Experience Modeling and Analyzing Medical Processes:

UMass/Baystate Medical Safety Project Overview

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Ambherst, MA 01003
avrunin@cs.umass.edu

Stefan C. Christov
Dept. of Computer Science
University of Massachusetts

Ambherst, MA 01003
christov@cs.umass.edu

Philip L. Henneman
Dept. of Emergency Medicine
Tufts-Baystate Medical Center

Springfield, MA 01199
philip.henneman@bhs.org

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Ambherst, MA 01003
clarke@cs.umass.edu

Bin Chen
Dept. of Computer Science
University of Massachusetts
Ambherst, MA 01003
chenbin@cs.umass.edu

Lucinda Cassells
Baystate Regional Cancer
Program
Baystate Medical Center/Tufts
University School of Medicine
3400 Main Street, Springfield,

Leon J. Osterweil
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003

ljo@cs.umass.edu

Elizabeth A. Henneman
School of Nursing
University of Massachusetts
Amherst, MA 01003

henneman@nursing.umass.edu

Wilson Mertens
Baystate Regional Cancer
Program
Baystate Medical Center/Tufts
University School of Medicine
3400 Main Street, Springfield,

MA 01107, USA
lucy.cassells@bhs.org

ABSTRACT

This paper provides an overview of the UMass/Baystate
Medical Safety project, which has been developing and eval-
uating tools and technology for modeling and analyzing med-
ical processes. We describe the tools that currently com-
prise the Process Improvement Environment, PIE. For each
tool, we illustrate the kinds of information that it provides
and discuss how that information can be used to improve
the modeled process as well as provide useful information
that other tools in the environment can leverage. Because
the process modeling notation that we use has rigorously
defined semantics and supports creating relatively detailed
process models (for example, our models can specify alter-
native ways of dealing with exceptional behavior and con-
currency), a number of powerful analysis techniques can be
applied. The cost of eliciting and maintaining such a de-
tailed model is amortized over the range of analyses that can
be applied to detect errors, vulnerabilities, and inefficiencies
in an existing process or in proposed process modifications
before they are deployed.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; J.3 [Life and Medical Sciences|: Health

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IHI’10, November 11-12, 2010, Arlington, Virginia, USA.

Copyright 2010 ACM 978-1-4503-0030-8/10/11 ...$10.00.

316

~ MA 01107, USA
wilson.mertens@bhs.org

General Terms
Reliability, Verification

1. INTRODUCTION

As noted in the 2009 US National Research Council report
about healthcare [20], “persistent problems do not reflect in-
competence on the part of health care professionals - rather,
they are a consequence of the inherent intellectual complex-
ity of health care taken as a whole and a medical care en-
vironment that has not been adequately structured to help
clinicians avoid mistakes or to systematically improve their
decision making and practice.” The Medical Safety Project,
a collaboration between the University of Massachusetts and
Baystate Medical Center, is trying to address this concern
by developing and evaluating technology to support process
improvement for healthcare related processes.

Specifically we have developed a modeling language, called
Little-JIL [1], that is designed to support the kinds of pro-
cesses that frequently arise in healthcare. These processes
often involve normative and non-normative situations, con-
current activities, and several different types of agents, such
as doctors and nurses with various specialties, software sys-
tems such as electronic health records, and medical devices
such as “smart” infusion pumps. The Little-JIL language is
intended to enable the detailed specification of a wide range
of process details, while still supporting the flexibility and
freedom of choice that human agents expect. In addition, it
is a language with well-defined semantics so that the result-
ing process definitions can be rigorously analyzed.

The process analysis technologies that we have applied to
these process definitions to date include a model checker, a
failure modes and effects analyzer, a fault tree analyzer, and
a discrete-event simulator. Figure 1 provides an overview of

Property elicitor

Finite-state verifier
(FLAVERS)

Satisfied properties, violated
properties + counterexamples

Little-JIL narrator Textual representation of
process definition

.

Fault tree
generator

Fault trees, minimal cut sets

Failure modes and
effects analyzer

Effects of failure modes

(PROPEL)
Process editor R Process
(Little-JIL editor) »| definition
L
Hazards
Di tics:
iagram semantics Failure N
@ Data component modes
,/
Tool component Scenario .
included in PIE specifications
\//—_

Discrete event
simulator

Discrete event simulation runs

Figure 1: Architecture of the Process Improvement Environment.

how these technologies have been integrated into the Process
Improvement Environment (PIE). As discussed in the next
section, creating the process definition is a labor-intensive
activity that must be done with considerable care. We lever-
age that investment by first carefully evaluating the process
definition for accuracy and then by applying the different
PIE analyzers to it to provide feedback about possible er-
rors, vulnerabilities, or inefficiencies in the process.

In many respects, our work supports the classical cycle for
continuous process improvement as introduced by Shewhart
[18] and effectively applied by Deming [8]. The essence
of this approach is to capture the process to be improved,
compare its characteristics to those that are desired, iden-
tify weaknesses and shortcomings, propose and evaluate im-
provements, and then incorporate those improvements in the
process to complete the improvement cycle and form the
basis for a subsequent improvement cycle. This cycle has
been renamed and modified in various ways over the past
decades. In all of its manifestations, it has relied essentially
on the ability to understand the process, understand its de-
sired properties, and analyze the ways in which the process
does or does not adhere to those properties. Typically, these
analyses have been obtained informally. Recent research,
including our own, has shown that processes and proper-
ties can be defined with precise notations and evaluated for
various kinds of consistency using automated reasoning ap-
proaches. It is this rigorous approach for defining properties
and properties, along with powerful reasoning techniques,
that we bring to medical processes.

Most of the tools depicted in Figure 1 have been de-
scribed in the literature. The contribution of this paper
is to describe the overall environment and, by using re-
lated examples, show how the individual components inter-
act with and benefit from each other. We also report on the
lessons learned to date in evaluating this approach. We are
currently involved in three extensive case studies: Breast
Cancer Chemotherapy [3,4], In-Patient Blood Transfusion
[2,5,11,12], and Emergency Room Patient Flow [17]. These
case studies contain one common subprocess, Verify Patient
ID [13], which is found in still broader classes of medical
processes, and which we have also studied in isolation. The
next section of this paper describes the Process Improve-
ment Environment and provides a description of each of the
major components. Section 3 discusses lessons learned from
using this approach. Section 4 provides pointers to related
work associated with the components and highlights the ad-
vantages of the technology we selected. We conclude with a

317

brief summary of the benefits of this process-improvement
approach and directions for future work.

2. PROCESS MODELING AND ANALYSIS
ENVIRONMENT

There are four columns to Figure 1. The leftmost col-
umn includes the tools used to create the process definition
(the Little-JIL editor) and property specification (the PRO-
PEL property elicitor). In addition to the resulting process
definition and property specifications, the second column
indicates the other information that is needed to support
each of the analysis capabilities, which are shown in the
third column. The fourth column indicates the outputs from
these analysis capabilities. We expect other capabilities to
be added as we, or others, discover or develop promising
technologies.

The following subsections describe each of the compo-
nents in the architecture and present examples from the
chemotherapy case study.

2.1 Little-JIL Process Definition Language

A Little-JIL process definition consists of a coordination
specification, a resource specification, and an artifact spec-
ification. Here we are primarily concerned with the coor-
dination specification, which describes the ordering of tasks
associated with the process, the agents responsible for ac-
complishing those tasks, and the communication and coor-
dination among those tasks. Figure 2 shows the top-level
diagram of a Little-JIL definition of a chemotherapy pro-
cess.

The main building block in the Little-JIL process language
is the step. A Little-JIL step corresponds to a task, a unit
of work, and is iconically represented by a black bar. Little-
JIL steps can be hierarchically decomposed into substeps
to an arbitrary level, depending on the amount of detail
desired. In Figure 2, for example, the root step perform
chemotherapy process is decomposed into the two substeps
create and process consult note and prepare for and admin-
ister chemotherapy, which are then individually decomposed
further. The left most substep of prepare for and administer
chemotherapy, named perform consultation and assessment,
is decomposed but in a separate diagram, as shown in Fig-
ure 3. Both Figure 2 and Figure 3 use ellipses to indicate
that subsequent decomposition details have been removed.

Prerequisites (or postrequisites) can be associated with
any step and indicate what should be true before the step
starts (or after the step completes its associated task). Req-

Prerequisite: .
refer patient to an oncologist

create and process consult note

agents: clinic MA, oncologist

agent: Practice RN
throws PathologyReportDoesNotindicateCancer

throws PracticeRNFinds

ProblemsWihtOrders O

v perform chemotherapy process

prepare for and administer chemotherapy

agent: Pharmacist
throws Pharmacist
FindsProblemsWith

<=> “consultation channel”

complete
consider alternative treatment

handles

PathologyReportDoesNotindicateCancer

agent: Nurse Practitioner agent: Nurse Practitioner agent: Pharmacist

prepare chemothefapy drugs adminisfer chemotherapy drugs

agent: Pharmacist agent: clinic RN

Figure 2: An example chemotherapy process.

uisites are defined by elaborated Little-JIL diagrams and
thus can be arbitrarily complex, but must return a Boolean
value. In Figure 2, the root step perform chemotherapy pro-
cess has a prerequisite (indicated by the darkened (or green)
triangle pointing downwards) specifying that performing the
chemotherapy process can start only after the patient has
been referred to an oncologist.

For non-leaf steps (i.e., steps with substeps), the left hand
side of the step icon indicates the order in which its sub-
steps are to be executed. Perform chemotherapy process is
a parallel step (indicated by the equal sign on the left of the
step bar), which means that its substeps can be executed in
any order, including in parallel. There is, however, an addi-
tional constraint on when the step create and process consult
note can start execution. Its leftmost substep, dictate con-
sult note, retrieves an artifact from the consultation channel
and cannot start until another step places an artifact in this
channel. In Little-JIL, channels are used for communica-
tion and synchronization of parallel threads of execution.
The consultation channel is declared at the root step and
is thus visible by all the direct and indirect descendants of
the root step. The step dictate consult note can be executed
only after the step perform patient consultation (shown in
Figure 3) completes and writes to the channel. The chan-
nel is thus used to specify that an oncologist cannot dictate
the consult note before consulting the patient. But, since
the consult note is primarily used for billing and legal pur-
poses and does not directly affect the patient’s treatment,
the doctor may choose to dictate the consult note right after
performing the patient consultation or later, while the tasks
in prepare for and administer chemotherapy are already un-
derway.

The step prepare for and administer chemotherapy is a
sequential step (indicated by the arrow in the step bar),
which means that its substeps need to be executed in left
to right order. These substeps represent the main phases of
the chemotherapy process and illustrate the variety of agents
involved in it. The activities involved in the step perform
consultation and assessment (which is further elaborated in
Figure 3) require a clinic medical assistant, who obtains the
patient’s history and measures patient’s height and weight,
and an oncoloist who performs the patient consultation and
creates a treatment plan and medication orders. The step
perform initial review of patient records is performed by a

318

practice registered nurse (RN), who reviews the treatment
plan and orders created by the oncologist. The step per-
form pharmacy tasks is done by a pharmacist, who also ver-
ifies and approves the treatment plan and orders. A nurse
practitioner then obtains the patient consent and optionally
(indicated on the diagram by the question mark which rep-
resents an optional step) installs a portacath, if the patient
needs one. On the day before the actual administration
of chemotherapy, a pharmacist performs final tasks, such
as preparing drug bins for the next day and making sure
that patient orders are not missing. Finally, on the day of
chemotherapy, a pharmacist and a clinic RN carry out the
tasks needed to administer chemotherapy to a patient.

Figure 3 shows how the exception handling features of
Little-JIL can be used to capture non-typical scenarios. Dur-
ing execution of the step perform consultation and assess-
ment, if the oncologist finds that the patient’s biopsy does
not indicate cancer, the exception PathologyReportDoesNot-
IndicateCancer is thrown. In this case, it is not necessary
to administer chemotherapy; the oncologist considers an al-
ternative treatment and the chemotherapy process is thus
considered completed. In Figure 2, this is represented by
the exception being propagated up the step tree until a
matching exception handler is found. The step consider
alternative treatment is the matching handler and it gets
executed in response to the exception. The continuation af-
ter the handling of the exception is complete (indicated at
the connector between the exception handler consider alter-
native treatment and the root step), which means that the
step perform chemotherapy process is completed after the
handler consider alternative treatment is done. Little-JIL
supports several other continuation semantics. Exception
handlers are regular steps, which means that they can be
decomposed to an arbitrary level of detail and throw excep-
tions themselves.

The final tasks in performing consultation and assessment
are to create a treatment plan and medication orders. Note,
the step create treatment plan is a choice step (indicated by
the circle with a horizontal line located in the step bar),
which in this case means that the oncologist can choose
which substeps to execute—the oncologist can either use a
careset to generate a treatment plan or choose to create a
treatment plan from scratch.

The full details of the language are beyond the scope of

Prerequisite:
perform biopsy on patient

v perform consultation and assessment

fill out medical history forms measure and record Height and weight

throws

PathologyReportDoesNotindicateCancer

use careset to gerierate treatment plan create treatment plan from scratch

confirm pathology report indicates cancer

perform patient consultation ~ create treatment plan and orders

create treatment plan

Figure 3: Elaboration of perform consultation and assessment.

this paper, but from the above description, it should be clear
that the relatively concise representation shown in Figure 2
and Figure 3 models many complexities of the process. If
one were to create a data or control flow representation of
the process definition, it would be significantly larger and
more difficult to follow.

Just as a program defines all the legal executions for that
program, a process definition defines all the possible ways in
which the process can be performed. A particular execution
of the process corresponds to a trace through the process
definition in which all the encountered pre and post requi-
sites and conditional checks are satisfied. Medical processes
are often quite complicated, especially when the possible ex-
ceptional conditions and concurrent behaviors are taken into
account. It is these complexities that are often the source of
errors and, thus, they need to be accurately captured in the
process definition and evaluated carefully.

2.2 Process Narrative Generation

It has been our experience that healthcare professionals
quickly become comfortable reviewing Little-JIL diagrams.
Still, there are many subtle details reflected in a diagram
that might be overlooked by the casual observer. The Pro-
cess Narrative Generator is a tool that helps domain experts
understand the details of a Little-JIL definition by providing
a textual representation.

Figure 4 shows part of the textual description automati-
cally generated by the Little-JIL Narrator from the process
definition in Figures 2 and 3. Currently, there are four main
components of a Little-JIL textual description: a table of
contents, a main body section, an index of step names, and
a legend. The table of contents is presented on the left side
of the document and shows an outline of the step hierarchy
and the type of each step (sequential, parallel, etc.) using
the same iconography as the Little-JIL diagrams. In ad-
dition, if a step is an exception handler, the continuation
action after handling the exception is also shown.

The main body section is presented on the right side of
the document. It consists of a subsection for each step in
the Little-JIL process definition. Each subsection provides
a natural language description of the information associated
with the step, such as the artifacts used or produced, re-
sources required, the agent responsible for executing the
step, and exceptions that the step can throw.

Since including all the information about each step may
make the textual description rather long, the user can choose
to hide the display of different kinds of information. To
facilitate navigation, the Little-JIL textual description is a

319

Index of step names

Legend

Table Of Contents M

Perform Chemotherapy

!

|
perform chemotherapy process || P

! rocess
=> prepare for and administer ‘

chemotherapy _ o _

- ltati ! 7 Before beginning to "perform chemotherapy
pe ‘:””“ consultation I| process", the step "refer patient to an oncologist"
and assessment ! || must be completed successfully.

" fill out medical !
history forms H|| = To "perform chemotherapy process”, the
" easure and ' ||| following need to be done in any order (including
%l d I|| simultaneously), prepare for and administer
poat e W I|| chemotherapy and create and process consult note.
weight |
" confirm pathology |} Prepare For And Administer
report indicates ! .
cancer || Chemotherapy
'
?‘”"r]'“ patient {{| = To "prepare for and administer chemotherapy" .
consultation ||| the following need to be done in the listed order
== create treatment |
plan and orders | " perform consultation and assessment
< create | ® perform initial review of patient records
! .
treatment 1 " perform pharmacy tasks

Figure 4: Part of the generated textual description
of the Little-JIL chemotherapy process definition.

hyperlinked document. The user can, for instance, quickly
explore the step hierarchy in the table of contents, click on a
step name and be directed to the corresponding step section
in the main body of the document. Similarly, the user may
be reading the description for a step in the main body and
click on one of its substeps to see the detail for that substep.

2.3 Requirements Specification

Properties are the requirements that are intended to be
satisfied by the process. In PIE, each property is repre-
sented as a finite-state automaton (FSA). The events in the
automaton must correspond to events in the process defini-
tion. In fact, determining what are the important properties
for a process helps frame the scope and the granularity of
the process definition. That is, if there is an important prop-
erty that should hold for a process, then the details about
the activities associated with that property should be rep-
resented in the process definition. For example, it may not
be important to specify how a form is filled in, but it might
be important to indicate that it was reviewed and signed
by the attending physician. A property would indicate that
such a signature is required before a medical procedure could
commence, and the process model would provide the details
of how this is to be accomplished within the process. As
described below, we use model checking to determine if a
property holds on all traces through the process.

An FSA describes the acceptable (or unacceptable) order-

~
>/ q2)
;:::Z/

administer chemo

>,7;:\\\ put consult note in patient’s record
AL a0)]
N

administer chemo

»
>

put consult note in patient’s record administer chemo,

put consult note in patient’s record

O
[g3) VIOLATION STATE

Property Alphabet:
« administer chemo

administer chemo, X .
« put consult note in patient's record

put consult note in patient’s record

Figure 5: An example chemotherapy property.

ing of selected events in any trace through the process. Con-
sider the property that states: “Before chemotherapy can be
administered to a patient, that patient’s consult note needs
to be put in that patient’s record.” The events of interest
to this property are administer chemo and put consult note
in patient’s record. The FSA, shown in Figure 5, represents
that the event administer chemo is not allowed to occur un-
til after the event put consult note in patient’s record has
occurred. If administer chemo does occur before put consult
note in patient’s record, the FSA is driven from the initial
state g0 to the violation, non-accepting state ¢3. If, how-
ever, put consult note in patient’s record precedes administer
chemo, this corresponds to a process execution that satisfies
the property and thus the FSA is driven to the accepting
state g2.

It is surprisingly difficult to correctly encode all the impor-
tant but subtle details about a property. For the property
shown in Figure 5, for example, one has to decide if there
needs to be a consult note if chemotherapy is not adminis-
tered (represented as “no” by having state q0 be an accepting
state), or if the patient must get chemotherapy if the consult
note is present (again, represented as “no” by having state
g1 be an accepting state).

PRrROPEL, for PROPerty ELucidator [6], is a system that
helps users tease out and consider each of the issues asso-
ciated with a property. Starting from a high-level natural
language description of a property, PROPEL asks questions
about the relationship among the identified events of interest
until the appropriate property pattern [9] is ascertained. At
that point, PROPEL can provide several alternative views of
the pattern with the options that must be decided explicitly
highlighted. The views include a question tree view where
the user continues to be presented with questions about the
property, a graphical view of the FSA with optional aspects
of the representation (e.g., transitions, labels, and accepting
states) highlighted for selection, and a disciplined natural
language (DNL) view where the user selects the appropriate
phrase associated with each option from a pull down menu.
Figure 6 shows a partially instantiated DNL representation
for the example consult note property with the pull down
menu showing the choices associated with making the sec-
ond state (the state after it has been determined that the
consult is present) an accepting state or not.

After all the options associated with a pattern have been
selected, the resulting property can be viewed as an FSA or
as a natural language statement. Similar to the narrative
view of a Little-JIL process definition, the resulting text is
rather verbose, but it does accurately describe the selected
property as represented by an FSA. The FSA formally de-
picts the sequences of events from the selected events of
interest that satisfy (or do not satisfy) the property. This

320

-

The events of primary interest in this behavior are put consult note in patient's record and administer chemo

~

There are no events of secondary interest in this behavior.

w

administer chemo is not allowed to occur until after put consult note in patient's record occurs.

IS

put consult note in patient's record is -

v

administer chemo is not required to administer chemo

not required to occur,

o

After put consult note in patient's record occurs, but before the first subsequent administer chemo occurs,

put consult note in patient's record is v

~

After put consult note in patient's record and the first subsequent administer chemo occur:

Figure 6: Partially instantiated DNL representation
of the example property.

formal statement is the basis for rigorous analysis to de-
termine if the process definition does indeed adhere to the
property on all its possible traces .

2.4 Model Checking

Model checking is an analysis approach used to evaluate
hardware and software systems. Model checking approaches
typically take (or create) a model of the system and then
evaluate if all possible traces through the model adhere to
a specified property. If so, the approach has proven that
the model satisfies the property. If not, a counterexample, a
trace through the process definition that demonstrates the
violation, is provided. By examining the counterexamples,
users can usually determine the cause of the problem, which
could be associated with the process definition, the property
specification, or an actual error in the process that is being
modeled.

When dealing with complex systems, the computation
cost of this analysis can be prohibitive, and thus a range of
optimization approaches have been developed. We have de-
veloped a translator that accepts a Little-JIL definition and
a property of interest and then creates a highly-optimized
model that can be used with the FLAVERS [10] and SPIN
[14] model checkers. For the medical case studies we are in-
vestigating, we have been able to prove a number of impor-
tant properties and have discovered some important errors,
not only in the process definition and properties, but in the
actual process as well.

The property shown in Figure 5 provides a good example
of a property that is violated by the process definition given
in Figures 2 and 3. FLAVERS found that there is an execu-
tion trace through the process on which the event adminis-
ter chemo (bound to the step administer chemoterapy drugs
in Figure 2) happens before the event put consult note in
patient’s record (bound to a substep of transcribe and place
consult note in patient’s record) has occurred. This is indeed
possible since the process steps administer chemotherapy
drugs and file consult note in patient’s record can happen
in parallel as they are descendents of the steps prepare for
and administer chemotherapy and create and process consult
note (in Figure 2), which can in turn happen in parallel.

This property violation reflects an interesting situation in
the real-world chemotherapy process. After an oncologist
performs the patient consultation, the oncologist needs to
dictate the consult note. A transcriber, who is sometimes
external to the hospital, listens to the dictation and then
sends the transcription of the consult note back to be re-
viewed by the oncologist before being filed by a staff member

create chemotherapy orders
- artifact “chemo orders™ from “create chemotherapy orders™ is wrong
- artifact “chemo orders™ to “create treatment plan and orders™ is wr
- artifact “chemo orders™ from “create treatment plan and or is wrong
- artifact “chemo orders™ to “perform consultation and assessment™ is wrong
- artifact “chemo orders™ from “perform consultation and assessment™ is wrong
- artifact “chemo orders™ to “day of chemo™ is wrong
- artifact “chemo orders™ from “day of chemo™ is wrong
- artifact “chemo orders™ to “prepare chemotherapy drugs™ is wrong
- artifact “chemo drugs” from “prepare chemotherapy drugs™ is wrong
- artifact “chemo drugs™ to “day of chemo™ is wrong
- artifact “chemo drugs” from “day of chemo™ is wrong
- artifact “chemo drugs™ to “administer chemotherapy drugs™ is wrong

ng

Figure 7: An example FMEA tree view result for
the step create chemotherapy orders.

in the patient record. In addition to involving various peo-
ple, this subprocess can be started quite late. Consult notes
are often used for legal rather than strictly medical purposes
and often doctors don’t dictate them right after the patient
consultation, but sometimes days or weeks after that. At
the same time, the rest of the phases of the chemotherapy
preparation and administration process can start right after
the oncologist performs the patient consultation and cre-
ates the treatment plan and medication orders. Thus, it is
sometimes possible that the chemotherapy drugs can be ad-
ministered to a patient before the consult note makes it to
the patient’s record.

Another example of an interesting error occurred in the
Blood Transfusion case study where a deadlock was de-
tected. We did not expect deadlock to arise in human-
intensive processes, but this was indeed the case. In certain
circumstances, the bloodbank would be waiting on a type
and screen from a nurse and the nurse would be waiting
on a confirmation from the bloodbank. When this situa-
tion occurs, the nurse eventually notices that the patient
had been waiting a long time and calls the bloodbank to
check on the status of the request. The deadlock is then
manually resolved by those involved and the process con-
tinues. Thus, there was some awareness that this situation
could arise but not a good understanding of how the process
could be changed to eliminate this problem. Our analysis
detected the deadlock and provided counterexamples to help
explain when it occurred. Interestingly, the initial correction
proposed by the medical professionals, while eliminating the
deadlock, could sometimes lead to a long delay in the trans-
fusion. Our tools detected this, and verified that a different
process modification eliminated both the deadlock and the
delay. This experience points out how complicated medical
processes can be and the benefits of using analysis techniques
to help reason about them.

2.5 Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) is a hazard
analysis technique that can be used to evaluate the impact
of individual failures on the overall system. A failure mode
represents a specific case in which some part of the system
fails to meet its intent or requirements.

Figure 7 shows an example output from applying the FMEA
tool to the Little-JIL chemotherapy process definition in Fig-
ures 2 and 3. The first line in Figure 7 shows the step create
chemotherapy orders and the second line shows one poten-
tial failure mode of that step, namely that it produces the
wrong chemotherapy orders. The rest of Figure 7 shows the

321

propagation of the effects of that failure mode. The last line
is particularly interesting because it indicates that one of the
potential effects of this failure mode is that the step adminis-
ter chemotherapy drugs takes as input the wrong chemother-
apy drugs! Since chemotherapy drugs are highly toxic, this
can have fatal consequences in the real-world process and
therefore its consideration is of practical significance.

Identifying potential effects of a set of failure modes using
FMEA often raises other interesting questions. For exam-
ple, given an effect of a failure mode one might wonder if
there are other failure modes that can lead to this effect.
An analysis technique that can answer such questions and
that complements FMEA in our Process Improvement En-
vironment is Fault Tree Analysis (FTA).

2.6 Fault Tree Analysis

Fault Tree Analysis [22] is a hazard analysis technique
used to systematically identify and evaluate all possible causes
of a given hazard. A hazard in a safety critical system is “a
state or set of conditions of the system that, together with
certain other conditions in the environment, will lead in-
evitably to an accident” [15] . Given a potential hazard in a
system, FTA deductively identifies events (component fail-
ures, human errors, etc.) in the system that could lead to the
hazard and produces a fault tree, which provides a graphical
depiction of all possible parallel and sequential combinations
of those events. Once a fault tree has been derived, qual-
itative and quantitative analysis can be applied to provide
information, such as specific sequences and sets of events
that are sufficient to cause a hazard. This information can
then be used as guidance for improvements to the design of
the system.

Figure 8 shows an example of a fault tree automatically
generated from the Little-JIL definition of the chemother-
apy process shown in Figures 2 and 3. Fault trees can be-
come quite large and because of this, we have developed
some optimization techniques to help reduce the size of the
generated trees. The hazard in the fault tree in Figure 8
(which is shown as the root node A) is that the chemo
drugs are wrong when they are input to the step administer
chemotherapy drugs. The fault tree indicates that this can
happen when the chemo drugs that are output from the step
prepare chemotherapy drugs are wrong. The OR-gate under-
neath node B indicates that this can happen when the step
prepare chemotherapy drugs produces wrong chemo drugs
(node C) or when the chemo orders output by the step per-
form pharmacy tasks (node D) are wrong. The AND-gates
underneath node D indicate that the chemo orders output
by the step perform pharmacy tasks are wrong only when
the events in nodes G, H, and F all happen.

In addition to automatically generating fault trees from
Little-JIL process definitions, the Fault Tree Analyzer can
also automatically find minimal cut sets. A minimal cut
set is a set of events that together can cause the hazard to
occur, whereas none of its proper subsets is sufficient for
this to be true. There are two minimal cut sets for the
fault tree shown in Figure 8: {Step “prepare chemotherapy
drugs” produces wrong “chemo drugs’} and {Step “create
chemotherapy orders” produces wrong “chemo orders”, Ex-
ception “PracticecRNFindsProblemWithOrders” is not thrown
by step “perform initial review of patient records”, Excep-
tion “PharmacistFindsProblemWithOrders” is not thrown
by step “perform pharmacy tasks”}.

[Amfacl “chemo drugs" to "administer chemotherapy drugs” is wrong}

A

[Artiiacr “chemo drugs” from step “"prepare chemotherapy drugs” is wrong}

[

)

[Step “prepare chemotherapy drugs” produces wrong “chemo drugs‘]

Artifact "chemo orders” is wrong when step “perform pharmacy tasks" is completed] @

2

il

Artifact “chemo orders" is wrong when step “perform initial review of patient
records” is completed

=]l

pharmacy tasks"

] [Excepuon “PharmacistFindsProblemWithOrders” is not thrown by step "perform] E

1
[Slep T G T I T i s] e orders"] [Excepuon PracticeRNFindsProblemWithOrders" is not thrown by step perform] \I‘

initial review of patient records"

Figure 8: A fault tree automatically generated from the Little-JIL chemotherapy process definition.

The interpretation of the second minimal cut set is that
for the hazard to occur, the oncologist who creates the or-
ders must create wrong orders (the step create chemotherapy
orders in Figure 3 outputs the wrong chemo orders), and
then the Practice RN and the Pharmacist who check these
orders must fail to detect the problem with the orders (the
steps perform initial review of patient records and perform
pharmacy tasks do not throw the exceptions indicating the
detection of a problem with the orders). Since the phar-
macist uses the orders to prepare the chemotherapy drugs
on the day of chemo, having the wrong orders can lead to
preparing and then using the wrong chemotherapy drugs.
All three medical professionals—the oncologist, the practice
RN and the pharmacist—must make mistakes for this haz-
ard to occur, indicating that there are several redundancy
checks in place to ensure that it is not easy for the hazard
to occur.

The size of the first minimal cut set, however, is only 1.
Its interpretation is that even if the chemo orders are correct
when the pharmacist performs the step prepare chemother-
apy drugs (see Figure 2), the pharmacist can still make a
mistake and prepare the wrong drugs (perhaps by taking
a drug with a similar name by accident or by accidentally
taking a drug meant for another patient). A minimal cut
set of size 1 indicates a single point of failure in the process
definition and raises concerns that need to be discussed with
the medical professionals involved in the process.

2.7 Simulation

The previously described analysis techniques focus on er-
rors and vulnerabilities that can be detected statically, with-
out the need for execution. Simulation, however, is an analy-
sis approach that can use dynamic execution state to study
a complementary range of issues. The Little-JIL discrete
event simulator (JSim) takes as input a Little-JIL process
definition along with specifications of how to simulate the
behaviors of agents and a model of the resources. The initial
application of this capability has been to study how differ-
ent resource mixes and allocation strategies affect patient
length of stay (LOS) in a hospital Emergency Department.
This was done by simulating the processes used to treat pa-

322

tients, using a range of different patient arrival rates and a
range of different combinations of Emergency Department
resources (i.e. the doctors, nurses, and beds available for
treating patients).

Essential to this work has been an innovative approach
to scheduling resources, based upon an articulate model of
those resources. Modeling the resources needed in health-
care domains, such as a hospital Emergency Department, is
particularly challenging because the resources are extremely
varied, ranging from human agents such as doctors, to hard-
ware such as beds and X-ray devices, to software systems
such as electronic health record systems, and to consumable
resources such as blood units. Moreover, the roles that dif-
ferent resources can play, and the process steps that they can
perform, vary with circumstances and perspectives. Thus,
for example, a nurse may be unable to prescribe medication
under ordinary circumstances, but may do so in an emer-
gency; a bed may be needed to treat a patient, but under
some circumstances a wheelchair might be used instead. If a
discrete event simulation is to be used to project outcomes
such as patient LOS, then details and constraints such as
these need to be taken into account appropriately.

To address these challenges we have developed the ROMEO
resource manager designed to support accurate specification
of the constraints and the dynamic nature of the behav-
iors of healthcare resources, and TWINS, an incremental re-
source scheduling system [23] designed to support the kind
of scheduling flexibility that replicates what actually hap-
pens in a highly disruption-prone environment, such as a
hospital Emergency Department. A ROMEO specification
of a healthcare resource consists of a set of Little-JIL steps
that the resource is potentially capable of performing, where
each step is “guarded” by a specification of the circumstances
under which the step can actually be performed. Using this
specification information ROMEQO then accepts requests for
the resources needed to perform a step and makes a deci-
sion about which resources (if any) are to be assigned to the
step. This decision is guided by consideration of the sim-
ulated process’s current status, attributes of the currently
available resources, and upcoming resource requirements as
projected by TWINS. TWINS uses a genetic algorithm to

Process Total # exceptional | # exception handling

Definition | # steps situations related steps (% total)
Chemo 467 59 207 (44%)
BT 248 15 37 (15%)

Table 1: Process definition size information for the
Blood Transfusion and Chemotherapy case studies.

search the sizeable space of possible resource allocations for
upcoming steps and selects the one that promises the most
effective overall use of those resources.

A key hypothesis of our approach is that more detailed
and precise system specifications lead to more accurate pre-
dictions. For instance, in a study aimed at determining the
value of detail in the specification of resources, we executed
simulations using resource specifications that did, and then
did not, include specifications of the time periods during
which resources could be expected to be available. The re-
sults from this study suggest that, when the patient arrival
rate is high, resource contention increases and more pre-
cise resource descriptions provide better support for schedul-
ing. With lower patient arrival rates, resource contention
decreases and less precise resource descriptions support re-
source schedules that are increasingly close to those obtained
with more precise resource descriptions. A similar study of
simulations of versions of the process with varying degrees
of concurrent activity also showed improvements in accuracy
as the degree of concurrency approached what the medical
professionals describe as realistic levels.

3. LESSONS LEARNED

Our major focus to date has been on developing promising
basic technologies and using case studies to evaluate their
applicability to medical processes. Future work is needed
to evaluate their effectiveness in improving actual medical
outcomes.

Table 1 provides data on the size of two of the largest pro-
cess definitions we created and the number of exceptional
situations that were considered. We found that the elici-
tation of the processes and properties took a considerable
amount of time. For each of these case studies, more than a
month of effort spread out over a year or more was spent elic-
iting and representing the process. A similar amount of time
was spent on elicitation and specification of the properties.
The elicitation was usually done by teams of two or more
graduate students and one or more medical professionals.

The remainder of this section presents a brief summary of
some of the more salient lessons learned.

Process elicitation and process languages.

The process language guided the elicitation process. In
particular, rich semantic features of the Little-JIL language,
such as requisites and exceptions, encouraged process de-
finers to ask questions about corresponding aspects of pro-
cesses. This helped elucidate process features, such as ex-
ception management that are important but are often over-
looked during open, unstructured interviews. In fact, many
of the difficulties we encountered in creating accurate pro-
cess definitions arose because initial versions based on open,
unstructured interviews were too restrictive or did not ade-
quately capture all behaviors (e.g. exception management).
Indeed we found that medical guidelines or protocols usu-

323

ally lack such critically important details. We did not en-
counter many real-time constraints, but perhaps this was
because timing constraints are currently not a strong fea-
ture in Little-JIL.

A visual representation of the process definition seemed
useful. The medical professionals who participated in the
case studies were not computer savvy and were initially leery
about having to learn a process language. Having a visual
representation that is relatively easy to understand seemed
to help considerably. Being able to provide restricted views
of the process definition also seemed to help, since low-level
details about the process definition, such as the artifacts that
needed to be provided to process activities, could be sup-
pressed until the higher-level views of the major tasks and
their decompositions were agreed upon. Having a natural
language representation of the process was also extremely
helpful, since it further lowered the technology hurdle for
the medical professionals. Even some of the computer scien-
tists found it useful to read through the English description
to find inconsistencies or to convince themselves that the
definition was accurate. Real processes are large and com-
plex, however, so both visual and textual representations
can quickly become ungainly, suggesting the need to develop
effective process definition summarization technologies.

As has been observed with software development, the very
act of trying to model a process leads to improved under-
standing of that process, to discovering process defects, and
to identifying possible process improvements. Sometimes
during elicitation, misunderstandings between participants
arose. In one situation it was determined that an artifact
that was being created was not being used subsequently.
In another situation, a deadlock that involved two differ-
ent medical professionals was discovered while eliciting the
chemotherapy process. A nurse needed to obtain the height
and weight of a patient to be able to verify drug dosages and
to subsequently sign the patient’s treatment plan. There
was a hospital rule, however, that an appointment scheduler
must wait for a signed treatment plan before scheduling a
visit at which the patient’s height and weight could be ver-
ified. Thus, having both the nurse and the scheduler follow
the rules creates a deadlock situation, which was actually
being observed in clinical practice. To break the deadlock,
some nurses were signing an unverified treatment plan so
that the scheduler could schedule a visit at which height and
weight could be verified. The signing of an unverified and
potentially incorrect treatment plan is dangerous, however,
because it may mislead other medical professionals and per-
haps result in the administration of the wrong dosage. The
discovery of this deadlock led to a modification in the actual
clinical process.

Property specification.

It was important to keep the properties we elicited and
studied focused on high-level goals that should be true re-
gardless of the process actually implemented. For example,
most of our properties must be adhered to whether or not
an electronic health record is used. That is, the source of
the information might change, but not the ways it must be
used.

We found that it is difficult to capture medical process
requirements accurately and completely because they often
must take into consideration a variety of subtle issues. PRO-
PEL helped elucidate many of these issues, just as Little-JIL

helped elucidate analogously subtle but important process
issues. We found, however, that we needed to extend PrRO-
PEL to explicitly deal with exceptional behavior. For exam-
ple, it might be important to be able to specify a property
requiring that information be obtained from the patient but
only if the patient is conscious.

The elicitation of process requirements led to the discov-
ery of errors in both the process model and in the process
itself. It also helped define the scope and the granularity
of the process model. We elicited some important proper-
ties that involved particular events that were sometimes not
suitably specified in process definitions. Our finding that
process and property elicitation complement each other in
interesting and important ways has led us to believe that
neither should be undertaken without the other.

Analysis tools and associated technologies.

As expected, most of the defects identified in model-checking
of medical processes were defects in the process definitions,
rather than in the processes themselves. Nevertheless, these
errors helped us improve the process definitions, which in it-
self is important since the definitions were the basis for sub-
sequent analyses. Model checking did, however, find some
important and surprising process errors. For example, the
violation of the consult note property described earlier was
a reflection of a problem in the real chemotherapy process.
Moreover, the processes we studied are sufficiently complex
that it was not immediately clear how best to remove these
errors without causing violations of other properties. Anal-
ysis of the process definition, which is an abstraction of the
real process, thus facilitated consideration of improvements
to the real process.

As researchers have noted in other contexts, FTA and
FMEA are complementary analytic approaches, with the
latter helping to expose potential hazards and the former ex-
ploring the ways in which such hazards might arise. Whether
the hazards are suggested by FMEA or based on professional
experience, fault tree analysis seems to be a promising ap-
proach for identifying process vulnerabilities due to incorrect
performance of process activities. It usually takes consider-
able care to create a single fault tree, but with our approach
considerable care is taken to create the process definition
that is then used to automatically create fault trees for a
number of potential hazards.

It is hard to model the complex ways in which resources
are used in healthcare processes, but modeling healthcare
process resources in detail seems to improve the accuracy
of simulations of these processes. Such simulations should
make it possible for proposed process modifications to be
evaluated before being implemented.

Some overall lessons and observations.

Although the elicitation of accurate healthcare process
definitions is difficult and expensive, the costs can be amor-
tized by the use of such definitions in a variety of analyses.
In addition to the several anecdotal examples of the bene-
fits of process modeling and analysis mentioned earlier, this
approach impacted the real-world processes and the medical
professionals involved in several other ways. One of the se-
nior pharmacists involved in the chemotherapy process took
the detailed natural language version of the Little-JIL pro-
cess definition and used it as a guide in his daily practice and
as an aid in training junior pharmacists. One of the nurses

324

involved in the specification of the blood transfusion process
definition and properties changed the way she teaches the
process to nursing students since the standard blood trans-
fusion checklists in textbooks turned out to be less detailed
and precise compared to the Little-JIL process definition.

This work has convinced us that continuous process im-
provement is indeed applicable in the domain of healthcare.
A key benefit of rigorous analysis of process definitions is its
value in identifying the presence or absence of defects in pro-
posed new or modified processes prior to their deployment
in actual practice.

4. RELATED WORK

Space limitations do not permit us to do a thorough review
of the work on modeling and analysis or their application to
medical processes. Here, we highlight just some studies that
we deem most relevant.

There has been a significant amount of work on develop-
ing notations for modeling medical processes and guidelines.
These notations aim to provide semantics for capturing fea-
tures specific to the medical domain, such as representing
human and automated agents, providing support for speci-
fying real time constraints and for the integration of domain
ontologies and patient records. The relative strengths and
weaknesses of several of these notations have been explored
by Peleg et al. [16].

In addition to modeling medical processes, there has been
recent work on applying automated analysis techniques to
models of medical processes. In [7], a cancer therapy pro-
cess is modeled with UML message sequence charts that are
then translated to labeled transitions systems (LTS) and
the LTS analyzer is used to reason about properties of the
model. In [21], a medical protocol is modeled in the As-
bru language and the KIV theorem prover is used to reason
about properties of this model.

S. CONCLUSION AND FUTURE WORK

The UMass/Baystate Medical Safety Project has been de-
veloping and evaluating tools and technologies for modeling
and analyzing medical processes. It has drawn upon technol-
ogy originally developed to support continuous improvement
of software development processes that integrate the efforts
of teams of software designers, coders, testers, etc., devel-
oping a variety of software artifacts. Applying this work to
selected medical processes has demonstrated its value while
also exposing needs for improvement, some of which can
benefit software development as well as other domains.

We recognize that the described process-centered approach
requires an ongoing investment in developing and maintain-
ing process models. We believe, however, that this will yield
benefits worth the investment. In our studies, the team
members involved gained valuable insight about real-world
medical processes at every step, starting with process defi-
nition and property specification, and continuing with each
analysis applied. Errors were uncovered at each step. Even
when the errors were in the introduced artifacts (i.e., the
process model or property), finding these errors improved
the accuracy of these artifacts and the subsequent analy-
ses based on them. We think it is particularly important
to emphasize that this investment enables proposed process
modifications to be carefully vetted before being introduced.

Although we believe that the current process improve-

ment environment provides significant benefits, we also be-
lieve that there are major gains to be made from future
extensions. For example, we are currently exploring incor-
porating probabilistic modeling and analysis approaches as
well as support for specification and analysis of real time
constraints. One major new thrust of our research will be
to use carefully validated process models as the basis for
providing real-time guidance during the actual performance
of medical processes. Of course, great care must be taken
to assure that the guidance is useful, presented effectively,
and can be easily ignored without negative consequences.
Research needs to be done to find the sweet spot between
support and annoyance, always keeping in mind the central
goal of improved medical outcomes. Real-time guidance will
also be used to pursue another key goal, namely lessening the
burden of documenting medical processes. This seems par-
ticularly promising, as useful documentation could be cre-
ated automatically by monitoring process progress, another
area of interesting future research. Longitudinal studies of
such monitored process behavior could also provide valu-
able insight. For example, such studies could suggest the
most effective responses to certain exceptional situations.
Finally, we note that although we have described our over-
all approach with the help of process examples drawn from a
hospital setting, we believe that the approach is applicable
to processes carried out in a range of environments, from
hospitals, to home care, to nursing facilities.

We do not expect all medical processes to be amenable
to the rigorous process improvement approach that we ad-
vocate, but we expect that there are many that will be.
Moreover, we suggest that many processes may be carried
out in broadly similar ways in many different locations, but
with differences that appear only in lower level details. For
such processes, we expect that the hierarchical decomposi-
tion supported by Little-JIL should facilitate carrying out
analyses of the high-level process models. The results of
these analyses would then be augmented by separate anal-
yses of the specialized lower-level process models. Pursuing
this suggestion is yet another area of future investigation.

6. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Awards CCF-0820198, CCF-
0905530 and IIS-0705772, and by a Gift from the Baystate
Medical Center, Rays of Hope Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not neces-
sarily reflect the views of the NSF.

The authors gratefully acknowledge the contributions of
Tiffany Chao, Rachel Cobleigh, Heather Conboy, Huong
Phan, Mohammad Raunak, Danhua Wang, Alexander Wise,
and Junchao Xiao.

7. REFERENCES

[1] A. G Cass, B. S. Lerner, S. M. Sutton, Jr, et al.
Little-JIL/Juliette: a process definition language and

325

(3]

(4]

(8]
9]

(10]

(14]

(18]

[16]

(17]

interpreter. In 22nd Intl. Conf. on Softw. Eng., p. 754757,
2000.

B. Chen, G. S. Avrunin, E. A. Henneman, et al. Analyzing
medical processes. In 30th Intl. Conf. on Softw. Eng., p.
623-632, 2008.

S. Christov, B. Chen, G. S. Avrunin, et al. Formally defining
medical processes. Methods of Information in Medicine.
Special Topic on Model-Based Design of Trustworthy Health
Information Systems, 47(5):392-398, 2008.

S. Christov, B. Chen, G. S. Avrunin, et al. Rigorously defining
and analyzing medical processes: An experience report. Models
in Softw. Eng.: Wkshps and Symposia at MoDELS 2007,
Reports and Revised Selected Papers, p. 118-131, 2008.

S. C. Christov, G. S. Avrunin, L. A. Clarke, et al. A
benchmark for evaluating software engineering techniques for
improving medical processes. In Intl. Conf. on Softw. Eng.,
Wkshp. on Softw. Eng. in Health Care, 2010.

R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User
guidance for creating precise and accessible property
specifications. In 14th ACM SIGSOFT Intl. Symposium on
Foundations of Softw. Eng., p. 208-218, 2006.

C. Damas, B. Lambeau, F. Roucoux, et al. Analyzing critical
process models through behavior model synthesis. In 31st Intl.
Conf. on Softw. Eng., p. 441-451, 2009.

W. E. Deming. Out of the Crisis. MIT Press, Cambridge, 1982.
M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in
property specifications for finite-state verification. In 21st Intl.
Conf. on Softw. Eng., p. 411-420, 1999.

M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, et al. Flow analysis
for verifying properties of concurrent software systems. ACM
Transactions on Softw. Eng. and Methodology, 13(4):359-430,
2004.

E. A. Henneman, G. S. Avrunin, L. A. Clarke, et al. Increasing
patient safety and efficiency in transfusion therapy using
formal process definitions. Transfusion Medicine Review,
21(1):49-57, 2007.

E. A. Henneman, R. Cobleigh, G. S. Avrunin, et al. Designing
property specifications to improve the safety of the blood
transfusion process. Transfusion Medicine Reviews,
22(4):291-299, 2008.

P. L. Henneman, D. L. Fisher, E. A. Henneman, et al. Patient
identification errors are common in clinical simulation. Annals
of Emergency Medicine, 2009.

G. J. Holzmann. The SPIN Model Checker. Addison-Wesley,
2004.

N. Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995.

M. Peleg, S. W. Tu, J. Bury, et al. Comparing
computer-interpretable guideline models: A case-study
approach. JAMIA, 10:2003, 2002.

M. Raunak, L. Osterweil, A. Wise, et al. Simulating patient
flow through an emergency department using process-driven
discrete event simulation. In 1st ICSE Wkshp. on Softw. Eng.
in Health Care, p. 73-83, 2009.

W. A. Shewhart. Economic control of quality of manufactured
product. D. Van Nostrand Company, Inc, 1931.

D. H. Stamatis. Failure Mode and Effect Analysis: FMEA
from Theory to Ezecution. American Society for Quality, 1995.
‘W. W. Stead and H. S. Lin, editors. Computational
Technology for Effective Health Care: Immediate Steps and
Strategic Directions. Nat. Acad. Press, 2009.

A. ten Teije, M. Marcos, M. Balser, et al. Improving medical
protocols by formal methods. Artificial Intelligence in
Medicine, 36(3):193-209, 2006.

W. Vesely, F. Goldberg, N. Roberts, et al. Fault Tree
Handbook (NUREG-0492). U.S. Nuclear Regulatory
Commission, 1981.

J. Xiao, L. J. Osterweil, Q. Wang, et al. Dynamic resource
scheduling in disruption-prone software development
environments. In 13th Intl. Conf., FASE 2010, 2010.

