intensive systems should be a major 
concern of software engineering in the future and describes some 
of the research issues that need to be addressed.  

Categories and Subject Descriptors 
D.2 [Software Engineering]: Requirements/Specifications, Design 
Tools and Techniques, Verification; H.1 [Models and Principles]: 
User/Machine Systems. 

General Terms 
Documentation, Design, Verification. 

Keywords 
Human-intensive systems, process improvement, life-critical 
systems. 

1. INTRODUCTION 
Systems where the human contributions require considerable 
domain expertise and have a significant impact on the success or 
failure of the overall mission, are referred to here as Human-
Intensive Systems. We believe that the role of humans in such 
systems needs to be taken into account as a first class concern. As 
such, human behavior should be modeled and evaluated during 
the earliest stages of development, carefully considering the 
interactions and constraints between humans and their 
collaborating hardware and software components. Moreover, we 
believe that development and deployment environments must 
include support for representing and reasoning about human 
behavior, for monitoring and guiding human behavior, and for 
accumulating data about erroneous behaviors, past failures, and 

near misses. Based on such accumulated data, process 
improvements can be recommended, requirements and test cases 
enhanced, and probabilistic analysis updated. Thus, we are 
proposing a new paradigm for the development and improvement 
of human-intensive systems that is driven by a detailed 
understanding and evaluation of the coordination among human 
agents, software systems, and hardware devices. Since these 
coordinating process models are software too [11], we believe 
that the study of the development, evaluation, evolution, and 
execution of human-intensive systems is an important area for 
future software engineering research.  

Numerous systems that are the backbone of our societal 
infrastructure are human intensive systems. As these systems 
become more complex, there is increased opportunity for human-
errors to lead to serious system failures.  Perhaps some of the 
most prominent examples of this come from the healthcare 
domain. The news media frequently report on medical mishaps, 
where lives are lost, healthy organs removed, or other adverse and 
avoidable negative outcomes occur. An Institute of Medicine 
report [6] estimated that there were about 98,000 deaths each year 
in the US due to avoidable medical errors, making this one of the 
leading causes of death. Although human error is often involved, 
the real culprits are often the complex processes being applied. 
As stated in a recent US National Research Council report about 
healthcare [13]:  

"persistent problems do not reflect incompetence on the 
part of health care professionals - rather, they are a 
consequence of the inherent intellectual complexity of 
health care taken as a whole and a medical care 
environment that has not been adequately structured to 
help clinicians avoid mistakes or to systematically 
improve their decision making and practice." 

These findings should not be surprising. Medical processes are 
excellent examples of rapidly changing, complex systems 
involving many different types of human agents (e.g., doctors and 
nurses with different specializations and roles, pharmacists, lab 
technicians, and support staff), hardware devices (e.g., infusion 
pumps, radiation therapy machines, and patient monitoring 
devices), and software systems (e.g., computerized physician 
order entry systems, decision support systems, and electronic 
healthcare records). Coordination is particularly key in these 
systems, as humans are often participating simultaneously in 
several different processes at any given time, and their 
participation in each process may entail the parallel performance 
of many different subtasks as well as interaction with several 
different hardware and software components. In performing these 
tasks, it is common for exceptional conditions to arise, requiring 
specialized actions that may vary considerably depending upon 
the circumstances. Continual change is also a key issue in 
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medical processes. Changes may result from the introduction of 
new devices, new software systems, new personnel, or even 
personal preferences. New research findings may lead to new 
guidelines or standards of care. Still other changes come about as 
reactions to errors encountered in local practice. Regrettably, 
changes are sometimes made based only on informal analysis of 
poorly understood processes, leading to ill-advised changes that 
may slow the delivery of care, fail to address the root cause of the 
error, or lead to poor outcomes.  

In this position paper, our examples are drawn from the 
healthcare domain, but the problems are prevalent in many 
domains. For example, there are similar concerns about complex 
military systems and the recent oil spill in the Gulf coast has 
been, at least partially, attributed to human errors in a complex, 
ill-understood, computer-supported process.  

2. RESEARCH ISSUES 
Some of the issues that need to be addressed to support the 
development, maintenance, evaluation, and deployment of such 
human-intensive systems are discussed in the ensuing 
subsections. Specifically, we look at modeling support to capture 
the human element in such systems; static analysis approaches 
that consider this human behavior in their reasoning; 
requirements engineering approaches that address the boundaries 
between software, hardware, and human agents; simulation 
approaches that evaluate effectiveness, and on-line guidance to 
assist human participants and help reduce human errors.  
 
2.1 Modeling Human-Intensive Processes 
The specification of how such a system coordinates human 
agents, hardware devices, and software components, if it is 
provided at all, is usually expressed only informally, in natural 
language documents, in hard-coded interfaces, and in the 
behavior of the hardware and application software components. 
Nonetheless, it is only through the coordination of the human 
participants, hardware devices, and software systems that the 
overall goals of the system are achieved. This suggests the value 
of treating coordination as a separate and key part of such 
systems.  

We propose an approach to the development and improvement of 
human-centered systems in which coordination is explicitly 
separated out from the other aspects of the system and is precisely 
modeled in an executable language. Such an executable model of 
coordination has been called a process definition and, in prior 
work, it has been shown that rigorous analysis of such models can 
detect defects and vulnerabilities, as well as mismatches with the 
hardware and software components [2]. Based on such analyses, 
modifications and improvements in the coordination model, 
hardware devices, and software components of the system can be 
proposed and evaluated. In addition, such validated process 
definitions can be used to drive simulations, train agents, and 
proactively provide real-time, on-line guidance, thus amortizing 
the cost of developing and maintaining such models. 

The process definition languages used to specify such 
coordination will need to provide rich semantic capabilities. In 
addition to the capabilities that programming language research 
has demonstrated should be available in programming languages, 
such as support for abstraction, composition, typing, and 
restricted, well-formed control flow constructs, process languages 

need to support the rich control models needed for human 
behavior.   

The handling of exceptional situations is one area where such 
support is needed. Most current workflow and process languages 
tend to focus on normative flow. Since the response to 
exceptional situations is the source of most errors, process 
languages need to provide rich semantic mechanisms for handling 
the detection and responses to non-normative circumstances [7].  

Concurrency is another area where richer semantic models are 
needed. Since humans often multi-task and want to have 
flexibility in deciding where to focus their attention, complex 
concurrency control needs to be provided, including support for 
selective pre-emption (e.g., a medical emergency pulls doctors 
away from their current task) and resumption or reassignment.  

Resource management is another area of concern. Processes 
involving humans often have to manage resources, entities that 
may be under contention. Deciding how best to specify the 
resources that are available and how to select the one(s) used to 
respond to a request are challenging issues. A medical process, 
for instance, may involve the participation of many types of 
resources, such as devices and people, with each type consisting 
of instances that have different capabilities, titles, skill levels, etc. 
Thus, doctors would be viewed as resources, but doctors have 
many different specialties. Further, different doctors have 
different skills and skill levels. Complicating matters is the fact 
that, especially in emergencies, medical professionals may 
sometimes be allowed to perform certain tasks that would 
ordinarily require more specialized training, and therefore context 
must be taken into consideration. Thus, process languages will 
need to support the declaration of available resources and their 
usage constraints and, during execution, manage resource 
requests, and perhaps incorporate resource scheduling and task 
planning into the execution framework.  

All processes that execute in the real world have constraints on 
the speed with which they must execute. In medicine, for 
instance, these constraints are particularly important, as failing to 
meet one may mean the difference between life and death. It is 
interesting to note that very few process and workflow languages 
currently incorporate timing constraints, although such 
capabilities are clearly needed for human-intensive systems. 

As is often the case in language design, there needs to be serious 
consideration given to human understanding. Since process 
definitions should be reviewed by the domain expert, process 
definitions or views of those definitions must be comprehensible 
by non-computer scientists. Unfortunately, there is often a tension 
between powerful language mechanisms and understandability 
that needs to be taken into consideration.  

2.2 Static Analysis  
There has been considerable success lately in using static analysis 
techniques to analyze hardware systems, software systems, and 
process definitions (e.g., [3, 5]). We believe that this success can 
be pushed even further so that mixed models, involving hardware, 
software, and human process definitions can be evaluated to 
assure that these various aspects are working together to assure 
that important safety requirements are met. This will require 
improvements to compositional approaches as well as to cross 
model analysis.  



In addition, there is considerable synergy forming around using 
probabilistic model checking approaches and safety analysis 
techniques, such as Fault Tree Analysis (FTA) and Failures Mode 
and Effects Analysis (FMEA).  

In probabilistic model checking [14], the property specification 
language is typically extended to allow probabilistic path 
quantifiers (and sometimes additional features, such as costs) and 
the underlying model of the system is a Markov chain or Markov 
decision process. Where a standard model checker might check 
that a particular fault never occurs, a probabilistic model checker 
checks that the probability of a fault occurring is less than some 
value. The techniques currently used extend standard model 
checking techniques with methods from numerical linear algebra 
and Markov chains. For human-intensive systems, this checking 
will need to be expanded to consider contexts, since as noted 
above, expected responses can often be impacted by the context 
in which a situation occurs.  

In safety engineering, a hazard is a state or set of conditions of a 
system that, together with certain other conditions in the 
environment of the system, will lead inevitably to an accident 
causing loss.  FTA [15] is a technique used to identify the 
possible causes of a hazard. Once a fault tree has been 
constructed, techniques from Boolean algebra can be used to 
identify minimal cut sets, minimal sets of basic and undeveloped 
events that are sufficient to cause the hazard to occur. If sufficient 
information about the probabilities and independence of the 
various faults is available, the tree can also be used to derive 
quantitative information about the probability of the hazard. For 
large systems, fault trees can be extremely complex. Further, they 
typically are constructed by human experts who must identify all 
possible causes of a fault; if the experts fail to think of a possible 
cause, the fault tree will be incomplete. One of the advantages of 
a process definition is that FTA representations can be 
automatically generated for hazards that can be identified in the 
process definition. Although omissions or errors in the process 
model will also lead to incomplete or inaccurate fault trees, 
careful analysis of the process can help eliminate those problems. 
Importantly, a single, carefully developed process model can be 
used to derive many fault trees.  

Instead of going from a potential hazard to the causes of a hazard, 
FMEA [12] traces the impact of an individual failure on the 
overall system.  For each way in which an entity could fail (a 
failure mode), FMEA inductively identifies the resulting entity 
and system failures that could be caused by that failure mode, 
using a forward search based on the underlying dependency 
between entities. As with fault tree information, FMEA tables can 
be automatically generated from process definitions.  

An interesting research direction is to explore how these different 
analysis approaches can be combined to leverage each other. For 
example, FMEA analysis could be used to suggest hazards to be 
subsequently explored via FTA. The FTA analysis could then use 
the probabilities from probabilistic model checking to predict the 
probabilities of component failures or the severities of system 
failures. Model checking could then be applied to determine the 
violations that might arise if failures occur. Although there has 
been some work in this direction (e.g., [8-10]), it needs to be 
further developed and carefully evaluated, especially for real 
applications involving human participants.  

2.3 Generating Requirements  
Model checking is concerned with verifying that important 
properties or requirements hold for any possible trace or 
execution of a system. Although we may know the overall 
requirements for a system, it may not be clear what the 
requirements are for the individual components of that system 
that must work together to satisfy the overall system 
requirements. Thus, when using a device in a medical procedure, 
it might not be fully known how that device must be applied to 
guarantee that the overall system properties are satisfied.  

As a motivating example, consider a “smart” infusion pump 
responsible for intravenously administering medications. Such 
pumps employ a drug library to obtain information about the 
recommended dosage limits. These limits depend on the 
procedure and location of the pump. For example, larger dosages 
are usually allowed in operating rooms than in recovery rooms. 
One important requirement for medical procedures is that a 
patient is never administered a drug overdose. This might be 
reflected as a requirement on the infusion pump stating that if a 
selected dosage is within the dosing range provided by the 
configured drug library, then the pump administers that dosage; 
otherwise it reports a dose alert. For hospitals that share pumps 
among different areas, it is necessary to also include a 
requirement that the pump must be reconfigured whenever it is 
moved from one area to another. This requirement might be 
overlooked unless that usage scenario is explicitly considered.  

Although this is a simple example, it is easy to envision situations 
where user processes might change or vary, where new versions 
of software are applied, or where different hardware is employed. 
Although we might expect the overall requirements to remain the 
same in such situations, do these changes impose new or 
modified requirements on the human agents, hardware devices, or 
software components used in that process? And if so, what are 
those requirements? One area of future work is to explore the 
generation of component requirements based on the context in 
which they might be used. This work would most likely build 
upon recent advances in automatic assumption and interface 
specification generation techniques which use a combination of 
model checking and learning algorithms [1, 4].  

Returning to the infusion pump example, a learned requirement 
might be that the pump must be initialized after it is moved. This 
could be represented in the device by requiring initialization after 
any movement of the pump, or in the human process by requiring 
that the user always checks for the appropriate drug library before 
proceeding, or in both the pump and the process to provide some 
level of fault tolerance. Areas of future research include exploring 
how to systematically develop requirements based on process 
definitions of the users' behaviors and how to better understand 
the implications of process, device, or software modifications.  

2.4 Process Definition Driven Simulations 
Simulation languages and engines have been in existence as far 
back as the 1960s. There is a thriving marketplace of languages 
and systems aimed at supporting the simulation of various 
domains, including healthcare. Most of these systems, however, 
suffer from the lack of flexibility in specifying the process to be 
simulated, the resources to be used, or both. As a consequence 
these systems are often difficult to use to explore such questions 
as how best to design an emergency department process and a 
resource scheduling approach that complement each other to 



produce optimal utilization of resources. Interesting research 
question are whether process definitions can serve as drivers for 
discrete event simulation and will the added detail lead to 
predictions that are more accurate. 

In addition to using more detailed and carefully verified models 
on which to base the simulations, simulation validity depends on 
the accuracy of the input probabilities. By providing an 
environment in which execution results can update our 
understanding of the probability of events, simulation results 
should be improved. In addition, simulation results can then be 
used to influence resource allocation decisions and process 
scheduling during process execution, improving both run time 
performance and our understanding of runtime performance. As 
is always the case with simulations, there are also difficult 
questions to be addressed about simulation validity that are 
magnified here if simulation results are used to impact runtime 
performance, which will then be used to impact simulation inputs, 
and so on. 

2.5 Process Guidance 
Process guidance can be thought of as the provision of 
information that helps human agents to be more effective while 
they are actually participating in the process. Work needs to be 
done to investigate how to provide information that can help 
agents to perform their tasks better in real time. 

One concern is how to provide participants with a view of the 
executing process so that they understand the relevant past 
history, current context, pending tasks, and options available to 
them. Clearly, this must be done in a way that provides a highly 
summarized view of this process state. This view should be 
relevant to the participants with respect to their role in the 
process. For example, a nurse's sphere of concern may be quite 
different from one for an anesthesiologist. For life critical 
situations, there should be support for ensuring that participants 
remain well within the envelop of safety. Determining what this 
envelop is and when its boundaries are being approached, as well 
as support for safely returning to its fold, if it is ever breached, 
are important issues.  

In some cases, on-the-fly analysis results might be extremely 
helpful in making decisions. For example, scheduling and 
planning analyses might suggest possible advantages or 
disadvantages of selecting certain alternatives in the performance 
of a task. In some cases, we anticipate that human participants 
may be empowered to request such analyses. In other cases, 
relevant analyses may be implemented as part of the defined 
process to ensure that the results will be presented to human 
participants proactively. These cases will require linkages 
between the analyzers and the execution framework and careful 
evaluation of when such guidance will be beneficial.  

Monitoring process progress and maintaining an accurate 
representation of process state can be extremely difficult. 
Participants often do not explicitly indicate when they are done 
with a task or announce the cognitive activity they undertaking. 
Although sophisticated capabilities using various kinds of sensors 
have been proposed for detecting process progress, we expect that 
most progress can be captured by low-tech means, such as a click 
on a screen or the entry of data. The ways in which these 
proactive activities are to be initiated and the ways in which their 
results are to be presented to participants will undoubtedly have 
an impact upon the acceptance of process guidance. Thus, these 

issues need to be studied in cooperation with experts in dealing 
with human behavior, perhaps drawing upon research in such 
areas as human factors, human computer interface design, 
industrial engineering, and psychology.  

3. CONCLUSIONS 
This position paper calls on software engineering to broaden its 
focus on software to include interactions with hardware devices 
as well as human participants. Software now dominates many of 
the systems that were once primarily hardware based, such as 
transportation and communications, as well as many of the 
processes that were once human-centric, such as medicine and 
banking. Software engineers have long complained that hardware 
engineers leave software issues to the end, when it is too late to 
develop the most effective alliance between the two. Now that 
software is starting to be seen as the dominant component of such 
systems, we need to develop the appropriate paradigms for 
designing and building the appropriate alliances with hardware 
components and human participants.  

Here we argue that human participants are often overlooked; yet, 
for human-intensive systems, humans play a critical role. Systems 
that are developed without carefully considering how to support 
their role may be error prone, with possibly catastrophic 
consequences. To incorporate support for humans, software 
engineers will need to work with experts in a number of domains. 
In this paper, we have highlighted some of the areas in software 
engineering that will need to be extended.  
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