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Abstract—Neighbor discovery is an important first step in the on the other hand, each node transmits according to a pre-

initialization of a wireless ad hoc network. In this paper, we determined transmission schedule that allows it to discove
design and analyze several algorithms for neighbor discovery in all its neighbors by a given time with probability one. In

wireless networks. Starting with a single-hop wireless network of distributed setti det L ft t th
n nodes, we propose ®(nInn) ALOHA-like neighbor discovery IStributed setlings, determinism often comes at the egen

algorithm when nodes cannot detect collisions, and an order- Of increased running time (see for example [4], [9]) andhie t
optimal ©(n) receiver feedback-based algorithm when nodes can particular case of neighbor discovery, typically requitese-
detect collisions. Our algorithms neither require nodes to have  g|istic assumptions such as node synchronizationaapdori

priori estimates of the number of neighbors nor synchronization knowledge of the number of neighbors [16]. We, therefore
between nodes. Our algorithms allow nodes to begin execution at . ' ' '

different time instants and, to terminate neighbor discovery upm investigate randomized neighbor discovery algorithmshia t
discovering all their neighbors. We finally show that receiver Paper.

feedback can be used to achieve @(n) running time, even when Neighbor discovery is non-trivial for several reasons:
nodes cannot detect collisions.

We then analyze neighbor discovery in a general multi-hop 1) Neighbor discovery needs to cope with collisions. lde-

setting. We establish an upper bound ofO(Alnn) on the ally, a neighbor discovery algorithm needs to minimize
running time of the ALOHA-like algorithm, where A denotes the the probability of collisions and therefore, the time to
maximum node degree in the network andn the total number discover neighbors.

of nodes. We also establish a lower bound dR(A +1nn) on the 2) In many practical settings, nodes have no knowledge

running time of any randomized neighbor discovery algorithm. . : : :
Our result thus implies that the ALOHA-like algorithm is at of the number of neighbors, which makes coping with

most a factor min(A, Inn) worse than optimal. collisions even harder.
3) When nodes do not have access to a global clock, they

need to operate asynchronously and still be able to
|. INTRODUCTION discover their neighbors efficiently.
In asynchronous systems, nodes can potentially start

Wireless ad hoc networks and sensor networks are typically4) neighbor discovery at different times and conseguently

deployed without any communication infrastructure and are ) ) L
may miss each other’s transmissions.

required to “configure” themselves upon deployment. For ) .
instance, immediately upon deployment, a node has no knowl—5) Furthermore, when the number of neighbors |s.unknown,
nodes do not know when or how to terminate the

edge of other nodes in its transmission range and needs to ) .

discover its neighbors in order to communicate with othé+ ne neighbor discovery process.

work nodes. Neighbor discovery is an indispensable firgt sté this paper, we present neighbor discovery algorithms tha

in the initialization of a wireless network, since knowledgf comprehensively address each of these practical chalienge

one-hop neighbors is essential for medium access contel pynder the standard collision channel model. Unlike existin

tocols [3], routing protocols [26], [13], and topology couit approaches that assuraeoriori knowledge of the number of

algorithms [20] to work efficiently and correctly. neighbors or clock synchronization among nodes, we propose
Neighbor discovery algorithms can be classified into tw@eighbor discovery algorithms that:

categories, vizrandomizedor deterministic In randomized P1  do not require nodes to hawepriori knowledge of

neighbor discovery, each node transmits at randomly chosen the number of neighbors,
times and discovers all its neighbors by a given time with P2  do not require synchronization among nodes,
high probability (w.h.p). In deterministic neighbor diseoy, P3 allow nodes to begin execution at different time
instants, and
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insights about the neighbor discovery problem. These litsig Il. NETWORK MODEL
allow us to progressively relax each of the assumptionsrgad

to a complete and practical solution to the neighbor disgove Let G = (V,E) represent a static multi-hop wireless
problem in a multi-hop network setting. network, wherd/ denotes a set of nodes andZ C V2 the set

of undirected edges i&". We do not constrain how edges are
A. Main Results determined between node pairs. However, a common example

Assuming a collision channel model of communication, w@r the definition of an edge is that an edge exists between

obtain the following important results in this paper: nodesi and j if they are within transmission range of each

. . . . other. The transmission range might be defined as that distan
1) We first study the ALOHA-like neighbor discovery algoy . \which the signal-to- noise ratio (SNR) exceeds a fixed
rithm proposed in [23] in a single-hop wireless networ

. . reshol llowing node; ransmi fixed r n
of n nodes. We show that its analysis reduces to tha dy, allowing nodei to transmit at a fixed rate to node

of the Coupon Collector’s Problenand that each node”"
discovers all its neighbors i®(nInn)* time w.h.pf.

2) When nodes can detect collisions, we propose an ord
optimal neighbor discovery algorithm that employs feed- « Node IDs: We assume that the nodes hdweally unique
back from receiving nodes and allows each node to identifiers i.e., no two neighbors of a given node have the
discover all its neighbors i®(n) time w.h.p. Interest- same identifier. For example, the identifier could be the
ingly, we find that receiver feedback can be used even MAC address of a node or, its location.
when nodes cannot detect collisions and propose a noveb Radio Model: Each node is equipped with a radio
algorithm that achieves @(n) running time. transceiver that allows a node to either transmit or receive

3) We next show that absence of an estimate of the number messages, but not both simultaneously.
of neighborsn, results in a slowdown of no more than « Collision Model: Throughout this paper, we assume that
a factor of two, compared to when nodes know when two or more nodes, each of which has a common

4) We further show that lack of synchronization among receiver, transmit concurrently, a collision occurs at the
nodes results in at most a factor of two slowdown in  receiver. We further assume that a collision is the only
the algorithm performance from the case when nodes source of packet loss i.e., we ignore packet losses due to
are synchronized. effects such as shadowing and fading observed in wireless

5) We then describe how neighbor discovery can be accom- channels. The collision model, although idealized, will
plished even when nodes begin execution at different allow us to obtain a deep understanding of the neighbor
time instants. Furthermore, when nodes do not kmow discovery problem yielding valuable insights for design-
we propose a provably correct termination condition that  ing practical neighbor discovery algorithms.
allows each node to terminate neighbor discovery aftere Symmetric Edges:Edges between nodes are assumed to
discovering all its neighbors w.h.p. be symmetric i.e., ifé, j) € E, then(j,4) € E.

6) Fi_nally, we extend our analysis to a general multi-hoByopem Definition: 7 nodes are deployed over an area
\t/)wrek(ejssfgegwork ?ettlﬂg. Her_e, we es:caghsh aon UPPfithout prior knowledge about the grapi. We say that a
I'I?un | 0 é ln”r)] org e ru;mlng t|meo t eéALd HA- node: discoversnodej by timet if i receives at least one
ke algorithm, whereA s the maximum node egreemessage from nodgby timet. Our goal is to propose efficient

{/r\l/thelnetvvorkb?ngz delnotes [t)he t%taéxnzmbelr of nOdes"algorithms that allow each nodec V' to discoverall nodes
e also establish a lower boun (A 4+ Inn) on such that(i, j) € E.

the running time for any randomized neighbor discover7y
algorithm. Our result thus implies that the ALOHA-like
algorithm is at most a factamin(A,Inn) worse than
the optimal.

In addition, we make the following assumptions about the
multi-hop wireless network:

Il. ALOHA- LIKE NEIGHBORDISCOVERY ALGORITHM

o In this section, we consider the ALOHA-like neighbor

B. Organization of the paper discovery algorithm first proposed in [23]. We first studysthi

The rest of the paper is structured as follows. Section Wjgorithm when alln nodes in the network are arranged in a
describes our model and its assumptions. Section Il da&seri clique, andr is known to each node in the clique. Finally, we
the ALOHA-like neighbor discovery algorithm in the caseonsider a slotted, synchronous system where time is divide
of a single-hop network. We next present feedback-basito slots and nodes are synchronized on slot boundaries. In
algorithms in Section IV. In Section V, we present loweother words, each transmission starts at the beginning lota s
and upper bounds for the neighbor discovery problem inamd lasts the entire duration of the slot.
multi-hop network setting. Section VI discusses a number of Egch of these assumptions will be relaxed as we proceed.
pertinent issues relevant to neighbor discovery. Finallg, |mportantly, these assumptions allow us to view the ALOHA-
conclude in Section VIII. like neighbor discovery as an instance of tBeupon Col-

*Throughout this paperln denotes natural logarithm anikbg denotes lector’s Problem Consequently’ the time to discover the
logarithm to base 2. neighbors is the same as the minimum time to collect at least

fWe say than an everdt occurs w.h.p ifnli—>moo PE) =1 one of each of: coupon types.



A. Algorithm Description C. Sharp Concentration Around Mean

The ALOHA-like algorithm is a randomized algorithm We next show tha#}" is sharply concentrated around its
that operates as follows. In each slot, a node independerfigan. As described in [25], we make use of the Poisson
transmits aDISCOVERYmessage announcing its 1D, with@Pproximation to the binomial distribution. In Appendix B,
probability p, and listens with probability — p,.. A discovery We derive the sharp concentration result without relying on
is made in a given slot only if exactly one node transmits i0isson approximation.
that slot. Let N,(t) be a random variable that denotes the number

It has been shown in [23], [31] that the optimal value off successful transmission; by .nod'en the fjrstt slots. It is
px that maximizes the rate of discovery of neighbord js, €aSy to see thal;(t) ~ Binomial(t, p). Using the Poisson
wheren denotes the clique size. However, the question of hddPProximation (assuming largeand smallp),

long it takes to discover all the neighbors when nodes trinsm PNAE) — k) — e M\F
with p, = 1/n was not addressed in [23], [31], which we (Ni(t) = k) = A
proceed to analyze next. where \ = tp. Let &(t) denote the event that nodeds not
discovered irt slots. Therefore,
B. Neighbor Discovery As Coupon Collector’s Problem P(&(t)) = P(N;(t) =0) = e~
We first map the neighbor discovery problem into the claSubstitutingp = 1/ne into the above equation yields
sical Coupon Collector's Problenii25]. First, the probability P& () = =
of a successful transmission by noda a given slot is '
Therefore,
oy 1 nN""' 1 P(=&(t) =1—e ne
P = px(1 —px) 1:(1_) ~— ) . . .
n n ne We are interested in the probability that all nodes are

Note thatp is the same for each nodel < i < n. discovered by time, i.e. P [~(UiL,&;(t))],

The process of neighbor discovery maps into a coupon P[=(U &(t)] = PNy (—&:(t))] (3)
collector’'s problem as follows. Consider a coupon colIectQNe next show thaf&; (£)}~_, can be treated as an independent
C drawing coupons with replacement from an urn containin quence of eventsz =1
n distinct coupons, each coupon corresponding to a distinc Lemma 1: For 1 <'Z. < n, and any set of indice§j i}
node in the clique. In each slaf; draws one of the: coupons | Containiﬁgz' PT&(t_)| Py ] = P (&) 1y Jk
(i.e. discovers a given node) with probabiljty and draws no ' ! =1 " e

) . o . i Proof:
coupon (i.e., detects an idle slot or a collision) with proibgy .
1 — np. Thus, the event thaf’ collectsn distinct coupons SNk, £, (0] = P &) N (N1 (1)]
corresponds to the event that each node in the cliqgue has ’ =1 P(Nf_ &, ()]
discovered all of itsr» — 1 neighbors. (11— (k+ l)p)t

We are now ready to deriv€[W], whereW is a random = 1—k )t
variable that denotes the time required for each node to. L . b .
discover its neighbors. The neighbor discovery process cdfind the approximation + x ~ ¢* in the above equation
be thought of as consisting of a sequenceepbchs each yields

epoch consisting of one or more slots. Uéf,, denote the e~ t(k+1)p

t

PLE;(t)] Nj=y &, (1)] = =e e = P(&(t))

length of epochm, 0 < m < n — 1, that starts when the T e—thkp

m-th node is discovered and ends when the- 1-st node is m
discovered. Thus, in the:-th epoch there are — m nodes From Lemma 1 and (3), it follows that

yet to be discovered, each of which has a probabjitgf . —t

being discovered in a given slot. It is easy to see that the Plo(UL&i(t)] = (1 —emne)" mem ™

epoch lengthV,,, is geometrically distributed with parametefrperefore,

n —m)p. Thus, noting that?V?. =W, + ... + W,,_1, we get
= ’ ' nes POW > 1) = 1 - P~(UL, (1)

n—1 n—1 n
1 1 1 i _
E[W] = Z E[W,,] = Z _ L Z = ~ neH, Letting t = ne(Inn + ¢), for somec € R, we conclude
— — (n—m)p p—m pe—(nnto) -
m=0 m=0 m=1 PW>t)=1-ce¢ =1—c¢e (4)
where H, denotes then-th Harmonic number, i.e.l, = Observe thae—* * is close to 1 for large positive and is
Inn + ©(1). Therefore, negligibly small for small negative, thus implying a sharp

concentration around the mean. Substituting: In n, =2~

EW] = ne(lnn+6(1)) = nelnn+0(n) = (nlnn) (2) 4 (4), and a simple application of the union bound yields

In App_endix A, we _show that the error _introduced in the nelnn <W < 2nelnn wh.p (5)
approximate calculation af’[1V] above vanishes as grows
large. In other words,W = ©(nlnn) w.h.p.




D. Unknown Number of Neighbors each having probability of being successful. In other words,

We first relax the assumption that requires each node {m 1S exponential with mean /((n — m)Ap). Therefore,
the clique to known. The modified ALOHA-like algorithm E[Wm] = 27ne/(n —m), and
proceeds irphaseseach phase consisting of one or more slots. n—1
In the r-th phase, which lasts f&+'eln 2" slots, each node  E[W] = Z E[W,,] = 2tneH,, = 2rne(Inn + ©(1))
transmits with probabilityl /2". m=0

The key idea here is that nodes geometrically reduce th@omparing the above result with (2), we see that the asyn-
transmission probabilities until they enter the phase ecex chronous algorithm is only a factor of two slower than its
tion appropriate for the population size This occurs when synchronous counterpart.
nodes enter thélog n]-th phase. During this phase, each node 2) Sharp Concentration Around the MeaAs described in
transmits with probabilityl /n for a duration of2neInn slots. Section IlI-C, we next show that/ is sharply concentrated
From (5), we know that ath nodes will be discovered by thearound its mean. LedV;(¢) denote the number of successful

[logn]-th phase w.h.p. transmissions from nodeé by time ¢. Let @Q;(¢) denote the
The total number of slotd}, until all » nodes are discov- total number of transmissions from nodeby time ¢. The
ered w.h.p is therefore conditional pmfP(N;(t) = k|Q;(t) = t) is then given as
[logn] ¢ k {—k
W = Z 2" eIn 2" < 4nelnn P(Ni(t) = klQi(t) = €) = (k)p (1=p)
r=1

] ) Now, Q;(t) is a Poisson random variable with rateRemov-
Comparing the above result with (5), we see that the Iagl,gg the conditioning, we get

of knowledge ofn results in no more than a factor of two

slowdown. — [\ & k-t (A1)
PO® = =3 ()t -p e
E. Asynchronous Operation Let &(t) denote the evenfN;(t) = 0}. Therefore,
We next relax the assumption that requires a time-slotted 0o (/\t)z
system in which nodes are synchronized on slot boundaries. P(&;(t)) = 2(1 7p)464t7' — e MP _ o T
The main result we show here is that the asynchronous =0 a

ALOHA-like algorithm is no more than a factor of two slowerprgceeding exactly as described in Section 111-C, we get,
than its synchronous counterpart.

The asynchronous ALOHA-like algorithm operates as fol- P(W >t) =1—P[-(UL&(1))]
lows. Between successive transmissions, each of which is19ferefore,
a fixed durationr, each node remains in receive mode for an C(nnie) .
exponentially distributed time interval with mearia. P(W >2mne(lnn+c)) =1—e" =1-e"°

The analysis in [31] is easily extended to the case of omryypstitutinge = Inn, =Inn jnto the equation above and a

directional antennas yielding the value dfthat maximizes gjmple application of union bound yields
the rate of discovery of neighbors, which is given thus

1

~ o In other words,W = ©(nlnn) w.h.p.

1) Algorithm Analysis: For simplicity, we start with the ~3) Unknown Number of Neighborsthe asynchronous al-
case when each node knows the valuenofAs before, we gorithm can also be extended to handle the case that nodes do
are interested in the time until each node discovers all 9t known. Again, we divide the algorithm into phases, as be-
neighbors, denoted by . fore. During ther-th phase, which is of duratio2l *27e1n 2",

We assume that the transmit duratienis small relative ©ach node remains in the receive mode for an exponential

. L O i i _ or+l i
to 1/\. Thus, the inter-transmission times of a node aféne interval with meanl /A, = 2""'7 between successive

exponentially distributed and the total traffic from the ansmissions. , _
nodes constitutes a Poisson process with rate Now, a It IS €asy to see that thelog n]-th phase is of duration
transmission from a node at time instaris successful only if 477¢ 7 time units. In this phase, each node transmits with

no other transmission starts duriftg-r, t+7]. The probability "at€ Aflogn] = 1/27n. From (6), we know that by the end
of a successful transmissiop, is therefore of this phase, each node discovers all its neighbors w.h.p.

Assuming that the nodes are synchronized on phase bousdarie

nelnn < W < 4rmnelnn w.h.p (6)

p=e"=1/e (an assumption we relax in Section IlI-F), the total tifie
By dividing the neighbor discovery into epochs, wher{aequ"ecJI to discover all neighbors w.h.p is given by
epochm of duration W,,, starts with the discovery ofn- [log n] )
th node and ends with the discovery of the+ 1-st node, W = Z 2" 27reln2" < 8rnelnn
we obtainW = > W,,. In epochm, there aren — m r=1

nodes are yet to be discovered. The transmissions from th€memparing the above result with (6), we again observe at most
n —m nodes constitute a Poisson process with fate m)A, a factor of two slowdown from the case whenis known.



F. Initiating Neighbor Discovery node terminates at the end 6f+ 2-nd phase and); ;4o =

So far, we have assumed that all nodes start neightior 1 VZ Whp N '
discovery at the same time. We also assumed that the nodeSOr simplicity of exposition, we only consider the syn-
are synchronized on the phase boundaries, even in the casé¥pnous ALOHA-like algorithm. We note, however, that the
the asynchronous algorithm. We relax both assumptions ndgfmination conditioniTC is applicable for the asynchronous
Suppose the wireless network is deployed during tinfdgorithm as well. o _
interval [t, t+7)], wherer is an upper bound on the deployment Let S, denote the number .of distinct nodes that transmit
period and assumed to be known in advance. When nodes heygcessfully at least once during theh phase. Note that

access to a global clock, initiating neighbor discoveryiisdl, Di, €S, —1,8,], Vi
as each node can begin execution at a globally agreed upon K T
time instantt >t + 7. We divide the different phases of the algorithm executido in

When nodes do not have access to a global clock, initiatitigyee distinctstages
neighbor discovery is non-trivial, since clocks at difire 1) Stage 11 <1r < 1Og(n—1)

21
nodes may proceed at different rates resulting in clocketsfs  2) Stage 2 log (£-1) < rngnlog (3142)
between nodes. We assume the maximum clock offset betweeB) Stage 3 log (57:7—) + 1 <r <logn

any two nodes in the network is bounded byIn reality, oyr proof of correctness is accordingly divided into the- fol
clock offsets between nodes can potentially grow unbodyde%wing three lemmas, each of which is proved in Appendix E.
as clocks tick at different rates. However, neighbor digt9v | emma 2:For r such thatl < r < log (2=1), S, = 0
occurs over short time scales and therefore, it is reasertabl \y p n

assume a fixed for the duration of neighbor discovery. Each | emyma 3:For » such thatlog (2=L) < r <

node starts neighbor discovery when its local clock reachg)% (;25L1), S, < 21 wh.p. nn

t, which is determined prior to deployment. To account for Lemma 4 For » such thaﬂog( n—1 ) <r<logn, S, >
clock offsets, we extend each phase dyime units to each 9r—1 w.h.p. Slnnn - -

phase i.e., the-th phase lasts a duration @f*2eln2" + § Thus, Lemmas 2 and 3 together ensure that < 2", Vi

time units. Thus, all nodes are simultaneously in phaer  hroughout the first two stages. Hence, each node enters the
at least2""2eIn 2" time units, guaranteeing that each node _ log (s2551-) + 1-st phase w.h.p. Further, sing& ; ; <

3lnlnn

discovers all its neighbors w.h.p when= [logn|, as shown 9r-2 v\ h.p, it follows from the termination conditiofiC

in Section III-E. _ _ __that no node terminates the algorithm in théh phase w.h.p.
To get a sense of how largemight be, we consider Mica2 Hence, we can ignore theth phase and focus only on the

motes equipped Wlth a 32.768 kHz quartz crystal OSC'”at%maining phases instead. Now, Lemma 4 ensuresi#hat>

which has a real-time clock accuracy #fl0 ppm [27]. This 971 i w.h.p throughouStage 3 Thus, no node terminates

corresponds to an accuracy 6864 milliseconds per day or aihe algorithm in phase < logn w.h.p. Recalling that =

maximum clock offset of 1.7 seconds per day between any tWo | 1. and noting that < log n, we conclude that each node

nodes. Thus, if the deployment spans a period of 3 days, enters the + 1-st phase w.h.p.

5.1s. With actively compensated oscillators [22] that provide Tp¢ probability of a successful transmission by a given node

an accuracy oft 160 milliseconds/dayy = 1s for the same during the/ + 1-st phase is

deployment period.

1 1 24 k-1 1
G. Terminating Neighbor Discovery Pt = o (1 2“1) = g

When the value of: is not known to a node, it cannot knowsince the? + 1-st phase last@‘+2eIn2¢+! slots and since
when it has discovered all its neighbors and terminate teigh o¢+1 > 4, it follows from (4) that
discovery. We conclude the discussion of the ALOHA-like gt o
algorithm in the clique setting by describingpevably correct P(Spp1=n)>e ¢ >e” —e U/ (7)
termination condition that allows each node to determine if_l_h fore.D- 1. VYiwho i h node di
has discovered all its neighbors. eretore,Li,e+1 =n—1, vi W.N.p I.€., €ach Node discovers

Let D; , be the number of nodes discovered by néda all its n(_elghbqrs in the + 1-st phase \zvhp
the -th phase. Then the termination condition used by no?_%gqorﬂz'c(jz)r ;':]S(; (t;])e if?(fl?ojvzatha:t 28 ie k = 0. From
i is as follows: ' '

TC Halt at the end ofr-th phase if D;,_; > (D >2" " ADj 41 <2 Vi} whp

2r=2andD; . < 2", wherer > 2.

1) Proof of Correctness of Termination ConditiovWe next
show that the termination conditioRC is correct w.h.p. i.e.
each node terminates the algorithm only after discoverlhg
its neighbors w.h.p. Let be the largest integer such that=
20+ k,0 < k < 2°. More formally, we show that wheh = 0,
each node terminates at the endlef 1-st phase and further,
Dj 1 =n—1, Vi wh.p. Whenk > 0, we show that each P(Spy2=n)> e~ 1/n (8)

From the termination conditiomC, we conclude that each
node terminates the algorithm at the end(6f+ 1)-st phase
w.h.p. Further, we have already shown tht,,, = n—1, Vi
\E}v.h.p, as desired.

Now, let us consider the case that= 2¢+ k&, wherek > 0.
Again, it follows from (4) that



which implies thatD; ;o = n—1, Vi w.h.p. Further, from (7) Algorithm 1 Collision Detection-Based ND)

and (8), we conclude that b < 0 //Number of neighbors discovered by nodle
’ o1 s flag < 0 //Has nodei been discovered by other nodes?
{Die+1 22" A Dj ey <277, Vit wh.p NbrList — [ ] /lList of neighbors of node
Again, the termination conditioC ensures that each node 00P
terminates the algorithm at the end of the2-nd phase w.h.p, Pxmit < 1/(n —b) .
as desired. if ((flag = 0) and (Bernoulli(pxmit) = 1)) then

We evaluated the termination condition by simulating the ~ 1'ansmitDISCOV ERY (i) in first sub-slot
ALOHA:-like discovery algorithm for clique sizes,, ranging if second sub-slot not idithen
from 2...100. For eachn, we run the simulation 100 times. flag — 1 /I"Drop out”
The simulation results show that for every and every end if

simulation run, each node terminates in the correct phase as ©IS€ o
predicted by our analysis. if successful reception in first sub-skbien

Transmit bit “1” in second sub-slot
NbrListlb++] <« DISCOV ERY.source
end if
end if
We now describe & (n) neighbor discovery algorithm end loop
that exploits feedback from receiving nodes. As we will see;
feedback to a transmitting node allows it to determine ifash

been discovered by other nodes, which then allows it to stgp,ce there is only one surviving node in the— 1)-st epoch
transmitting. _ _ _ _ which therefore, consists of a single slot. In general, eéher
We first describe a©(n) neighbor discovery algorithm 506, — 4, surviving nodes in epochn, each transmitting

employing feedback when nodes can detect collisions, i.gith probability 1/(n — m). The probability of a successful
each node can distinguish between a collision and an idlgnsmission during epoch is

slot. Subsequently, we describe how feedback can be exgloit

IV. ORDER-OPTIMAL NEIGHBOR DISCOVERY USING
FEEDBACK

. . n—m-—1
to achieve ad(n) algorithm even when nodes cannot detect _ 1 1— 1 Vm < m— 9
collisions. Throughout this section, we assume that allrthe " n—m n—m ’ -
nodes are arranged in a clique. It can be verified that
1 2
A. Collision Detection-based Neighbor Discovery (n—m)e SPm < (n—m)e’ ym=n-2 (9

The collision detection-based algorithm is presented in ANoting that W,, is geometrically distributed with mean
gorithm 1. The key idea behind the algorithm is as follows. We/((n — m)p,,),
divide each slot into two sub-slots. Upon successful récept - -
of aDISCOV'ER\r'fn?s”sage in the first sub-slot, each receiving E[W] = Z E[W,]+1= Z 1 +1 0 (0)
node transmits bit “1” to the source of the message (say node (n —m)pm
:1)0(Ijne ;h%gle”(;?onnd ds(;z C?ilg:]’ Zﬁésvtlilgydg?gsgg egt iﬁ!‘fﬁ}g %tubstitution from (9) into (10) and further simplificatiorelds
second sub-slot is not idle and that its transmission in the ne E[W] < ne
first sub-slot was received by all other nodes. Upon doing so, 2 - B
it “drops out” of neighbor discovery, i.e., stops transingt Thus, E[W] = ©(n). In other words, the collision detection-
The remaining nodes (henceforth, calkdviving nodesthen based algorithm outperforms the ALOHA-like algorithm by a
increase their transmission probabilities in the next.skst factor of at leastn n.
we will see, allowing nodes which have been discovered to2) Concentration Results:We now establish an even
drop out and requiring the surviving nodes to increase thironger result, viziV = ©(n) w.h.p. We first introduce the
transmission probabilities, yields a significant improesn notion of stochastic dominance
over the ALOHA-like algorithm. Definition 1: We say that a random variabl€ stochasti-
Note that since a single bit suffices for the feedback, tie@lly dominatesanother random variablE if
second sub-slot is much shorter than the first.
1) Algorithm Analysis:Let W denote the time until each P(X zz)2 P(Y 2 xi’ Ve
node discovers all of its — 1 neighbors. Again, we divide We introduce a random variabl&/ that stochastically
neighbor discovery into epochs, where theth epoch,0 < dominatesiV and defined as follows:

m=0 m=0

m < n — 1, is of durationW,,. It starts when then-th node . on=l
is discovered and ends upon discovery of the- 1-st node. W = Z Wi
Thus, m=0

n—1 n—2 -
W = Z W, = Z W, +1 whereW,, is a geometrically distributed random variable with
ooy b meane. The stochastic dominance & over W follows



by noting that eacH¥,,, which is geometrically distributed 4) Asynchronous OperationWe next describe the asyn-
with meane, stochastically dominate®/,,,, which has mean chronous collision detection-based algorithm, which is-pr
1/((n — m)pm) < e. Thus, sented in Algorithm 2. Here, each transmission is of fixed
~ durationT and is followed by a@eedback periodf duration
P(W>t) < P(W>t) o. Letk = 7+0. We further assume that a node in the receive

Further, note that¥’ is a Pascal random variable with pamode can always detect if the wireless channélusyor idle.
rametersn, and 1/e. We now introduce a random variable AS shown in Figure 1, the timeline for an asynchronous

X, ~ Binomial(t, 1/¢), which is related td¥ as follows: collision detection-based algorithm consists ofinsuccess-
ful Busy Periods during which two or more nodes transmit

concurrently; (ii) Feedback Perioddmmediately following
message transmissions; (iiljlle Periods during which no
transmissions occur; and (ijuccessful Busy Periodhiring
mhich exactly one transmission occurs. As in the synchrenou

{W >t} «— {X, <n}

The relationship between the random variablé&s and X,
follows sincelV represents the waiting time untilsuccessful
events, whileX; denotes the number of successful events

t slots. Therefore,
P(W >t) = P(X, <n)

We now employ the following Chernoff bound [25, pp.70] for
the binomial random variablé,;:

t

t 52
P (Xt <(1 —5)) <e e,
e

Letting t = 2ne ande = 1/2, we get

0<e<l1

P(W > 2ne) = P(X, <n) <e ™* = 0asn — oo

Since P(W > t) < P(W > t) Vt, it follows that W < 2ne
w.h.p.

Successful Busy
Unsuccessful Busy Period Idle Period Period
B |—

Feedbac
: Peribd

lv:‘—eedl:back
1 Peripd

Timeline -

Fig. 1. Timeline of asynchronous collision detection-baakgbrithm

algorithm, the key idea is to allow each node that has been
discovered by its neighbors to drop out and let the surviving
nodes increase their transmission rate.

Algorithm 2 Asynch. Collision Detection-based ND({)

We next show thatV > ne/2 w.h.p. We use the following
Chernoff bound forX; [25]:

2t
e

)= () e

Letting ¢t = ne/2 ande = 1, we conclude that

P(th

P(W < nej2) = P(X; >n) < (e/4)" — 0 asn — oo

Thus, W > ne/2 w.h.p. Using the union bound, it follows
that

%ngm@wm (11)

In other words,W = ©(n) w.h.p.

3) Unknown Number of NeighborsVhen nodes do not
know n, we again divide the algorithm into phases. The
th phase lasts a duration 8fT'e slots. Each surviving node
transmits with probabilityl /(2" — b) during this phase, where

b denotes the number of nodes which have been discovered

by their neighbors thus far.
In the [log n]-th phase, there are—b surviving nodes, each
transmitting with probabilityl /(n — b). An analysis identical

to the one in Section IV-A2 shows that each node discovers

all of its neighbors by thélogn]-th phase w.h.p. Hence, the

total time W until each node discovers all its neighbors w.h.p

IS
[log n]

b < 0 //Number of neighbors discovered by node
flag < 0 //Has nodei been discovered by other nodes?
NbrList — [ ] /lList of neighbors of node
loop
A —1/(2k(n — b))
Alarm (TIM EOUT ,Exp(1\)) //Set Listen duration
try:
loop
Listen for DISCOVERYmessages
if collision detectedhen
Transmit bit “1” at the end of busy period
else
NbrListlb++] < DISCOV ERY .source
end if
end loop
end try
catch TIMEOUT:
if (flag = 0) then
Transmit DISCOV ERY (i)
if feedback period idl¢hen
flag < 1 /["Drop out”
end if
end if
end catch
end loop

W = Z 27 tle < 4ne

r=1

(12)

From Algorithm 2, we make two observations about the

Comparing the above result with (11), we again observe géllision detection-based algorithm:
more than a factor of two slowdown compared to the casel) Unlike the synchronous version, receiving nodes trans-

where nodes know.

mit feedback in response to an unsuccessful transmis-



sion. The reason for this choice is as follows. As shown 5) Initiating and Terminating Neighbor Discoverynitia-

in Figure 1, during an unsuccessful busy period, ton of the collision detection-based algorithm can be feohd

message transmission may overlap with the feedbaidentically as described in Section IlI-F. Unlike the ALOHA

period of another message. Hence, sensing energy duriikg algorithm, termination of neighbor discovery is taviin

the feedback period has to be taken as an indication tbe case of collision detection-based algorithm. If theeeaay

unsuccessful transmission. surviving nodes at the end of a phase, they proceed to the next
2) Our algorithm allows a node to begin transmissiomphase. On the other hand, a node which has been discovered

despite detecting a busy period. The algorithm perfoby its neighbors, waits an additional phase and terminies t

mance can be improved by suppressing such transmaggorithm, if it senses no energy during the entire duratibn

sions. However, despite allowing such an event to occtine phase.

our analysis shows that the algorithm takes only twice

as long to complete neighbor discovery than its sym. Order-Optimal Neighbor Discovery Without Collision De-
chronous counterpart. Thus, transmission suppressi@@tion

only improves this constant and not the asymptotic order.\y.. how show that we can achieve order-optimal neighbor

We are now ready to analyze the performance of th§scovery, even when nodes cannot detect collisions. Algo-
algorithm. LetV denote the time to discover all nodes. rithm 3 presents a neighbor discovery algorithm that acfsiev
As before, divide the discovery process into epochs, whetfs goal.
the m-th epoch is of durationV,,. In epochm, there are  The algorithm is divided intoounds(as indexed by variable
n —m nodes yet to be discovered, each transmitting with raf¢ Roundr lasts a duration of, slots where
Am = 1/(2k(n — m)). Since the transmission events of an 8n
individual node constitute a Poisson process with ratg T, = — +8log2n

the transmission events from the— m surviving nodes also | d of idi .2T| bit of feedback h nod
follow a Poisson process with rate — m) . nstead of providing a single bit of feedback, each node now

Now, the probability that a transmission by one of them includes i.” its DISCO\{ERYmgssagg; the I.D of the most
surviving nodes is successful is given by rece_nt_ly discovered nelghbor in addition to its own ID. If a
receiving node hears its ID during a round, it “drops out” of

pm = e 2TmRAn — q /e neighbor discovery at the end of the round.

o The key idea behind Algorithm 3 is as follows. At the end
Now, the successful transmission events from#he m yet ot . rounds, wherd < r < log log n, there are at most/2"

to be discovered nodes follow a Poisson process with & ra{giving nodes w.h.p and the remaining nodes, which hear

given by(n—m)Ampm = 1/(2re). In other words, the random i |ps hack, drop out. Therefore, in the-1-st round, each

variablesW,,, are iid and exponentially distributed with mea”surviving node increases its transmission probabilittn.

2Ke. o _ After log log n—1 rounds, there are at mosf log n surviving
Noting thatW" = >/ _, W, it follows that the random ,qes w.h.p. At this point, each surviving node simply runs

variableW is the sum ofn iid exponential random vanables.the ALOHA-like neighbor discovery, which from the analysis

Therefore W is ann-stage Erlang random variable with mean;, section Ill, requires no more than

n—1
2ne n
EW] Z:()E[Wm] 2kne logn (logn) O(n) slots w.h.p
We immediately conclude that the the asynchronous versfionTohus’ assuming (for the time being) that there are at most

the collision detection-based neighbor discovery is onligé n/ log.n surviving nodes afterog logn —1 rc_)unds w._h.p, the
as slow as its synchronous version. total time W until each node discovers all its— 1 neighbors

We also show that the random variabi¥é is sharply con- is given by
centrated around its mean. In particular, employing CHé&rno loglogn—1 ¢
bounds for Erlang random variables (see Appendix C), ¥ = Y (2r + 8log 2”) +6(n) = 6(n) w.h.p
immediately follows that r=1

Our challenge next is to show that, indeed, there are at most
rne < W < dwne w.h.p (13) 1,/ 1ogn surviving nodes aftelog logn — 1 rounds w.h.p.
Therefore, V' = ©(n) w.h.p. 1) Algorithm Analysis:In this section, we show that Algo-
Also, the case where nodes do not know the value o&n rithm 3 runs inG(n) time w.h.p. To this end, we establish the

be handled exactly as described in Section IV-A3 and it c4@/lowing lemma.

be shown that, that the time to discover all neighbors w.p i -eMma S:After loglogn — 1 rounds, there are at most
given by n/logn surviving nodes w.h.p.

Proof: Let &, denote the event that there are at most
n/2"~1 surviving nodes at the start of theth round. It is
Again, comapring the above result with (13), we observe rg@sy to see thaP (&) = 1. We first show that
more than a factor of two slowdown from the case when nodes )
know the value ofy. P(2&rlér) < =, Vr:1 <r <loglogn

W < 8kne



Algorithm 3 ND Without Collision Detectionin)
b < 0 //Number of neighbors discovered by
flag < 0 /[/Hasi been discovered by other nodes?
id «+— —1 //id of most recently discovered node
NbrList < [ ] /lList of neighbors of nodé
for r =1 to [loglogn] — 1 do

Pxmit < 2T_1/n
for t =1 to [52 + 8log2n] do
if (flag = 0) and (Bernoulli(ppxmit) = 1) then
TransmitDISCOVERY((i,id)
else
if successful receptiothen
if (DISCOV ERY.id = i) then
flag < 1 /["Drop out”
else
id — DISCOV ERY.source
NbrList[b++] «— id
end if
end if
end if
end for
end for
/I Switch to ALOHA-like neighbor discovery
loop
Pxmit < log n/n
if (flag =0) and (Bernoulli(p,,;t) = 1) then
TransmitDISCOVERY (i)
else
if successful receptiothen
NbrListlb++] «— DISCOV ERY.source
end if
end if
end loop

Let the number of surviving nodes at the start-eh round be

n/2"~1—k, for somek > 0, each transmitting with probability

27=1 /n. Conditioned on the evewd. being true, letV,. denote

the waiting time until an additional/2" — k nodes hear their

IDs back when each node transmits with probabiity ! /n.

Again, we divide neighbor discovery in theth round into
epochs, where the:-th epoch, of duratioiV,,, ., starts when
the m-th node hears its ID back and ends when ithe- 1-st
node hears its ID back. Thus,

n/2"—k—1 n/2"—1
Wr = Z Wmﬁr = Z WM,T
m=0 m=k

Here,W,,, . is geometrically distributed with megm /27~ —
m)pm,r, with

r—1
27‘71 2r71 _ 27“71 n/2 —k—1
Pm,r = (n/ m) <1 - )
n n
r—1 r—1 _ r—1 n/2" -1
n n ’

Let Wmm be geometrically distributed with medn /2"~ —

m)pm, . Clearly, W, , stochastically dominate$V,, , and

hence,

n/2" n/2"
We <Y Wi € Wi
m=k m=0

Now, it can be verified that

27 =1(n/2"~1 — m)
ne

2" (n/27" — m)
ne

< Pmgr <

(14)

Using Chernoff bounds, we obtain

n/2"
P(W,>uz)<e * H

m=0

= S
Pm,r€

—_— Vs> 0
1—(1—pm,r)e’

Substituting the upper and lower bounds gy, , from (14)
into the numerator and denominator (resp.) above yields

n/2"
- (% — m)es
Vi Wr >x g 25T 3
o N =i
n/2" )
< 2l yam—y
m:01_26(1_€ )

Letting s = —In (1 — £#) and noting that > 1/8,

2¢2

x

P (W, > x) <22 t17%

Noting that ther-th round is of duratioril;. = 3—” + 8log2n
slots, we conclude that

2
P(=&n|&) < P(W,.>T,) < -

(15)
SinceP (&) =1, it follows from (15) that
2r
P(_' ’f‘+1) < P(_' ’F+1|5T) +P(_‘gr) < ;

Sincer < loglogn, it follows that

2loglogn

P(_‘gloglogn) < —0asn — o

n

This completes the proof of Lemma 5. [ ]
We already know from the analysis in Section IlI-C that the
surviving nodes (at most/logn in total) can be discovered
by the ALOHA-like algorithm in©(n) slots w.h.p. Putting ev-
erything together, we conclude that allhodes are discovered
in ©(n) running time w.h.p.

2) Algorithm ExtensionsAnalogous to Section lll, Algo-
rithm 3 can be extended to handle asynchronous operation and
the case where is unknown. We also employ the termination
conditionTC proposed in Section I1I-G and evaluate it by sim-
ulating Algorithm 3. Again, we find that for eache [2, 100],
each node terminates in the correct phase, as desired.

V. THE MULTI-HOP NETWORK CASE

Thus far, our treatment of the neighbor discovery problem
assumes single-hop networks. We now consider the more
general multi-hop network setting and derive lower and uppe
bounds for the neighbor discovery problem.
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. discovery only if each of its neighbors is ready to terminate
L the algorithm.

Returning to the example in Figure 2, let us assume that
node: has discovered nodgin the first half of ther-th phase

and is therefore, ready to terminate neighbor discoverpat t
end of ther-th phase, but nodg is not. Nodei learns of this

A. ALOHA-like Neighbor Discovery: Upper Bound Analysisfact from’s transmission in the second half of theh phase,

We begin by analyzing the ALOHA-like algorithm. Recallang t??r’nb?at{?oraogfe tsherA(I:_eOelﬂ :-)I'tkr(]ee dr.lseé(; 'Z:aS;‘ orithm in
that the wireless network is represented by a gréaph= ur simuiatl ' Iscovery algori !

(V,E), where|[V| = n. We initially assume that all nodes® network setting over a wide range of node densities and over
kn’ow ’the maximum n.ode degre&. Further, we assume 5@ range of node placements shows that each node terminates

time-slotted system in which nodes are synchronized on s%qu after discovering all its neighbors, as desired.
boundaries. In each slot, each node in the network transmits
with probability 1/(A + 1). B. Lower Bound Analysis

The probabilityp that a node discovers a neighboring node |, g section, we establish a lower bound for the running

4 in a given slot is time of any randomized neighbor discovery algorithm. More
1 1 \2 1 formally, we show that, givem and A, we can construct a
p= Al (1 AT 1) 2 NS graphG = (V, E) with |[V| = n and maximum node degree
) _ A such that any randomized algorithm requife&\ + Inn)
Let &;;(t) denote the event that nodediscovers a given giots w.h.p to discover all edges @.

Fig. 2. Nodei and nodej with different number of neighbors.

neighbor; in ¢ slots. Therefore, Givenn and A, we construct an input grapfl = (V, E)
1 t o with |[V]| = n and maximum node degre& as follows. A
P (=&;(t) < (1 - (AJrl)e) < el @BEDe out of then nodes are chosen arbitrarily and arranged in a

. ] cligue, while the remaining. — A nodes are paired arbitrarily
where the second inequality follows from the fact thatz < and arranged in a matching of sige— A) /2. No edges exist
e*, Vo € R. Substitutingt = 3(A + 1)elnn into the right petween the nodes in the clique and those in the matching.

hand side of the above inequality yields Each node irG is then assigned a unique ID drawn uniformly
P < o—3lnn _ 1 at random from the set of available IDs. For convenience,
(=Ei(t) < e ) we let Mg = (V', E’) denote the matching iG. Note that
Applying the union bound, we conclude that V,E' CV,E, where|V'| =n— A and|E'| = (n — A)/2.

Since each node needs to receive at least one transmission

m2 2 from a neighboring node in order to discover the neighbor,
P U ~&i(t) | = Z P(=&;(1) = W n any distributed algorithm, randomized or not, has a running
(1.7)€E (1.7)€E time of at least2(A) on the input graptG. Thus, it suffices
In other words, all the edges in the network are discoveredt® show that whemA = o(Inn)*, any randomized neighbor
at mostO(Alnn) time slots w.h.p. discovery algorithm has a running time 9f(lnn) w.h.p on

Analogous to the single-hop version, it can be easily vetifighe graphG. This implies a lower bound (A + Inn).
that the network version of the ALOHA-like algorithm can be In establishing the lower bound, we assume that nodés in
extended to: (i) handle the case when nodes do not ki\pw can detect collisions. Since collision detection can orejph
(ii) allow asynchronous operation, and (iii) allow nodestart reduce the discovery time, the lower bound also applies to
neighbor discovery at different times. We therefore focoly o algorithms that assume nodes cannot detect collisions.
on handling termination. 1) Uniform Randomized Algorithmd/e initially establish
1) Handling Termination: The termination conditionfC the lower bound for the class afniform randomized algo-
proposed in Section 11I-G may not work correctly in a multitithmsi.e. each node uses the same algorithm. Consistent with
hop setting. To see why, consider the network shown the problem definition introduced in Section Il, we assuna th
Figure 2. Here, it is possible that nodediscovers nodegj nodes do not know the IDs of their neighbors.
before j discoversi. Sincei has only one neighbor, it may A more precise definition of a randomized and uniform
terminate neighbor discovery before being discovered; by randomized algorithm follows. Consider nodec V. We
We therefore propose the following change to the ALOHAntroduceh;(t) € ({0,1,c1,co, w})t as thehistory observed
like algorithm, which doubles its running time. by nodei up to timet, wheret > 1. Here,w € {0, 1}* denotes
We double the duration of each phase i.e. thlh phase an arbitrary bit-string of lengtlh > 1 and corresponds to the
now lasts a duration d#"t2eln 2" slots. During the first half contents of the message received by nodepon successful
of the r-th phase, each node transmits with probabiliz”, transmission by a neighbor. In the case of the ALOHA-like
as before. In the second half, each node that transmittduokin algorithm, w denotes the ID of the transmitting node, while
first half announces to its neighbors if it is ready to terntgénain the case of the Feedback-based algorithm described in
the algorithm, as determined by the termination condifi@h
At the end of ther-th phase, a node terminates neighbor *f(n) = o(g(n)), if lim L — o

n— oo
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Section IV-B,w denotes the ID of the transmitting node andVe know thatMs has(n — A)/2 edges. Further, the random
that of its most recently discovered neighbor. Thth entry variableZ;; depends only on the probabilistic choices of nodes
of h;(t), denoted byh;(t,¢), corresponds to an event in the; and; in each slot, which in turn depend only on the histories
£-th slot and is defined as follows: observed byi and j, but not on the probabilistic choices or

0 if i does not transmit and does not observdiistories of any other node. Thus, tdgs are iid yielding

any transmission,
1 if 4 transmits successfully,
hi(t,0) £ { ¢, if 4 transmits and is involved in a collision
co if 1 does not transmit but observes

a collision, P (ma_xjgj > 110g (” — A)) 1—e V™2 1
w if i observes a successful transmission ! 2 2

A randomized algorithm is characterized by a per nod$n — oo. Thus, 73/¢ > max T;j = Q(In (252)) wh.p,

function p;(t|h;(t — 1)), that specifies the probability thatwhich yields a lower bound of2(Inn) when A = o(Inn).

node i transmits in slott given a history h;(t — 1) as Thus, 7§ = Q(A +Inn) w.h.p.

defined above. A uniform randomized algorithm is one where 2) Non-uniform Randomized Algorithmaie next show

pi(tlhi(t — 1)) = p;(tlh;(t — 1)) for all i,j € V and allt, that the lower bound established in the previous section

provided thath;(t — 1) = h;(t — 1). also applies for the class afon-uniform randomized al-
Consider an arbitrary uniform randomized neighbor discogorithms where nodes may use different algorithms. More

ery algorithm.A4 and consider the input grapf = (V, E) formally, a non-uniform randomized algorithm is one in whic

constructed earlier. LeT'{ be the time until all edges in the p,(¢|h;(t — 1)) may not equalp; (t|hs(t — 1)), even though

G using A. Recall that the input grap& includes a matching p,(t — 1) = h;i(t — 1), for an arbitrary pair of nodes j € V.

Mg = (V',E'), whereV', E' C V. E and |E'| = (n — A) /2. Let A = (A;,...,.A,) be an arbitrary non-uniform ran-

Let 7,/ denote the time required by to discover the edges domized algorithm, where nodeuses algorithmd;. We also

in M. Clearly, ¢ > 7,'¢ and hence, a lower bound forassume that the node placement is independent of their IDs,

74" yields a lower bound foZ §. i.e., given locations, ..., £, of the nodes, we assume that
We assume that each nodeMy; knowsn andA. Clearly, the node at locatiort;, is equally likely to be any one of the

having more information can only reduce the running timg nodes and is, therefore, equally likely to use any one of

of A and therefore, does not affect the lower bound. Wa, ... A4,.

also assume that edgés j), (j,7) € £’ are both discovered  Similar to [18], we reduce a non-uniform randomized

simultaneously regardless of which nodl@r j successfully algorithm A to a randomized algorithn®, which operates

transmits first. Again, this assumption does not affecttheet  as follows. Each nodeé chooses an algorithrod;, from A

n—A 2=t (n—n)
pl

P(ma_x’]}j>t) 217(172*’5) 2 >1—e
i,

» Settingt = 1 log (252) in the above inequality yields

Y

bound. uniformly at random and independently of any other node,
Let the random variable;; denote the time until edgesand simulatesAy, i.e., nodei runs.A; as if it were nodek.
(i,4) and(j, i) are discovered. Therf}'c > H;?]LXTU- We next show that) is uniform.
Consider an arbitrary pair of directed eddesj) and (j, i) Lemma 6:The randomized algorithn@ is uniform.

in M. It is important to note the following about the histories ~ Proof: Let ¢ and j be an arbitrary pair of nodes such
observed by nodesand j prior to 7;;, namely that they are thath;(t — 1) = h;(t — 1) = h(t — 1). To establish that is
identical. This is because the only events that can occor priniform, we need to show that(t|h(t —1)) = p;(t|h(t—1)).
to 7;; are either idle slots or collisions involving bottand;;. Let p;(h(t — 1)|Ax) denote the probability that node
Consequentlyh;(t) = h;(t) = h(t), Vt < T;;, and therefore, observes historyi(t—1) given that it simulates!;, andp; (Ayx)
be the probability that nodé simulatesAy. Then,

pi(tlh(t — 1)) = p;(t|h(t — 1)) £ p(t|h(t — 1)), Vh,Vt < T;; P g A

i(th(t — 1), i(h(t — 1) Ap)pi
Let B;;(t) denote the event that a successful transmission A,%p( IR ) Ar)pi(h( JAR)pi(Ar)
occurs, either from to j or vice-versa, in the-th time slot. Pi(t|h(t—1)) = = S o (= DA )7 ()
Then, for alla(t — 1) and for allt < 7;;, it follows that AreA ' '

Since nodesi and j both run A, as nodek, p;(t|h(t —
1), Ax) = p;(t|h(t — 1), Ag). Further, since nodes and j
Sinceh(t—1) contains information about the outcome of slotgre hoth equally likely to be in any of the locations, it

1,...,t—1, it follows that follows that p;(h(t — 1)|Ax) = pj(h(t — 1)|Ax). Finally,

P (Bij()[h(t — 1)) = 2p(t|h(t — 1)) (1 — p(t|h(t — 1))) <

N | =

1 sincep;(Ax) = p;j(Ayx), we conclude thap;(t|h(t — 1)) =
P (Bij(1)[=Bij(1),., ~Bij(t = 1)) < 3 Vt<T p;i(t|h(t — 1). The uniformness of follows immediately. B
Therefore, Let Co(Ly) denote the algorithm chosen by the node at

. location £, under Q. Also, lets = (s1,...,s,) denote an
P(T;; > t) = H P(=By;(0)|-Bi;(1) ... =By(¢ — 1)) > 27 arbitrary vector ofscheduleswhere each schedulg denotes
=1 - the slots in which the node at locatiaf), transmits.
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We now state a result established in [18], which also followSimilar to Section V-A, we can show that all edges in a

immediately from the preceding discussion. network with n nodes and maximum node degrée are
Lemma 7:1f Vk # £ : Co(Ly) # Co(Ly), then for every discovered in at mosg% slots w.h.p. Thus, when
= o\~ 9(Aa+D)

5 A >> 27” we obtain a factor o= /6 speed-up over the case

P(5|Q rung = P(s]A rung where nodes have omni-directional antennas.
Consider the matching/s defined in Section V-B1, which
is of size (n — A)/2. From Mg = (V', E’), we can easily B. RFID Tag Identification
derive another matching/s = (V", E”) of size (%)”4 The neighbor discovery algorithms proposed in this paper
such thatV” c V' and E” C E’, and each edge i’ can easily be adapted to solve the RFID tag identification
satisfies the condition, j) € E” = (j,i) € E”. Clearly, problem, where a tag reader needs to identify the IDs of the
3 1 n_ A tags in its range. In particular, the feedback-based alyns
7§ > 159 > 13'¢ > 5 log <2> wh.p  (16) proposed in Section IV are well-suited to address this @bl
and operate as follows. Each time the tag reader discovers a

where the last inequality follows by noting th@tis a uniform new tag, it announces the ID of the tag allowing it to drop
randomized algorithm and by proceeding identically to theut. Unlike prior work addressing the RFID tag identificatio

analysis in Section V-B1. R problem (see Section VIl for a list of references), our algo-
Let £i,...,Lyy~ be the locations of the nodes . rithms do not require collision detection and do not reqaire
Then, priori estimate of the number of tags. Further, the termination
2(u)i condition TC can be used to detect end of the tag discovery
P (k£ 0 Co(ly) # Colle) > 1 — ( 9 ) 1 process, when the number of tags is not known.

asn — oo. Therefore, it follows from (16) and Lemma 7C- Discovery of Asymmetric Edges

thatTIf”G = Q(In (%)) w.h.p, which yields a lower bound Throughout this paper, we have assumed that edges between
of Q(Inn) when A = o(Inn). This result combined with the node pairs are symmetric. We next describe a simple heuristi
trivial lower bound ofQ(A) yields TXG = Q(A +1nn) w.h.p. for discovering asymmetric edges using the ALOHA-like

Our result thus implies that the' ALOHA-like algorithm isalgorithm. In particular, if we have a pair of nodésand j

at most a factomin(A,Inn) worse than the optimal. such that(i, ) € E, but (j,i) ¢ E, our heuristic allows node
j to remove: from its list of neighbors. Upon termination
VI. DISCUSSION of neighbor discovery in the-th phase, each node runs the

In this section, we discuss a number of pertinent issuéé‘r?Hr’?"“ke glggnthtmh.forﬁn |dent|cal du(rjat|on as that Oﬁh D
relevant to the proposed neighbor discovery algorithms ahg" Phase. buring this phase, each node announces the 1Ds
: . of all the neighbors it has discovered. Sincavill not be in
their analysis. . . L T ) )
the list of IDs included in’s transmission, nodg removesi
) . ) o from its neighbor list.
A. Neighbor Discovery Using Directional Antennas
The analysis of the ALOHA-like algorithm can also beéD. Feedback-based Algorithms for Multi-Hop Networks

extended to the case where nodes have directional antennag:. js interesting to ask whether or not the feedback-based

For instance, in [31], the authors propose a variant of thggorithms studied in Section IV can be extended to the multi
ALOHA-like algorithm which operates as follows. At eachhop network setting. There are two important obstacles that
slot, a node transmits with probability, by pointing its need to be overcome in this regard.

antenna, which has a fixed beamwidthin a direction chosen 1) In a clique setting, when a nodehears its ID back, it

uniformly at random from the intervdl, 2. knows that all other nodes in the clique have discovered
[31] derives the optimal value gf, as i, thus allowing it to drop out. In the multi-hop case,
2m 2m however, the presence of hidden terminals may cause a

Px = 0(A+1)’ Atl> 0 subset ofi’s neighbors to not receivés transmission.

whereA is the maximum node degree in the network. Thus, i cannot drop out despite hearing its ID back.
To avoid repetition, we only consider the case where nodes?) N the multi-hop setting’s dropping out needs to be
have a directional transmitter and an omni-directionadnear. signaled to its neighbors allowing them to increase their

In this case, the probability that a given nogleliscovers a transmission probabilities, which appears non-trivial.

neighborj in a given slot is given by Exploiting receiver feedback in the multi-hop setting in amn
A1 ner that yields improvement over the ALOHA-like discovery
o= 2m o 2m 1_ 6 2w algorithm is therefore an interesting open problem.
(A +1) 0(A+1) 2r (A +1)
——

i transmits  j receives  no other node transmits to E. Beacon-based Neighbor Discovery

S 2m 21 In beacon-based neighbor discovery, each node transmits
~O0(A+1e N (A +1) BEACONmMmessages at fixed intervals i.e., the interval size is
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independent of.. To avoid synchronization between beacoalgorithm designed to operate in fading environments has
transmissions, a random delay is added to the intervals Theen studied in [17]. However, the performance of these
scheme has been proposed in numerous contexts, e.g., (ixlgorithms is not well-understood, even in the case of singl
maintain neighbor list in routing protocols such as AODV][26 hop networks. Further, each of these algorithms reqaire
DSR [13], and GPSR [15], and (ii) for topology formation inpriori estimates of node density and do not address the issue
the context of Bluetooth [5] and IEEE 802.15.4 [1]. of termination of neighbor discovery.

Beacon-based neighbor discovery can be thought of aKeshavarzian et al. [16] propose a novel, deterministic
a randomized algorithm in which each node transmits witheighbor discovery algorithm. However, nodes need to be
probability 1/k at each slot, wheré is fixed. For simplicity, synchronized with each other and need to know the maximum
consider a clique ofi nodes. The probability of a successfuhumber of neighborsy, a priori. Furthermore, the neighbor

transmission is then given by discovery needs? time slots to discover all the neighbors.
n—1 ok Neighbor discovery algorithms using a multi-user detectio
1 1 e " :
p=-—(1-—— ~ approach have been proposed in [2]. However, these algo-
k k k rithms require synchronization between nodes and alsareequ

Similar to Section Ill, it can be shown that the expected timgach node to know the signatures of every other node in the
to discover alln nodes equalge™*(Inn + ©(1)). network. An interesting approach to neighbor discoveryelas

To compare the performance of beacon-based neighbor dis-group testing has been proposed in [21]. But it too suffers
covery with the algorithms studied in this paper, we conside from the same practical limitations as [2].
Bluetooth network, where each slot is of duration 0.625 nts an There have been numerous proposals for neighbor discovery
beacons are transmitted once eviery 14 slots [5]. In a dense when nodes have directional antennas [31], [12], [33], .[28]
setting, wheren ~ 100, beacon-based neighbor discovery i general, these solutions propose antenna scanning-strat
65 times slower than the ALOHA-like algorithm and 300 timegies for efficient neighbor discovery. However, none of ¢ghes
slower than the collision detection-based algorithm. proposals address the practical challenges considerdusin t

The above example illustrates the poor performance péper. Further, the analysis in this paper can be used toderov
beacon-based neighbor discovery when nodes transmit tognore rigorous understanding of the directional neighbor
frequently. At the other extreme, nodes may transmit verjiscovery problem, as shown in Section VI.
infrequently. For example, the recommended beacon iftervaThere exists a large body of literature addressing the RFID
in GPSR [15] is 1s. Assuming slots of size 0.625 ms, this cag identification problem (see for example [29], [14], [19]
responds to each node transmitting with probabilifi600. [11], [32]), where a designated tag reader needs to determin
Whenn = 10, beacon-based neighbor discovery is 59 timdbke IDs of tags in its rangé2rima facie the tag identification
slower than the ALOHA-like algorithm and 135 times sloweproblem bears resemblance to the neighbor discovery prob-
than the collision detection-based algorithm. lem. However, neighbor discovery is more challenging.tFirs

It must also be noted that there is no obvious method fekisting tag identification algorithms typically assumattthe
terminating the beacon-based neighbor discovery algoritthumber of tags is knowa priori. Second, the transmissions

without ana priori estimate of network density. of the tags can be more easily controlled due to the presence
of the tag reader, which functions asnsaster nodeduring
F. Other Wireless Channel Models the discovery process. Finally, tag identification algoris do

Al the results we have derived thus far are based dI9t address the hidden terminal problem present in multi-ho

the assumption of a collision channel model. Extension Y§reless networks. _ o _
more general wireless channel models that incorporatedadi S°me Of the literature on conflict resolution in multiple
effects and errors in transmission/reception is an intexgs 2CCeSS channels is related to the neighbor discovery proble
open direction. While the correctness of the ALOHA—Iiké"”d its analysis. In particular, the determinigtie algorlthms.
algorithm is independent of the wireless channel model uséd [71: [10], [30] can be adapted to perform neighbor dis-
the Feedback-based algorithms however require modificatigPvery: However, these algorithms are not suitable forrséve
for correct operation under other wireless channel model§2sons. The algorithms typically assume that node IDs lie
As an example, [17] assumes Rayleigh fading channels dfgth® range[l... N], where N is assumed to be knowa
proposes a simple extension to the collision detectiordad®"or- Secondly, the performance of the algorithms .scales as
neighbor discovery algorithm in which each node is requiréd("+7108(N/n)), wheren denotes the number of neighbors.
to successfully transmiDISCOVERYmessages times before Thus, the algorithms perform poorly wheN >> n (e.g.

it drops out, wheré is a function of the channel parametersV = ¢"). Finally, these algorithms work only in single-hop
networks and, require synchronization and collision deiac

VII. RELATED WORK

An early work on neighbor discovery is [23], which pro- VIII. ConcLusions

poses a synchronous ALOHA-like neighbor discovery algo- In this paper, we have presented efficient neighbor disgover
rithm, identical to the one studied in this paper. More rélgen algorithms for wireless networks that comprehensivelyrasis
an asynchronous, randomized neighbor discovery algorithvarious practical limitations of the earlier approachesir O
has been proposed in [6]. A feedback based neighbor discoveeighbor discovery algorithms do not require estimatesoden



density and allow asynchronous operation. Furthermore, qep]
algorithms allow nodes to begin execution at different md23]
and also allow nodes to detect termination.

Our analysis shows a gap between the lower and upp#s
bounds on the running time for neighbor discovery in thigs]
network case. Clearly, the quest for an order-optimal neigpq
bor discovery algorithm remains an intriguing prospect. Of
particular interest is the question of whether the feedbadR’]
based algorithms, which are order-optimal in the singlp-hg,g
case, can be extended to the multi-hop network setting while
outperforming the ALOHA-like algorithm. Another directio
of interest is the extension of the various algorithms ared ﬂ[lzg]
analysis presented in this paper to wireless channel models
that incorporate phenomena such as fading and shadowing3°!
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APPENDIXA

APPROXIMATION ERROR IN E[W] FORALOHA-LIKE

NEIGHBOR DISCOVERY

In this section, we calculate bounds on the approximation
error for the results derived in Section IlI-B.
Recall from (1), we have the following approximation

i 17

1( 1)"‘1 1
=—|1--— ~ —
n n ne

Since(1 — 1/n)"~! > 1/e, it follows that

1
b= % +6e(n)

where d.(n) > 0 denotes the approximation error in (17).
Using Taylor's Theorem, we can write

-1+ R(n)

(n—l)ln(l—;)

InMobile Computing pages 153-181. Kluwer Where R(n) represents the remainder term and is given by

1 n—1
Rn)=—-—————-0<c¢<1
(n) n  2n2(1 —c)?’ sesl/n
) is maximized where = 0 and therefore,
n+1 1
R(n) < -
(n) < 2n? n
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0 < be(n) < é(e% —1) (18)

It is easy to see thal.(n) — 0, asn — oo.
Recalling from Section I1I-B thafs[W] = 1 H,,, we obtain

Tp

E[W] (M) H, =ne

From (18), it follows that

nelf%Hn < E[W] < neH,

It is easy to see thab[W] — neH,, asn — oo.
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APPENDIXB and for evenk > 2,
SHARP CONCENTRATION OFALOHA-LIKE NEIGHBOR

k
| | DIS('IOVERY . P <U Ei(t)> > Z(il)@rlp&”
In this section, we provide a more rigorous proof of the p e
sharp concentration result for the ALOHA-like neighbor-dis
covery algorithm based on Boole-Bonferroni inequalitiise  Putting the two Boole-Bonferroni inequalities togetheg @an
proof is very similar to the proofs available in [25] for thewrite

sharp concentration for the Coupon Collector’s Problem.
Lemma 8:Let ¢ be a real constant arid= ne(Inn +c) for Saen < P (| JE() | < Santim
positive integem. Then, for any fixed positive integeé, '
i n\ (4 B\t e—ck Since allk-wise intersections of;(t) are equally likely,
n1—>n;o (k) ( B 716) o k! k
Proof: We make use of the following inequality in our Pron = (n)P <ﬂ &(t))
proof: For allz,a € &, such thatz > 1 and |z| < q, k j
o (1_ 1‘2) < <1+£>“ < o® Now, the probability of intersection of thek events
a ) - E1(t),...,Ek(t) is the probability of not discovering any of
t
Letz = — anda = ¢. Substituting in the above inequality,the first  nodes int time slots and is equal t¢1 — %) .
we get Therefore,
t
2 t o n k
e ne (1— k;;)g(l—k) <eme Pk’n_(k>(1_ne>
n<e ne
tk Therefore,
o (1 _ kﬂnnﬂ)) < (1 _ k) ek ek
ne ne lim Py, =P = x

kt
Note e~ ne = n—ke=<k. Also, )

. k(lnn + c) Let Sy = Ze (D) Py = Zz L (=11 & Note that
lim (1-————= ) =1 the right hand side of the expression &rconssts of the first

n—o00 ne —c
k terms of the power series expansionfit) = 1 —e™©
For largen, we know that We conclude that
("> _nt lim Sy = f(c)
k k! k—oo
Putting all this together yields the desired result. m That is for alle > 0, there exists &* > 0, such that for any
Theorem 1:Let W denote the time required to discoverk > k¥,

all the n neighbors. Then, for any constante R andt = Sk — fle) < e
ne(lnn + ¢),

lim P(W >t)=1— e ¢ Sincelim,,_, P’ = Py, it follows thatlim, ..o Sk, = Sk.

Equivalently, for alle > 0 andk, whenn is sufficiently large,
Proof: The proof is exactly the same as described in [255) ,, — Sk| < €. Thus, for alle > 0, any fixedk > k*, and
and has been produced here for completeness. The eversufficiently large,|S;, — Sk| < € and |S; — f(¢)| < e.
{W >t} =, &(t), where&;(t) denotes the event that aTherefore,
node: is not discovered withirt time slots. By the Principle 1Sn — f(c)] < 2¢
of Inclusion-Exclusion, we have

n . and
U Eilt Z )" Prn |Sakn — Sakr1,n| < 4de

k=1

Pem= Y P(ﬁ&At)) |P<U5> (¢)] < 4e

1<i7...<ip<n

where

LetSk.n = P1n—Pan+...+(—1)kT1P, ,, denote the partial This implies the desired result that
sum formed by the firsk terms in this series. By the Boole-

ii iti > e
Bonferroni inequalities, for od& > 1, lim P <U5 ) fle)=1—e°

k
P (U &(t)) <D ()P
% £=1
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APPENDIXC From Theorem 3, it immediately follows that
CHERNOFFBOUNDS FORERLANG RANDOM VARIABLE

k
Theorem 2:Let X ~ Erlangn, 3), with mean E[X] = P (X(’“) > x) S (Z Zy > 5;C>

n/B. For alle > 0, =1
1+e\" ~
1) P(X > (1+¢)E[X]) < (18_56)71 whereZ, is an exponential random variable with melftn —
2) P(X <(1-¢)E[X]) < (e*5> ¢+ 1). Note that theZ,s are independent, but not identically
Proof: distributed exponential random variables. Applying Cloffrn
P(X < a) < inf e**Mx(s) (19) bound, we get

s<0

k
where My (s) = E[e*X] denotes the moment generating P (X(k) > x) < e P HE[eSZ‘], Vs >0
function of the random variableX. For an Erlang(n, () =1

random variable k ( s >1

o - (525)" —ol

(=1
A standard calculation shows that the value ttfiat minimizes
the right hand side of (19) is given by

n—~¢+1

Note that the second inequality is only applicable whes
n —k + 1. Letting s = 1, we get

(k) —pz_ N
s*:ﬁ—ﬁ P(X 2:1:) s e n—~k
a
Therefore,
—(ap—ny (@B\" APPENDIXE
P(X<a)<e ( n ) PROOF OFCORRECTNESS OFT ERMINATION CONDITION
Settinga = (1 — ) E[X] = %7 Ve > 0 yields A. Notation
Throughout this sectionS,. denotes the number of distinct
1— " . .
P(X < (1—-¢)E[X)) < ( - 5) . Ve>0 nodes that successfully transmit at least once wtﬂephasg.
e—* S, denotes the total number of successful transmissions in the

Sincel — e < e~¢, the right hand side in the above inequalit)f'th phase. Note t_hag" S Sr. py denotes th? pr(_)bability of
goes to 0 as — oc. successful transmission in theth phase and is given by

The probability bound for the upper tail can be derived n 1\ pe—(n—1)/2"
similarly. In particular, for a non-negative random vateafx Pr =50 <1 - 2,) ST
anda > 0, we have

t, is the duration of the-th phase and is given by

P(X >a) <inf e **Mx(s)

50 t, =2"TleIn2"
Proceeding exactly in the same manner as before, it can be

easily shown that B. Proof of Lemma 2

P(X>(1+¢)FE[X]) < (1 te) , Ye>0 It is easy to verify thatS, ~ Binomial(t,,p,). Sincer <
€ log (2£=1) in Stage land p, increases monotonically as
Sincel +¢ < e°, the right hand side goes to 0 as— co. m  varies from1...log (%) it follows that
A 2lnn
APPENDIXD pr<p= =1
CHERNOFFBOUNDS FORORDER STATISTICS OF
EXPONENTIAL RANDOM VARIABLES Further,
We first state an im o 2e(n =D (F5)
portant theorem from [8][pp.18] that t,<t2
characterizes the distribution of theth order statistic from 2lnn
from n i.i.d exponential random variables. Let S ~ Binomial(t, p). Applying Chernoff bound [25], we
Theorem 3:Let X;,..., X,, denote a sequence of i.id get
exponential random variables, each having megh Let the . tp
random variableX (*) denote thek-th order statistic. Then, P(S> (1+e)tp) < ((1+€>1+8> , Ve>0
e

k
(k) —_ il L — eln n—1
(X ,k—l,...m)—ﬂ(Zn_é+1,k—17m,n Notingthat0<tp:w<1, Vn > 4 and setting

— n
=t e==1—1, we get

where the Z,s are i.i.d exponential random variables with t
meanl. P(S>1) < tpe' = < tpe



Noting thatS, is stochastically dominated hy, we get
2621n("_1) 2¢?log (£-1)

- n - n

Application of the union bound vyields

10g(21n}2) 2 2 (n—1
~ 2e”1
P ' I {ST:()} > 11— € Ogn(ann)
r=1

— lasn— o

SinceS, < S,, Lemma 2 immediately follows.

C. Proof of Lemma 3

Applying Markov’s inequality,

E[S,] _ tep,
- or— 1 2r—1
Further simplification of the right hand side yields
4e2(n/2")In2"  4e?In2"

671/2" — en/2T+1

where the last inequality follows from the fact that >
ze*/2, Yz > 0 (see [24][pp.76]). Noting thatr <

n—1

1og (37552-) in Stage 2we obtain

P(S,.>2""H) < P(S,>2""Y) <

P(S,>2""1) <

4¢3

> 1
Inzn

4e3Inn

P(S, 2277 < =
Inz2 n
Noting that there are at moktg(21nn) phases irStage 2and
applying the union bound, we get

(U=

This proves Lemma 3.

4e3log(21nn)

T — 0 asn — oo
In2n

D. Proof of Lemma 4

Here, we show that w.h.|§,. > 2"~! throughoutStage 3

This implies thatD,, > 271 Vi, which suffices to ensure

that no node terminates the algorithm duri@tage 3
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Sincer < logn in Stage 3it follows that
e Pirtr

n/2—1

1 n—1
Dirtr = 2e (1 — 2T> In2"

Noting that (see [25][pp-435])

(1+3) =
a

we obtain

1 ki -
Dirtr > 2e ( <1 — )) In2" =27 In2"
e

Sincer > log (57-51-) + 2 in Stage 3
281_(3111411”1) hl (4(n — 1))

P(5. <271 < <de Pirtr Yn >4  (20)

Now,

2
e’ <1 - x) , Vz,a such thatlz] <a,a >1
a

31n1

A
Pirtr = 3lnlnn

2 4(n—1
3e In (n—1)
Inin 3lnlnn
9 (ln‘ll _— ln(31nlnn)>

3
In*n
Substituting the lower bound fa; ¢, into (20) and noting
that there are at mosvg(6lnlnn) phases infStage 3 it can
be verified using the union bound that

P (U{ST < 2’”_1}) —0asn — o

This concludes the proof of Lemma 4.

v

LetY; , be the time of first successful transmission by node

1 in phaser. Recall from Section IlI-C thaY; , can be treated

as an exponential random variable with distribution

P(Y;, <t)=1—¢ Pir

wherep;, . is the probability of a successful transmission by

node: in the r-th phase and is given by

1 1 n—1
i = — 11— —
pl7 27. ( 27>

Further, theY; ,s,i =1,...,

YTU") denote thek-th order statistic. Then,
Sy > 2l = YD <

From Appendix D, we obtain

. ne " Pirtr
P(STSQ )§n72r7171

n, are i.i.d random variables. Let



