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Abstract—Low power ad hoc wireless networks operate in
conditions where channels are subject to fading. Cooperative
diversity mitigates fading in these networks by establishing vir-
tual antenna arrays through clustering the nodes. A cluster in
a cooperative diversity network is a collection of nodes that
cooperatively transmits a single packet. There are two types of
clustering schemes: static and dynamic. In static clustering all
nodes start and stop transmission simultaneously, and nodes do
not join or leave the cluster while the packet is being transmitted.
Dynamic clustering allows a node to join an ongoing cooperative
transmission of a packet as soon as the packet is received. In
this paper we take a broad view of the cooperative network
by examining packet flows, while still faithfully implementing
the physical layer at the bit level. We evaluate both clustering
schemes analytically as well as using simulations on large multi-
flow networks. We demonstrate that dynamically-clustered coop-
erative networks substantially outperform both statically-clustered
cooperative networks and classical point-to-point networks.

I. INTRODUCTION

Low power ad hoc wireless networks typically operate in
channel conditions that are subject to time-varying signal degra-
dation known as fading. Diversity mitigates fading by establish-
ing multiple independent channels from source to destination.
Unfortunately, radios in extremely low-power ad hoc networks
(e.g. sensor networks) use narrow band channels and are unable
to employ temporal and frequency diversity. Furthermore, their
small size and reliance on batteries have precluded the use of
antenna arrays for providing spatial diversity. Thus, cooperative
diversity, a realization of a multi-antenna array using a cluster
of single-antenna devices, was proposed as a solution for
mitigating fading in ad hoc wireless networks [1]–[3].

A cluster in a cooperative network is a collection of nodes
that cooperatively transmits a single packet. There are two types
of clustering schemes: static and dynamic. In static clustering
[1]–[11] all nodes within a cluster start and stop transmission
simultaneously and nodes do not join or leave the cluster while
the packet is being transmitted. Dynamic clustering [12]–[15]
allows a node to join an ongoing cooperative transmission
of a packet as soon as the packet is received. Until now, a
comparison of these clustering schemes has not been made.
In this work we show that, while the capacity of statically-
clustered cooperative networks in our multi-flow scenario is
at least double of the capacity of the classical point-to-point
networks (i.e. isolated nodes communicating via point-to-point
links), using dynamically-clustered cooperation results in the
capacity of more than quadruple of the capacity of the point-
to-point networks under the same conditions.

Prior to our work, two communities have studied cooperative
networks. The fundamental knowledge of the physical layer in
wireless networks, including cooperation, comes from the com-
munications community [16], [17]. While dynamic clustering
was proposed by this community [12]–[15], most of its work on
cooperative diversity focuses on information propagation using
static clusters [1]–[6]. Laneman surveys physical layer aspects
of cooperation [18]. The networking community generally stud-
ies routing multiple packet flows in large statically-clustered
cooperative networks [7]–[11]. Kramer et al. [19] provide an ex-
haustive survey of cooperation, including networking concerns.
We have not encountered any previous study of dynamically-
clustered cooperation by the networking community.

While previous studies demonstrate the superiority of co-
operation over classical point-to-point schemes, a direct per-
formance comparison of the two clustering methods for co-
operation is missing and both communities generally have
limited evaluation frameworks. Communications research on
cooperation is usually conducted in a setting with a single-
packet transmission through a network limited to a source,
several relays, and a destination. However, networks gener-
ally operate with multiple packet flows. While the networks
community studies the flows of packets in large networks,
the physical layer in its work is often greatly simplified, and
we show that such a model can significantly underestimate
the capacity achieved by cooperative diversity. Furthermore,
previous work has not accounted for interference from other
packet transmissions within the same flow. We demonstrate that
ignoring such interference can lead to network performance
overestimate of as much as a factor of 2.

In this paper we evaluate the performance of the two co-
operative diversity clustering methods analytically, and utilize
simulations to verify and extend the analysis. The simulations
employ multiple flows and hundreds of nodes with the physical
layer faithfully implemented at the bit level. Thus, we peer deep
into the physical layer, while examining large networks, and are
able to accurately compare cooperation schemes under identical
channel conditions and energy constraints.

This paper is structured as follows: in the next section we
present background on the physical layer. In Section III we
describe our system as well as the details of static and dynamic
clustering. We present our analytical models of cooperation
in Section IV and we analyze the performance of clustering
schemes using these models and simulation in Section V.
Section VI concludes.
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II. WIRELESS COMMUNICATIONS BACKGROUND

In our system, at time t, a complex-valued signal ss(t)
transmitted by sender s is corrupted by an AWGN process n(t)
with (two-sided) power spectral density N0/2 and interference
from the set I of interfering transmitters. The channel is subject
to path loss and frequency non-selective Rayleigh fading that
is independent for different transmitter-receiver pairs. Conse-
quently, the multipath fading gain on a link from a transmitter s
to receiver j is a complex zero-mean Gaussian random variable
hs,j . Thus, the signal rs,j at receiver j is expressed as follows:

rs,j(t) =
hs,j(t)ss(t)√

dαs,j
+
∑
i∈I

hi,j(t)si(t)√
dαi,j

+ n(t) (1)

where da,b is the Euclidian distance between nodes a and b and
α is the path-loss exponent.

Since fading is a random process, it can be mitigated by using
multiple independent channels between transmitter and receiver.
This technique is called diversity. We focus on cooperative
diversity, a technique that utilizes multiple transmitters to es-
tablish a virtual antenna array [1]–[3]. With a set of transmitters
S spaced at least a half-wavelength apart, we can establish a
cooperative link to the receiver, where the receiver is able to
use coordinated, but mutually-independent faded signals from
all of the transmitters to decode the message. This is known
as a multiple-input single-output (MISO) channel. Diversity
in MISO systems is commonly obtained through space-time
coding (STC) [17]. Provided that the power of all transmitters
in the network is fixed at P0 and bandwidth is normalized to
1 Hz, the following equation expresses the ergodic capacity of
this channel in bits per second (bps) when STC is used [17]:

C(j) = log2

(
1 +

P0

∑
s∈S |hs,j |2d

−α
s,j

N0 + P0

∑
i∈I |hi,j |2d

−α
i,j

)
(2)

For the Rayleigh model, |ha,b|2 is distributed exponentially with
mean one. We follow the accepted practice and use (2).

III. SYSTEM DESCRIPTION

A. General Network Framework

We study large ad hoc wireless networks where nodes
operate identical half-duplex peak-power limited1 radios. We
are interested in network capacity, or the maximum throughput
between source and destination that different networks allow
under a power constraint, with the throughput normalized by
the number of nodes in the network.

The network operates as follows. Each node transmits each
packet for b seconds, known as the transmission period. The
source has an infinite supply of packets, each of size z. The
source injects packets into the network by broadcasting a new
packet for b seconds and then idling for rb seconds before

1While we can impose an average power constraint instead, low-power
wireless transmitters are often peak power limited, and, in networks dominated
by interference (such as the ones we study), the impact of the distinction
between average and peak power constraints is minimal. We repeated many
of the experiments in this work using an average power constraint and reached
similar conclusions.

broadcasting the next packet, where r is termed the idle-to-
busy ratio. Idling at the source is designed to space out the
packets and mitigate intra-flow interference. Parameters b and
r control the rate of packet injection into the network.

By (2), node j receives C(j) bps when the set of nodes S
is transmitting information about the packet desired by j and
the set of nodes I is transmitting different packets. We now
discuss two clustering methods enabling cooperative diversity.

B. Statically-clustered Cooperation

Nodes in a static cluster start and stop transmission si-
multaneously and do not join or leave the cluster while the
packet is being transmitted. Statically-clustered cooperation
generally outperforms classical point-to-point transmission [7]–
[9]. Static clusters alternate between “receive” and “transmit”
phases. In its cluster’s receive phase, each node listens to the
upstream cluster for the packet. The receive phase ends when
the upstream cluster stops transmitting. Then the nodes that
received the packet transmit it cooperatively downstream for b
seconds.

C. Dynamically-clustered Cooperation

Dynamic clustering relaxes the constraint on when nodes join
and leave the actively-transmitting cluster. A node is allowed to
join an ongoing cooperative transmission as soon as it receives
the packet. Figs. 1 and 2 illustrate an example where a node that
is left out of the statically-clustered cooperative transmission is
included when dynamic clustering is used.

Dynamic clustering is implemented using mutual information
accumulation (MIA). To enable this, the information in the
packet is encoded into a set of codewords and transmitted.
MIA is the process where the receiver collects codewords
until the mutual information of the collected codeword set
exceeds the entropy of the packet and it can be decoded. Code
combining is used to sum mutual information across symbols
[20]. Once the node decodes the packet, it can encode the
packet into codewords and join the dynamic cluster by starting
transmission. A node transmits each packet for b seconds.

The work that introduced dynamic clustering [15] imple-
mented MIA using a conventional incremental redundancy
fixed-rate coding scheme [21]. The drawback of fixed-rate
codes is that they may not easily adapt to changes in network
conditions and are inefficient when operating outside of their
fixed design. Rateless codes [22], [23] have been proposed as a
flexible alternative [12]–[14]. However, analysis in [12]–[14] is
based on a deterministic channel model and does not account
for fading. Furthermore, the analysis in [12]–[15] focused on
a single-packet transmission in small networks. Our work is
oblivious to the specific implementation of MIA as long as it
allows nodes to join cooperative transmission of a packet as
soon as the packet is decoded.

We now present the analytical models of cooperation, fol-
lowed by simulations.
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(a) t = 1 (b) t = 2 (c) t = 3

Fig. 1. An example of the evolution of statically-clustered cooperative transmission. See legend in Fig. 3.

(a) t = 1 (b) t = 2 (c) t = 3

Fig. 2. An example of the evolution of dynamically-clustered cooperative transmission. See legend in Fig. 3.

Fig. 3. Legend for Figs. 1 and 2.

IV. ANALYTICAL MODELS OF COOPERATION

In this work we model a flow traversing a strip topology. A
strip is a narrow rectangular l×w 2D lattice of nodes, with one
unit of distance separating neighbors along the east-west and
north-south axes. Strip topologies are mathematically tractable
and have been extensively used in networks research, including
literature on cooperative networking [5].

The objective of these models is to approximate the capacity
of various configurations of cooperative networks under a
power constraint. These models take significantly less computa-
tion time than simulation to produce performance estimates and
are extendable to multi-flow network scenarios. They are also
used to guide parameter selection for simulations that search for
actual network capacity. We now discuss models for statically
and dynamically clustered cooperation in turn.

A. Statically-Clustered Cooperation

To model statically-clustered cooperation, we define a cluster
as a contiguous set of n columns in the strip with nodes labeled
1 through nw according to Figure 4. This labeling scheme is
used in all c = l/n identical clusters. Each node is uniquely
identified by a tuple (a, u) containing its cluster number a and
the label u within the cluster. A statically-clustered cooperative
network operates as a time-slotted system; therefore, after each
packet is injected into the network by source cluster one, it is
received and transmitted in consecutive time slots by clusters 2
through c− 1 (in consecutive order) until it is received by the
destination in cluster c.

Fig. 4. Node labeling within cluster in the model of static cooperation.

Let sa = (sa,1, sa,2, . . . , sa,nw) denote the state of each node
in cluster a, where sa,u = 1 if node u received the packet in
the previous time slot from cluster a − 1 (and is, therefore,
transmitting the packet in the current time slot), and sa,u = 0
otherwise. Thus sa ∈ {0, 1}nw and a cluster has 2nw states.

Let π(sa) denote the probability of state s in cluster a. Let
vector πa ∈ [0, 1]nw denote the probabilities of all 2nw states
of cluster a. We assume that the source node disseminates each
packet to its cluster in zero time just before the cluster starts
transmitting. (This obviously benefits the statically-clustered
network, but is acceptable since we will be using it as a base-
line to illustrate the advantages of the dynamically-clustered
cooperation.) Therefore,

π(s1) =

{
1 if s1 = {1}nw

0 otherwise

When a is not the source cluster, a = 2, . . . , c, a node in a
transmits only if it receives the packet from cluster a−1 during
the previous time slot. Therefore, the transition probability
from state sa−1 to state sa is the probability that the nodes
transmitting in sa receive a packet from the nodes transmitting
in sa−1 and nodes not transmitting in sa do not receive a packet
from the nodes transmitting in sa−1. Denote the set of nodes
transmitting in state sa as Sa. To simplify notation, define the
bijection γ : {0, 1}nw → [1, 2, . . . , 2nw] and let j = γ(sa−1)
and k = γ(sa). Assuming deterministic interference subject
only to path loss from the set of transmitters Ia:

Pjk =
∏
r∈Sa

P

(
z ≤ b log2

(
1 +

P0

∑
s∈Sa−1

|hs,r|2d−αs,r
N0 + P0

∑
i∈Ia

pid
−α
i,r

))

×
∏
r/∈Sa

P

(
z > b log2

(
1 +

P0

∑
s∈Sa−1

|hs,r|2d−αs,r
N0 + P0

∑
i∈Ia

pid
−α
i,r

))
where

∑
s∈Sj
|hs,r|2d−αs,r is a hypoexponential random variable,

amenable to numerical analysis, and pi is the probability that
interfering node i is transmitting. This allows us to generate a
2nw×2nw transition probability matrix Ma−1,a for each cluster
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a ∈ {2, . . . , c} (there is no transition out of the destination
cluster c) and compute state probability vector πa for cluster
a as follows:

πa = π1

a∏
x=2

Mx−1,x

The transition probability matrix varies from cluster to cluster,
as the active set of nodes in clusters (and, with it, interference)
tends to decrease downstream. Suppose the ID of the interfering
node i ∈ Ix is (y, u). We approximate transmission probability
pi of this node as follows:

pi =
∑

sy s.t. sy,u=1

π(sy) (3)

For upstream cluster y < x, we would have computed πy
prior to πx. For downstream cluster y > x, we approximate
by letting y = x − 1 and computing an upper bound for pi
using πx−1 in place of πy in (3). This method allows us
to compute the destination cluster state probability vector πc
and the corresponding probability of a packet reaching the
destination pd in one pass through the c clusters in the network.
Once pd is computed, the network throughput in bps is:

T =
zpd

(1 + r)b

We determine an approximation for the network capacity for
a given width w, transmitter power constraint P0, and packet
size z by searching for busy time b∗ and corresponding r∗

that maximizes T . We present the results of the numerical
evaluation of this model in Section V.

B. Dynamically-clustered Cooperation

To model the dynamically-clustered cooperative network, we
assume that the strip divides into groups of (n +m) columns
each. Within each group, the upstream n consecutive columns
are actively transmitting a packet, while the downstream m
consecutive columns are receiving this packet. Active transmit-
ters in one group interfere with transmission of another group.
Assuming identical transmitters, the steady state throughput of
this network is the throughput of a single group. Thus, in our
model, we isolate a (n+m) column group and treat all other
transmitters in the network as interferers.

Unlike the dynamic cooperation described in Section III-C,
in this model we assume that each packet moves in lockstep
through the columns from left to right. That is, nodes join
and leave the transmitting cluster in columns, as opposed to
individually. Since the numbers of columns transmitting and
receiving each packet is always, respectively, n and m, once a
column of nodes finishes transmission of the packet and drops
out of the cluster, it is immediately replaced by the column that
just received the packet.

Since each node transmits a packet for b seconds, the packet
moves forward by one column every b/n seconds. Thus, it
takes a node mb/n seconds to receive a packet and the total
time a node spends on each packet is mb/n+ b = (m+n)b/n
seconds. Therefore, the idle-to-busy ratio is r = m/n. For an

end-to-end packet loss rate of pl, network throughput, in bits
per second, is then

T =
nz(1− pl)
(n+m)b

(4)

Our model contains two components: one to compute the
idle-to-busy ratio r, and the other to determine the end-to-end
packet loss probability pl. We describe each component in turn
and show how they can be used to approximate the capacity of
dynamically-clustered cooperative network.

1) Idle-to-Busy Ratio: We know that after every b/n seconds
the packet must move forward by one column. We assume a
completely deterministic channel model without fading, subject
only to path-loss. Then, node j receives the following amount
of information (in bits) during the b/n seconds it is x columns
away from the front of the sending group:

qj(x) =
b

n
log2

(
1 +

P0

∑
s∈Sx(j) d

−α
s,j

N0 + P0

∑
i∈Ix(j)(1− pl)d

−α
i,j

)
(5)

where Sx(j) denotes the set of nodes that are actively sending
the packet to j while j is x columns away from the front of the
receiving group and Ix(j) denotes the set of nodes interfering
with the transmission to j. Thus, the sum in the numerator
is the total signal received by j from the n columns that are
transmitting the packet; and the sum in the denominator is the
total interference adjusted by the packet loss probability.

In order for the packet to progress, each node j must receive
all z bits of each packet within its allotted time mb/n, which
means that the following must be satisfied:

z ≤
m−1∑
x=0

qj(x) (6)

2) End-to-End Loss Rate: We approximate end-to-end
packet loss rate pl by the loss rate of the first hop from the
source node. Our premise is that once some node decodes a
copy of the packet and forms a cluster with the source, other
nodes acquire enough information from this two-node cluster
to finish decoding the packet and are able to join the cluster
themselves. However, if this initial two-node cluster does not
form, the packet is lost. Since the source waits for mb/n
seconds between packet transmissions, the initial receiving set
of nodes R contains the nodes in the first m columns of the
strip, including receivers in the column containing the source.
The probability that a packet is lost by R is:

pl =
∏
r∈R

pl(r)

where pl(r) is the probability that r did not receive the packet.
We assume Rayleigh fading between the source and each

receiver in R. However, we assume no fading, just path loss,
between the source and the interfering nodes. Then, since
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|hs,r|2 is exponentially distributed with mean one:

pl(r) = P

(
z > b log2

(
1 +

P0|hs,r|2d−αs,r
N0 + P0

∑
i∈I d

−α
i,r

))

= 1− exp

(
−

(2z/b − 1)(N0 + P0

∑
i∈I d

−α
i,r )

d−αs,r P0

)
where I denotes the interfering set of transmitters.

3) Using the model: Given network width w, transmitter
power constraint P0, packet size z, transmitter busy time b and
values of m and n, we can easily compute pl. Thus, through
manipulating m, n, and b we can find approximate capacity by
maximizing (4) subject to constraint (6).

V. EXPERIMENTAL RESULTS

In this section we present numerical results obtained from
the analytical models described in Section IV as well as results
from simulations. We start by describing our experimental
setup. We then motivate our bit level simulations of cooperative
networks and present the comparison between cooperative
clustering schemes in single and multiple flow settings.

A. Simulation Setup

We use MATLAB to evaluate our analytical models and
we developed a network simulator in C that implements the
physical layer on the bit level using a block Rayleigh fading
channel model. Analytical results shown on Figs. 7, 11 and 12
took several hours of computation time on a quad-core Core2
machine, while the simulation results on the same figures took
about a week to compute on a cluster with 400 Xeon cores.
Most of our experiments are based on strip network topologies
defined in Section IV (we assess the impact of randomizing
the network topologies in Section V-D). Our approach allows
us to compare the performance of the clustering schemes
independent of routing. In a more realistic setting, we envision
a routing protocol connecting the source and the destination
that would include a mechanism to ensure cooperation of the
nodes along the path (similar to braided routing [24]).

We fix the strip length at l = 100 nodes and vary the
width w. Thus our networks have hundreds of nodes,2 like
prior simulation studies [7]–[9]. For statically-clustered coop-
eration, we report results for single-column clusters since they
outperform other arrangements. The source and destination are
at opposite ends of the strip. In statically-clustered cooperation
the source node disseminates each packet to its cluster in zero
time just before the cluster starts to transmit. The packet length
is z = 500 bits, and α = 4 is the path-loss exponent.3

Each transmitter has peak power P0; for a given signal-to-
noise ratio P0/N0, we adopt the standard convention of letting
N0 = 1 and vary P0. We compute network capacity for values
of P0 between 10 dB and 20 dB and various strip widths w by
maximizing the throughput over the transmission period b and

2We experimented with network lengths as short as l = 20 and observed
similar results.

3We experimented with α = 3 and obtained similar results (see Fig. 6).

source idle-to-busy ratio r. We report total network capacity
divided by strip width w to match the normalization of the
multiple flow case. Each simulation is run for 106 seconds to
ensure that network performance reaches steady state.

B. Limitations of Previous Cooperative Diversity Analysis

To motivate the bit level simulation of cooperative networks,
we present two limitations of previous cooperation studies.

1) Cluster modeled as a single node with multi-antenna
array: In [7], [8] the authors use an off-the-shelf simulator
to model a statically-clustered cooperative diversity network of
randomly located nodes with 4-node clusters. Since cooperative
diversity is not directly supported by the simulator, one node per
cluster actually transmits the packet with an additional power
gain of D = 15 dB (spatial diversity gain from using 4 antennas
at bit error rate of 10−3 [16]); other cluster members are idle.
We call this method of using uniform diversity gain to model
static clusters the power boost approximation (PBA). Because
PBA fixes the diversity order of every transmission to be equal,
we would expect it to be most accurate in regular (as opposed
to random) topologies. Here we apply PBA in our structured
networks. We estimate the capacities of two statically-clustered
single-flow networks with clusters containing two and four
nodes (w = 2 and w = 4) using PBA, and compare with
the capacities obtained via full simulation of the corresponding
networks on Fig. 5. The PBA curves represent the capacities of
point-to-point networks where all transmitters are operating at
D dB above the peak power of the corresponding cooperative
networks, with D = 10 dB for PBA of the network with 2-node
clusters and D = 15 dB for 4-node clusters. PBA capacities are
normalized by the cluster sizes of the corresponding networks.
Fig. 5 shows that PBA significantly underestimates the capacity
as the transmitter power increases.
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Fig. 5. Capacities of statically-clustered single-flow networks vs. PBA.

2) Ignoring interference: Fig. 6 shows the effect of ignoring
intra-flow interference on the capacities of two single-flow
dynamically-clustered cooperative networks of width w = 2
with path-loss exponents α = 3 and α = 4. As expected,
omitting interference results in a substantial overestimate of
capacity. The figure also shows that the small difference in path-
loss exponent α does not result in significant capacity changes.
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C. Comparison of Clustering Schemes on Single-flow Networks

We evaluate the normalized network capacities of statically
and dynamically-clustered single-flow networks for strip widths
w = {1, 2, 3, 4} and report the results in Fig. 7. The analytical
models agree with simulation, and, as shown on Fig. 8, both
models are reasonably accurate at approximating the parameters
b and r that lead to operation at network capacity.

The reason for the substantial gain from using dynamic
clustering is its opportunistic approach to utilizing network
resources. A node in the dynamically-clustered network joins
the cluster by starting packet transmission as soon as it receives
the packet. This node is usually on the frontier of the cluster,
and has a better channel (on average) to nodes that have not yet
received the packet. By the time that node stops transmitting,
the frontier has moved on, and the node is no longer needed
to move that packet downstream. Smaller idle-to-busy ratios
r in dynamic networks (shown on Fig. 8) illustrate that the
dynamic clusters are faster and tighter-packed than static. In
our experiments the best dynamically-clustered network, while
employing half as many nodes, delivered 40% more packets
than the best statically-clustered network.

D. Impact of Randomized Topologies

Since most deployed wireless networks are not as regular
as a strip, we examine the sensitivity of our results to ran-
domness. Fig. 9 shows the capacity of dynamically-clustered
cooperation on randomized strip topologies. These topologies
are constructed by dividing a w × l rectangle into wl unit
squares, and placing one node in a random location within
each square. Though topological randomness degrades network
performance, it does not change our general results, since
dynamically-clustered cooperation on a randomized topology
outperforms statically-clustered cooperation on a regular strip.

E. Impact of Multiple Flows

Finally, we examine multiflow cooperative networks. We
consider a grid of identical nodes with flows traversing the grid
vertically and horizontally in either direction, as illustrated in
Fig. 10. Such a grid can be embedded in a network of randomly
placed nodes [25]. We are interested in the per flow capacity
of a grid network with flows traveling horizontally left to right

(highlighted flows in Fig. 10), since TDMA can divide this
capacity among flows running in both directions vertically and
horizontally [26]. Thus, we simulate flows on parallel strips of
length l = 100 nodes at least one unit distance apart. We report
the total capacity per flow divided by the number of rows w
used by the flow plus s additional units distance separating each
flow from the neighboring flow, normalizing the capacity by the
area the flows occupy. The parameters b and r are the same for
all flows. We assume that the adjacent sources synchronize their
transmissions and inject packets (1+ r)b/2 seconds apart, thus
alternating phases of their busy cycles. This is reasonable since
it takes a source (1 + r)b seconds to detect its neighbor’s busy
cycle. We thus reduce interference without sacrificing network
capacity and produce a checkerboard flow pattern in Fig. 10.

Figs. 11 and 12 report the per flow capacity for statically
and dynamically-clustered multiflow networks. The analytical
models described in Section IV are extended by accounting
for interference from additional flows. The extended analytical
models agree with the multiflow simulation, and, as shown
on Fig. 13, are reasonably accurate at approximating the
parameters b and r that lead to operation at network capacity.

As in single-flow networks, dynamic clustering outperforms
static clustering. Neither clustering scheme requires additional
separation (s = 0) between the flows to maximize the capacity.
For static clustering, two-node clusters (w = 2, s = 0)
maximize capacity, as in the single-flow case. For dynamic
clustering, two-node wide strips (w = 2, s = 0) maximize
the capacity. The increase in strip width over the single-flow
scenario is sensible, since a narrow cooperative cluster is more
vulnerable to interference from the other flows.

VI. CONCLUSION

The objective of this work is to directly compare the two
clustering methods for cooperative networks. Our main con-
tribution is the demonstration of substantial performance gain
from using dynamic instead of static clustering in large coop-
erative networks. We also show the importance of accounting
for the intra-flow interference. Finally, we provide compre-
hensive evaluation of the cooperative network performance.
Our analytical models quickly determine reasonable network
capacity estimates while the simulation engine both accurately
implements the physical layer at the bit level and supports large
multiple-flow networks. In the future we would like to develop
scalable protocols to deal with changing workload conditions
in cooperative networks.
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Fig. 7. Analytical and simulated performance of single-flow cooperative networks for different strip widths w.
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Fig. 8. Parameters that yield maximum capacity in the simulation and the model of the single-flow cooperative networks. Busy time b is plotted on the left
y-axis, idle-to-busy ratio r on the right y-axis.
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Fig. 11. Analytical and simulated performance of multi-flow statically-clustered cooperative networks for varying strip width w and inter-flow separation s.
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Fig. 12. Analytical and simulated performance of multi-flow dynamically-clustered cooperative networks for varying strip width w and inter-flow separation s.
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