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Abstract—Neighbor discovery is an important first step in the
initialization of a wireless ad hoc network. In this paper, we
design and analyze several algorithms for neighbor discovery in
wireless networks. Starting with a single-hop wireless network of
n nodes, we propose aΘ(n ln n) ALOHA-like neighbor discovery
algorithm when nodes cannot detect collisions, and an order-
optimal Θ(n) receiver feedback-based algorithm when nodes can
detect collisions. Our algorithms neither require nodes to havea
priori estimates of the number of neighbors nor synchronization
between nodes. Our algorithms allow nodes to begin execution at
different time instants and, to terminate neighbor discovery upon
discovering all their neighbors. We finally show that receiver
feedback can be used to achieve aΘ(n) running time, even when
nodes cannot detect collisions.

We then analyze neighbor discovery in a general multi-hop
setting. We establish an upper bound ofO(∆ ln n) on the
running time of the ALOHA-like algorithm, where ∆ denotes the
maximum node degree in the network andn the total number
of nodes. We also establish a lower bound ofΩ(∆+ ln n) on the
running time of any randomized neighbor discovery algorithm.
Our result thus implies that the ALOHA-like algorithm is at
most a factor min(∆, ln n) worse than optimal.

I. I NTRODUCTION

Wireless ad hoc networks and sensor networks are typically
deployed without any communication infrastructure and are
required to “configure” themselves upon deployment. For
instance, immediately upon deployment, a node has no knowl-
edge of other nodes in its transmission range and needs to
discover its neighbors in order to communicate with other net-
work nodes. Neighbor discovery is an indispensable first step
in the initialization of a wireless network, since knowledge of
one-hop neighbors is essential for medium access control pro-
tocols [3], routing protocols [26], [13], and topology control
algorithms [20] to work efficiently and correctly.

Neighbor discovery algorithms can be classified into two
categories, viz.randomizedor deterministic. In randomized
neighbor discovery, each node transmits at randomly chosen
times and discovers all its neighbors by a given time with
high probability (w.h.p). In deterministic neighbor discovery,
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on the other hand, each node transmits according to a pre-
determined transmission schedule that allows it to discover
all its neighbors by a given time with probability one. In
distributed settings, determinism often comes at the expense
of increased running time (see for example [4], [9]) and, in the
particular case of neighbor discovery, typically requiresunre-
alistic assumptions such as node synchronization anda priori
knowledge of the number of neighbors [16]. We, therefore,
investigate randomized neighbor discovery algorithms in this
paper.

Neighbor discovery is non-trivial for several reasons:

1) Neighbor discovery needs to cope with collisions. Ide-
ally, a neighbor discovery algorithm needs to minimize
the probability of collisions and therefore, the time to
discover neighbors.

2) In many practical settings, nodes have no knowledge
of the number of neighbors, which makes coping with
collisions even harder.

3) When nodes do not have access to a global clock, they
need to operate asynchronously and still be able to
discover their neighbors efficiently.

4) In asynchronous systems, nodes can potentially start
neighbor discovery at different times and consequently,
may miss each other’s transmissions.

5) Furthermore, when the number of neighbors is unknown,
nodes do not know when or how to terminate the
neighbor discovery process.

In this paper, we present neighbor discovery algorithms that
comprehensively address each of these practical challenges
under the standard collision channel model. Unlike existing
approaches that assumea priori knowledge of the number of
neighbors or clock synchronization among nodes, we propose
neighbor discovery algorithms that:

P1 do not require nodes to havea priori knowledge of
the number of neighbors,

P2 do not require synchronization among nodes,
P3 allow nodes to begin execution at different time

instants, and
P4 enable each node to detect when to terminate the

neighbor discovery process.

To the best of our knowledge, our work provides the first
solution to the neighbor discovery problem that satisfies all of
the propertiesP1-P4. Our approach is to start with a single-
hop wireless network in which nodes are synchronized and
know exactly how many neighbors they have. As we will see,
the analysis in such a simplistic setting yields several valuable
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insights about the neighbor discovery problem. These insights
allow us to progressively relax each of the assumptions leading
to a complete and practical solution to the neighbor discovery
problem in a multi-hop network setting.

A. Main Results

Assuming a collision channel model of communication, we
obtain the following important results in this paper:

1) We first study the ALOHA-like neighbor discovery algo-
rithm proposed in [23] in a single-hop wireless network
of n nodes. We show that its analysis reduces to that
of the Coupon Collector’s Problemand that each node
discovers all its neighbors inΘ(n lnn)∗ time w.h.p†.

2) When nodes can detect collisions, we propose an order-
optimal neighbor discovery algorithm that employs feed-
back from receiving nodes and allows each node to
discover all its neighbors inΘ(n) time w.h.p. Interest-
ingly, we find that receiver feedback can be used even
when nodes cannot detect collisions and propose a novel
algorithm that achieves aΘ(n) running time.

3) We next show that absence of an estimate of the number
of neighbors,n, results in a slowdown of no more than
a factor of two, compared to when nodes known.

4) We further show that lack of synchronization among
nodes results in at most a factor of two slowdown in
the algorithm performance from the case when nodes
are synchronized.

5) We then describe how neighbor discovery can be accom-
plished even when nodes begin execution at different
time instants. Furthermore, when nodes do not known,
we propose a provably correct termination condition that
allows each node to terminate neighbor discovery after
discovering all its neighbors w.h.p.

6) Finally, we extend our analysis to a general multi-hop
wireless network setting. Here, we establish an upper
bound ofO(∆ lnn) for the running time of the ALOHA-
like algorithm, where∆ is the maximum node degree
in the network andn denotes the total number of nodes.
We also establish a lower bound ofΩ(∆ + ln n) on
the running time for any randomized neighbor discovery
algorithm. Our result thus implies that the ALOHA-like
algorithm is at most a factormin(∆, lnn) worse than
the optimal.

B. Organization of the paper

The rest of the paper is structured as follows. Section II,
describes our model and its assumptions. Section III describes
the ALOHA-like neighbor discovery algorithm in the case
of a single-hop network. We next present feedback-based
algorithms in Section IV. In Section V, we present lower
and upper bounds for the neighbor discovery problem in a
multi-hop network setting. Section VI discusses a number of
pertinent issues relevant to neighbor discovery. Finally,we
conclude in Section VIII.

∗Throughout this paper,ln denotes natural logarithm andlog denotes
logarithm to base 2.

†We say than an eventE occurs w.h.p if lim
n→∞

P (E) = 1.

II. N ETWORK MODEL

Let G = (V, E) represent a static multi-hop wireless
network, whereV denotes a set ofn nodes andE ⊂ V 2 the set
of undirected edges inG. We do not constrain how edges are
determined between node pairs. However, a common example
for the definition of an edge is that an edge exists between
nodesi and j if they are within transmission range of each
other. The transmission range might be defined as that distance
below which the signal-to- noise ratio (SNR) exceeds a fixed
thresholdγ, allowing nodei to transmit at a fixed rate to node
j.

In addition, we make the following assumptions about the
multi-hop wireless network:

• Node IDs: We assume that the nodes havelocally unique
identifiers i.e., no two neighbors of a given node have the
same identifier. For example, the identifier could be the
MAC address of a node or, its location.

• Radio Model: Each node is equipped with a radio
transceiver that allows a node to either transmit or receive
messages, but not both simultaneously.

• Collision Model: Throughout this paper, we assume that
when two or more nodes, each of which has a common
receiver, transmit concurrently, a collision occurs at the
receiver. We further assume that a collision is the only
source of packet loss i.e., we ignore packet losses due to
effects such as shadowing and fading observed in wireless
channels. The collision model, although idealized, will
allow us to obtain a deep understanding of the neighbor
discovery problem yielding valuable insights for design-
ing practical neighbor discovery algorithms.

• Symmetric Edges:Edges between nodes are assumed to
be symmetric i.e., if(i, j) ∈ E, then(j, i) ∈ E.

Problem Definition: n nodes are deployed over an area
without prior knowledge about the graphG. We say that a
node i discoversnode j by time t if i receives at least one
message from nodej by timet. Our goal is to propose efficient
algorithms that allow each nodei ∈ V to discoverall nodes
j such that(i, j) ∈ E.

III. ALOHA- LIKE NEIGHBOR DISCOVERY ALGORITHM

In this section, we consider the ALOHA-like neighbor
discovery algorithm first proposed in [23]. We first study this
algorithm when alln nodes in the network are arranged in a
clique, andn is known to each node in the clique. Finally, we
consider a slotted, synchronous system where time is divided
into slots and nodes are synchronized on slot boundaries. In
other words, each transmission starts at the beginning of a slot
and lasts the entire duration of the slot.

Each of these assumptions will be relaxed as we proceed.
Importantly, these assumptions allow us to view the ALOHA-
like neighbor discovery as an instance of theCoupon Col-
lector’s Problem. Consequently, the time to discover then
neighbors is the same as the minimum time to collect at least
one of each ofn coupon types.
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A. Algorithm Description

The ALOHA-like algorithm is a randomized algorithm
that operates as follows. In each slot, a node independently
transmits aDISCOVERYmessage announcing its ID, with
probabilitypx, and listens with probability1−px. A discovery
is made in a given slot only if exactly one node transmits in
that slot.

It has been shown in [23], [31] that the optimal value of
px that maximizes the rate of discovery of neighbors is1/n,
wheren denotes the clique size. However, the question of how
long it takes to discover all the neighbors when nodes transmit
with px = 1/n was not addressed in [23], [31], which we
proceed to analyze next.

B. Neighbor Discovery As Coupon Collector’s Problem

We first map the neighbor discovery problem into the clas-
sical Coupon Collector’s Problem[25]. First, the probability
of a successful transmission by nodei in a given slot is

p = px(1− px)
n−1 =

1

n

(

1− 1

n

)n−1

≈ 1

ne
(1)

Note thatp is the same for each nodei, 1 ≤ i ≤ n.
The process of neighbor discovery maps into a coupon

collector’s problem as follows. Consider a coupon collector
C drawing coupons with replacement from an urn containing
n distinct coupons, each coupon corresponding to a distinct
node in the clique. In each slot,C draws one of then coupons
(i.e. discovers a given node) with probabilityp, and draws no
coupon (i.e., detects an idle slot or a collision) with probability
1 − np. Thus, the event thatC collects n distinct coupons
corresponds to the event that each node in the clique has
discovered all of itsn− 1 neighbors.

We are now ready to deriveE[W ], whereW is a random
variable that denotes the time required for each node to
discover its neighbors. The neighbor discovery process can
be thought of as consisting of a sequence ofepochs, each
epoch consisting of one or more slots. LetWm denote the
length of epochm, 0 ≤ m ≤ n − 1, that starts when the
m-th node is discovered and ends when them + 1-st node is
discovered. Thus, in them-th epoch there aren − m nodes
yet to be discovered, each of which has a probabilityp of
being discovered in a given slot. It is easy to see that the
epoch length,Wm, is geometrically distributed with parameter
(n−m)p. Thus, noting thatW = W0 + . . . + Wn−1, we get

E[W ] =

n−1∑

m=0

E[Wm] =

n−1∑

m=0

1

(n−m)p
=

1

p

n∑

m=1

1

m
≈ neHn

where Hn denotes then-th Harmonic number, i.e.,Hn =
lnn + Θ(1). Therefore,

E[W ] = ne(lnn+Θ(1)) = ne lnn+O(n) = Θ(n lnn) (2)

In Appendix A, we show that the error introduced in the
approximate calculation ofE[W ] above vanishes asn grows
large.

C. Sharp Concentration Around Mean

We next show thatW is sharply concentrated around its
mean. As described in [25], we make use of the Poisson
approximation to the binomial distribution. In Appendix B,
we derive the sharp concentration result without relying on
Poisson approximation.

Let Ni(t) be a random variable that denotes the number
of successful transmissions by nodei in the first t slots. It is
easy to see thatNi(t) ∼ Binomial(t, p). Using the Poisson
approximation (assuming larget and smallp),

P (Ni(t) = k) =
e−λλk

k!

whereλ = tp. Let Ei(t) denote the event that nodei is not
discovered int slots. Therefore,

P (Ei(t)) = P (Ni(t) = 0) = e−tp

Substitutingp = 1/ne into the above equation yields

P (Ei(t)) = e−
t

ne

Therefore,
P (¬Ei(t)) = 1− e−

t
ne

We are interested in the probability that alln nodes are
discovered by timet, i.e. P [¬(∪n

i=1Ei(t))],
P [¬(∪n

i=1Ei(t))] = P [∩n
i=1(¬Ei(t))] (3)

We next show that{Ei(t)}ni=1 can be treated as an independent
sequence of events.

Lemma 1:For1 ≤ i ≤ n, and any set of indices{j1, . . . jk}
not containingi, P

[
Ei(t)| ∩k

ℓ=1 Ejℓ
(t)
]
≈ P (Ei(t)) .

Proof:

P
[
Ei(t)| ∩k

ℓ=1 Ejℓ
(t)
]

=
P
[
Ei(t) ∩ (∩k

ℓ=1Ejℓ
(t))
]

P
[
(∩k

ℓ=1Ejℓ
(t)
]

=
(1− (k + 1)p)

t

(1− kp)
t

Using the approximation1 + x ≈ ex in the above equation
yields

P [Ei(t)| ∩k
ℓ=1 Ejℓ

(t)] ≈ e−t(k+1)p

e−tkp
= e−

t
ne = P (Ei(t))

From Lemma 1 and (3), it follows that

P [¬(∪n
i=1Ei(t))] = (1− e−

t
ne )n ≈ e−ne

−t
ne

Therefore,

P (W > t) = 1− P [¬(∪n
i=1Ei(t))]

Letting t = ne(lnn + c), for somec ∈ ℜ, we conclude

P (W > t) = 1− e−ne−(ln n+c)

= 1− e−e−c

(4)

Observe thate−e−c

is close to 1 for large positivec and is
negligibly small for small negativec, thus implying a sharp
concentration around the mean. Substitutingc = lnn, − ln n

2
into (4), and a simple application of the union bound yields

ne lnn

2
≤W ≤ 2ne lnn w.h.p (5)

In other words,W = Θ(n lnn) w.h.p.
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D. Unknown Number of Neighbors

We first relax the assumption that requires each node in
the clique to known. The modified ALOHA-like algorithm
proceeds inphases, each phase consisting of one or more slots.
In the r-th phase, which lasts for2r+1e ln 2r slots, each node
transmits with probability1/2r.

The key idea here is that nodes geometrically reduce their
transmission probabilities until they enter the phase of execu-
tion appropriate for the population sizen. This occurs when
nodes enter the⌈log n⌉-th phase. During this phase, each node
transmits with probability1/n for a duration of2ne lnn slots.
From (5), we know that alln nodes will be discovered by the
⌈log n⌉-th phase w.h.p.

The total number of slots,W , until all n nodes are discov-
ered w.h.p is therefore

W =

⌈log n⌉
∑

r=1

2r+1e ln 2r ≤ 4ne lnn

Comparing the above result with (5), we see that the lack
of knowledge ofn results in no more than a factor of two
slowdown.

E. Asynchronous Operation

We next relax the assumption that requires a time-slotted
system in which nodes are synchronized on slot boundaries.
The main result we show here is that the asynchronous
ALOHA-like algorithm is no more than a factor of two slower
than its synchronous counterpart.

The asynchronous ALOHA-like algorithm operates as fol-
lows. Between successive transmissions, each of which is of
a fixed durationτ , each node remains in receive mode for an
exponentially distributed time interval with mean1/λ.

The analysis in [31] is easily extended to the case of omni-
directional antennas yielding the value ofλ that maximizes
the rate of discovery of neighbors, which is given thus

λ =
1

2τn

1) Algorithm Analysis: For simplicity, we start with the
case when each node knows the value ofn. As before, we
are interested in the time until each node discovers all its
neighbors, denoted byW .

We assume that the transmit durationτ is small relative
to 1/λ. Thus, the inter-transmission times of a node are
exponentially distributed and the total traffic from then
nodes constitutes a Poisson process with ratenλ. Now, a
transmission from a node at time instantt is successful only if
no other transmission starts during[t−τ, t+τ ]. The probability
of a successful transmission,p, is therefore

p = e−2nτλ = 1/e

By dividing the neighbor discovery into epochs, where
epochm of duration Wm, starts with the discovery ofm-
th node and ends with the discovery of them + 1-st node,
we obtain W =

∑

m Wm. In epochm, there aren − m
nodes are yet to be discovered. The transmissions from these
n−m nodes constitute a Poisson process with rate(n−m)λ,

each having probabilityp of being successful. In other words,
Wm is exponential with mean1/((n − m)λp). Therefore,
E[Wm] = 2τne/(n−m), and

E[W ] =

n−1∑

m=0

E[Wm] = 2τneHn = 2τne(lnn + Θ(1))

Comparing the above result with (2), we see that the asyn-
chronous algorithm is only a factor of two slower than its
synchronous counterpart.

2) Sharp Concentration Around the Mean:As described in
Section III-C, we next show thatW is sharply concentrated
around its mean. LetNi(t) denote the number of successful
transmissions from nodei by time t. Let Qi(t) denote the
total number of transmissions from nodei by time t. The
conditional pmfP (Ni(t) = k|Qi(t) = t) is then given as

P (Ni(t) = k|Qi(t) = ℓ) =

(
ℓ

k

)

pk(1− p)ℓ−k

Now, Qi(t) is a Poisson random variable with rateλ. Remov-
ing the conditioning, we get

P (Ni(t) = k) =

∞∑

ℓ=0

(
ℓ

k

)

pk(1− p)ℓ−ke−λt (λt)ℓ

ℓ!

Let Ei(t) denote the event{Ni(t) = 0}. Therefore,

P (Ei(t)) =

∞∑

ℓ=0

(1− p)ℓe−λt (λt)
ℓ

ℓ!
= e−λtp = e−

t
2τne

Proceeding exactly as described in Section III-C, we get,

P (W > t) = 1− P [¬(∪n
i=1Ei(t))]

Therefore,

P (W > 2τne(lnn + c)) = 1− e−ne−(ln n+c)

= 1− e−e−c

Substitutingc = lnn, − ln n
2 into the equation above and a

simple application of union bound yields

τne lnn ≤W ≤ 4τne lnn w.h.p (6)

In other words,W = Θ(n lnn) w.h.p.
3) Unknown Number of Neighbors:The asynchronous al-

gorithm can also be extended to handle the case that nodes do
not known. Again, we divide the algorithm into phases, as be-
fore. During ther-th phase, which is of duration2r+2τe ln 2r,
each node remains in the receive mode for an exponential
time interval with mean1/λr = 2r+1τ between successive
transmissions.

It is easy to see that the⌈log n⌉-th phase is of duration
4τne lnn time units. In this phase, each node transmits with
rate λ⌈log n⌉ = 1/2τn. From (6), we know that by the end
of this phase, each node discovers all its neighbors w.h.p.
Assuming that the nodes are synchronized on phase boundaries
(an assumption we relax in Section III-F), the total timeW
required to discover all neighbors w.h.p is given by

W =

⌈log n⌉
∑

r=1

2r+2τe ln 2r ≤ 8τne lnn

Comparing the above result with (6), we again observe at most
a factor of two slowdown from the case whenn is known.
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F. Initiating Neighbor Discovery

So far, we have assumed that all nodes start neighbor
discovery at the same time. We also assumed that the nodes
are synchronized on the phase boundaries, even in the case of
the asynchronous algorithm. We relax both assumptions next.

Suppose the wireless network is deployed during time
interval[t, t+η], whereη is an upper bound on the deployment
period and assumed to be known in advance. When nodes have
access to a global clock, initiating neighbor discovery is trivial,
as each node can begin execution at a globally agreed upon
time instantt̃ ≥ t + η.

When nodes do not have access to a global clock, initiating
neighbor discovery is non-trivial, since clocks at different
nodes may proceed at different rates resulting in clock offsets
between nodes. We assume the maximum clock offset between
any two nodes in the network is bounded byδ. In reality,
clock offsets between nodes can potentially grow unboundedly
as clocks tick at different rates. However, neighbor discovery
occurs over short time scales and therefore, it is reasonable to
assume a fixedδ for the duration of neighbor discovery. Each
node starts neighbor discovery when its local clock reaches
t̃, which is determined prior to deployment. To account for
clock offsets, we extend each phase byδ time units to each
phase i.e., ther-th phase lasts a duration of2r+2e ln 2r + δ
time units. Thus, all nodes are simultaneously in phaser for
at least2r+2e ln 2r time units, guaranteeing that each node
discovers all its neighbors w.h.p whenr = ⌈log n⌉, as shown
in Section III-E.

To get a sense of how largeδ might be, we consider Mica2
motes equipped with a 32.768 kHz quartz crystal oscillator,
which has a real-time clock accuracy of±10 ppm [27]. This
corresponds to an accuracy of±864 milliseconds per day or a
maximum clock offset of 1.7 seconds per day between any two
nodes. Thus, if the deployment spans a period of 3 days,δ =
5.1s. With actively compensated oscillators [22] that provide
an accuracy of± 160 milliseconds/day,δ = 1s for the same
deployment period.

G. Terminating Neighbor Discovery

When the value ofn is not known to a node, it cannot know
when it has discovered all its neighbors and terminate neighbor
discovery. We conclude the discussion of the ALOHA-like
algorithm in the clique setting by describing aprovably correct
termination condition that allows each node to determine ifit
has discovered all its neighbors.

Let Di,r be the number of nodes discovered by nodei in
the r-th phase. Then the termination condition used by node
i is as follows:

TC Halt at the end of r-th phase if Di,r−1 ≥
2r−2 andDi,r < 2r−1, wherer ≥ 2.

1) Proof of Correctness of Termination Condition:We next
show that the termination conditionTC is correct w.h.p. i.e.
each node terminates the algorithm only after discovering all
its neighbors w.h.p. Letℓ be the largest integer such thatn =
2ℓ +k, 0 ≤ k < 2ℓ. More formally, we show that whenk = 0,
each node terminates at the end ofℓ + 1-st phase and further,
Di,ℓ+1 = n − 1, ∀i w.h.p. Whenk > 0, we show that each

node terminates at the end ofℓ + 2-nd phase andDi,ℓ+2 =
n− 1, ∀i w.h.p.

For simplicity of exposition, we only consider the syn-
chronous ALOHA-like algorithm. We note, however, that the
termination conditionTC is applicable for the asynchronous
algorithm as well.

Let Sr denote the number of distinct nodes that transmit
successfully at least once during ther-th phase. Note that

Di,r ∈ [Sr − 1, Sr], ∀i

We divide the different phases of the algorithm execution into
three distinctstages:

1) Stage 1: 1 ≤ r ≤ log
(

n−1
2 ln n

)

2) Stage 2: log
(

n−1
2 ln n

)
< r ≤ log

(
n−1

3 ln ln n

)

3) Stage 3: log
(

n−1
3 ln ln n

)
+ 1 < r ≤ log n

Our proof of correctness is accordingly divided into the fol-
lowing three lemmas, each of which is proved in Appendix E.

Lemma 2:For r such that1 ≤ r ≤ log
(

n−1
2 ln n

)
, Sr = 0

w.h.p.
Lemma 3:For r such thatlog

(
n−1
2 ln n

)
< r ≤

log
(

n−1
3 ln ln n

)
, Sr < 2r−1 w.h.p.

Lemma 4:For r such thatlog
(

n−1
3 ln ln n

)
< r ≤ log n, Sr ≥

2r−1 w.h.p.
Thus, Lemmas 2 and 3 together ensure thatDi,r < 2r−1, ∀i
throughout the first two stages. Hence, each node enters the
r̃ = log

(
n−1

3 ln ln n

)
+ 1-st phase w.h.p. Further, sinceDi,r̃−1 <

2r−2, ∀i w.h.p, it follows from the termination conditionTC
that no node terminates the algorithm in ther̃-th phase w.h.p.
Hence, we can ignore thẽr-th phase and focus only on the
remaining phases instead. Now, Lemma 4 ensures thatDi,r ≥
2r−1, ∀i w.h.p throughoutStage 3. Thus, no node terminates
the algorithm in phaser ≤ log n w.h.p. Recalling thatn =
2ℓ + k and noting thatℓ ≤ log n, we conclude that each node
enters theℓ + 1-st phase w.h.p.

The probability of a successful transmission by a given node
during theℓ + 1-st phase is

pℓ+1 =
1

2ℓ+1

(

1− 1

2ℓ+1

)2ℓ+k−1

≥ 1

2ℓ+1e

Since theℓ + 1-st phase lasts2ℓ+2e ln 2ℓ+1 slots and since
2ℓ+1 ≥ n, it follows from (4) that

P (Sℓ+1 = n) ≥ e−e− ln 2ℓ+1

≥ e−e− ln n

= e−1/n (7)

Therefore,Di,ℓ+1 = n− 1, ∀i w.h.p i.e., each node discovers
all its neighbors in theℓ + 1-st phase w.h.p.

Consider first the case thatn = 2ℓ i.e. k = 0. From
Lemma (4), and (7), it follows that

{Di,ℓ ≥ 2ℓ−1 ∧Di,ℓ+1 < 2ℓ ∀i} w.h.p

From the termination conditionTC, we conclude that each
node terminates the algorithm at the end of(ℓ + 1)-st phase
w.h.p. Further, we have already shown thatDi,ℓ+1 = n−1, ∀i
w.h.p, as desired.

Now, let us consider the case thatn = 2ℓ +k, wherek > 0.
Again, it follows from (4) that

P (Sℓ+2 = n) ≥ e−1/n (8)
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which implies thatDi,ℓ+2 = n−1, ∀i w.h.p. Further, from (7)
and (8), we conclude that

{Di,ℓ+1 ≥ 2ℓ ∧Di,ℓ+2 < 2ℓ+1,∀i} w.h.p

Again, the termination conditionTC ensures that each node
terminates the algorithm at the end of theℓ+2-nd phase w.h.p,
as desired.

We evaluated the termination condition by simulating the
ALOHA-like discovery algorithm for clique sizes,n, ranging
from 2 . . . 100. For eachn, we run the simulation 100 times.
The simulation results show that for everyn and every
simulation run, each node terminates in the correct phase as
predicted by our analysis.

IV. ORDER-OPTIMAL NEIGHBOR DISCOVERY USING

FEEDBACK

We now describe aΘ(n) neighbor discovery algorithm
that exploits feedback from receiving nodes. As we will see,
feedback to a transmitting node allows it to determine if it has
been discovered by other nodes, which then allows it to stop
transmitting.

We first describe aΘ(n) neighbor discovery algorithm
employing feedback when nodes can detect collisions, i.e.,
each node can distinguish between a collision and an idle
slot. Subsequently, we describe how feedback can be exploited
to achieve aΘ(n) algorithm even when nodes cannot detect
collisions. Throughout this section, we assume that all then
nodes are arranged in a clique.

A. Collision Detection-based Neighbor Discovery

The collision detection-based algorithm is presented in Al-
gorithm 1. The key idea behind the algorithm is as follows. We
divide each slot into two sub-slots. Upon successful reception
of a DISCOVERYmessage in the first sub-slot, each receiving
node transmits bit “1” to the source of the message (say node
i) in the second sub-slot, potentially causing a collision at
node i. Collision detection allows nodei to detect that the
second sub-slot is not idle and that its transmission in the
first sub-slot was received by all other nodes. Upon doing so,
it “drops out” of neighbor discovery, i.e., stops transmitting.
The remaining nodes (henceforth, calledsurviving nodes) then
increase their transmission probabilities in the next slot. As
we will see, allowing nodes which have been discovered to
drop out and requiring the surviving nodes to increase their
transmission probabilities, yields a significant improvement
over the ALOHA-like algorithm.

Note that since a single bit suffices for the feedback, the
second sub-slot is much shorter than the first.

1) Algorithm Analysis:Let W denote the time until each
node discovers all of itsn − 1 neighbors. Again, we divide
neighbor discovery into epochs, where them-th epoch,0 ≤
m ≤ n− 1, is of durationWm. It starts when them-th node
is discovered and ends upon discovery of them + 1-st node.
Thus,

W =

n−1∑

m=0

Wm =

n−2∑

m=0

Wm + 1

Algorithm 1 Collision Detection-Based ND(i,n)
b← 0 //Number of neighbors discovered by nodei
f lag ← 0 //Has nodei been discovered by other nodes?
NbrList← [ ] //List of neighbors of nodei
loop

pxmit ← 1/(n− b)
if ((flag = 0) and (Bernoulli(pxmit) = 1)) then

TransmitDISCOV ERY (i) in first sub-slot
if second sub-slot not idlethen

flag ← 1 //”Drop out”
end if

else
if successful reception in first sub-slotthen

Transmit bit “1” in second sub-slot
NbrList[b++]← DISCOV ERY.source

end if
end if

end loop

since there is only one surviving node in the(n−1)-st epoch,
which therefore, consists of a single slot. In general, there
are n − m surviving nodes in epochm, each transmitting
with probability 1/(n − m). The probability of a successful
transmission during epochm is

pm =
1

n−m

(

1− 1

n−m

)n−m−1

, ∀m ≤ n− 2

It can be verified that
1

(n−m)e
≤ pm ≤

2

(n−m)e
, ∀m ≤ n− 2 (9)

Noting that Wm is geometrically distributed with mean
1/((n−m)pm),

E[W ] =
n−2∑

m=0

E[Wm] + 1 =
n−2∑

m=0

1

(n−m)pm
+ 1 (10)

Substitution from (9) into (10) and further simplification yields
ne

2
≤ E[W ] ≤ ne

Thus,E[W ] = Θ(n). In other words, the collision detection-
based algorithm outperforms the ALOHA-like algorithm by a
factor of at leastlnn.

2) Concentration Results:We now establish an even
stronger result, viz.W = Θ(n) w.h.p. We first introduce the
notion of stochastic dominance.

Definition 1: We say that a random variableX stochasti-
cally dominatesanother random variableY if

P (X ≥ x) ≥ P (Y ≥ x), ∀x
We introduce a random variablẽW that stochastically

dominatesW and defined as follows:

W̃ =

n−1∑

m=0

W̃m

whereW̃m is a geometrically distributed random variable with
mean e. The stochastic dominance of̃W over W follows
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by noting that eachW̃m, which is geometrically distributed
with meane, stochastically dominatesWm, which has mean
1/((n−m)pm) ≤ e. Thus,

P (W > t) ≤ P (W̃ > t)

Further, note thatW̃ is a Pascal random variable with pa-
rametersn and 1/e. We now introduce a random variable
Xt ∼ Binomial(t, 1/e), which is related toW̃ as follows:

{W̃ > t} ⇐⇒ {Xt < n}

The relationship between the random variablesW̃ and Xt

follows sinceW̃ represents the waiting time untiln successful
events, whileXt denotes the number of successful events in
t slots. Therefore,

P (W̃ > t) = P (Xt < n)

We now employ the following Chernoff bound [25, pp.70] for
the binomial random variableXt:

P

(

Xt < (1− ε)
t

e

)

< e−
tε2

2e , 0 < ε ≤ 1

Letting t = 2ne andε = 1/2, we get

P (W̃ > 2ne) = P (Xt < n) < e−n/4 → 0 asn→∞

SinceP (W > t) ≤ P (W̃ > t) ∀t, it follows that W ≤ 2ne
w.h.p.

We next show thatW ≥ ne/2 w.h.p. We use the following
Chernoff bound forXt [25]:

P

(

Xt ≥
(1 + ε)t

e

)

≤
(

eε

(1 + ε)1+ε

) 2t
e

, ∀ε > 0

Letting t = ne/2 andε = 1, we conclude that

P (W̃ < ne/2) = P (Xt ≥ n) ≤ (e/4)n → 0 asn→∞

Thus, W ≥ ne/2 w.h.p. Using the union bound, it follows
that

ne

2
≤W ≤ 2ne, w.h.p (11)

In other words,W = Θ(n) w.h.p.
3) Unknown Number of Neighbors:When nodes do not

know n, we again divide the algorithm into phases. Ther-
th phase lasts a duration of2r+1e slots. Each surviving node
transmits with probability1/(2r− b) during this phase, where
b denotes the number of nodes which have been discovered
by their neighbors thus far.

In the⌈log n⌉-th phase, there aren−b surviving nodes, each
transmitting with probability1/(n− b). An analysis identical
to the one in Section IV-A2 shows that each node discovers
all of its neighbors by the⌈log n⌉-th phase w.h.p. Hence, the
total timeW until each node discovers all its neighbors w.h.p
is

W =

⌈log n⌉
∑

r=1

2r+1e ≤ 4ne (12)

Comparing the above result with (11), we again observe no
more than a factor of two slowdown compared to the case
where nodes known.

4) Asynchronous Operation:We next describe the asyn-
chronous collision detection-based algorithm, which is pre-
sented in Algorithm 2. Here, each transmission is of fixed
durationτ and is followed by afeedback periodof duration
σ. Let κ = τ +σ. We further assume that a node in the receive
mode can always detect if the wireless channel isbusyor idle.

As shown in Figure 1, the timeline for an asynchronous
collision detection-based algorithm consists of (i)Unsuccess-
ful Busy Periods, during which two or more nodes transmit
concurrently; (ii) Feedback Periodsimmediately following
message transmissions; (iii)Idle Periods during which no
transmissions occur; and (iv)Successful Busy Periodsduring
which exactly one transmission occurs. As in the synchronous

M4

M2
M3

M1

M5

Timeline

Unsuccessful Busy Period Idle Period

Feedback
Period

Feedback
Period

Successful Busy
Period

Fig. 1. Timeline of asynchronous collision detection-basedalgorithm

algorithm, the key idea is to allow each node that has been
discovered by its neighbors to drop out and let the surviving
nodes increase their transmission rate.

Algorithm 2 Asynch. Collision Detection-based ND(i,n)
b← 0 //Number of neighbors discovered by nodei
f lag ← 0 //Has nodei been discovered by other nodes?
NbrList← [ ] //List of neighbors of nodei
loop

λ← 1/(2κ(n− b))
Alarm (TIMEOUT ,Exp(1/λ)) //Set Listen duration
try:

loop
Listen for DISCOVERYmessages
if collision detectedthen

Transmit bit “1” at the end of busy period
else

NbrList[b++]← DISCOV ERY.source
end if

end loop
end try
catch TIMEOUT:

if (flag = 0) then
TransmitDISCOV ERY (i)
if feedback period idlethen

flag ← 1 //”Drop out”
end if

end if
end catch

end loop

From Algorithm 2, we make two observations about the
collision detection-based algorithm:

1) Unlike the synchronous version, receiving nodes trans-
mit feedback in response to an unsuccessful transmis-
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sion. The reason for this choice is as follows. As shown
in Figure 1, during an unsuccessful busy period, a
message transmission may overlap with the feedback
period of another message. Hence, sensing energy during
the feedback period has to be taken as an indication of
unsuccessful transmission.

2) Our algorithm allows a node to begin transmission,
despite detecting a busy period. The algorithm perfor-
mance can be improved by suppressing such transmis-
sions. However, despite allowing such an event to occur,
our analysis shows that the algorithm takes only twice
as long to complete neighbor discovery than its syn-
chronous counterpart. Thus, transmission suppression
only improves this constant and not the asymptotic order.

We are now ready to analyze the performance of the
algorithm. Let W denote the time to discover alln nodes.
As before, divide the discovery process into epochs, where
the m-th epoch is of durationWm. In epochm, there are
n−m nodes yet to be discovered, each transmitting with rate
λm = 1/(2κ(n − m)). Since the transmission events of an
individual node constitute a Poisson process with rateλm,
the transmission events from then−m surviving nodes also
follow a Poisson process with rate(n−m)λm.

Now, the probability that a transmission by one of then−m
surviving nodes is successful is given by

pm = e−2(n−m)κλm = 1/e

Now, the successful transmission events from then −m yet
to be discovered nodes follow a Poisson process with a rate
given by(n−m)λmpm = 1/(2κe). In other words, the random
variablesWm are iid and exponentially distributed with mean
2κe.

Noting thatW =
∑n−1

m=0 Wm, it follows that the random
variableW is the sum ofn iid exponential random variables.
Therefore,W is ann-stage Erlang random variable with mean:

E[W ] =

n−1∑

m=0

E[Wm] = 2κne

We immediately conclude that the the asynchronous version of
the collision detection-based neighbor discovery is only twice
as slow as its synchronous version.

We also show that the random variableW is sharply con-
centrated around its mean. In particular, employing Chernoff
bounds for Erlang random variables (see Appendix C), it
immediately follows that

κne ≤W ≤ 4κne w.h.p (13)

Therefore,W = Θ(n) w.h.p.
Also, the case where nodes do not know the value ofn can

be handled exactly as described in Section IV-A3 and it can
be shown that, that the time to discover all neighbors w.h.p is
given by

W ≤ 8κne

Again, comapring the above result with (13), we observe no
more than a factor of two slowdown from the case when nodes
know the value ofn.

5) Initiating and Terminating Neighbor Discovery:Initia-
tion of the collision detection-based algorithm can be handled
identically as described in Section III-F. Unlike the ALOHA-
like algorithm, termination of neighbor discovery is trivial in
the case of collision detection-based algorithm. If there are any
surviving nodes at the end of a phase, they proceed to the next
phase. On the other hand, a node which has been discovered
by its neighbors, waits an additional phase and terminates the
algorithm, if it senses no energy during the entire durationof
the phase.

B. Order-Optimal Neighbor Discovery Without Collision De-
tection

We now show that we can achieve order-optimal neighbor
discovery, even when nodes cannot detect collisions. Algo-
rithm 3 presents a neighbor discovery algorithm that achieves
this goal.

The algorithm is divided intorounds(as indexed by variable
r). Roundr lasts a duration ofTr slots where

Tr =
8n

2r
+ 8 log 2n

Instead of providing a single bit of feedback, each node now
includes in its DISCOVERYmessages the ID of the most
recently discovered neighbor in addition to its own ID. If a
receiving node hears its ID during a round, it “drops out” of
neighbor discovery at the end of the round.

The key idea behind Algorithm 3 is as follows. At the end
of r rounds, where1 ≤ r < log log n, there are at mostn/2r

surviving nodes w.h.p and the remaining nodes, which hear
their IDs back, drop out. Therefore, in ther+1-st round, each
surviving node increases its transmission probability to2r/n.
After log log n−1 rounds, there are at mostn/ log n surviving
nodes w.h.p. At this point, each surviving node simply runs
the ALOHA-like neighbor discovery, which from the analysis
in Section III, requires no more than

2ne

log n
ln

(
n

log n

)

= Θ(n) slots w.h.p.

Thus, assuming (for the time being) that there are at most
n/ log n surviving nodes afterlog log n− 1 rounds w.h.p, the
total timeW until each node discovers all itsn− 1 neighbors
is given by

W =

log log n−1
∑

r=1

(
8n

2r
+ 8 log 2n

)

+ Θ(n) = Θ(n) w.h.p

Our challenge next is to show that, indeed, there are at most
n/ log n surviving nodes afterlog log n− 1 rounds w.h.p.

1) Algorithm Analysis:In this section, we show that Algo-
rithm 3 runs inΘ(n) time w.h.p. To this end, we establish the
following lemma.

Lemma 5:After log log n − 1 rounds, there are at most
n/ log n surviving nodes w.h.p.

Proof: Let Er denote the event that there are at most
n/2r−1 surviving nodes at the start of ther-th round. It is
easy to see thatP (E1) = 1. We first show that

P (¬Er+1|Er) ≤
2

n
, ∀r : 1 ≤ r < log log n
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Algorithm 3 ND Without Collision Detection(i,n)
b← 0 //Number of neighbors discovered byi
f lag ← 0 //Has i been discovered by other nodes?
id← −1 //id of most recently discovered node
NbrList← [ ] //List of neighbors of nodei
for r = 1 to ⌈log log n⌉ − 1 do

pxmit ← 2r−1/n
for t = 1 to ⌈ 8n

2r + 8 log 2n⌉ do
if (flag = 0) and (Bernoulli(pxmit) = 1) then

TransmitDISCOVERY(i,id)
else

if successful receptionthen
if (DISCOV ERY.id = i) then

flag ← 1 //”Drop out”
else

id← DISCOV ERY.source
NbrList[b++]← id

end if
end if

end if
end for

end for
// Switch to ALOHA-like neighbor discovery
loop

pxmit ← log n/n
if (flag = 0) and (Bernoulli(pxmit) = 1) then

TransmitDISCOVERY(i)
else

if successful receptionthen
NbrList[b++]← DISCOV ERY.source

end if
end if

end loop

Let the number of surviving nodes at the start ofr-th round be
n/2r−1−k, for somek ≥ 0, each transmitting with probability
2r−1/n. Conditioned on the eventEr being true, letWr denote
the waiting time until an additionaln/2r− k nodes hear their
IDs back when each node transmits with probability2r−1/n.

Again, we divide neighbor discovery in ther-th round into
epochs, where them-th epoch, of durationWm,r, starts when
the m-th node hears its ID back and ends when them + 1-st
node hears its ID back. Thus,

Wr =

n/2r−k−1
∑

m=0

Wm,r =

n/2r−1
∑

m=k

Wm,r

Here,Wm,r is geometrically distributed with mean(n/2r−1−
m)pm,r, with

pm,r =
2r−1(n/2r−1 −m)

n

(

1− 2r−1

n

)n/2r−1−k−1

≥ 2r−1(n/2r−1 −m)

n

(

1− 2r−1

n

)n/2r−1−1

, p̃m,r

Let W̃m,r be geometrically distributed with mean(n/2r−1 −
m)p̃m,r. Clearly, W̃m,r stochastically dominatesWm,r and

hence,

Wr ≤
n/2r

∑

m=k

W̃m,r ≤
n/2r

∑

m=0

W̃m,r

Now, it can be verified that

2r−1(n/2r−1 −m)

ne
≤ p̃m,r ≤

2r(n/2r−1 −m)

ne
(14)

Using Chernoff bounds, we obtain

P (Wr > x) ≤ e−sx

n/2r

∏

m=0

p̃m,re
s

1− (1− p̃m,r)es
, ∀s > 0

Substituting the upper and lower bounds forp̃m,r from (14)
into the numerator and denominator (resp.) above yields

P (Wr > x) ≤ 2e−sx

n/2r

∏

m=0

( n
2r−1 −m)es

( n
2r−1 −m)es + (1− es) ne

2r−1

≤ 2e−sx

n/2r

∏

m=0

1

1− 2e (1− e−s)

Letting s = − ln
(
1− e−1

2e2

)
and noting thats > 1/8,

P (Wr > x) ≤ 2e
n
2r +1− x

8

Noting that ther-th round is of durationTr = 8n
2r + 8 log 2n

slots, we conclude that

P (¬Er+1|Er) ≤ P (Wr > Tr) ≤
2

n
(15)

SinceP (E1) = 1, it follows from (15) that

P (¬Er+1) ≤ P (¬Er+1|Er) + P (¬Er) ≤
2r

n

Sincer < log log n, it follows that

P (¬Elog log n) ≤ 2 log log n

n
→ 0 asn→∞

This completes the proof of Lemma 5.
We already know from the analysis in Section III-C that the
surviving nodes (at mostn/ log n in total) can be discovered
by the ALOHA-like algorithm inΘ(n) slots w.h.p. Putting ev-
erything together, we conclude that alln nodes are discovered
in Θ(n) running time w.h.p.

2) Algorithm Extensions:Analogous to Section III, Algo-
rithm 3 can be extended to handle asynchronous operation and
the case wheren is unknown. We also employ the termination
conditionTC proposed in Section III-G and evaluate it by sim-
ulating Algorithm 3. Again, we find that for eachn ∈ [2, 100],
each node terminates in the correct phase, as desired.

V. THE MULTI -HOP NETWORK CASE

Thus far, our treatment of the neighbor discovery problem
assumes single-hop networks. We now consider the more
general multi-hop network setting and derive lower and upper
bounds for the neighbor discovery problem.
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ji

Fig. 2. Nodei and nodej with different number of neighbors.

A. ALOHA-like Neighbor Discovery: Upper Bound Analysis

We begin by analyzing the ALOHA-like algorithm. Recall
that the wireless network is represented by a graphG =
(V, E), where |V | = n. We initially assume that all nodes
know the maximum node degree∆. Further, we assume a
time-slotted system in which nodes are synchronized on slot
boundaries. In each slot, each node in the network transmits
with probability 1/(∆ + 1).

The probabilityp that a nodei discovers a neighboring node
j in a given slot is

p ≥ 1

∆ + 1

(

1− 1

∆ + 1

)∆

≥ 1

(∆ + 1)e

Let Eij(t) denote the event that nodei discovers a given
neighborj in t slots. Therefore,

P (¬Eij(t)) ≤
(

1− 1

(∆ + 1)e

)t

≤ e−
t

(∆+1)e

where the second inequality follows from the fact that1+x ≤
ex, ∀x ∈ ℜ. Substitutingt = 3(∆ + 1)e lnn into the right
hand side of the above inequality yields

P (¬Eij(t)) ≤ e−3 ln n =
1

n3

Applying the union bound, we conclude that

P




⋃

(i,j)∈E

¬Eij(t)



 ≤
∑

(i,j)∈E

P (¬Eij(t)) ≤
2n2

n3
=

2

n

In other words, all the edges in the network are discovered in
at mostO(∆ ln n) time slots w.h.p.

Analogous to the single-hop version, it can be easily verified
that the network version of the ALOHA-like algorithm can be
extended to: (i) handle the case when nodes do not know∆,
(ii) allow asynchronous operation, and (iii) allow nodes tostart
neighbor discovery at different times. We therefore focus only
on handling termination.

1) Handling Termination: The termination conditionTC
proposed in Section III-G may not work correctly in a multi-
hop setting. To see why, consider the network shown in
Figure 2. Here, it is possible that nodei discovers nodej
before j discoversi. Since i has only one neighbor, it may
terminate neighbor discovery before being discovered byj.
We therefore propose the following change to the ALOHA-
like algorithm, which doubles its running time.

We double the duration of each phase i.e. ther-th phase
now lasts a duration of2r+2e ln 2r slots. During the first half
of the r-th phase, each node transmits with probability1/2r,
as before. In the second half, each node that transmitted in the
first half announces to its neighbors if it is ready to terminate
the algorithm, as determined by the termination conditionTC.
At the end of ther-th phase, a node terminates neighbor

discovery only if each of its neighbors is ready to terminate
the algorithm.

Returning to the example in Figure 2, let us assume that
nodei has discovered nodej in the first half of ther-th phase
and is therefore, ready to terminate neighbor discovery at the
end of ther-th phase, but nodej is not. Nodei learns of this
fact fromj’s transmission in the second half of ther-th phase,
and thus, both nodes proceed to the next phase.

Our simulation of the ALOHA-like discovery algorithm in
a network setting over a wide range of node densities and over
a range of node placements shows that each node terminates
only after discovering all its neighbors, as desired.

B. Lower Bound Analysis

In this section, we establish a lower bound for the running
time of any randomized neighbor discovery algorithm. More
formally, we show that, givenn and ∆, we can construct a
graphG = (V, E) with |V | = n and maximum node degree
∆ such that any randomized algorithm requiresΩ(∆ + lnn)
slots w.h.p to discover all edges inG.

Given n and ∆, we construct an input graphG = (V, E)
with |V | = n and maximum node degree∆ as follows.∆
out of the n nodes are chosen arbitrarily and arranged in a
clique, while the remainingn−∆ nodes are paired arbitrarily
and arranged in a matching of size(n−∆)/2. No edges exist
between the nodes in the clique and those in the matching.
Each node inG is then assigned a unique ID drawn uniformly
at random from the set of available IDs. For convenience,
we let MG = (V ′, E′) denote the matching inG. Note that
V ′, E′ ⊆ V, E, where|V ′| = n−∆ and |E′| = (n−∆)/2.

Since each node needs to receive at least one transmission
from a neighboring node in order to discover the neighbor,
any distributed algorithm, randomized or not, has a running
time of at leastΩ(∆) on the input graphG. Thus, it suffices
to show that when∆ = o(lnn)‡, any randomized neighbor
discovery algorithm has a running time ofΩ (lnn) w.h.p on
the graphG. This implies a lower bound ofΩ(∆ + lnn).

In establishing the lower bound, we assume that nodes inG
can detect collisions. Since collision detection can only help
reduce the discovery time, the lower bound also applies to
algorithms that assume nodes cannot detect collisions.

1) Uniform Randomized Algorithms:We initially establish
the lower bound for the class ofuniform randomized algo-
rithms i.e. each node uses the same algorithm. Consistent with
the problem definition introduced in Section II, we assume that
nodes do not know the IDs of their neighbors.

A more precise definition of a randomized and uniform
randomized algorithm follows. Consider nodei ∈ V . We
introducehi(t) ∈ ({0, 1, c1, c2, w})t as thehistory observed
by nodei up to timet, wheret ≥ 1. Here,w ∈ {0, 1}b denotes
an arbitrary bit-string of lengthb > 1 and corresponds to the
contents of the message received by nodei upon successful
transmission by a neighbor. In the case of the ALOHA-like
algorithm, w denotes the ID of the transmitting node, while
in the case of the Feedback-based algorithm described in

‡f(n) = o(g(n)), if lim
n→∞

f(n)
g(n)

= 0
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Section IV-B,w denotes the ID of the transmitting node and
that of its most recently discovered neighbor. Theℓ-th entry
of hi(t), denoted byhi(t, ℓ), corresponds to an event in the
ℓ-th slot and is defined as follows:

hi(t, ℓ) ,







0 if i does not transmit and does not observe

any transmission,

1 if i transmits successfully,

c1 if i transmits and is involved in a collision,

c2 if i does not transmit but observes

a collision,

w if i observes a successful transmission

A randomized algorithm is characterized by a per node
function pi(t|hi(t − 1)), that specifies the probability that
node i transmits in slot t given a history hi(t − 1) as
defined above. A uniform randomized algorithm is one where
pi(t|hi(t − 1)) = pj(t|hj(t − 1)) for all i, j ∈ V and all t,
provided thathi(t− 1) = hj(t− 1).

Consider an arbitrary uniform randomized neighbor discov-
ery algorithmA and consider the input graphG = (V, E)
constructed earlier. LetT G

A be the time until all edges in the
G usingA. Recall that the input graphG includes a matching
MG = (V ′, E′), whereV ′, E′ ⊆ V, E and |E′| = (n−∆)/2.
Let T MG

A denote the time required byA to discover the edges
in MG. Clearly, T G

A ≥ T MG

A and hence, a lower bound for
T MG

A yields a lower bound forT G
A .

We assume that each node inMG knowsn and∆. Clearly,
having more information can only reduce the running time
of A and therefore, does not affect the lower bound. We
also assume that edges(i, j), (j, i) ∈ E′ are both discovered
simultaneously regardless of which nodei or j successfully
transmits first. Again, this assumption does not affect the lower
bound.

Let the random variableTij denote the time until edges
(i, j) and (j, i) are discovered. Then,T MG

A ≥ max
i,j
Tij .

Consider an arbitrary pair of directed edges(i, j) and(j, i)
in MG. It is important to note the following about the histories
observed by nodesi and j prior to Tij , namely that they are
identical. This is because the only events that can occur prior
to Tij are either idle slots or collisions involving bothi andj.
Consequently,hi(t) = hj(t) = h(t), ∀t < Tij , and therefore,

pi(t|h(t− 1)) = pj(t|h(t− 1)) , p(t|h(t− 1)), ∀h,∀t < Tij

Let Bij(t) denote the event that a successful transmission
occurs, either fromi to j or vice-versa, in thet-th time slot.
Then, for allh(t− 1) and for all t < Tij , it follows that

P (Bij(t)|h(t− 1)) = 2p(t|h(t− 1))(1− p(t|h(t− 1))) ≤ 1

2

Sinceh(t−1) contains information about the outcome of slots
1, . . . , t− 1, it follows that

P (Bij(t)|¬Bij(1), . . . ,¬Bij(t− 1)) ≤ 1

2
, ∀t < Tij

Therefore,

P (Tij > t) =
t∏

ℓ=1

P (¬Bij(ℓ)|¬Bij(1) . . .¬Bij(ℓ− 1)) ≥ 2−t

We know thatMG has(n−∆)/2 edges. Further, the random
variableTij depends only on the probabilistic choices of nodes
i andj in each slot, which in turn depend only on the histories
observed byi and j, but not on the probabilistic choices or
histories of any other node. Thus, theTijs are iid yielding

P

(

max
i,j
Tij > t

)

≥ 1−
(
1− 2−t

)n−∆
2 ≥ 1− e−

2−t(n−∆)
2

Settingt = 1
2 log

(
n−∆

2

)
in the above inequality yields

P

(

max
i,j
Tij >

1

2
log

(
n−∆

2

))

≥ 1− e−
√

n−∆
2 → 1

as n → ∞. Thus,T MG

A ≥ max
i,j
Tij = Ω

(
ln
(

n−∆
2

))
w.h.p,

which yields a lower bound ofΩ(lnn) when ∆ = o(lnn).
Thus,T G

A = Ω(∆ + ln n) w.h.p.
2) Non-uniform Randomized Algorithms:We next show

that the lower bound established in the previous section
also applies for the class ofnon-uniform randomized al-
gorithms, where nodes may use different algorithms. More
formally, a non-uniform randomized algorithm is one in which
pi(t|hi(t − 1)) may not equalpj(t|hi(t − 1)), even though
hi(t− 1) = hj(t− 1), for an arbitrary pair of nodesi, j ∈ V .

Let A = (A1, . . . ,An) be an arbitrary non-uniform ran-
domized algorithm, where nodei uses algorithmAi. We also
assume that the node placement is independent of their IDs,
i.e., given locationsL1, . . . ,Ln of the nodes, we assume that
the node at locationLk is equally likely to be any one of the
n nodes and is, therefore, equally likely to use any one of
A1, . . . ,An.

Similar to [18], we reduce a non-uniform randomized
algorithm A to a randomized algorithmQ, which operates
as follows. Each nodei chooses an algorithmAk from A
uniformly at random and independently of any other node,
and simulatesAk, i.e., nodei runsAk as if it were nodek.
We next show thatQ is uniform.

Lemma 6:The randomized algorithmQ is uniform.
Proof: Let i and j be an arbitrary pair of nodes such

that hi(t− 1) = hj(t− 1) = h(t− 1). To establish thatQ is
uniform, we need to show thatpi(t|h(t−1)) = pj(t|h(t−1)).

Let pi(h(t − 1)|Ak) denote the probability that nodei
observes historyh(t−1) given that it simulatesAk andpi(Ak)
be the probability that nodei simulatesAk. Then,

pi(t|h(t−1)) =

∑

Ak∈A

pi(t|h(t− 1),Ak)pi(h(t− 1)|Ak)pi(Ak)

∑

Ak∈A

pi(h(t− 1)|Ak))pi(Ak)

Since nodesi and j both run Ak as nodek, pi(t|h(t −
1),Ak) = pj(t|h(t − 1),Ak). Further, since nodesi and j
are both equally likely to be in any of then locations, it
follows that pi(h(t − 1)|Ak) = pj(h(t − 1)|Ak). Finally,
sincepi(Ak) = pj(Ak), we conclude thatpi(t|h(t − 1)) =
pj(t|h(t− 1). The uniformness ofQ follows immediately.
Let CQ(Lk) denote the algorithm chosen by the node at
location Lk underQ. Also, let s = (s1, . . . , sn) denote an
arbitrary vector ofschedules, where each schedulesk denotes
the slots in which the node at locationLk transmits.
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We now state a result established in [18], which also follows
immediately from the preceding discussion.

Lemma 7: If ∀k 6= ℓ : CQ(Lk) 6= CQ(Lℓ), then for every
s:

P (s|Q runs) = P (s|A runs)

Consider the matchingMG defined in Section V-B1, which
is of size (n − ∆)/2. From MG = (V ′, E′), we can easily

derive another matching̃MG = (V ′′, E′′) of size
(

n−∆
2

)1/4

such thatV ′′ ⊂ V ′ and E′′ ⊂ E′, and each edge inE′′

satisfies the condition:(i, j) ∈ E′′ ⇒ (j, i) ∈ E′′. Clearly,

T G
Q ≥ T MG

Q ≥ T M̃G

Q ≥ 1

8
log

(
n−∆

2

)

w.h.p (16)

where the last inequality follows by noting thatQ is a uniform
randomized algorithm and by proceeding identically to the
analysis in Section V-B1.

Let L1, . . . ,L|V ′′| be the locations of the nodes iñMG.
Then,

P (∀k 6= ℓ : CQ(Lk) 6= CQ(Lℓ)) ≥ 1−
(2(n−∆

2 )
1
4

2

)

n
→ 1

as n → ∞. Therefore, it follows from (16) and Lemma 7
thatT M̃G

A
= Ω(ln

(
n−∆

2

)
) w.h.p, which yields a lower bound

of Ω(ln n) when∆ = o(lnn). This result combined with the
trivial lower bound ofΩ(∆) yieldsT G

A
= Ω(∆ + lnn) w.h.p.

Our result thus implies that the ALOHA-like algorithm is
at most a factormin(∆, lnn) worse than the optimal.

VI. D ISCUSSION

In this section, we discuss a number of pertinent issues
relevant to the proposed neighbor discovery algorithms and
their analysis.

A. Neighbor Discovery Using Directional Antennas

The analysis of the ALOHA-like algorithm can also be
extended to the case where nodes have directional antennas.
For instance, in [31], the authors propose a variant of the
ALOHA-like algorithm which operates as follows. At each
slot, a node transmits with probabilitypx by pointing its
antenna, which has a fixed beamwidthθ, in a direction chosen
uniformly at random from the interval[0, 2π].

[31] derives the optimal value ofpx as

px =
2π

θ(∆ + 1)
, ∆ + 1 >

2π

θ

where∆ is the maximum node degree in the network.
To avoid repetition, we only consider the case where nodes

have a directional transmitter and an omni-directional receiver.
In this case, the probability that a given nodei discovers a
neighborj in a given slot is given by

p =
2π

θ(∆ + 1)
︸ ︷︷ ︸

i transmits

(

1− 2π

θ(∆ + 1)

)

︸ ︷︷ ︸

j receives

(

1− θ

2π

2π

θ(∆ + 1)

)∆−1

︸ ︷︷ ︸

no other node transmits toi

≥ 2π

θ(∆ + 1)e

(

1− 2π

θ(∆ + 1)

)

Similar to Section V-A, we can show that all edges in a
network with n nodes and maximum node degree∆ are
discovered in at most3(∆+1)e ln n

2π
θ (1− 2π

θ(∆+1) )
slots w.h.p. Thus, when

∆ >> 2π
θ , we obtain a factor of2π/θ speed-up over the case

where nodes have omni-directional antennas.

B. RFID Tag Identification

The neighbor discovery algorithms proposed in this paper
can easily be adapted to solve the RFID tag identification
problem, where a tag reader needs to identify the IDs of the
tags in its range. In particular, the feedback-based algorithms
proposed in Section IV are well-suited to address this problem
and operate as follows. Each time the tag reader discovers a
new tag, it announces the ID of the tag allowing it to drop
out. Unlike prior work addressing the RFID tag identification
problem (see Section VII for a list of references), our algo-
rithms do not require collision detection and do not requirea
priori estimate of the number of tags. Further, the termination
condition TC can be used to detect end of the tag discovery
process, when the number of tags is not known.

C. Discovery of Asymmetric Edges

Throughout this paper, we have assumed that edges between
node pairs are symmetric. We next describe a simple heuristic
for discovering asymmetric edges using the ALOHA-like
algorithm. In particular, if we have a pair of nodesi and j
such that(i, j) ∈ E, but (j, i) /∈ E, our heuristic allows node
j to removei from its list of neighbors. Upon termination
of neighbor discovery in ther-th phase, each node runs the
ALOHA-like algorithm for an identical duration as that of the
r-th phase. During this phase, each node announces the IDs
of all the neighbors it has discovered. Sincej will not be in
the list of IDs included ini’s transmission, nodej removesi
from its neighbor list.

D. Feedback-based Algorithms for Multi-Hop Networks

It is interesting to ask whether or not the feedback-based
algorithms studied in Section IV can be extended to the multi-
hop network setting. There are two important obstacles that
need to be overcome in this regard.

1) In a clique setting, when a nodei, hears its ID back, it
knows that all other nodes in the clique have discovered
i, thus allowing it to drop out. In the multi-hop case,
however, the presence of hidden terminals may cause a
subset ofi’s neighbors to not receivei’s transmission.
Thus,i cannot drop out despite hearing its ID back.

2) In the multi-hop setting,i’s dropping out needs to be
signaled to its neighbors allowing them to increase their
transmission probabilities, which appears non-trivial.

Exploiting receiver feedback in the multi-hop setting in a man-
ner that yields improvement over the ALOHA-like discovery
algorithm is therefore an interesting open problem.

E. Beacon-based Neighbor Discovery

In beacon-based neighbor discovery, each node transmits
BEACONmessages at fixed intervals i.e., the interval size is
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independent ofn. To avoid synchronization between beacon
transmissions, a random delay is added to the intervals. This
scheme has been proposed in numerous contexts, e.g., (i) to
maintain neighbor list in routing protocols such as AODV [26],
DSR [13], and GPSR [15], and (ii) for topology formation in
the context of Bluetooth [5] and IEEE 802.15.4 [1].

Beacon-based neighbor discovery can be thought of as
a randomized algorithm in which each node transmits with
probability 1/k at each slot, wherek is fixed. For simplicity,
consider a clique ofn nodes. The probability of a successful
transmission is then given by

p =
1

k

(

1− 1

k

)n−1

≈ e−n/k

k

Similar to Section III, it can be shown that the expected time
to discover alln nodes equalsken/k(lnn + Θ(1)).

To compare the performance of beacon-based neighbor dis-
covery with the algorithms studied in this paper, we consider a
Bluetooth network, where each slot is of duration 0.625 ms and
beacons are transmitted once everyk = 14 slots [5]. In a dense
setting, wheren ∼ 100, beacon-based neighbor discovery is
65 times slower than the ALOHA-like algorithm and 300 times
slower than the collision detection-based algorithm.

The above example illustrates the poor performance of
beacon-based neighbor discovery when nodes transmit too
frequently. At the other extreme, nodes may transmit very
infrequently. For example, the recommended beacon interval
in GPSR [15] is 1s. Assuming slots of size 0.625 ms, this cor-
responds to each node transmitting with probability1/1600.
When n = 10, beacon-based neighbor discovery is 59 times
slower than the ALOHA-like algorithm and 135 times slower
than the collision detection-based algorithm.

It must also be noted that there is no obvious method for
terminating the beacon-based neighbor discovery algorithm
without ana priori estimate of network density.

F. Other Wireless Channel Models

All the results we have derived thus far are based on
the assumption of a collision channel model. Extension to
more general wireless channel models that incorporate fading
effects and errors in transmission/reception is an interesting
open direction. While the correctness of the ALOHA-like
algorithm is independent of the wireless channel model used,
the Feedback-based algorithms however require modification
for correct operation under other wireless channel models.
As an example, [17] assumes Rayleigh fading channels and
proposes a simple extension to the collision detection-based
neighbor discovery algorithm in which each node is required
to successfully transmitDISCOVERYmessagesk times before
it drops out, wherek is a function of the channel parameters.

VII. R ELATED WORK

An early work on neighbor discovery is [23], which pro-
poses a synchronous ALOHA-like neighbor discovery algo-
rithm, identical to the one studied in this paper. More recently,
an asynchronous, randomized neighbor discovery algorithm
has been proposed in [6]. A feedback based neighbor discovery

algorithm designed to operate in fading environments has
been studied in [17]. However, the performance of these
algorithms is not well-understood, even in the case of single-
hop networks. Further, each of these algorithms requirea
priori estimates of node density and do not address the issue
of termination of neighbor discovery.

Keshavarzian et al. [16] propose a novel, deterministic
neighbor discovery algorithm. However, nodes need to be
synchronized with each other and need to know the maximum
number of neighbors,n, a priori. Furthermore, the neighbor
discovery needsn2 time slots to discover all the neighbors.

Neighbor discovery algorithms using a multi-user detection
approach have been proposed in [2]. However, these algo-
rithms require synchronization between nodes and also require
each node to know the signatures of every other node in the
network. An interesting approach to neighbor discovery based
on group testing has been proposed in [21]. But it too suffers
from the same practical limitations as [2].

There have been numerous proposals for neighbor discovery
when nodes have directional antennas [31], [12], [33], [28].
In general, these solutions propose antenna scanning strate-
gies for efficient neighbor discovery. However, none of these
proposals address the practical challenges considered in this
paper. Further, the analysis in this paper can be used to provide
a more rigorous understanding of the directional neighbor
discovery problem, as shown in Section VI.

There exists a large body of literature addressing the RFID
tag identification problem (see for example [29], [14], [19],
[11], [32]), where a designated tag reader needs to determine
the IDs of tags in its range.Prima facie, the tag identification
problem bears resemblance to the neighbor discovery prob-
lem. However, neighbor discovery is more challenging. First,
existing tag identification algorithms typically assume that the
number of tags is knowna priori. Second, the transmissions
of the tags can be more easily controlled due to the presence
of the tag reader, which functions as amaster nodeduring
the discovery process. Finally, tag identification algorithms do
not address the hidden terminal problem present in multi-hop
wireless networks.

Some of the literature on conflict resolution in multiple
access channels is related to the neighbor discovery problem
and its analysis. In particular, the deterministictree algorithms
in [7], [10], [30] can be adapted to perform neighbor dis-
covery. However, these algorithms are not suitable for several
reasons. The algorithms typically assume that node IDs lie
in the range[1 . . . N ], whereN is assumed to be knowna
priori . Secondly, the performance of the algorithms scales as
Θ(n+n log(N/n)), wheren denotes the number of neighbors.
Thus, the algorithms perform poorly whenN >> n (e.g.
N = en). Finally, these algorithms work only in single-hop
networks and, require synchronization and collision detection.

VIII. C ONCLUSIONS

In this paper, we have presented efficient neighbor discovery
algorithms for wireless networks that comprehensively address
various practical limitations of the earlier approaches. Our
neighbor discovery algorithms do not require estimates of node
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density and allow asynchronous operation. Furthermore, our
algorithms allow nodes to begin execution at different times
and also allow nodes to detect termination.

Our analysis shows a gap between the lower and upper
bounds on the running time for neighbor discovery in the
network case. Clearly, the quest for an order-optimal neigh-
bor discovery algorithm remains an intriguing prospect. Of
particular interest is the question of whether the feedback-
based algorithms, which are order-optimal in the single-hop
case, can be extended to the multi-hop network setting while
outperforming the ALOHA-like algorithm. Another direction
of interest is the extension of the various algorithms and the
analysis presented in this paper to wireless channel models
that incorporate phenomena such as fading and shadowing.
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APPENDIX A
APPROXIMATION ERROR IN E[W ] FOR ALOHA- LIKE

NEIGHBOR DISCOVERY

In this section, we calculate bounds on the approximation
error for the results derived in Section III-B.

Recall from (1), we have the following approximation

p = pxmit(1− pxmit)
n−1 =

1

n

(

1− 1

n

)n−1

≈ 1

ne
(17)

Since(1− 1/n)n−1 ≥ 1/e, it follows that

p =
1

ne
+ δe(n)

where δe(n) > 0 denotes the approximation error in (17).
Using Taylor’s Theorem, we can write

(n− 1) ln

(

1− 1

n

)

= −1 + R(n)

whereR(n) represents the remainder term and is given by

R(n) =
1

n
− n− 1

2n2(1− c)2
, 0 ≤ c ≤ 1/n

R(n) is maximized whenc = 0 and therefore,

R(n) ≤ n + 1

2n2
<

1

n
Therefore,

0 < δe(n) <
1

ne
(e

1
n − 1) (18)

It is easy to see thatδe(n)→ 0, asn→∞.
Recalling from Section III-B thatE[W ] = 1

pHn, we obtain

E[W ] =

(
1

1
ne + δe(n)

)

Hn = ne

From (18), it follows that

ne1− 1
n Hn ≤ E[W ] ≤ neHn

It is easy to see thatE[W ]→ neHn asn→∞.
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APPENDIX B
SHARP CONCENTRATION OFALOHA- LIKE NEIGHBOR

DISCOVERY

In this section, we provide a more rigorous proof of the
sharp concentration result for the ALOHA-like neighbor dis-
covery algorithm based on Boole-Bonferroni inequalities.The
proof is very similar to the proofs available in [25] for the
sharp concentration for the Coupon Collector’s Problem.

Lemma 8:Let c be a real constant andt = ne(lnn+c) for
positive integern. Then, for any fixed positive integerk,

lim
n→∞

(
n

k

)(

1− k

ne

)t

=
e−ck

k!

Proof: We make use of the following inequality in our
proof: For allx, a ∈ ℜ, such thata ≥ 1 and |x| ≤ a,

ex

(

1− x2

a

)

≤
(

1 +
x

a

)a

≤ ex

Let x = − kt
ne anda = t. Substituting in the above inequality,

we get

e−
kt
ne

(

1− k2t

n2e2

)

≤
(

1− k

ne

)t

≤ e−
kt
ne

e−
tk
ne

(

1− k(lnn + c)

ne

) tk
ne

≤
(

1− k

ne

)

≤ e−
kt
ne

Note e−
kt
ne = n−ke−ck. Also,

lim
n→∞

(

1− k(lnn + c)

ne

)

= 1

For largen, we know that
(

n

k

)

∼ nk

k!

Putting all this together yields the desired result.
Theorem 1:Let W denote the time required to discover

all the n neighbors. Then, for any constantc ∈ ℜ and t =
ne(lnn + c),

lim
n→∞

P (W > t) = 1− e−e−c

Proof: The proof is exactly the same as described in [25]
and has been produced here for completeness. The event
{W > t} =

⋃n
i=1 Ei(t), whereEi(t) denotes the event that a

nodei is not discovered withint time slots. By the Principle
of Inclusion-Exclusion, we have

P

(
n⋃

i=1

Ei(t)
)

=

n∑

k=1

(−1)k+1Pk,n

where

Pk,n =
∑

1≤i1...≤ik≤n

P

(
k⋂

ℓ=1

Eiℓ
(t)

)

Let Sk,n = P1,n−P2,n+. . .+(−1)k+1Pk,n denote the partial
sum formed by the firstk terms in this series. By the Boole-
Bonferroni inequalities, for oddk ≥ 1,

P

(
⋃

i

Ei(t)
)

≤
k∑

ℓ=1

(−1)ℓ+1Pℓ,n

and for evenk ≥ 2,

P

(
⋃

i

Ei(t)
)

≥
k∑

ℓ=1

(−1)ℓ+1Pℓ,n

Putting the two Boole-Bonferroni inequalities together, we can
write

S2k,n ≤ P

(
⋃

i

Ei(t)
)

≤ S2k+1,n

Since allk-wise intersections ofEi(t) are equally likely,

Pk,n =

(
n

k

)

P

(
k⋂

i=1

Ei(t)
)

Now, the probability of intersection of thek events
E1(t), . . . , Ek(t) is the probability of not discovering any of
the first k nodes int time slots and is equal to

(
1− k

ne

)t
.

Therefore,

Pk,n =

(
n

k

)(

1− k

ne

)t

Therefore,

lim
n→∞

Pk,n = Pk =
e−ck

k!

Let Sk =
∑k

ℓ=1(−1)ℓ+1Pj =
∑k

ℓ=1(−1)ℓ+1 e−cℓ

ℓ! . Note that
the right hand side of the expression forSk consists of the first
k terms of the power series expansion off(c) = 1 − e−e−c

.
We conclude that

lim
k→∞

Sk = f(c)

That is for allε > 0, there exists ak∗ > 0, such that for any
k > k∗,

|Sk − f(c)| < ε

Since limn→∞ Pn
k = Pk, it follows that limn→∞ Sk,n = Sk.

Equivalently, for allε > 0 andk, whenn is sufficiently large,
|Sk,n − Sk| < ε. Thus, for allε > 0, any fixedk > k∗, and
n sufficiently large,|Sk,n − Sk| < ε and |Sk − f(c)| < ε.
Therefore,

|Sk,n − f(c)| < 2ε

and

|S2k,n − S2k+1,n| < 4ε

|P
(
⋃

i

Ei(t)
)

− f(c)| < 4ε

This implies the desired result that

lim
n→∞

P

(
⋃

i

Ei(t)
)

= f(c) = 1− e−e−c
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APPENDIX C
CHERNOFFBOUNDS FORERLANG RANDOM VARIABLE

Theorem 2:Let X ∼ Erlang(n, β), with meanE[X] =
n/β. For all ε > 0,

1) P (X ≥ (1 + ε)E[X]) ≤
(

1+ε
eε

)n

2) P (X ≤ (1− ε)E[X]) ≤
(

1−ε
e−ε

)n

Proof:

P (X ≤ a) ≤ inf
s<0

e−saMX(s) (19)

where MX(s) = E[esX ] denotes the moment generating
function of the random variableX. For an Erlang(n, β)
random variable

MX(s) =

(
β

β − s

)n

A standard calculation shows that the value ofs that minimizes
the right hand side of (19) is given by

s∗ = β − n

a

Therefore,

P (X ≤ a) ≤ e−(aβ−n)

(
aβ

n

)n

Settinga = (1− ε)E[X] = (1−ε)n
β , ∀ε > 0 yields

P (X ≤ (1− ε)E[X]) ≤
(

1− ε

e−ε

)n

, ∀ε > 0

Since1− ε < e−ε, the right hand side in the above inequality
goes to 0 asn→∞.

The probability bound for the upper tail can be derived
similarly. In particular, for a non-negative random variable X
anda > 0, we have

P (X ≥ a) ≤ inf
s>0

e−saMX(s)

Proceeding exactly in the same manner as before, it can be
easily shown that

P (X ≥ (1 + ε)E[X]) ≤
(

1 + ε

eε

)n

, ∀ε > 0

Since1+ ε < eε, the right hand side goes to 0 asn→∞.

APPENDIX D
CHERNOFFBOUNDS FORORDER STATISTICS OF

EXPONENTIAL RANDOM VARIABLES

We first state an important theorem from [8][pp.18] that
characterizes the distribution of thek-th order statistic from
from n i.i.d exponential random variables.

Theorem 3:Let X1, . . . , Xn denote a sequence ofn i.i.d
exponential random variables, each having mean1/β. Let the
random variableX(k) denote thek-th order statistic. Then,

(X(k), k = 1, . . . , n)
d
=

1

β

(
k∑

ℓ=1

Zℓ

n− ℓ + 1
, k = 1, . . . , n

)

where theZℓs are i.i.d exponential random variables with
mean1.

From Theorem 3, it immediately follows that

P
(

X(k) ≥ x
)

= P

(
k∑

ℓ=1

Z̃ℓ ≥ βx

)

whereZ̃ℓ is an exponential random variable with mean1/(n−
ℓ + 1). Note that theZ̃ℓs are independent, but not identically
distributed exponential random variables. Applying Chernoff
bound, we get

P
(

X(k) ≥ x
)

≤ e−sβx
k∏

ℓ=1

E[esZ̃ℓ ], ∀s > 0

= e−sβx
k∏

ℓ=1

(

1− s

n− ℓ + 1

)−1

Note that the second inequality is only applicable whens <
n− k + 1. Letting s = 1, we get

P
(

X(k) ≥ x
)

≤ e−βx n

n− k

APPENDIX E
PROOF OFCORRECTNESS OFTERMINATION CONDITION

A. Notation

Throughout this section,Sr denotes the number of distinct
nodes that successfully transmit at least once in ther-th phase.
S̃r denotes the total number of successful transmissions in the
r-th phase. Note thatSr ≤ S̃r. pr denotes the probability of
successful transmission in ther-th phase and is given by

pr =
n

2r

(

1− 1

2r

)n−1

≤ ne−(n−1)/2r

2r

tr is the duration of ther-th phase and is given by

tr = 2r+1e ln 2r

B. Proof of Lemma 2

It is easy to verify thatS̃r ∼ Binomial(tr, pr). Sincer ≤
log
(

n−1
2 ln n

)
in Stage 1and pr increases monotonically asr

varies from1 . . . log
(

n−1
2 ln n

)
, it follows that

pr ≤ p ,
2 lnn

n(n− 1)

Further,

tr ≤ t ,
2e(n− 1) ln

(
n−1
2 ln n

)

2 lnn

Let S ∼ Binomial(t, p). Applying Chernoff bound [25], we
get

P (S ≥ (1 + ε)tp) ≤
(

eε

(1 + ε)1+ε

)tp

, ∀ε > 0

Noting that0 < tp =
2e ln( n−1

2 ln n )
n < 1, ∀n ≥ 4 and setting

ε = 1
tp − 1, we get

P (S ≥ 1) ≤ tpe1−tp ≤ tpe
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Noting thatS̃r is stochastically dominated byS, we get

P (S̃r ≥ 1) ≤ tpe =
2e2 ln

(
n−1
2 ln n

)

n
≤ 2e2 log

(
n−1
2 ln n

)

n

Application of the union bound yields

P






log( n−1
2 ln n )
⋂

r=1

{

S̃r = 0
}




 ≥ 1− 2e2 log2

(
n−1
2 ln n

)

n

→ 1 asn→∞

SinceSr ≤ S̃r, Lemma 2 immediately follows.

C. Proof of Lemma 3

Applying Markov’s inequality,

P (Sr ≥ 2r−1) ≤ P (S̃r ≥ 2r−1) ≤ E[S̃r]

2r−1
=

trpr

2r−1

Further simplification of the right hand side yields

P (Sr ≥ 2r−1) ≤ 4e2(n/2r) ln 2r

en/2r ≤ 4e2 ln 2r

en/2r+1

where the last inequality follows from the fact thatex ≥
xex/2, ∀x > 0 (see [24][pp.76]). Noting thatr ≤
log
(

n−1
3 ln ln n

)
in Stage 2, we obtain

P (Sr ≥ 2r−1) ≤ 4e3 lnn

ln
3
2 n

≤ 4e3

ln
1
2 n

Noting that there are at mostlog(2 lnn) phases inStage 2and
applying the union bound, we get

P

(
⋃

r

{
Sr ≥ 2r−1

}

)

≤ 4e3 log(2 lnn)

ln
1
2 n

→ 0 asn→∞

This proves Lemma 3.

D. Proof of Lemma 4

Here, we show that w.h.pSr > 2r−1 throughoutStage 3.
This implies thatDi,r ≥ 2r−1 ∀i, which suffices to ensure
that no node terminates the algorithm duringStage 3.

Let Yi,r be the time of first successful transmission by node
i in phaser. Recall from Section III-C thatYi,r can be treated
as an exponential random variable with distribution

P (Yi,r ≤ t) = 1− e−tpi,r

wherepi,r is the probability of a successful transmission by
nodei in the r-th phase and is given by

pi,r =
1

2r

(

1− 1

2r

)n−1

Further, theYi,rs, i = 1, . . . , n, are i.i.d random variables. Let
Y

(k)
r denote thek-th order statistic. Then,

Sr > 2r−1 ⇐⇒ Y (2r−1+1)
r ≤ tr

From Appendix D, we obtain

P
(
Sr ≤ 2r−1

)
≤ ne−pi,rtr

n− 2r−1 − 1

Sincer ≤ log n in Stage 3, it follows that

P
(
Sr ≤ 2r−1

)
≤ ne−pi,rtr

n/2− 1
≤ 4e−pi,rtr , ∀n ≥ 4 (20)

Now,

pi,rtr = 2e

(

1− 1

2r

)n−1

ln 2r

Noting that (see [25][pp.435])
(

1 +
x

a

)a

≥ ex

(

1− x2

a

)

, ∀x, a such that|x| ≤ a, a ≥ 1

we obtain

pi,rtr ≥ 2e

(
1

e

(

1− 1

2r

))n−1
2r

ln 2r = 2e1−n−1
2r ln 2r

Sincer ≥ log
(

n−1
3 ln ln n

)
+ 2 in Stage 3,

pi,rtr ≥ 2e1−( 3 ln ln n
4 ) ln

(
4(n− 1)

3 ln lnn

)

=
2e

ln
3
4 n

ln

(
4(n− 1)

3 ln lnn

)

≥ 2e

(

ln
1
4 n− ln(3 ln lnn)

ln
3
4 n

)

Substituting the lower bound forpi,rtr into (20) and noting
that there are at mostlog(6 ln lnn) phases inStage 3, it can
be verified using the union bound that

P

(
⋃

r

{Sr ≤ 2r−1}
)

→ 0 asn→∞

This concludes the proof of Lemma 4.


