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ABSTRACT
Modern data center applications are complex distributed systems
with tens or hundreds of interacting software components. An im-
portant management task in data centers is to predict the impact of
a certain workload or reconfiguration change on the performance
of the application. Such predictions require the design of “what-if”
models of the application that take as input hypothetical changes in
the application’s workload or environment and estimate its impact
on performance.

We present Predico, a workload-based what-if analysis system
that uses commonly available monitoring information in large scale
systems to enable the administrators to ask a variety of workload-
based "what-if" queries about the system. Predico uses a network
of queues to analytically model the behavior of large distributed
applications. It automatically generates node-level queueing mod-
els and then uses model composition to build system-wide models.
Predico employs a simple what-if query language and an intelli-
gent query execution algorithm that employs on-the-fly model con-
struction and a change propagation algorithm to efficiently answer
queries on large scale systems. We have built a prototype of Predico
and have used traces from two large production applications from a
financial institution as well as real-world synthetic applications to
evaluate its what-if modeling framework. Our experimental evalu-
ation validates the accuracy of Predico’s node-level resource usage,
latency and workload-models and then shows how Predico enables
what-if analysis in four different applications.

1. INTRODUCTION
Today online server applications have become popular in do-

mains ranging from banking, finance, e-commerce, and social net-
working. Such server applications run on data centers and tend to
be complex distributed systems with tens or hundreds of interact-
ing software components running on large server clusters. As an
example, consider an online stock trade processing application of a
major financial firm, depicted in Figure 1(a). The application con-
sists of 471 separate software components that process incoming
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stock trades at low latencies; the graph depicts the flow of requests
through the various application components. Figure 1(b) shows an-
other application which disseminates stock prices and market news
to the terminals of stock traders; this application consists of 8970
components. The components are depicted as nodes of the graph
and process stock data and news from a multitude of sources, fil-
ter, aggregate, and then disseminate updates for each company to
desktops that subscribe to such streams. Such data center applica-
tions differ significantly in scale and complexity when compared to
traditional multi-tier web applications.

Typical data center applications evolve over time as new func-
tionality is added, its workload volume grows, or its hardware or
software is updated. To deal with such changes, an important man-
agement task for administrators is to predict the impact of any
planned (or hypothetical) change on the performance of individ-
ual components or the entire system. This task, which is referred
to as what-if analysis, requires the design of what-if models that
take as input a potential change in the application workload or its
settings and predict the impact of that change on application be-
havior. However, given the complexity of today’s data center appli-
cation, manual design of such what-if models is no longer feasible
since data center administrators may not be able to comprehend the
behavior of a complex system of tens of interacting components.
Consequently, a what-if analysis system must be able to automat-
ically derive such models from prior observations of application’s
behavior. Further, the system must be able to scale to large com-
plex applications with hundreds of interacting components, while
allowing rich what-if analysis efficiently. While a number of mod-
eling techniques have been proposed for distributed or multi-tier
web applications [10, 14, 16, 13, 6, 12], such models are not di-
rectly targeted for what-if analysis or are not designed to scale to
larger data center applications such as the ones illustrated in Fig-
ure 1.

In this paper, we present Predico, a what-if analysis system to
predict the impact of workload changes on the behavior of data
center applications. Predico makes the following contributions:

• Modeling of complex data center applications: Predico em-
ploys a queuing-theoretic framework to model large distributed
data-center applications. Our modeling framework is based
on a network of queues and captures the dependence be-
tween the workload of each component of the application
and the corresponding resource utilization, request latency
and the outgoing workloads to other components. Predico
uses monitoring data and request logs to estimate the pa-
rameters of such a model and employs model composition
to create larger system-level models for groups of interacting



(a) Stock Trade Processing Application

(b) Stock Price and Market Data Dissemination Application

Figure 1: Structure of two production financial applications; only a subset of each application is shown for brevity.

application components.

• Intelligent query execution Predico uses a novel change prop-
agation algorithm that uses these models to execute a what-
if query and determine the impact of a workload change on
other components. This algorithm first computes an influ-
ence graph to determine which application components are
impacted by the specified what-if query and then uses a change
propagation technique to propagate the specified workload
change through each component in the influence graph. The
change propagation algorithm can handle application com-
ponents that saturate due to a workload increase, which en-
hances query result accuracy.

• Prototype Implementation: We have implemented a proto-
type of our Predico what-if modeling framework. Our proto-
type incorporates a What-If Query Language (WIFQL) that
can be used by administrators to pose queries. Since our pro-
totype needs to handle large data center applications with
hundreds of interacting components, we implement several
optimizations to scale the modeling framework to such large
applications. Specifically Predico uses on-the-fly model con-
struction and employs a cache of preciously constructed mod-
els to reduce model computation overhead.

• Evaluation based on real traces and real-world synthetic ap-
plications. We conduct an experimental evaluation of Predico
using traces of two large production applications from a fi-
nancial institution as well as realistic synthetic applications.
Our experimental results validate the accuracy of Predico’s
modeling framework in building build node-level resource
usage, latency and workload models and illustrate Predico’s
ability to enable accurate what-if analysis.

2. BACKGROUND AND PROBLEM FORMU-
LATION

Our work assumes a large distributed application with N inter-
acting components. We assume that the application is structured
as a directed acyclic graph (DAG), where each vertex represents
a software component and edges capture the interactions (i.e., flow
of requests) between neighboring nodes. For simplicity, we assume
that each component runs on a separate physical (or virtual) ma-
chine.1 We assume that the DAG has one or more source nodes, that
serve as entry points for application requests and one or more sinks,
that serve as exits. The flow and processing of requests through
such applications is captured by the DAG structure and is best ex-
plained with examples.

Figure 1 depicts the DAGs of two production financial applica-
tions. The first application is a stock trade processing application
at a major financial firm; the application consists of 471 nodes and
2073 edges, of which a subset are shown in the figure. New stock
trade requests arrive at one of the source nodes and flow through the
system and exit from the sink nodes as “results”. Each intermediate
node performs some intermediate processing on the trade request
and triggers additional requests at downstream nodes. Nodes may
aggregate incoming stock trades or break down a large stock order
into smaller requests at downstream nodes. Figure 1(b) shows the
structure of a market data dissemination application that dissemi-
nates stock prices and news updates for a company to trading ter-
minals (“desktops”) of stock traders. In this case, news items arrive
from a number of sources and stock prices are obtained from a va-
riety of exchanges, and this information is processed, transformed,
filtered and/or aggregated and disseminated to any desktop node
that has subscribed to information for a particular company. This
application has 8970 nodes and 22719 edges and must provide up-

1This assumption is easily relaxed and we employ it for simplicity
of exposition.



dates at low latency in order for stock traders to make trades based
on the latest market news.

Thus, we assume that requests flow through the DAG, with inter-
mediate processing at each node; a request may trigger multiple re-
quests at one or more downstream child nodes, and each node may
aggregate requests from upstream parents. As can be seen, such ap-
plication are significantly larger and more complex than traditional
multi-tier web applications.

We assume that the DAG structure for each application is known
a priori (there are automated techniques to derive the DAG struc-
ture by observing incoming and outgoing traffic at each node [7]).
We assume that each node in the DAG is a black box—i.e., we can
observe the incoming and outgoing request streams along its edges
and the total node-level utilization but that we have no knowledge
of the internals of the software component and how it processes
each request. This is a reasonable assumption in practice since IT
administrators typically do not have direct knowledge of the appli-
cation logic inside a software component, requiring us to treat it as
a black box. However, administrators have access to request logs
that the application components may generate and can also track
OS-level resource utilizations on each node.

We assume that there are R different types of requests in the en-
tire distributed application. Each node can receive different types
of requests belonging to the R types and can in turn trigger one or
more requests of one of the R types at downstream child nodes.
Given our black box assumption, the precise dependence of what
type of outputs are generated by what set of inputs is unknown
(and must be learned automatically by correlating request logs at a
parent and a child). Similarly, the precise processing demands im-
posed by a set of requests and the request latencies/response times
are unknown and must also be learned.

Assuming such a data center application, our first problem is
to model each application component (i.e., node of the DAG) by
capturing the dependence between the incoming workload mix and
the request latency, resource utilization, and the outgoing work-
load. Second, we need to use these node-level models to create
system-level models that capture the behavior of a group of inter-
acting nodes. Third, given such system-level models, we wish to
enable rich workload-based what-if analysis of the distributed ap-
plication. Such an analysis should allow administrators to pose
what-if queries to determine the impact of a workload change at
a particular node(s) on some other node(s) of the system. A typ-
ical what-if query is assumed to contain two parts: (i) the “if”
part, which specifies the hypothetical workload change, and (ii) the
“what” part, which specifies the nodes where the impact of this
change should be computed. For instance, a volume-based what-if
query could ask “what is the impact of doubling the volume of re-
quests seen by source node i on the incoming workload and CPU
utilization seen at some downstream node j?” Similarly, what-if
analysis could pose queries on the impact of a change in the work-
load mix: “what is the impact of a change in the workload mix
from < λA, λB , · · · > to < λ′A, λ′B , · · · > at intermediate node
i on the disk utilization of a downstream node j?” Queries could
also be concerned with the impact on latency: “what is the impact
of doubling the volume of type B requests at node j on the latency
of requests at node i?" Queries could also pose general questions
such as “will any node in the system saturate if the incoming work-
load at all source nodes increase by 30%?”.

Thus, to design our what-if analysis system, we must address the
following three problems: (i) how should we model the dependence
between the incoming workload at a node and the request latency,
node utilization and the outgoing workload to downstream nodes?
(ii) how should we combine node-level models to create system-
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Figure 2: Modeling a data center application using an open
network of queues

level models that capture the aggregate behavior of a group of in-
teracting nodes in the DAG? (iii) what algorithms should be used
to efficiently execute a what-if query using these models? From an
implementation standpoint, we are interested in a fourth question
as well: (iv) How should our system scale to complex data center
applications with tens or hundreds of components?

3. MODELING A DATA CENTER APPLI-
CATION

In this section, we first present a queuing model for a data cen-
ter application that allows us to model the utilization and response
time of these nodes. We then describe the construction of models
to capture the input/output workload dependencies of these nodes.
Finally, we explain how these node-level models are composed to
construct system-wide models.

3.1 Queuing theoretic node-level models
Consider the DAG of a data center application with k nodes de-

noted by n1, . . . , nk and R different type of requests. We model
the data center application using an open network of k queues, one
for each node with R classes of requests. We model each node as
a M/G/1/PS queue i.e. the service times are assumed to have an
arbitrary distribution and the service discipline at each node is as-
sumed to be processor sharing (PS). Requests can arrive at a queue
from other queues which are its parents in the DAG or in the case
of source nodes of the DAG from external sources. For analytical
tractability we assume that the distribution of inter-arrival times of
requests coming from outside have a poisson distribution. We de-
note the arrival rates of requests of class r at the queue ni from
outside by λr

0,i. We assume that different classes of requests ar-
riving at a queue have different mean service rates. We denote the
mean service rate of requests of class r at node i by µr

i .
Thus the DAG of a data center application is modeled as an open

network of queues as shown in Figure 2. We use the well known
queueing theory result called the BCMP theorem [3] to analyze
this network of queues. The BCMP theorem states that for such
queueing networks the utilization of a node ni, denoted by ρi, is
given by :

ρi =

RX
i=1

ρr
i =

RX
i=1

λr
i

µr
i

(1)

where ρr
i denotes the resource utilization at node ni due to class

r requests, λr
i denotes the arrival rate of requests of type r at node

ni and µr
i denotes the service rate of requests of type r at node

ni. This equation models the resource utilization of the node as
a function of the per-class arrival rate and per-class service rates.



Similarly, the average number of requests of type r at node ni under
steady-state, denoted by K

r
i , is given by:

K
r
i =

ρr
i

1− ρi
(2)

We can now use Little’s Law to find out the T
r
i , the average

response time of requests of type r at node ni using Equations 1
and 2:

T
r
i =

K
r
i

λr
i

=
1

µr
i (1− ρi)

(3)

This equation models the response time at a node as a function of
the total node resource utilization ρi and the per-class service rate
µr

i .
Given a value for the per-class workload at a node λr

i we can
use Equation 1 to find out the utilization ρi and then use the com-
puted value ρi to find out the response time using Equation 3. The
per-class service times µi

r is the only unknown in the equations.
Since we assume that each node of the data center application is a
black-box we need to estimate these unknowns from the available
information gathered from monitoring of the node. We assume that
requests logs at a node contain an entry for each incoming requests
containing the timestamp and the requests string or type of request
and that the resource utilization of the node is being periodically
monitored using a tool like iostat. Given such logs, multiple val-
ues of ρi and λr

i can be collected over time. Since Equation 1
captures the relationship between these R + 1 variables, the val-
ues of the unknown per-class service rates µr

i can be numerically
estimated using a regression method such as least squares.

3.2 Workload models
While queueing theory allows us to model the performance met-

rics of a node, we also need to capture the relationship between the
incoming workload and the outgoing workload of a node.

To understand the node-level workload models that Predico needs
to build, consider the node shown in Figure 3. This node n1 has
two parent nodes n2 and n3 and three child nodes n4, n5 and n6.
Let λr

2,1 and λr
3,1 denote the arrival rate of requests of type r from

node n2 and n3 respectively to node n1. Similarly, let λr
1,4, λ

r
1,5

and λr
1,6 denote the arrival rate of requests of type r at node n4, n5

and n6 respectively from node n1. Predico needs to build models
that capture the workload of each outgoing edge as functions of
workload of the incoming edges. Thus, we seek a function for each
of λr

1,4, λ
r
1,5 and λr

1,6 that expresses them as a function of
−−→
λ2,1 and

−−→
λ3,1 where

−→
λi,j is short-hand for observed rates of various request

types on the edge going from node ni to nj i.e. (λ1
i,j , λ

2
i,j , · · ·λR

i,j)
. Similarly, we seek functions for each of the other request types :

λw
1,4 = fw

1,4(
−−→
λ2,1,

−−→
λ3,1) , 1 ≤ w ≤ R (4)

We model workload-to-workload dependencies as piecewise lin-
ear functions. Although these dependencies are linear in steady
state, we choose piecewise linear modeling to capture various sys-
tem artifacts like hot cache, cold cache and load-aware servers. Un-
der this modeling assumption, we can rewrite Equation 4 as a set
of linear functions :

n1

n2 n3

n6n5n4

Figure 3: Node-level model
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Figure 4: Model Composition

λw
1,4 =

8>>>><>>>>:

−→
W 1

1 ·
−−→
λ2,1

ᵀ +
−→
W 1

2 ·
−−→
λ3,1

ᵀ if
−→
0 ≤ (

−−→
λ2,1,

−−→
λ3,1) ≤

−→
V1−→

W 2
1 ·
−−→
λ2,1

ᵀ +
−→
W 2

2 ·
−−→
λ3,1

ᵀ if
−→
V1 < (

−−→
λ2,1,

−−→
λ3,1) ≤

−→
V2

. . . . . . . . . . . . . . .
−−→
W n

1 ·
−−→
λ2,1

ᵀ +
−−→
W n

2 ·
−−→
λ3,1

ᵀ if
−−−→
Vn−1 < (

−−→
λ2,1,

−−→
λ3,1) ≤ ∞

(5)
where the entire range of values that the input (

−−→
λ2,1,

−−→
λ3,1) can

take is divided into n segments with the breakpoint
−→
Vi being the

point of transition between the (i − 1)th segment and the ith seg-

ment and
−−→
W k

2 ·
−−→
λ3,1

ᵀ is shorthand for
Pi=R

i=1 W k,i
2 ∗ λi

3,1 . There

is a linear equation for each segment and
−−→
W k

1 is the weight vector
in the linear equation for the kth segment with weights for each

request type (W k,1
1 , W k,2

1 , . . . , W k,R
1 ) and similarly for

−−→
W k

2 .
Equation 5 relates the outgoing workload to incoming workload,

but to use it for computing the outgoing workload λw
1,4 for a given

value of incoming workload
−−→
λ2,1 and

−−→
λ3,1 we need to first find

the number of segments, n, and the breakpoints which define the
segments, Vi, 1 ≤ i ≤ n − 1. We then need to find individual
linear functions for each segment by computing the weights of the
corresponding linear function W k

1 and W k
2 . We use a regression

analysis technique called multivariate adaptive regression splines
( MARS ) [4] that automatically fits piecewise linear functions on
data. Predico uses the monitoring data that contains multiple mea-
surements of the variables

−−→
λ2,1,

−−→
λ3,1 and λw

1,4 to give as training
data to MARS which finds out the different segments and the linear
function in each segment.

3.3 Model Composition: From Node-level to
System-level Models

Predico uses node-level models to construct system-wide models
using model composition. Model composition essentially “chains”
together multiple node-level models to compute the workload, re-
source utilization and response time of a node as a function of one
or more ancestor nodes. We illustrate the composition algorithm
used by Predico using an example. Consider the sub-graph in Fig-
ure 4 that shows a parent node n2, extending our earlier example
in Figure 3. At the node-level, Predico can compute the outgoing
workload going from node n2 to node n1,

−−→
λ2,1, as a set of R piece-

wise linear functions, one for each request type :

λw
2,1 = fw

2,1(
−−→
λ8,2,

−−→
λ7,2) , 1 ≤ w ≤ R (6)



Equation 4 gives the outgoing workload going fron node n1 to n4 :

λw
1,4 = fw

1,4(
−−→
λ2,1,

−−→
λ3,1) , 1 ≤ w ≤ R (7)

Substituting the value of
−−→
λ2,1 from Equation 6 into Equation 7 we

obtain a “composed model” :

λw
1,4 = fw

1,4(
−−→
f2,1(
−−→
λ8,2,

−−→
λ7,2),

−−→
λ3,1) , 1 ≤ w ≤ R (8)

where
−−→
f2,1(
−−→
λ8,2,

−−→
λ7,2) is a shorthand for (f1

2,1(
−−→
λ8,2,

−−→
λ7,2), f

2
2,1(
−−→
λ8,2,

−−→
λ7,2)

, . . . , fR
2,1(
−−→
λ8,2,

−−→
λ7,2). Doing so enables the outgoing workload

sent from node n1 to n4 to be expressed as a function of incom-
ing workload of parent node n2. This process can be repeated for
the outgoing workload going to nodes n5 and n6 from node n1 and
can also be recursively extended to nodes that are further upstream
from n2.

Creation of the composed model shown in Equation 8 requires
composing the piecewise linear function fw

1,4 with each of the R
piecewise linear functions fw

2,1, 1 ≤ w ≤ R. Composing two
piecewise linear functions f1 and f2 where f1 is defined by a set
of L1 segments with a linear function defined over each and f2 is
defined by a set of L2 segments with a linear function defined over
each, can be performed in O(L1 + L2) time by sorting the set of
breakpoints of both f1 and f2 and then creating new L1 + L2 seg-
ments with a linear function defined over each segment where the
linear function in each segment is obtained by simply composing
the linear functions in the corresponding segments of f1 and f2.
Thus the composed model shown in Equation 8 is again a piece-
wise linear function which captures the relation between the out-
going workload of node n1 and the incoming workload of a parent
node n2.

We can now do a similar composition to find the dependence
of the resource utilization of node n1, denoted by ρ1, and the re-
sponse time of requests of type r at node n1, denoted by T

r
1 on the

incoming workload of parent node n2 denoted by
−−→
λ8,2,

−−→
λ7,2. Sub-

stituting Equation 6 into the resource utilization equation given by
Equation 1 we get :

ρ1 =

RX
i=1

ρi
1 =

RX
i=1

λi
1

µi
1

=

RX
i=1

λi
3,1 + λi

2,1

µi
1

(9)

=

RX
i=1

λi
3,1 + f i

2,1(
−−→
λ8,2,

−−→
λ7,2)

µi
1

(10)

which expresses the resource utilization of node n1 as a function
of the incoming workload of node n2. Similarly, we can substitute
from Equation 10 into the response time Equation 3 to express the
response time of request type r at node n1 as a function of the
incoming workload of parent node n2 :

T
r
1 =

1

µr
1(1− ρ1)

(11)

4. ANSWERING WHAT-IF QUERIES
In this section we describe the three step process used by Predico

to answer a given what-if query. The execution of a what-if query
is a three step process comprising of: 1) finding the influence graph
of the given query, 2) creating the node-level models of the nodes in
the influence graph using the modeling technique described above
and 3) using the change propagation algorithm to execute the
query. We describe the three steps in greater detail below.

4.1 On-the-Fly Model Construction using the
Influence Graph

Since the number of nodes and edges in the DAG may be large in
complex applications, it is not economical to precompute all possi-
ble node-level models and periodically recompute models that have
become invalid due to an actual workload or hardware change. In-
stead Predico employs a “just-in-time” policy to compute models
on-the-fly when a query arrives; only those models that are neces-
sary to answer the query are computed. Models from prior queries
are cached and reused if they are still valid. Predico uses the no-
tion of an influence graph to determine which models should be
constructed to answer a query. Given a what-if query, the influence
graph is the set of all possible paths from the nodes in the “if” part
of the query to the nodes in the “what” part. Basically the influ-
ence of a workload change will propagate along all paths from the
“if” nodes/edges to the “what” nodes; so the influence graph cap-
tures all of the nodes that must be considered to answer the query
and other nodes in the DAG can be ignored.

Upon the arrival of a what-if query, Predico first computes the
influence graph by generating the set of nodes that lie along all
paths from the “if” nodes/edges to the “what” nodes. It then trig-
gers on-demand construction of node-level workload models for all
the nodes in the influence graph and node-level resource utilization
and response time models for the “what” nodes alone. The use of
the influence graph to prune the DAG and the reuse of previously
computed models from the model cache enhances the scalability
of the system and reduces computational overheads. The influence
graph is also crucial for efficient query execution, as we will see in
the next section.

4.2 Query Execution Using Change Propaga-
tion

Input : node-level models and influence graph for a what-if
query

Output: value of workload/resource usage at "what"
nodes/edges

for s In "if" nodes/edges do
nodeQueue← s
while nodeQueue 6= ∅ do

currentNode← Pop(nodeQueue)
for e In GetIncomingEdges(currentNode) do

if ValueChanged(e) then
GetChangedValue(e)

else
GetUnchangedValue(e)

for o In GetOutgoingEdges(currentNode) do
if o is in the influence graph then

use node-level model of currentNode to find
workload value on o
SetValue(o)
ValueChanged(o) = TRUE

for c In GetChildNodes(currentNode) do
if c is in the influence graph then

Push(nodeQueue,c)

Algorithm 1: Change Propagation via the Influence Graph

After creating the node-level models for the nodes of the influ-
ence graph, Predico now needs to “execute” the query. Query exe-
cution involves propagating the specified workload change through
the influence graph, one node at a time, to compute its final im-
pact on the nodes/edges specified in the “what” part of the query.



query = what_part if_part ;
what_part = "compute" ( simple_compute_part | compound_compute_part );
compound_compute_part = ( simple_compute_part "AND" ( simple_compute_part

| compound_compute_part ));
simple_compute_part = ( "cpu utilization" | "spare capacity" | "latency" ) "at nodes"

node_id {, node_id } ) | "workload on" ( edge_id {, edge_id } );
edge_id = "(" node_id, node_id ")" ;
if_part = "if" ( simple_change_part | compound_change_part );
compound_change_part = ( simple_change_part "AND" ( simple_change_part

| compound_change_part) );
simple_change_part = "workload" { "for request class" request_class_id }

( ("at node" node_id ) | ("on edge" edge_id ) ) set_operator value <EOL>;
set_operator = "*=" | "\=";

Figure 5: The grammar for Predico’s What-If Query Language (WIFQL)

What-If
Analysis
Engine

On-the-fly
modeling
engine

model
cache

Monitoring &
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WIFQL
queriesUs
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Figure 6: Predico Architecture

Once the workload change has been propagated to the nodes in
the “what" part, the node-level models can be used to answer the
query. Change propagation is equivalent to model composition—
instead of directly computing a composed model for the “what”
nodes/edges as a function of the “if” nodes/edges, the propagation
algorithm propagates the specified change through the influence
graph all the way down to the nodes/edges in the “what” part to
achieve the same result.

Predico’s change propagation algorithm is described in Algo-
rithm 1. Given node-level models and the influence graph, the
change propagation algorithm traverses the influence graph in a
breadth first manner. It starts with the nodes/edges in the “if” part
and computes the values for the changed workload and then uses
the model to compute its impact on the outgoing workload. This
process is referred to as propagating the change from the incom-
ing edges of a node to its outgoing edges. To illustrate, consider
a query that is interested in estimating the impact of a doubling of
the workload for a particular edge. If the original request rate was
10 req/s, then the new workload will be 20 req/s for that edge. This
new value is used, along with the unchanged request rates for all
other edges not impacted by the change, to compute the outgoing
request rates for that node.

As shown in Figure 1, the algorithm proceeds in a breadth first
fashion through the influence graph, starting with the “if” nodes/edges
and computing the outgoing workload for each of the “if” nodes.
The outgoing workload of a node becomes the incoming workload
for downstream node(s), and the change propagation process re-
peats, one node at a time, in a breadth-first fashion, until the change
has propagated to all of the “what” nodes/edges. At this point, the
algorithm computes the value of interest at the node by using the
node-level models and terminates.

4.3 Saturation-aware Change Propagation
The basic change propagation algorithm outlined above naively

assumes that each node has infinite resources and that any specified
workload change will fully propagate through all of the nodes. In
practice, however, each node has finite resources. If the change
to the incoming workload causes the node to saturate, then only a
portion of a workload increase will propagate to the downstream
nodes and the remaining requests will be dropped. For example,
if a node is presently servicing 100 req/s and is 70% utilized, then
a doubling of the workload may cause the node to saturate long
before the workload increases to 200 req/s and drop some of the
incoming requests. Thus, downstream nodes will not see the full
impact of the doubling of the workload at this parent node.

Hence change propagation must consider the impact of the work-
load change on the node utilization and only propagate the full

workload change in the absence of saturation; otherwise, only that
fraction of the workload increase, until saturation is reached, should
be propagated. To do so, we enhance our basic change propagation
algorithm to make it saturation-aware. Our enhanced algorithm
also proceeds in a breadth-first fashion. However, it first com-
putes the utilization of all resources on the node using the incoming
workload rates (using Equation 1). If the utilization of any resource
exceeds 100%, then the workload change will cause saturation on
the node. In this case, the incoming request rates are reduced pro-
portionately so that the utilization of the bottleneck resource drops
to just under 100%. This reduced workload is propagated through
the node, like before and the remaining requests are assumed to
be dropped. On the other hand, if no resource utilization exceeds
100%, then the full incoming workload is propagated, like in the
basic algorithm. Our enhanced algorithm ensures that the impact
on the “what” nodes and edges will match the actual behavior in
practice; a list of saturated intermediate nodes can be optionally
listed with the query result.

5. PREDICO IMPLEMENTATION
This section describes WIFQL, a query language that can be used

to pose what-if queries to Predico and the implementation details
of Predico prototype.

5.1 Posing What-if Queries in Predico
Since the goal of Predico is to enable users to understand the

impact of potential workload changes on the system behavior, our
system supports a simple query language to enable a rich set of
queries to be posed by IT administrators. Any query in our What-
If Query Language (WIFQL) has two parts: a what part and an if
part. The if part of the query describes the hypothetical change,
while the what part asks the system to compute the impact of that
change on different performance metrics at one or more nodes in
the system. As an example of an WIFQL query, consider

compute workload on edges (n1,n4), (n1,n5) , (n1,n6)
cpu utilization at nodes n1,n2 latency at nodes n1, n2
if workload on (n2,n1) *= 2

workload on (n3,n1) *= 0.5

This example query asks the system to compute the impact of a
doubling of the workload along the edge going from node n2 to n1

and a halving of the workload along the edge going from node n3

to n1 on the CPU utilization and latency at nodes n1 and n2 and
the workload on the edges going from node n1 to nodes n4,n5 and
n6.

Figure 5 describes our query language grammar. As shown, the
if part allows users to specify hypothetical changes to the work-



load or changes to the hardware (e.g., a faster CPU). The workload
changes, which is the focus of this work, can be specified by iden-
tifying one or more edges or nodes in the DAG and indicating a
change in volume or a change in the mix of requests; set operators
such as multiply and divide can be used to specify relative changes
to the current workload, rather than absolute values. The what part
specifies the performance metrics of interest at particular nodes or
edges; several metrics are supported including resource utilizations,
workloads, latencies or spare capacities. As indicated earlier, we
assume that the DAG representing the application is known a priori
and is used by queries to refer to particular nodes and edges of in-
terest and specify workload changes on these nodes or edges.

5.2 Prototype Implementation
We have implemented a prototype of Predico using Python and

the R statistical language to perform what-if analysis in large data
center applications. Figure 6 depicts the high-level architecture of
Predico.

The Predico frontend is implemented using a python implemen-
tation of the lex and yacc parsing tools. It accepts user-posed queries
and parses them by using the grammar rules of WIFQL. User-posed
queries are then executed by the Predico execution engine, which
comprises of two key components; the on-the-fly modeling engine
and the what-if analysis engine. The on-the-fly modeling engine
first computes the influence graph using a graph API in python and
then creates node-level models by using on-the-fly model construc-
tion. The modeling engine retrieves data about the workload on
the incoming and outgoing edges of the node and the total resource
utilization of the node and then invokes an R module for building
the node-level models. The R module uses the MARS function
present in the MDA package to build piecewise linear node-level
workload models and the linear regression function to find the per-
class service rates using least squares regression. Next, the what-if
analysis engine uses these models to answer (“execute”) the query
via the change propagation algorithm to propagate the hypotheti-
cal workload change through the model and compute its impact on
the nodes of interest to the user. The change propagation algorithm
is again implemented by using the graph API written in python.
The what-if analysis engine stores the node-level models computed
by the modeling engine in a model cache that is implemented as
three tables in the MySQL relational database engine; one each for
storing the weight vectors used in node-level workload models, the
breakpoints of the piecewise-linear model and the per-class service
rates on a node required in the node-level resource utilization and
response-time models.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Predico by per-

forming experiments on four applications. We first evaluate the ac-
curacy of the analytical node-level resource utilization and response-
time models and then the piecewise-linear workload models. We
then perform experiments to ascertain the accuracy of system-level
models formed by composition. We then employ Predico to per-
form case studies where we pose what-if queries to Predico and
compare the predictions with ground truth values observed in ac-
tual experimental data.

6.1 Experimental Setup
We evaluate Predico on four different applications. These appli-

cations are chosen from different domains and are of varying scale.
The first two applications are from the financial domain and are

Application #Nodes #Edges Duration Metric # of Records
Market Data 8970 22719 1 day outgoing bytes 7763764Dissemintation
Stock Trade 471 2073 4 days outgoing requests 6060952Processing

Table 1: Characteristics of Production Traces

being used by the data center of a financial institution. The third
application is a benchmark e-commerce application. The fourth
application is a synthetic Java enterprise application.

1. The topology of the first two applications, namely the stock
trade processing and the market data dissemination applica-
tion, is shown in Figure 1. We evaluate our system on traces
collected from these two production financial applications.
The traces collected from the stock trade processing applica-
tion contain the total number of requests sent out by every
component within every 30 second interval. The traces col-
lected from the market data dissemination application con-
tain data for the number of bytes sent out from every com-
ponent on each of its outgoing edge, within every 30 second
interval. Table 1 lists the characteristics of the traces.

2. The third application is the TPCW benchmark which models
an online bookstore application. We implement the TPC-W
application as a 2-node Java servlet based application con-
sisting of the front-end server (Tomcat) and a back-end database
(MySQL). We use a testbed comprising of two virtual ma-
chines for performing this experiment. Each virtual machine
has a single 2.8 GHz Pentium 4 processor with 1GB memory.
We use Tomcat version 5.5.26 and MySQL version 5.1.26
for setting up our TPC-W application. The TPC-W experi-
mental setup allows us to monitor the end-to-end latency and
resource utilization values apart from workload values.

3. The fourth application is an emulated application created from
several configurable Java servlets with each servlet running
inside a Tomcat server that is itself running inside a virtual
machine. The java servlet can be configured to take a desired
processing time to process an incoming request and then trig-
ger a desired number of requests to other such servlets. Thus,
these servlets can be joined together in arbitrary ways to cre-
ate large emulated data center applications having any de-
sired topology.

6.2 Accuracy of Node-level Resource Usage and
Latency Models

We model the data center application as an open network of
queues that lead to Equation 1 which captures the node-level re-
source utilization and Equation 3 which captures the node-level la-
tency. We validate the accuracy of this queueing model using the
TPCW application running on a two server testbed.

The TPC-W web application exposes 14 different servlets which
a customer visiting the website can invoke. We choose two of these
servlets: “new products ” and “execute search”. We use the httperf
load generation tool to simulate requests arriving from outside at
the Tomcat server with exponentially distributed inter-arrival times.
Httperf allows us to generate workload for these servlets with dif-
ferent arrival rates. The CPU utilization at the Tomcat server and
the MySQL server are monitored every 1 second and the Tomcat
logs contain an entry for each requests it processes and the end-
to-end latency of each request. We vary the request arrival rate
of the “execute search” servlet, denoted by λ1

0,1, from 100 to 200
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Figure 9: Composed modeling for Market
Data Dissemination App

requests per second with increases of 10 requests per second. Simi-
larly we vary the request arrival rate of the “new products” servlet,
denoted by λ2

0,1, from 10 to 100 requests per second with increase
of 10 requests per second. Thus we get 100 different pairs of re-
quest arrival rates of each servlet. We run the system with each one
of these 100 arrival rates for 15 minutes and monitor the CPU uti-
lization and end-to-end latency. This gives us the average resource
utilization at each node ρ1, ρ2 and the end-to-end latency for each
request type, T

1
and T

2
. We use half of the 100 values for es-

timating the values of the per-class service rates on each of the 2
nodes, µ1

1, µ
2
1, µ

1
2, µ

2
2. We predict the per-node utilizations ρ̂1, ρ̂2

for the other 50 values using Equation 1. We use Equation 3 to pre-

dict the per-node per-class response times,
ˆ

T
1
1,

ˆ
T

2
1,

ˆ
T

1
2,

ˆ
T

2
2 and add

the per-node response times to get the per-request-type end-to-end
latencies T̂ 1 and T̂ 2. We find the prediction errors by comparing
the model predictions with the values seen during the experiment.
Figure 7 and Figure 8 shows the distribution of prediction errors in
terms of percentage relative error in predicting the resource utiliza-
tion and latency respectively.

By using an open network of queue modeling, we are able to
predict node-level CPU utilization to within 2% of the actual value.
The median prediction error for response time using our modeling
approach is less than 10%. We note that the accuracy of our model-
ing approach is similar or better than recent techniques proposed
in literature [9, 16, 12, 10] for modeling CPU utilization and re-
sponse times .

6.3 Node-level Workload Models Accuracy
We evaluate the accuracy of using piecewise-linear functions

created by using MARS to model the relationship of the outgoing
workload of a node with the incoming workload of the node. We
use the traces collected from the two applications to create these
models and then ascertain the accuracy of these models.

For each of the two applications, we selected each component in
turn and extracted the data for the workload on its incoming edges
and outgoing edges. We then use MARS to estimate a function
which expresses the workload on each outgoing edge of a node as
a piecewise linear function of the workload on all the incoming
edges on the node. We evaluate the accuracy of the piecewise lin-
ear model in predicting the workload on each outgoing edge of this
component. Cross-validation was used to measure the prediction
accuracy; we divide the trace data for the selected component into
training windows of 1 hour each and compute a model using MARS
for each window for each outgoing edge. We then use each model
to predict the data points outside of the window it was trained on;

the deviations between the predicted and actual values were mea-
sured. We use the root mean square (RMS) error as a metric of er-
ror; we divide the RMS error by the range of actual values to report
the results in normalized RMS error (%). The average normalized
RMS error for the models of all the outgoing edges of a component
is taken as the error for that component. We depict the errors for
all the components of the two applications using CDF curves that
show the percentage of components that have errors below a certain
value. Figure 9 shows the errors for the market data dissemination
application while Figure 10 shows the errors for the stock trade
processing application. The curve labeled "Level-1" errors shows
the CDF for the errors. We describe the concept of levels and the
description about the "Level-2" and "Level-3" curves later in this
section. The CDF curves indicate that the workload-to-workload
models of 70% of the components have errors less than 10% in the
case of the market data dissemination application while models for
80% of the components have errors less than 15% in the case of the
stock trade processing application.

Our experimental results show that piecewise linear modeling
provides accurate models of node-level workload for production
data center applications.

6.4 Accuracy of System-level models with in-
creasing composition depth

We evaluate the accuracy of system-level models created by com-
posing multiple node-level models. Composition of multiple node-
level models leads to an accumulation of the error terms. We con-
duct experiments to measure the increase in error with compos-
ing increasing number of node-level models. We again use the
traces from the two financial applications to evaluate the accuracy
of system-level models. We reuse the node-level models of each
component built for validating the accuracy of node-level workload
models in the previous section for this experiment.

We select each component and compose its node-level workload
model with that of its ancestor nodes to express the outgoing work-
load of this component as a function of the incoming workload
of its ancestors. By using composition repeatedly we successively
construct models expressing workload of a component as a function
of its ancestors at different levels. Level 1 model is built between
the outgoing workload of a component and its incoming workload.
Level 2 model is built between the outgoing workload of a compo-
nent and the incoming workload of its immediate parents. Similarly
level i model is built between the component and its ancestors that
are reachable in (i - 1) edges. We again use cross validation to com-
pute the accuracy of these system-level models; we compute these
models for each component using the trace data from one window
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and use it to make predictions on the remaining windows. The aver-
age normalized RMS error for the models of all the outgoing edges
of a component is taken as the error for that component. Figures 9
and 10 show the CDF of normalized RMS errors for each level for
the two applications. The CDF curve drops with increasing levels
implying that the errors increase as we predict the workload of a
node using ancestors higher up the node in the graph. Inspite of the
increasing errors with increasing levels, the errors remain tolerable;
for the Market Data Dissemination application even at level 4 the
prediction errors for 80% of the nodes are less than 20%, while for
the Stock Trade Processing at the level of 3 for 75% of the nodes
the errors are less than 20%.

Composition of piecewise-linear node-level workload models yields
system-level models which are also piecewise-linear. Instead of
using composition repeatedly on multiple node-level models, we
can also directly create system-level models that capture the rela-
tionship between the incoming workload of a node and the work-
load at some node downstream to this node. We can extract the
data on the outgoing edges of the downstream node and the in-
coming edges of the ancestor node and then use MARS to fit a
piecewise-linear function just like in the case of creating a node-
level workload model. We compare the CDF of errors obtained
by using system-level models built using this direct modeling ap-
proach with that obtained by using composition to build these mod-
els. Figures 11 and 12 plot our results on traces of the Market Data
Dissemination application and the Stock Trade Processing applica-
tion respectively. The CDF of prediction errors for models created
using direct modeling closely follows the CDF of prediction errors
obtained by using composition-based models. Composition based
modeling, however, provides us with the added benefit of being
able to reuse node-level models and can also account for node sat-
uration, an aspect direct modeling can not capture.

Our results on using composition to create system-level models
on the traces collected from the two production applications reveal
that even with increasing composition depth, the system-level mod-
els are effective in predicting workload.

6.5 Accuracy of System-level models with vary-
ing topology

The node-level models can be composed in a number of ways to
create a system-level model depending on the topology of the DAG.
We perform experiments to ascertain the prediction accuracy of
composed models under different topologies. For this experiment
we select some subgraphs in the DAGs for the two applications.
We select subgraphs that correspond to three topologies-chain, split
and join. These topologies correspond to different ways in which

e1 e2

e3

e4

e5

74

73

92 8119 4

52111 20 5 101
Prediction Source Prediction Target

e1 e2 e3 e4
e3 2.4% 2.6%
e4 4.7% 3.05% 4.39%
e5 4.67% 2.95% 4.33% 0.79%

(a) (b) (c)
Prediction Prediction Target

Source
81 19 74 73 4 92

111, 20, 5, 101, 52 12.47 % 12.45% 10.2% 9.28% 12.5 % 12.54%
19, 4, 92, 81 10.63% 9.46 %

74 3.34%
(d)

Figure 13: Prediction Errors of composed modeling on differ-
ent topologies

the components can interact with one another in an application: (i)
in the chain topology, each component receives requests from a sin-
gle upstream component, (ii) in the split topology, a component can
send requests to multiple downstream components and (iii) in the
join topology, a component can receive requests from multiple up-
stream components. For each subgraph, we create node-level mod-
els for each component and then use composition to create models
to predict the workload on each outgoing edge of the subgraph. We
measure prediction errors in predicting workload of each outgoing
edge as a function of incoming workload of its ancestors at increas-
ing levels.

Figures 13(a) and 13(b) show the subgraphs that we choose for
this experiment. Figures 13(a) is from the Market Data Dissemi-
nation application and Figure 13(b) is a subgraph from the Stock
Trade Processing application. Figure 13(a) illustrates the chain and
split topologies, while figure 13(b) is an example of a join topol-
ogy. Tables 13(c) and 13(d) show how the errors of the composed
models vary as we predict the workload on various edges/nodes of
the graphs. For the subgraphs selected from the market data dis-
semination application the prediction errors on all edges are within
5% while for the subgraph selected from the stock trade processing
application the prediction errors are within 13%.

The errors reveal that Predico’s composition based modeling
technique performs well even in case of complex application topolo-
gies.

6.6 Workload-only What-if Analysis Case Study
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Figure 14: What-If case study on Market Data Dissemination
Application

We create use-case scenarios to illustrate how Predico can be
used in practice and evaluate its performance in answering what-if
questions which commonly arise in large-scale applications. In this
section, we pose workload-related what-if questions; we choose
subgraphs from the market data dissemination application and the
stock trade processing application and use Predico to predict the
impact of workload changes on source nodes at the workload on
the other edges of the subgraphs.

We first choose two subgraphs from the market data dissemina-
tion application. The first subgraph has 1 source node while the
other subgraph has 4 source nodes. Due to space constraint we
show the topology of these subgraphs in Figure 17 and 18 in the
Appendix.

On the first subgraph we pose the query: “what happens to the
workload on downstream edges of subgraph 1 if the the outgoing
workload of the single source node increases by 2 and 2.5 times the
current value”. We examine the application traces and find periods
of 1 hour duration each, h1,h2 and h3, such that the outgoing work-
load from the source node increases by 2 and 2.5 times the work-
load in h1 in the hours h2 and h3 respectively. Predico uses the
trace from hour h1 and then predicts the workload values in hours
h2 and h3. We compare the ground truth value of the workload
seen in the two hours and compare Predico’s predictions to com-
pute the errors. Figure 14(c) plots the average of the errors over
all the downstream edges in terms of the normalized RMS error for
each of the two changes mentioned in the what-if question.

The second subgraph has 4 source nodes and we pose a query
which specifies different changes in workload on the 4 source nodes.
We pose the query: “what happens to the workload on the down-
stream edges of subgraph 2 if the outgoing workload at the source
nodes changes to the values shown in Table 14(b)”. Again we em-
ploy the same technique as we used in the previous experiment to
find out Predico’s accuracy in answering this what-if query; we find
out periods of 1 hour duration each in the application traces where
these changes were observed and compare Predico’s predictions
with ground truth values.

Figure 14(c) plots the average of the normalized RMS errors in
predicting workload of all the edges of the two subgraphs for the
2 hours. The error bar charts show that Predico is able to answer
what-if queries with less than 16% error for both these subgraphs.

We next choose two subgraphs from the stock trade processing
application; subgraph 3 with 2 source nodes shown in Figure 15(a)
and subgraph 4 with 3 source nodes shown in Figure 15(d).

On the first subgraph we pose the query: “what happens to the

workload on downstream edges of subgraph 3 if the workload on
both the source nodes becomes 1.5 times and 3 times the current
value”. We again compare Predico’s prediction with ground truth
values observed in the traces to compute the errors. Similarly, on
the second subgraph we pose a more complicated query where dif-
ferent source nodes undergo different workload changes: “what
happens to the workload on the downstream edges of subgraph 4
if the workload on the 3 source nodes changes to the values shown
in Table 15(e)”. Figures 15(c) and 15(f) plot the normalized RMS
error in predicting the outgoing workload for the other nodes of
subgraph 3 and 4 respectively for the 2 hours for which predictions
are made. For the subgraphs chosen from the stock trade processing
application, Predico’s errors are less than 18%.

We hypothesize that some of the errors are due to idiosyncrasies
of the trace. The trace collected from the stock trade processing ap-
plication only contain the requests going out of each node and we
assume that these requests are equally distributed among all its out-
going edges; a possible cause of error. Similarly, in the case of the
market data dissemination application, the traces contain the bytes
sent out on each edge and we assume that the number of bytes are
an approximation of the number of requests. This can again lead to
errors since the same number of requests can lead to different bytes
sent out. We note that even under these simplifying assumptions,
Predico is able to make predictions with errors between 10% and
18%.
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Figure 15: What-if case study on Stock Trade Processing Ap-
plication

6.7 Resource Usage What-if Analysis Case Study
We now use Predico to conduct a what-if analysis case study



on an emulated application where we pose resource-usage what-
if questions. We construct this application using the configurable
Java servlets described earlier.

Figure 16(a) shows the topology of the emulated application used
for this experiment. We configure the nodes to send a desired num-
ber of requests to downstream nodes and take a desired processing
time for each request. Node 55 splits the requests it receives equally
between node 52 and node 56. Each of these nodes then send the
requests to node 54. Each request on node 56 takes 8 times the
processing time it takes on node 55 while each request on node 52
takes half the processing time it takes on node 55. Each request on
node 54 takes the same processing time as on node 55. The sys-
tem is first run for half an hour each with incoming request rates
of 10, 20 and 30 requests per second at node 55. Predico is given
the monitoring data collected during this training phase and then
we pose 2 what-if queries on Predico: “what is the CPU utiliza-
tion at the nodes if the incoming workload at the source node is
increased to 2 times and 3 times the current value”. During the
test phase, we run the emulated application with incoming request
rates of 40 requests per second and 60 requests per second for half
an hour each to find the ground truth values of CPU utilization on
all nodes. Table 16(b) shows the CPU utilization at all the nodes of
the application observed during the training phase and test phase.
As the table shows, CPU utilization reaches 100% at node 56 after
the request rate reaches 40 requests per second.

Tables 16(c) shows the errors in terms of relative percentage er-
rors in Predico’s answers obtained by using the basic propagation
algorithm and the saturation-aware propagation algorithm. Since
the errors for the two propagation techniques are the same for node
55 and node 52 we do not show them in the table. The errors reveal
that saturation-unaware propagation makes errors in estimating the
CPU utilization of node 56 and node 54. While for a 2x increase
in workload, the saturation-unaware algorithm makes an error of
2.07% on node 56 and 17% on downstream node 54, its errors
increase to 53% and 29% for the same nodes for the 3x increase
what-if query. For a 3x increase in workload the saturation-unware
propagation technique does not consider that node 56 has saturated
and assumes that the entire workload continues to flows to down-
stream node 54, leading to prediction errors. The saturation-aware
propagation algorithm, however, is able to take into account node
saturation and gives errors of 0.3% and 6% for both the what-if
queries.

The results of this experiment with an emulated application show
that Predico is able to predict resource utilization of nodes with
high accuracy. Moreover, Predico’s change propagation algorithm
is also able to take into account intermediate nodes saturating be-
cause of excessive workload.

7. RELATED WORK
A number of recent efforts have focused on building systems for

performing what-if analysis on various distributed systems. The de-
sign and implementation of a self-predicting cluster-based storage
system is presented in [13]. The self-predicting system is able to
answer what-if questions that administrators frequently ask about
the impact of a decision on the performance of the system. The
approach, however, involves intrusive instrumentation of the sys-
tem in order to make it self-predicting. WISE [12] is a system
for answering what-if deployment and configuration questions for
content distribution networks (CDN). This system enables the user
to ask questions about the impact of commonly occurring CND
scenarios like change in the mapping of clients to servers or de-
ployment of a new data center. WISE deals with systems that span
across large geographies and models the network latency part but
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Node 55 Node 56 Node 52 Node 54

10 7.61872 25.8001 0.5521 5.26423
20 15.2392 51.6336 1.33517 10.9565
30 22.3839 76.4771 1.90553 17.4592
40 29.1731 99.1868 3.03971 27.8751
60 36.6448 99.5503 4.48884 27.0116
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CPU Utilization

Query Saturation-Unaware Saturation-Aware
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2X increase 2.07 17 0.3 6.7
3X increase 53 29 0.4 6

(c) CPU Utilization
Prediction Errors (%)

(a) Topology

Figure 16: Resource Utilization What-If Analysis Case-Study

does not consider the server processing within data centers.
Apart from systems that are directly aimed at performing what-

if analysis, a number of modeling techniques have been proposed
that predict the performance of the system under various workload
conditions. These can be employed for answering what-if ques-
tions about the system. A modeling approach for multi-tier internet
applications based on queuing networks is proposed in [15]; mod-
els are used to predict the response time of the application and the
resource utilization at each tier under a given workload. Linear re-
gression is used to predict the response time and throughput of the
entire system in [16]. The modeling approach uses linear regres-
sion to find out the service time of each transaction type and then
uses queuing models to predict response time and throughput. An
approach for automatically extracting all the invariants of the sys-
tem and capturing them using models is proposed in [6] . Similar to
our automatic model derivation, while the authors of this work also
automatically derive node-level models, their technique is based
on linear models while we have used a queuing-network model-
ing based approach. All these techniques [15],[16],[6] are aimed
towards multi-tier applications while Predico is targeted towards
large-scale distributed systems. Nonstationarity in workloads is uti-
lized to derive models for predicting the resource utilization and re-
sponse time of an application as a function of workload volume and
workload mix [10]. The technique is evaluated on production traces
but the application used for evaluations has few servers. We eval-
uate Predico on a much larger distributed system with hundreds of
components and thousands of interactions. The modeling approach
proposed in [11] creates "profiles" for the different components of
a distributed application to model the resource demands placed by
the components under different workloads on the underlying hard-
ware. Using these models the system can predict the effect of work-
load changes as well as hardware changes on the response time
of the application; the technique is evaluated on benchmark ap-
plications. IRONModel [14] proposes a modeling architecture for
creating robust models. The models are used for answering what-
if questions about the impact of reconfigurations on the response
time and throughput of a large storage system. IRONModel, how-
ever, involves intrusive instrumentation of the system for creating
these models that is not a feasible solution in production environ-
ments. Queueing models have also been used to model large scale
systems [8]. The modeling framework automatically learns the pa-
rameters of these queueing models by using a mathematical pro-
gramming technique. The technique is validated by experiment-



ing with real world traces and predicting performance metrics like
response times, end-to-end delays and utilization. We, in this pa-
per, propose to automatically derive the required models to answer
what-if questions. Building only the required models makes the
technique scalable and enables incremental use of previously con-
structed models.

A number of modeling techniques have also been used for per-
formance debugging in distributed systems. A technique for au-
tomatically inferring dependencies between the components of a
large distributed application by only looking at the number of pack-
ets exchanged between the difference components is proposed in
[2]. These dependencies are then used to determine the source of
a problem. Signal processing techniques have been used to au-
tomatically discover causal paths in a distributed system by only
utilizing passive measurements like the number of messages be-
ing exchanged [1] . The technique discovers the delays being en-
countered at different nodes of the distributed application and this
knowledge is used to ascertain paths that may be responsible for a
large delay.

Similar to the WIFQL language provided by Predico to pose
what-if questions, [5] also designed a new declarative language to
enable administrators to find out the current performance of large
scale applications and understand various performance correlations
of the system.

8. CONCLUSIONS
Data center operators often need to ascertain the impact of un-

seen workload changes on large distributed applications. Predicting
how a certain change in workload will influence complex data cen-
ter applications is a challenging problem that needs automation.
In this paper we presented Predico, a system which enables the
user to perform "what-if" analysis on large distributed applications.
Predico is non-intrusive and only uses commonly available moni-
toring data to construct models and uses a new change propagation
technique to estimate the impact of specified workload changes.

We modeled a large-scale data center application as an open net-
work of queues to derive resource utilization, latency and workload
models. We used traces from two large production applications
from data centers of a major financial institution and data from syn-
thetic enterprise applications to evaluate the efficacy of Predico’s
what-if modeling framework. Our experimental evaluation vali-
dated the accuracy of the node-level resource utilization, response
time and workload models and then showed how Predico enables
what-if analysis in four different applications.
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APPENDIX
Figures 17 and 18 show the two subgraphs of market data dissem-
ination application which were chosen for the what-if analysis case
study in Section 6.6. The subgraph in Figure 17 has 6 nodes with
a single source node, while the larger subgraph shown in Figure 18
has 31 nodes and 4 source nodes.
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Figure 17: Subgraph 1 from the market data dissemination ap-
plication
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Figure 18: Subgraph 2 from the market data dissemination ap-
plication


