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Abstract
We present a practical importance-driven method for GPU-based final gathering. We take as input a point cloud
representing directly illuminated scene geometry; we then project and splat the points to microbuffers which store
each shading pixel’s occluded radiance field. We select points for projection based on importance, defined as each
point’s estimated contribution to a shading pixel. We calculate the splat sizes adaptively based on the importance
values, requiring no separate hole filling step. Our method differs from existing work in that we do not perform
hierarchical traversal of the points; instead, we use importance-driven point sampling, which is fast and suitable
for fully dynamic scenes. In addition, our method makes it easy to incorporate other importance factors such as
glossy to glossy reflection paths. We also introduce an image-space adaptive sampling method, which combines
adaptive image subdivision with joint bilateral upsampling to robustly preserve fine details. We implement our
algorithm on the GPU, providing high-quality rendering for dynamic scenes at near interactive rates.

1. Introduction

Interactive global illumination in dynamic scenes continues
to present a great challenge in computer graphics. A pop-
ular technique in recent years is to perform final gathering
from many point lights [WFA∗05, HPB07]. The idea is to
sample the scene’s illumination as many virtual point lights
(VPLs) [Kel97], then integrate the contributions from all
VPLs to a shading pixel. Because the set of VPLs is the
same for every shading points, gathering is fast and suit-
able for parallel computation. Moreover, approaches such
as [Chr08, REG∗09] adopt a single point cloud to represent
both the illumination and geometry, enabling very fast visi-
bility calculation using point-based rasterization.

In this paper, we present a novel method for GPU-based
final gathering. As in [Chr08], we adopt a single point cloud
to represent directly illuminated scene geometry. We project
and splat these points into each pixel’s microbuffer to com-
pute the occluded incoming radiance field. Our main objec-
tive is to select points for projection based on importance
– their approximated contributions to the shading pixel.
Such an importance-driven method provides fast conver-
gence speed and is suitable for GPU processing.

We start with random sampling to estimate the importance
function, defined as each scene point’s un-occluded contri-

bution to a given shading pixel. We then draw points ac-
cording to the importance function, and splat the selected
points to the pixel’s microbuffer. We compute the splat size
adaptively using the importance value, providing an estimate
of solid angle subtended by the splat. The adaptive splats
eliminate the need for a separate hole filling step in the mi-
crobuffers. To quickly compute the importance function, we
partition the scene points into spatial clusters. Points within
each cluster are treated uniformly.

Our method differs from existing work such as [REG∗09]
in that we do not perform hierarchical traversal of points. In-
stead, we use importance-driven point sampling. This makes
our method suitable for fully dynamic scenes while provid-
ing fast computation speed. Moveover, we can easily incor-
porate other importance factors such as glossy to glossy re-
flection paths, improving the efficiency when sampling such
paths. To reduce the spatial sampling cost, we introduce an
image-space adaptive sampling method. It combines adap-
tive image subdivision with joint bilateral upsampling to ro-
bustly preserve fine details and edges.

We have implemented our algorithms on modern GPUs,
providing high-quality rendering of dynamic scenes at near
interactive rates. We provide a progressive version of the ren-
derer, which allows for fully interactive scene manipulation.
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Figure 1: Global illumination results using our algorithm. These images are rendered at 5122 resolution and are computed in
3∼ 4 seconds on an NVIDIA 480 GTX. Note the realistic surface reflections and indirect shadows.

The rendering quality typically converges in a second, while
full frame rendering is achieved in 3 ∼ 4 seconds. Figure 1
shows several examples.

2. Related Work

Conventional methods for global illumination, such as
Monte Carlo ray tracing or photon mapping, provide high-
quality results offline, but are usually too expensive for in-
teractive applications. Precomputation based methods, such
as [SKS02], exploit offline computed datasets for fast online
rendering, but provide limited support for dynamic scenes.
As a user may wish to manipulate objects, light sources, and
surface materials all at interactive rates, it is difficult to as-
sume any prior knowledge about the scene.

Point-based Global Illumination. Extensive work has
shown that point-based representations are very suitable for
global illumination due to their simplicity and intrinsic par-
allelism. Instant radiosity [Kel97] first proposed to treat in-
direct illumination as a set of virtual point lights (VPLs).
They compute visibility caused by VPLs using shadow map-
ping, which is feasible only for a small number of VPLs.
Incremental instant radiosity [LSK∗07] exploits temporal
coherence and reuses VPLs over time to greatly improve
speed; but it requires smooth movement of the light. Imper-
fect shadow maps [RGK∗08] use a geometry point cloud to
compute approximate shadow maps, significantly speeding
up the visibility calculation with 1024 VPLs.

In [NPW10], screen-space voxelization is used to effi-
ciently gather illumination from area lights, which are ap-
proximated by a small number of VPLs. Recently, [KD10]
introduced a lattice-based structure to store light propagation
volumes. These methods are aimed for rendering plausible
global illumination effects in 3D games.

Lightcuts [WFA∗05] represent indirect illumination as a
hierarchical point cloud, allowing for efficient integration of
all VPLs at sublinear cost. They resolve visibility by using
ray tracing. Matrix row-column sampling [HPB07] clusters

VPLs by sampling a matrix representing the contribution
from each VPL to a subset of the shading pixels. Visibility
is resolved using GPU shadow mapping. While fast, it uses
the same set of VPL clusters for all pixels.

A technique proposed in [HKWB09] extends VPLs to vir-
tual spherical lights (VSLs), which are suitable for scenes
with many glossy materials. Most recently, [DKH∗10] com-
bine global and local lights to efficiently render high-rank
illumination effects. These methods are accurate, but take a
few minutes to render.

By converting polygons to surfels, [Bun05] approximate
ambient occlusion on the GPU for dynamic scenes. They
build a hierarchy of surfels to accelerate the computa-
tion. [Chr08] use a similar representation to compute final
gathering in production quality renderings. A point cloud
is created to represent directly illuminated scene geometry,
and is then hierarchically rasterized to a shading pixel’s mi-
crobuffer. Micro-rendering [REG∗09] is based on a similar
approach and achieves interactive rates by exploiting mod-
ern GPUs. They also introduced importance-warped [Jen95]
microbuffers to efficiently handle glossy BRDFs.

Instead of building and traversing a full hierarchy of
points, our goal in this paper is to present a different for-
mulation that uses importance-driven point projection. The
main benefits are its simplicity and improved support for dy-
namic scenes. Moreover, it allows the incorporation of both
diffuse and glossy importance factors.

GPU-based Photon Mapping. Photon mapping [Jen01]
is widely used to simulate multi-bounce indirect light-
ing. Since the first GPU-based photon mapper introduced
in [PDC∗03], a number of recent papers have demonstrated
impressive results: [ZHWG08] presented a GPU-based kd-
tree for interactive photon mapping; [ML09] introduced a
fast image-space photon mapper for global illumination ef-
fects. These methods achieve fast computation speed by
avoiding final gathering. Recently [WWZ∗09] exploit sparse
irradiance samples to reduce final gather cost. This approach
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is fast, but the sparsity of their irradiance samples is not suit-
able for scenes with complex geometric details.

Importance Sampling. Importance sampling reduces
stochastic sampling noise by drawing samples from an im-
portance function that approximates the integrand. An ef-
ficient importance function can be defined as the product
of the illumination and BRDF. This is called bidirectional
importance sampling [BGH05], which has been studied by
much recent work [CJAMJ05, CETC06, CAM08, WÅ09].
These methods typically rely on ray tracing to compute the
samples’ visibility and thus remain offline; in contrast, we
use microbuffers implemented on the GPU to allow for in-
teractive rendering.

Caching and Interpolation. Indirect lighting is typically
smooth, making it a good candidate for caching or adaptive
sampling. [WRC88] progressively cache irradiance sam-
ples and reuse them during the computation. [TPWG02]
proposed an object-space caching method suitable for dy-
namic scenes, but require parameterized objects. To recon-
struct an image from sparse samples, joint bilateral upsam-
pling [SGNS07] provides efficient nonlinear interpolation
that prevent blurring from crossing feature edges. However,
a regular grid sampling pattern can lead to loss of fine de-
tails around small geometric features. Our method combines
joint bilateral upsampling with adaptive image subdivision,
which can robustly preserve fine details and features. More-
over, we consider both local geometric changes as well as
radiance changes computed on the fly. This produces better
sampling on glossy materials compared to techniques such
as [WWZ∗09], which only consider geometric changes.

3. Algorithms

3.1. Overview

Point Representation. We use S to denote a point cloud
sampled from a scene with directly illuminated radiance.
Each point is associated with a position, normal, delta sur-
face area, and illumination radiance. The points can be gen-
erated using a variety of methods, such as random sampling,
micropolygon subdivision, photon mapping. In our case, we
use the real-time Poisson disk surface sampling algorithm
provided by [BWWM10] to generate points on scene sur-
faces. Due to the uniform distribution, all points are assigned
the same delta surface area. Each point can emit diffuse as
well as glossy radiance.

Microbuffers. Our goal is to project the points to each
shading pixel’s microbuffer, where we store the depth and
color of the closest projection points. Essentially this is using
point rasterization to compute a small environment map at a
shading pixel representing its incoming radiance field. Since
we only need to represent the upper hemisphere, we use a
hemi-octahedral map [WNLH06] to store the microbuffer as
a 32×32 texture. Each pixel in the map is associated with

a direction and a delta solid angle, and all pixels together
cover a 2π solid angle.

Stochastic Sampling. To obtain the microbuffer, we could
project all points. But this brute-force solution is too slow as
there are tens of thousands of points. It is also not necessary
as the microbuffer size (32×32) is much smaller than the
total number of points. To avoid projecting all points, we
draw samples stochastically from S. A simple idea is to pick
a point from S uniformly randomly, thus every point has an
equal probability p = 1

|S| to be selected (|S| is the point set
size). However, this usually leads to a very noisy image.

Clearly a more efficient way is to importance sample the
points. First, every point is assigned an importance value, de-
fined as its estimated contribution to a given shading pixel.
This is the importance PDF function, which we use to draw
samples from S. As an example, we can define importance
as a point’s projected solid angle to a shading pixel. Intu-
itively, this ensures that points subtending large solid angles
are more likely to be selected for projection, while those sub-
tending small solid angles are selected less frequently.

3.2. Importance-Driven Point Splatting

Clustering Points. Since the importance function has to be
created for every shading pixel, evaluating it over all points
is impractical. Instead, we partition the points into clus-
ters, and assign a single importance value per cluster. Points
within each cluster are treated with equal importance. This
essentially approximates the importance function as piece-
wise constants, greatly reducing the evaluation and sampling
cost. This approach is inspired by [WÅ09], where they par-
tition lights into clusters driven by the points’ diffuse illumi-
nation energy. Unlike them, we do not consider illumination
when clustering points, because our points are not necessar-
ily diffuse; moreover, since our point cloud represents both
illumination and geometry, a point that carries no diffuse en-
ergy may still be important as it can occlude other points.

We partition the points using a simple spatial clustering.
We typically create 512 clusters, using a process similar to
building a kd-tree, except we only need to build the first 9
levels. Once the clusters are created, they are treated inde-
pendently.

Evaluating Per-Cluster Importance. Next, we need to es-
timate the importance of each cluster. We do so by drawing
Nrnd random points from the cluster, and computing the sum
of their individual importance, defined as the projected solid
angle of the point.

pk = ∑
s

max(cosθp,0) · |cosθs|
|s−p|2

∆As (1)

where p is the a shading pixel being considered, pk is the
estimated importance for cluster Ck, s is a random point se-
lected from Ck, ∆As is the point’s delta surface area. See Fig-
ure 3(a)(c) for illustration. Note that the absolute value of
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Scene Points sampled
on scene surfaces

Clustering Points Random Sampling in each 
cluster to compute PDF

Importance Sampling

p p

Figure 2: Algorithm overview. Scene surfaces are sampled as many points, which are then clustered. At a shading pixel p,
we estimate per-cluster importance by drawing random points (blue dots); we then treat the importance as a PDF to draw
importance samples (green dots). Both random and importance samples are projected into the microbuffer (yellow diamond).
Box shade indicates cluster importance.

cosθs is taken because a point facing away from p still con-
tributes importance, as it can cast indirect shadows. We typ-
ically use Nrnd = 2 random points per cluster, which works
well in practice, and is fast to compute.

Importance Sampling. Once we have the per-cluster im-
portance pk, we normalize it to become a PDF. To draw sam-
ples, we could convert it to a CDF. Then we produce a uni-
form random number, and use binary search to find where it
falls in the CDF. This results in a cluster number. Finally we
pick a random point from that cluster since all points within
the same cluster are treated equally.

While this is the standard way to perform importance
sampling, it is not very GPU-friendly, especially the binary
search step. Therefore we propose an alternative method
suitable for parallel processing. Given a budget of Ns sam-
ples, our goal is to assign a certain number of samples per
cluster, proportional to the cluster importance. We start from
the first cluster C1, and compute its expected number of sam-
ples Ns · p1. The integer portion of it, bNs · p1c, is the guaran-
teed number of samples. We then produce a uniform random
number, and compare it with the fractional part of Ns · p1 to
decide whether an additional number will be assigned. If it
is assigned, we have ‘overdrawn’, and we discount the over-
drawn portion from the next cluster; otherwise, we have a
‘surplus’, which we deposit to the next cluster. The pseudo
code is listed below: This algorithm is fast and ensures ex-actly Ns samples will be drawn from all clusters, while re-
ducing thread divergence on the GPU.

Projection and Adaptive Splat Size. After selecting a

p

s

p

s

ωo p

(a) (b) (c)

θp

θs

Figure 3: (a) for diffuse surfaces, the importance of a point
s is defined as its projected solid angle; (b) for glossy sur-
faces, we additionally include the BRDF into the importance
value; (c) cluster importance is estimated by random sam-
pling within the cluster.

for (carry = 0.0,  k = 0; k < # clusters; k ++) { 
      fk = Ns * pk + carry;  nk = (int) max(fk, 0);  fk = fk - nk; 
      if (random() < fk)  { nk ++;  carry = fk – 1.0; } 
      else  { carry = fk; } 
      // draw nk random points from this cluster 
} 

point, we project it to the microbuffer, and splat its color
if the center of the splat succeeds a depth test. To project,
we map the line-of-sight direction (s−p) to the microbuffer
using hemi-octahedral mapping. To do so, we first transform
(s−p) to the local coordinates defined by the shading pixel’s
normal. Denote this transformed direction ω. We then com-
pute:

ω
′ =

ω

|ω.x|+ |ω.y|+ |ω.z| , and

{
tx = 1−ω

′.x+ω
′.z

2
ty = 1−ω

′.x−ω
′.z

2
(2)

The resulting [tx, ty] ∈ [0,1]2 are the normalized 2D coordi-
nates corresponding to a pixel location in the microbuffer.

The splat size (the number of microbuffer pixels covered
by the projection) has to be carefully computed in order to
minimize holes. Assume that a sample s comes from clus-
ter Ck: since an expected number of Ns · pk samples will be
drawn from this cluster, each sample shares 1

Ns·pk
of the to-

tal surface area of the cluster. Therefore, we can estimate the
solid angle represented by s as:

Ωs =
|Ck| ·∆As

Ns · pk
· |cosθs|
|s−p|2

(3)

We further divide Ωs by the delta solid angle that the mi-
crobuffer pixel at [tx, ty] represents, and the result gives the
total number of pixels covered by the splat. We clamp the
number to 1 if it is less. Finally, the splat color and depth
value are both written to the microbuffer in a square region
covered by splat size.

Discussion. Note that the cluster importance pk appears in
the denominator of Eq. 3. This make sense intuitively, since
a cluster with small importance is less likely to be sampled,
thus any sample drawn from it must represent a large support
size. Refer to Figure 4 for illustration. This is analogous to
Monte Carlo importance sampling, where an unbiased esti-
mator must divide the probability of drawing a sample.
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Figure 4: During random sampling, cluster 1 is found to
have small importance, thus is sampled infrequently during
importance sampling. Each sample drawn from it represents
a large support size.

Glossy Importance. Because we estimate importance us-
ing point sampling, it is easy to include other factors that
influence the importance value. For example, for a glossy
shading point, we should give higher importance to clusters
that fall close to the reflected viewing direction. This can be
achieved by simply adding a BRDF term fr to Eq. 1, which
now becomes:

pk = ∑
s

max(cosθp,0) · |cosθs|
|s−p|2

fr(s→ p,ωo)∆As (4)

Refer to Figure 3(b). In addition, we can further multiply the
importance by the strength of glossy reflection at the source
point s. This allows us to efficiently include glossy-to-glossy
reflection paths.

Note, however, because we use a small set of random
points per cluster to sample the importance, our approach is
only suitable for moderately glossy BRDFs, such as Phong
with exponent less than 50. Highly glossy BRDFs require
proper filtering to avoid aliasing, or should perhaps be han-
dled with an entirely different approach.

Summary. Figure 2 summarizes the steps of our algorithm.
Note that the points drawn from the random sampling step
are also projected into the microbuffer. This makes better use
of the computation already required to evaluate these ran-
dom sample points. The splat size for a random point can
be computed from Eq. 3 accordingly, with pk equal to the
inverse of the number of clusters.

In essence, the random sampling and the subsequent im-
portance sampling can be seen as exploration and exploita-
tion in the context of reinforcement learning. While this idea
has been previously explored by [HPB07, HKWB09] for fi-
nal gathering, they compute a single set of lights and use it
for all pixels. In contrast, we sample and evaluate each pixel
independently. In addition, we use microbuffers instead of
ray tracing to quickly resolve visibility, achieving fast ren-
dering speed.

Comparing to a hierarchical approach such as [REG∗09],
we note that our method uses a fixed clustering of scene
points. However, by assigning different importance values
to each cluster, we can achieve similar efficiency as a hierar-
chical method. Therefore we provide a viable alternative to
existing techniques.

Parents
Neighbors

Figure 5: Adaptive sampling. Green indicates sampled pix-
els; orange indicates interpolated pixels.

3.3. Image-Space Adaptive Sampling

Even though our importance-driven point splatting is fast,
computing it for every shading pixel is still very expen-
sive, especially for high-resolution, anti-aliased images. For-
tunately the indirect lighting in most scenes tends to be
smooth, so we can exploit spatial coherence by computing
final gathering only at a subset of pixels. These sparsely sam-
pled pixels are then used to reconstruct the other pixels using
joint bilateral upsampling [SGNS07]. To select sample pix-
els, a straightforward way is to use a regular sampling grid,
such as 4×4. While this works well in simple scenes, we
found it often necessary to perform further sampling around
edges and places with small geometric details.

To address this problem, we propose to compute adap-
tive samples instead. To begin, we rasterize a G-buffer, stor-
ing each pixel’s position pi and normal ni. We then use a
top-down subdivision, starting with pixels on an initial 4×4
sampling grid. Once these pixels are shaded, we subdivide
and examine pixels on the 2×2 grid. For each pixel on this
grid, we compute the following coherence metric:

max
i

(
|pi−pc|

d/2
+
√

2−2(ni·nc)

)
+λ∑

j,k
|Lo(p j)−Lo(pk)|

where pc and nc are the position and normal of the current
pixel, i loops over its four neighbor pixels on the grid, and
d is the length of the scene’s bounding box diagonal. Here
j and k are pairs of two out of the four parent pixels on the
4×4 grid, and Lo is the radiance computed at the parents
pixels. The first term evaluates local geometric changes, the
second term evaluates radiance changes, λ weighs the rel-
ative importance of the two. We found λ = 8 to work well
practice. Refer to Figure 5 for illustration of the samples.
Note that including the radiance term Lo is important for the
cases where geometric changes are low but radiance changes
are hight, such as glossy highlights on a plane.

If the coherence metric is larger than a given threshold
(ε = 0.3), the current pixel must be sampled; otherwise it
will be interpolated from the four parents. We perform this
checking for every pixel independently, except for those that
are already sampled in previous passes. We then use a paral-
lel list compaction to collect all pixels that require sampling
at the current subdivision level, and launch GPU threads to
shade these pixels in parallel. Next, we launch GPU threads
again to interpolate the un-sampled pixels, using joint bilat-
eral upsampling [SGNS07].
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Figure 6: (L) point cloud (256K points) with direct lighting;
(R) global illumination result by gathering from the points.

We repeat the process for the remaining levels until the
grid size becomes 1, or a desired subpixel size if anti-aliasing
is turned on. Note that the error threshold ε should be scaled
by 2 every time we go down a level. Because the pixels are
checked independently in each pass, even if a pixel is in-
terpolated in a previous pass, it can still be requested for
sampling at later pass. Therefore our method can robustly
preserve edges and small geometric details in the render-
ing. Figure 11 shows the adaptive samples selected during
convergence. Our results show that that samples can quickly
capture edges and areas with glossy reflections or under in-
direct shadows, thus providing improved convergence speed.

4. Implementation Details

We implemented our algorithms on the GPU using NVIDIA
CUDA 3.0. We make use of several parallel computation
primitives such as global sorting and list compaction, all of
which are available in CUDPP 1.1. For random numbers, we
precompute a texture storing 4K×4K random numbers and
reuse them on the fly.

Scene Points. For all scenes we generated 256K points uni-
formly distributed on the surfaces. The number of points is
sufficient for our test scenes. We have also tried 1M points,
which did not produce any observable improvement in the
rendering quality. We use a real-time GPU-based Poisson
disk sampling algorithm provided in [BWWM10] to gen-
erate these points. For each point we store its position as
3 floats, and its normal, diffuse color, specular color, and
Phong exponent as bytes. We also store its triangle ID and
bary coords, which are used to update the point upon scene
manipulation. Unless an object undergoes significant defor-
mation, we do not need to re-generate scene points every
frame; instead, we simply update them using their bary co-
ords. Figure 6 shows an example set of points computed for
the Cornell box scene.

Materials. For simplicity we currently only support dif-
fuse and Phong BRDFs. It is straightforward to include other
BRDFs, as our algorithm makes no assumption about the
specific type of BRDF. We also support bump maps and spa-
tially varying BRDF parameters defined using textures. We
do, however, restrict the glossiness of the BRDFs to be gen-

erally below 50, as highly glossy BRDFs should be handled
using a different approach such as ray tracing.

Primary Lights. We allow multiple omni-directional lights
as primary light sources of the scene. For each light we ras-
terize a cube shadow map at 6×5122 resolution and use it
to compute shadowed direct lighting at both the scene points
and the shading pixels.

G-buffer. At the beginning of each frame, we use a shader
to rasterize a G-buffer containing each shading pixel’s posi-
tion, normal, and material properties. The data is copied to a
pixel buffer object (PBO), which is then bound to CUDA for
further processing.

Clustering Scene Points. As described in Section 3.2, we
partition the scene points into 512 clusters in order to quickly
estimate the importance PDF. To do so, we first apply a me-
dian split on the points’ position along the longest axis. We
then repeatedly split each sub-cluster along a different axis
until we have 512 clusters. This is similar to building a kd-
tree of the points. We perform each level of split on the
GPU using a segmented global sort. This ensures that points
within the same cluster remain in that cluster during global
sort. Each cluster in the end contains the same number of
points. The overall cost of this step is less than 10ms.

Microbuffers. We use 32×32 microbuffers, and compute
each microbuffer in a single CUDA block. This allows the
entire microbuffer to be stored in shared memory, providing
fast access speed. The microbuffer itself requires 3 unsigned
chars for storing each of the diffuse and glossy incoming
radiance, and 1 ushort for storing depth. The total is 8KB
per microbuffer. The reason to separate glossy from diffuse
glossy radiance is for better interpolation in textured areas.
In those areas, direct color interpolation will lead to loss of
texture details. Instead, we interpolate the diffuse and glossy
incoming radiance separately, and multiply them with the
textured reflectance values to produce the final color.

To estimate per-cluster importance, we launch 512
threads, corresponding to 512 clusters. Each thread k inde-
pendently draws 2 random points from its cluster Ck and
evaluates pk (Eq.4). These points are immediately projected
to the microbuffer. After this step, thread 0 goes through
the PDF and assigns the number of importance samples to
each cluster, using the algorithm described in Section 3.2.
Next, each thread independently takes 4 budgeted samples,
and projects them to the microbuffer using splat sizes esti-
mated via Eq. 3. So in total we project (2+4)×512=3K points
to the microbuffer. Every time a point is projected to the
microbuffer, we use atomicMin to update the color and
depth values, ensuring correctness upon concurrent writes.
Finally we multiply each microbuffer pixel with the BRDF
of the shading point, and perform a parallel reduction to re-
turn the total reflected color. The whole algorithm maintains
high parallelism with little thread divergence.

For robustness when calculating delta solid angles, we use
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Bruteforce Uniform 1 Uniform 2 Uniform 3 Adaptive

Figure 7: Comparing microbuffers generated with our adap-
tive splat sizes (right), non-adaptive (uniform) splats of 1, 2,
and 3 pixels, and a brute-force reference (left).

an approximated disk-to-point solid angle formula:

Ωs =
2πAs cosθs

As +2π|s−p|2
(5)

This prevents Ωs from becoming arbitrarily large when p
and s are very close to each other.

Glossy-Glossy Reflections. Since our approach is based on
point sampling, we can achieve glossy-to-glossy reflections
by performing a direct lighting calculation at a scene point
when it is requested for projection. Clearly this will increase
the computation time. In practice, we assume that there are
no more than 4 primary light sources and hence we can store
up the glossy reflected lobes together with the scene points.
To do so, we run a separate pass that calculates shadowed di-
rect lighting, including a diffuse radiance and up to 4 glossy
reflected lobes. These are then used during point projections.

Multi-Bounce Indirect Lighting. We enable multi-bounce
indirect lighting by treating the scene points as shading
points, and use the same microbuffer algorithm to update
the diffuse radiance at each point. This allows us to in-
clude an additional bounce of indirect illumination in the
final shading. Note, however, we do not account for multi-
bounce glossy-to-glossy reflections, as doing so would cause
the number of glossy lobes to increase exponentially. In-
stead, we only update the diffuse radiance at the scene points
during multi-bounce calculation. Nonetheless, this approach
provides satisfactory results in most cases.

Image-space Adaptive Sampling and Interpolation. To
balance work among threads, the adaptive sampling is split
into several steps. The first step evaluates which pixels need
to be sampled in the current frame, compacts them, and
launches CUDA threads to compute their microbuffers in
parallel. The results are written into an output buffer, and
made available to the next step through a thread synchro-
nization. After all samples are computed, we go through all
levels and interpolate pixels that are currently un-sampled.

Progressive Rendering. With adaptive sampling, we can
easily enable progressive rendering to improve user interac-
tion speed. During adaptive sampling, the user can manipu-

late any part of the scene, and the current adaptive sampling
step will be interrupted to provide interaction feedback. As
soon as the user stops moving, the program will continue to
sample the remaining pixels, allowing the full indirect light
buffer to be filled in over time. Typically the rendering qual-
ity converges in a second, while full frame rendering (i.e.
every pixel is shaded) takes 3∼ 4 seconds.

When high quality rendering is needed, we enable super-
sampling to provide anti-aliasing. In this case, the sampling
will proceed to subpixel level. Due to adaptive sample, the
most importance pixels (usually those around edges, indirect
shadows, and glossy objects) are selected and shaded first.
Thus the rendering usually converges quickly within a few
seconds, long before the full frame rendering is completed.
This allows the rendering cost to grow sublinearly with re-
spect to the total number of super-sampling pixels. To keep
track of the status of each pixel, the alpha component is set
to 1 for sampled pixels and 0 for interpolated pixels. This
allows the program to overwrite interpolated pixels in sub-
sequent passes.

Post-process Filter. We apply a 7×7 joint bilateral filter
on the computed indirect lighting buffer as a post-process
step. This generally reduces stochastic sampling noise and
works very effectively for diffuse scenes. For scenes with
many glossy objects, the sampling noise is usually more pro-
nounced, but we cannot use a larger filter to attenuate noise
because that would blur out reflection details. Instead, we
reduce the filter to 3×3 in size, and rely on anti-aliasing to
provide a higher quality image.

5. Results and Discussions

Our results are tested on a PC with Intel Core i7-920 CPU
and NVIDIA 480 GTX graphics card. All GPU programs
are compiled using CUDA 3.0. Unless specified otherwise,
all images and videos are captured at a default resolution of
512×512 without anti-aliasing. The supplemental material
includes executable demos which can run on both high-end
and low-end graphics cards.

For high-quality rendering, we turn on 2×AA, which pro-
vides nicer quality but reduces performance by 2∼3 times.
All scenes are computed with |S|=256K scene points, parti-
tioned into 512 clusters. The microbuffer size is 32×32.

Performance. By default we turn on progressive rendering
mode to provide better user interaction. The rendering speed
is about 2∼3 fps, and the full frame rendering is achieved
in 3∼4 seconds. With 2×AA, the frame rate drops to 1 fps.
Note that due to our adaptive sampling, the image quality
typically converges in a few seconds, and hence full frame
rendering is not necessary to obtain a high-quality rendering.

Since we use point-based illumination, the rendering per-
formance is generally insensitive to the scene complexity,
although the indirect shadows can take longer to converge
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(a) Ours (b) Reference (c) 2× diff (d) Ours (e) Reference (f) 2× diff

Figure 8: Comparison of indirect lighting result computed using our method vs. a ray traced reference. For each example we
show a 2× difference image to highlight the places of errors.

Figure 9: Comparing microbuffers generated using importance-driven vs. random projection, both with 3K projected points.

in scenes with high depth complexity. Figure 1 shows three
example images, which are all captured at 3 ∼ 4 seconds of
rendering. Note the realistic surface reflections and the indi-
rect shadows.

Microbuffers. We first examine the quality of the mi-
crobuffers generated. Our reference is a brute force solution
that projects all scene points into the microbuffer. In Fig-
ure 9 we show 5 selected pixels from the bedroom scene. For
each point, we compare our importance-driven point projec-
tion vs. purely random point projection. Both are computed
by drawing 3K samples from the scene points. Note how
the importance-driven method better matches the reference,
while the random method leaves many gaps that need to be
filled with large adaptive splats.

To see how effective the adaptive splats are, in Figure 7 we
compare microbuffers generated using our adaptive splats
sizes vs. non-adaptive (uniform) splats of 1, 2, and 3 pix-
els. Small uniform splats (such as 1) do not cover the mi-
crobuffers well, leaving lots of holes; large uniform splats
(such as 3) overfills the buffer, causing one splat to spill to
adjacent pixels. In contrast, adaptive splats can effectively
overcome these issues.

Validation. To verify our algorithm, we used ray tracing
instead of microbuffers to generate reference images of two
scenes. Results are shown in Figure 8. The bedroom scene
contains only diffuse objects, while the Cornell box scene
contains both diffuse and glossy objects. We only show indi-
rect lighting. Note that our result looks qualitatively similar
to the reference. Some differences are observable, mainly in
the tone of the color and the indirect shadows around edges.
The color difference is caused by our color quantization (i.e.
8-bit), and the indirect shadow difference is primarily caused
by the limited resolution of the microbuffers. We also show

a 2× difference image on the right, which highlights the
places of errors.

Image adaptive sampling. Our adaptive sampling algo-
rithm considers both local geometric changes and luminance
changes, thus it efficiently budgets samples in areas of sharp
features or strong radiance changes. In Figure 11 we show
the adaptive sample points selected at different time stamps
during the rendering. Note how the samples quickly capture
area of depth discontinuities as well as indirect shadows,
making the sampling process more efficient.

Multi-bounce Indirect Lighting. We enable multiple dif-
fuse bounces by applying the same final gathering algorithm
on the scene points. The final bounce of reflection (at shad-
ing pixels) is still glossy. It generally takes several seconds
to update the diffuse radiance at all scene points. Once it’s
done, the user can change viewpoints at will, but moving the
light source, objects, or changing material parameters will
incur a new round of scene points update. Figure 13 show
our results for the dining room scene and the Cornell box
scene. Note how the additional bounce adds more color sat-
uration, and brightens up the indirect shadow regions.

Glossy-to-glossy Reflections. As we allow the scene points
to carry glossy reflected lobes, we enable glossy-glossy re-
flection effects. Figure 12 shows a comparison between ren-
dering with the glossy components at the scene points en-
abled vs. disabled. Note the difference in the highlights re-
flected from the teapot. Scene Manipulation. Our algo-
rithm supports dynamic BRDF editing with bump maps and
spatially varying BRDF parameters defined by textures. Fig-
ure 10 shows the teapot-torus scene edited in real-time with
several different materials. We also support online manipula-
tion of scene objects. Upon manipulation, the direct lighting
radiance at every scene point will be updated, and we re-
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Figure 10: The teapot-torus scene edited in real-time with several different materials, textures and bumpmaps.

Figure 11: Image adaptive samples selected at different time stamps as the rendering progresses. Note how the samples quickly
capture areas of depth discontinuities and radiance changes (such as indirect shadows and glossy highlights).

cluster the points. These two steps take less than 12ms. Fig-
ure 14 shows an example where the objects in the Cornell
box scene were moved at run-time. The same figure shows
lighting changes – i.e. move the primary light. All edits were
performed and captured online.

6. Limitations and Future Work

To summarize, we have presented an efficient method us-
ing importance-driven point projection for GPU-based final
gathering. Our method is fast, suitable for fully dynamic
scenes, and provides a viable alternative to existing work.
Our method is not real-time yet, so it is not immediately
applicable to 3D games. However, it serves as useful and
practical tool for design applications, as it provides realis-
tic rendering in just a couple of seconds. Like other point-
based methods, when dealing with highly glossy materials,
the number of scene points can become a limiting factor,
which eventually will lead to reflection aliasing artifacts.

There are several directions to explore for future work.
First, we plan to include BRDF-warped microbuffers, sim-
ilar to [REG∗09]. This would be a straightforward change
since we do not require any particular parametrization of
the buffers. Second, we will study how our importance-
driven framework can be used to simulate other effects such
as translucency. Finally, we would like to explore features

Figure 12: Renderings with glossy to glossy reflections en-
abled vs. disabled.

available in the future generation of GPUs to further improve
the speed of our approach.

Supplemental Material. The supplemental material con-
tains an executable demo for our algorithm. The minimum
requirement to run the demo is a PC with CUDA-capable
GPU (compute capability 1.1 or above).
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