
Dynamic Scheduling of Emergency Department Resources
Junchao Xiao

Laboratory for Internet Software
Technologies, Institute of Software,

Chinese Academy of Sciences
P.O.Box 8718, No. 4 South Fourth

Street, Zhong Guan Cun
Beijing 100190, China

xiaojunchao@itechs.iscas.ac.cn

Leon J. Osterweil
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-9264 USA

ljo@cs.umass.edu

Qing Wang
Laboratory for Internet Software

Technologies, Institute of Software,
Chinese Academy of Sciences

P.O.BOX8718, No.4 South Fourth
Street, Zhong Guan Cun
Beijing 100190, China

wq@itechs.iscas.ac.cn

ABSTRACT
The processes carried out in a hospital emergency department can
be thought of as structures of activities that require resources in
order to execute. Costs are reduced when resource levels are kept
low, but this can lead to competition for resources and poor system
performance. Careful allocation can improve performance by
enabling more efficient use of resources. This paper proposes that
resource scheduling be done in a series of dynamic reschedulings
that use precise, detailed information about emergency department
processes and available department resources to improve the quality
of scheduling results. Rescheduling is done over a small set of
activities, and uses a genetic algorithm. Simulations are used to
evaluate this approach, and results indicate that it can be effective.

Categories and Subject Descriptors
D.2.9 [Management]: Software process models; I.2.8 [Problem
Solving, Control Methods, and Search]: Scheduling

General Terms
Algorithms, Management, Performance, Human Factors.

Keywords
Incremental resource scheduling, genetic algorithm, process
simulation, healthcare process analysis

1. Introduction
The processes used to deliver care in hospital emergency
departments are very complex, but are of central importance. Such
systems are typically comprised of a group of activities, each of
whose executions requires different entities that may be humans
(e.g. doctors), equipment (e.g. MRI devices), or software (e.g.
electronic patient records). In this work we refer to any and all such
entities that are needed in order to enable the performance of an
activity as the activity’s resources. Because resource availability is
usually limited, resource contention problems often arise during
process execution, sometimes leading to delays and inefficiencies.
Thus, for example, a doctor may be needed to treat a low acuity

patient immediately, but will very shortly also be needed to treat a
patient that is in urgent need of care. Assignment of the doctor to
the patient with immediate needs might delay or deprive the patient
having urgent needs of timely care. Careful resource scheduling
can help to mitigate the negative effects of such inevitable
contention, and can reduce delays, inefficiencies, and patient
waiting time [30].

In a typical hospital resource scheduling is done informally by
humans, and there is considerable evidence that it is often done very
poorly resulting in inefficiencies and delays that can cause suffering,
needless cost, and even death. Accordingly there is interest in
exploiting resource scheduling research that has been applied in
other domains. This work has focused on determining optimal
schedules of assignment of resources to activities. One approach is
static resource scheduling, in which a complete schedule of resource
assignment is computed in advance based on advance knowledge of
the sequence of activities to be performed and the size and duration
of all these activities [6, 8, 21]. However, a hospital emergency
department is a dynamic place, with great uncertainty about the
future course of the execution of any realistic process. Uncertainties
such as the sudden arrival of new patients, unexpectedly slow task
performance, and unplanned lack of resources [11, 20] all change
the execution environment creating the potential for consequent
schedule disruptions [12].

Because of the inevitability of such uncertainties in the emergency
department, different kinds of dynamic resource scheduling
approaches, such as reactive scheduling, and proactive scheduling
need to be considered [12]. These methods seek to schedule only
activities that are within a restricted part or phase of system
execution. They address only a reduced set of activities using
extensive or exhaustive searching approaches to compute optimal or
near-optimal schedules. But the scale of the scheduling effort can
still be quite large if the schedule covers an extensive part of the
system’s activities. In addition, disruptive events may still invalidate
the assumptions of the scheduling effort, necessitating further
rescheduling (this is especially problematic as the part of the system
being scheduled becomes large).

These issues are particularly troublesome in healthcare, where
patient care systems must continually adapt in response, for
example, to new patient arrivals and medical emergencies. This
indicates the need to find new ways to mitigate the problems
inherent in incremental rescheduling. Our approach exploits detailed
specifications of emergency department activities, their needs for
resources, and the characteristics of the resources themselves to
achieve better resource scheduling. We decompose the overall
resource scheduling problem into a series of dynamic reschedulings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IHI’10, November 11-12, 2010, Arlington, Virginia, USA.
Copyright 2010 ACM 978-1-4503-0030-8/10/11...$10.00.

590

at selected times, covering sets of activities for which access to
detailed information could be the basis for more effective resource
schedules. To pursue this we have explored:

(1) Using very complete and precise information about emergency
department process activities and resources. This should enable
scheduling schemes to produce high quality results that should
remain accurate over most or all of the activities for which
resources have been scheduled.

(2) Keeping the activity set for which resources are to be scheduled
relatively small thereby keeping analysis costs relatively modest
and enabling relatively quick response to changing emergency
department environment conditions.

(3) Enabling dynamic changes in successive reschedulings. Earlier
resource allocation decisions and unexpected events can alter
the choice and importance of later activities, affecting how
resources might be allocated to them. Thus we use scheduling
parameters (e.g. constraint sets) that may vary to make it easier
to compensate for the effects that previous activities have on
resource allocation for upcoming activities.

This paper explores these approaches by proposing a time window
based incremental resource scheduling method. In this method,
resource scheduling and rescheduling is performed incrementally at
selected points during system execution. Our approach relies upon
detailed specifications of both system activities and resources
provided by well-defined languages capable of supporting
specifications that are both very precise and very detailed. This
causes the characteristics and behaviors of the activities in the
window, and the resources allocated to those activities, to be
relatively predictable. Our expectation is that this should help us
generate very high quality results. Though relatively small, our
rescheduling windows will still contain quantities of activities and
resources that are sufficiently large to require considerable
scheduling computation. Thus we use a genetic algorithm (GA) [13]
in our scheduling approach. GA algorithms are fast and can also
readily incorporate constraints into the definition and solution of the
scheduling problem.

We acknowledge that actual deployment of our scheduling system
will pose additional challenges, such as assuring that computations
are completed quickly enough that they do not slow the fast pace of
an emergency department, and communicating scheduling
information to the right people at the right time. Before addressing
these challenges we elected first to determine whether the basic
approaches and algorithms showed promise of being effective.
Thus, this approach was evaluated by running simulations of
processes that are representative of some of the ways that
emergency department resources are deployed and used. The
simulations used different details of processes and resources,
different constraints, and different GA parameters to compute
different resource allocations. The results obtained suggest that this
approach shows promise of being effective in actual use.

The paper is organized as follows. Section 2 describes some related
work. Section 3 presents our time-window based incremental
scheduling method. Section 4 presents some details of the
components and technologies used. Section 5 describes a simulation
of a process in the domain of emergency health care and reports on
some case studies aimed at evaluating the approach. Section 6
summarizes the observed benefits of the approach, and Section 7
presents conclusions and suggests future work.

2. RELATED WORK
A number of projects have attempted to use understandings of
resource utilization to improve the effectiveness of health care
processes. Connelly and Bair [5] presents a discrete event
simulation system that predicts actual patient care times using
simulation. Their work does not model, however, the considerable
dynamism inherent in this domain. Draeger [7] used medical staff
personnel models to support simulations of nurse staffing
approaches and alternatives for improvements. McGuire [18] used
resource and process models to support simulations aimed at
reducing the length of stay for ED patients. Rossetti [24] used
similar simulations to test alternative ED attending physician
staffing schedules and to analyze the corresponding impacts on
patient throughput and resource utilization. Samaha [25] used ED
simulations to do “what-if” analysis of the effect of process and staff
level changes on LOS. But, none of these studies considered the
fundamental dynamic nature of ED resources, which seems essential
for accurate and effective resource scheduling.

As noted above, resource scheduling research investigates two main
approaches: static and dynamic. But the key assumption of static
scheduling, that the execution environment is relatively fixed over
the entire system execution [6], does not hold in the healthcare
domain, where uncertainty about the key parameters needed to
support resource scheduling is a major concern [17]. To address
dynamic change in uncertain environments, researchers have
proposed two approaches: reactive scheduling and robust scheduling
[12]. Reactive scheduling deals with uncertainties arising during
system execution by doing complete or partial rescheduling as soon
as unexpected events or uncertainties are recognized [23, 31]. This
seems effective in addressing some rescheduling problems, but its
effectiveness is reduced when activity estimates are unreliable,
uncertainties are numerous, and when it attempts to reschedule large
numbers of activities. Under such circumstances rescheduling may
take considerable amounts of time, yet still necessitate frequent new
reschedulings. Robust scheduling aims to anticipate the effects of
possible disruptions while still generating schedules that support a
high level of performance [1, 10, 17, 26]. Robust scheduling is most
effective when there are limited and predictable disruptions in
system executions. If actual disruptions exceed expectations,
excessive rescheduling may still be needed. This approach should
benefit greatly from access to system specifications that are as clear,
complete, and as precise as possible about system execution
disruptions. Our own work adopts this approach.

Considerable research has also addressed the need for good resource
scheduling algorithms, because these problems have high
complexity time bounds, and even relatively simple heuristics have
been shown to be NP-hard [22]. Genetic algorithms (GAs) [13] have
often been used in resource scheduling [9, 14]. But because they are
heuristic, and cannot guarantee optimal, or even near optimal results,
much attention has been directed to seeking appropriate parameters
and evolution methods that improve convergence and avoid local
optima.

Finally we note that simulation seems to be a popular and effective
method for evaluating scheduling approaches [8, 15, 16], and indeed
we also have evaluated our approach by applying it to simulations
of processes that define the use of complex systems.

591

3. INCREMENTAL RESOURCE
SCHEDULING METHOD
The work addressed in this paper uses the incremental resource
scheduling method described in [29]. The approach combines the
strengths of the robust incremental scheduling approach and the GA
technology, with the exploitation of more complete and precise
information about uncertainty that we derive from the analysis of
particularly detailed and precise definitions of both the system being
executed and the resources available for allocation. Currently our
incremental rescheduling is carried out at fixed points in time.
However, this approach also lends itself to support rescheduling
either 1) reactively, when events occur that are beyond the scope of
what we have been able to anticipate, or preferably, 2) proactively,
at time points that may be dictated by historical data or recognition
of upcoming uncertainty derived from analysis of system
definitions. Each rescheduling activity covers only the tasks that
will occur within a specified window. A key goal of our research is
to study how to determine the optimal size and shape of this
window. If the window is too small more frequent (but perhaps
more accurate), reschedulings may be needed. If the window is too
large, scheduling may be less frequent, but scheduling cost may be
high, and accuracy low.

Determining the right window size and scheduling approach is
facilitated by the availability of a system definition specification
that contains clear indications of such uncertainties as locations of
exceptions, possibilities for human decision-making, and the
idiosyncrasies of execution agents. This information is used in the
design of GA chromosomes that are more completely and precisely
specified, thereby standing a greater chance of converging on more
optimal results at lower cost.

The architecture of the incremental time-window rescheduling
system that we have built is shown in Figure 1, which shows the
following major components (as described in [29]):

Figure 1. Incremental Resource Scheduling Framework

• Rescheduling indicator component, which determines when
rescheduling should be done. Rescheduling is triggered when
the rescheduling indicator determines that execution is about to
proceed past the window over which the last rescheduling had
been computed. This component could also be used to identify
when certain types of unexpected events, such as low-
probability exceptions, sudden unavailability of resources, and
unexpectedly long task execution times occur, making
rescheduling desirable or necessary.

• Scheduling activity set constructor. This component
assembles the rescheduling problem, which is principally a

specification of the activities that may possibly be executed in
the near future, their resource requirements, and the resources
available for use by those activities.

• Scheduler component, which uses the output of the scheduling
activity set constructor and a Genetic Algorithm (GA) to
identify the specific resources to be used to support the
execution of each activity.

• System execution component, which provides execution events
needed to update the system execution state upon which the
rescheduling indicator and the scheduler rely.

We now describe the system used to evaluate our approach and
architecture.

4. THE SYSTEM USED FOR OUR
EVALUATION

4.1 Process Activity Definition
To enable us to evaluate one of our central research hypotheses,
namely that a more complete, precise, and detailed system definition
can improve the quality of the resource scheduling approach, we
used a powerful process definition language, Little-JIL, to define the
processes that use the system for which we will do our scheduling.
Little-JIL [4, 27] was originally developed to support the definition
of the processes by which software is developed. More recently it
has been used to define processes in such domains as healthcare,
government, and science. Wise [27] provides full technical details of
the language. Here we outline the features that seem most relevant
to our scheduling work.

A Little-JIL process definition consists of a specification of three
components, an artifact collection (not described here due to space
constraints), an activity specification, and a resource repository. A
Little-JIL activity specification is a hierarchy of steps, each of
which represents an activity to be performed by an assigned
resource (referred to as its agent). Each step has a name and a set of
badges to represent control flow among its sub-steps, its interface,
the exceptions it handles, etc. A leaf step (one with no sub-steps)
represents an activity to be performed by an agent, without any
guidance from the process. Each step may also specify the need for
resources in addition to its agent. Each such request is specified by
the following definition.

Definition 1. Req = (ResName1,Capability1,SkillLevel1,...,
ResNamer,Capability r,SkillLevelr)

,

where,

• ResName is the type of the resource being requested, (e.g.
doctor, nurse, bed).

• iCapability is the specific capability that the resource is being
asked to provide.

• iSkillLevel is the minimum level of skill in iCapability that
is required.

Figure 2 shows a Little-JIL activity definition that defines at a high
level of abstraction part of a process by which a single patient is
treated in a typical hospital Emergency Department. Note that this
process is instantiated for every new patient, and thus the workings
of an actual ED are represented by the concurrent execution of
several of these processes. Each process needs the same types of
resources, which must be managed by one central resource

592

repository. This sets up resource contention. The entire process is
represented by the top step, “TreatOnePatient”, whose three
substeps provide elaborative detail about how a patient is treated. A
more complete and detailed process definition would be needed to
support scheduling in a real-world context. Such a definition would
use such more powerful language features as concurrency, the
throwing and handling of exceptions, step kinds that allow human
agents to make choices, and pre- and post-requisites that function as
guards for the performance of steps. At present we can only
conjecture that these language features will suffice to capture the
needed details. Further research is needed to ascertain this.

Figure 2. Process described by Little-JIL

In Figure 2 the right arrow in “TreatOnePatient” specifies that, in
sequential order, the ED patient is first triaged by a triage nurse,
then registered by a clerk, and then placed in a bed for assessment
and treatment. This last step is further decomposed into two
sequential substeps, each of which is decomposed still further.

The execution of each step in a Little-JIL process requires one or
more resources, which can be either human or non-human. In the
ED process described in Figure 2, “PatientInsideED” needs a bed
resource while the other steps do not need physical resources. But
most steps need human resources. Note that non-leaf steps are used
essentially to create scopes, and “real work” is done only by leaf
steps. Thus, the size (namely an estimate of the relative length of
time an activity takes to execute) and resource requests are shown
only for the leaf steps in this process. Note that mean and standard
deviation data might be used to estimate the size of each step. A
large standard deviation for a step might indicate that the step’s
execution creates relatively greater uncertainty, and greater need for
anticipatory rescheduling.

4.2 Resource Repository
The resource repository component of a Little-JIL process definition
is also needed to support our rescheduling approach. The resource
repository contains the resources available for assignment to tasks
specified in the Little-JIL activity diagram.
Thus, },...,Res,Res{RespositioryResourceRe l21= , where each
element of this set has certain capabilities and availabilities. A
resource is defined as follows:

Table 1. Size and resource requests for leaf steps in Figure 2

Request
Step Size

ResName Capability SkillLevel
TriagePatient 11 TriageNurse Triage 3

RegisterPatient 11 Clerk Register 2
RNAssessment 11 Nurse Assessment 2

MDInitialAssessment 11 Doctor Assessment 3
PerformTests 31 AutoAgent Test 2
RNProcedure 16 Nurse Assessment 2
MDProcedure 16 Doctor Assessment 3

MDFinalAssessment
AndDecision

6 Doctor Assessment 4

RNPaperwork 6 Nurse Paperwork 3

Definition 2.

...)tyProductiviSkillLevel
Capabilityity,Productivl,SkillLeveCapability

TimeTable,chedulabletributes,SResName,AtIDRes

111

,,
,,

,(

22

2

=

where,

• ID is a prose identification of the resource.
• ResName is the type of the resource, which is an implicit

specification of the capabilities that this resource has.
• Attributes is a set of (name, value) pairs that describe the

resource. Some example attribute names might be Age,
Experience_Level, Pay_Rate, and Model_Number

• SchedulableTimeTable represents the times when a resource is
available to be assigned to an activity. This is a set of time
intervals, defined by a start time (st) and end time (et), when the
resource can be assigned to an activity. Thus,

SchedulableTimeTable = {[st1,et1],[st 2,et 2], ...,[st s,et s]}

• iCapability (i = 1, 2 …) is the ith kind of capability that the
resource has to offer. Two examples of capabilities of a
resource that is a doctor or a nurse are 1) the capability to triage
patients and 2) the capability to assess patients.

• iSkillLevel (i = 1, 2 …) is the level of quality at which the

resource is able to perform iCapability .

• ityProductivi (i = 1, 2 …) is the productivity that the resource

is able to achieve in performing iCapability .

In the above, iSkillLevel and ityProductivi are attributes of

iCapability , and are used to determine whether a given resource
has both the skill to perform a certain activity and the quantity of
available capacity needed to complete the activity. Thus,
specifically, assume that an activity specifies that S is the quantity of

iCapability required in order to complete the activity. Then

S/ ityProductivi , is the time resource R needs to do the activity,

where ityProductivi is R’s productivity in doing iCapability .
Only if this amount of time is contained within R’s
SchedulableTimeTable attribute, can R be assigned to that activity.

593

Table 2 is an example of how the resources needed to support
execution of the process in Figure 2 might be specified. Note that
both human and non-human resources can be specified, although
because of space limitation, we do not specify bed resources or
explore their allocation in this example. Moreover, for simplicity
time is specified using hypothetical time units rather than actual
wall clock times, and we set the productivity of all resources to 1.

Table 2. Available resource descriptions

ID Name Human
Name

Schedulable
Time Table

(Capability, Skill
Level, Productivity)

1 TriageNurse TriageNurse1 [0, 10000] (Triage, 4, 1)
2 Doctor Doctor1 [0, 10000] (Assessment, 5, 1)

3 Nurse Nurse1 [0, 10000] (Assessment, 4, 1),
(Paperwork, 5, 1)

4 Nurse Nurse2 [0, 10000] (Assessment, 5, 1),
(Paperwork, 3, 1)

5 Clerk Clerk1 [0, 10000] (Register, 3, 1)
6 AutoAgent AutoAgent1 [0, 10000] (Test, 4, 1)
7 AutoAgent AutoAgent2 [0, 10000] (Test, 4, 1)
8 AutoAgent AutoAgent3 [0, 10000] (Test, 4, 1)

4.3 Rescheduling Indicator
The rescheduling indicator collects such runtime state information
as the activities currently being executed, the resources supporting
those activities, resource capacity available, new arrivals, changes in
priorities, and constraint changes. The following are examples of
criteria that could be used in determining whether a rescheduling
should be performed:

• If an activity that needs to be executed has not been allocated
resources, a rescheduling should be carried out.

• If resources have been scheduled to an activity, yet the resources
are not available when the activity should begin, a rescheduling
should be carried out.

• If key attributes of some resources (e.g. cost or availability) have
changed, a rescheduling should be carried out.

Research should determine the rescheduling criteria to be used for
any resource allocation problem. Some criteria (e.g. the need to
perform an activity for which no resource has previously been
identified) seem universally applicable. Other criteria may be
domain or application specific. And, indeed, different criteria may
trigger reschedulings based upon time windows of different sizes,
and rescheduling decisions may be made differently under different
execution circumstances. Finally, note that in the work described in
this paper rescheduling is done only at fixed points in time, with the
more dynamic rescheduling triggers suggested in this section being
left to be experimented with in future work.

4.4 Scheduling Activity Set Constructor
When the rescheduling indicator determines that a rescheduling
should be carried out, the Scheduling Activity Set Constructor is
used to assemble all of the information needed to make scheduling
decisions. This function determines which upcoming activities fall
within the scheduling window, and assembles the activities into a
graph called the Dynamic Flow Graph (DFG). The size of this
rescheduling window is an important parameter to determine
because a large window may enable consideration of more

uncertainty, perhaps leading to better scheduling results, but
probably incurring greater computation cost. Smaller rescheduling
windows may incur less computation cost, but may perhaps lead to
scheduling results that are unable to take into account enough
uncertainty to produce good resource utilization.

The DFG is derived from an analysis of another graph called the
resource utilization flow graph (RUFG), which is derived from a
Little-JIL activity diagram, and represents all possible process
execution sequences. When a rescheduling is needed the static
RUFG and dynamic state information are used to generate the DFG
that is the basis for the rescheduling. The size and shape of the DFG
is determined by a specification of the time window, which dictates
how many of the future execution possibilities are to be considered
in the rescheduling. At present we define the scheduling window W
to consist of CURRACT, the set of activities that are currently being
performed,

},...,,{ 21 nactivityactivityactivityCURRACT = ,

as well as all nodes, NODE for which, for some i, ni ≤≤1 , there
is a path, P, in the RUFG

),,...,,,(21 NODEnnnactivityP ki=

such that k is less than some fixed integer, L.

Each node in DFG contains two runtime attributes. One is the
collection of resources that are candidates for assignment to the
activity represented by the node. This set is drawn from the
collection of available resources in the resource repository. The
other attribute enumerates the resources that have actually been
allocated at the conclusion of the scheduling process.

Further details about the definition of the RUFG and DFG can be
found in [28] and are omitted here due to space constraints

4.5 Resource Rescheduling by Using a GA
Though a small window size can reduce the magnitude of the
scheduling problem, the problem still has very high computational
complexity. Many approaches, such as constraint satisfaction
programming [2], simulated annealing [19], and genetic algorithms
(GA), have been used to address this problem, Because the GA
approach offers the advantages of high efficiency, incorporation of
various kinds of constraints, and independence from specific
domain characteristics, we felt that GA was well suited for use
during this preliminary stage of our research where the primary goal
was determining the feasibility of the approach. Other optimality
approaches might offer greater advantages (e.g. greater speed), and
should be considered in subsequent work. The GA approach
described in [29] was our scheduling algorithm.

The first step in using the GA approach is to represent the
scheduling problem as an initial population of chromosomes.
Through population evolution over a number of subsequent
generations, increasingly optimal scheduling results can be obtained.
This GA process is specified more precisely as follows.

(1) Generate initial population that contains a certain number of
chromosomes. Each chromosome is encoded to represent a
possible solution to the scheduling problem.

(2) For each generation, decode each chromosome in the
population as a scheduling problem solution, applying

594

constraints to eliminate some, and evaluating the quality of
those remaining using some predefined measure of solution
quality to determine the fitness of the chromosome.

(3) Select chromosomes with the highest fitness value(s) as the
seed(s) for the next generation.

(4) Make crossovers and mutations to the selected chromosomes
thus generating a new generation.

(5) Return to (2) and continue until satisfying some stopping
criterion (e.g. completing some number of generations). The
chromosome with the highest fitness in the final generation is
selected and decoded to yield the scheduling result.

4.5.1 Encoding and decoding
We used the binary representation of integers to help encode the
rescheduling problem as a chromosome as described in [29]. Note
that because the DFG nodes to be scheduled changes during process
execution, new chromosomes must be built for each rescheduling.
Each chromosome encoded by this method can, subject to the
application of constraints, be decoded as a scheduling scheme,
namely the assignment of a specific resource to each of the requests
made by each of the activities in the time window. Decoding is
done by reversing the encoding process.

4.5.2 Scheduling constraints
Full details about how encoding and decoding are done are omitted
due to space limitations. But the role of constraints is particularly
important. Thus we now indicate how three types of constraints are
used to enhance the efficiency and quality of our GA-based
scheduling approach in ED.

• Capability constraint: Only resources with needed capability
and skill levels can be scheduled to satisfy a resource request.
During the encoding process, none but such resources are
determined as candidate resources for a request. This involves
searching the resource repository to identify resources that have
the capability to satisfy the request, using the Capability and
SkillLevel attributes described in section 4.2.

• Availability constraint: A resource can be assigned to a step for
a certain time period only if the resource is available at this time
period, and has the capacity to provide enough effort to complete
the step. This constraint is enforced during the decoding process
by first determining the time period required using the Capability
attribute of the step and the Productivity attribute of the candidate
resources, and then examining the ScheduledTimeTable of each
assigned resource.

• Step execution order constraint: Steps can be executed only
after all of their preceding steps have completed. Thus resources
must be assigned to steps in a time window in an order dictated
by the execution sequencing defined by the DFG. This constraint
is applied during the decoding process. In particular, the start of
the execution of a step must begin at a time after the time of
completion of all of its predecessor steps. If a resource allocated
to a step is no longer available because it has been allocated to
another step (e.g. one executing in parallel), the schedule defined
by this chromosome is rejected and this chromosome is not
carried over to the next generation.

4.5.3 Fitness function
The role of the fitness function is to evaluate the relative desirability
of each of the chromosomes as a solution to the resource

rescheduling problem. Chromosomes with higher fitness are
selected for the next generation of the GA, thereby moving the GA
towards optimal solutions. The fitness function reflects an
optimization goal for the resource allocation. Thus, for example, one
possible goal of resource allocation in an ED is to minimize total
patient waiting time. In this case, the fitness function must quantify
the waiting time expected for each of the resource assignments
specified by a chromosome. This might be done as follows.
Suppose the set of steps in the time window is:

},...,,{ 21 NStepStepStepStepSetScheduling =

A scheduling scheme set SSS for SchedulingStepSet is the set of all
the scheduling schemes corresponding to a set of chromosomes that
represent possible resource allocations for SchedulingStepSet. Now
suppose that the finishing time for the latest-finishing of all of the
steps that immediately precede a step is time iP . Then, iP is
defined as the “Can be started time” of Stepi . Assume that analysis
of the availability of resources assigned by the scheduling scheme to
Stepi determines that Stepi cannot be started until time iS . Then

the waiting time for iStep is defined as (iS - iP). If scheduling

scheme kSS is the one that has the minimum total waiting time,

then kSS satisfies the following equation:

)))()(()((∑∑
∈∈

−<−∧∈∃¬
ki SSb

bb
SSa

aai PSPSSSSSS

Note that this fitness function does not attempt to minimize the total
waiting time for all steps, only the total waiting time for the steps
that are to immediately follow the currently executing steps. Thus
this example is only one of many possible fitness functions, some of
which will be harder to compute than others, and some of which
will minimize overall waiting time more effectively.
Experimentation (perhaps domain specific), will be needed to
determine which fitness functions are most cost-effective.

4.5.4 Running GA
Before running GA, the following parameters must be set:

• Population scale (PS) is the number of chromosomes in each
generation. When PS is larger the computation of each generation
will take longer.

• Crossover rate (CR) is the number and possibility of crossover
among chromosomes in a population. If CR is large,
chromosomes with higher fitness might be destroyed. If CR is
small, evolution and optimization rates may be slower.

• Mutation rate (MR) is the probability that a chromosome will be
subject to mutation. If the mutation ratio is high unstable
evolution may result. If it is low, there is less chance of avoiding
local optima and finding a global optimum.

• Generation number (GN) is the number of generations
(iterations) that the GA is to compute. Fewer generations will
take less time, but may not come close to an optimum.

Research is needed to establish reliable guidelines for specifying
how these parameters should be set. We will present the results of
using some specific choices of parameters in our experimentation.

595

5. EVALUATION
To support analysis of the effectiveness of our approach, we used it
to allocate resources during simulations of processes that represent
how hospital emergency departments (EDs) perform some activities
and utilize their resources. A hospital ED requires the use of many
different kinds of resources--human, mechanical, and automated--to
support the treatment of patients. Since the costs of most of these
resources (e.g. doctors, MRIs) are high, only limited numbers of
them are available. Since many patients are typically being treated
in an ED concurrently, contention for these resources can be
expected. This contention can lead to excessive patient waiting time.
Waiting time can be reduced by providing more resources, but there
is a reticence to incur the sizeable expenses of these resources unless
it can be shown that this will lead to worthwhile reductions in
waiting times. Simulations such as those described here can suggest
what the magnitude of those reductions might be.

5.1 The Simulation Setting
The process used as the principal basis for the case studies presented
here is the Little-JIL process shown in Figure 2. This process is a
very high level representation of some aspects of a process that
specifies how a typical ED goes about treating patients. The
resources required by each step in the process are described in Table
1. And the resources available to this process are described in Table
2. The complete set of inputs required in order to run a simulation of
the ED process comprises 1) a process description, 2) a resource
repository, 3) a specification of patient arrival rates and distributions
of types, and 4) parameters needed to specify the execution of the
GA. For our evaluative work we varied each of these inputs in
order to support analysis of how sensitive the results obtained are to
these variations. The settings and parameters we used initially are
listed in Table 3.

Table 3. Initial simulation settings and parameters

Settings and Parameters Value
GA population scale 32
GA crossover rate 1
GA mutation rate 0.1
Patient number 50
First patient arrival time 2

5.2 Simulation Case Studies
5.2.1 Case Study 1: The effect of process detail on
scheduling effectiveness.
One hypothesis of this paper is that more complete and precise
system specifications can support the computation of better
scheduling schemas. To evaluate this hypothesis, we compared the
results obtained from running simulations of the process defined in
Figure 2, but using resource scheduling results obtained based on
analysis of a less precise process definition. To do this we supposed
that the assessment work done by the nurse and doctor is done in
some unspecified way, rather than sequentially, as in Figure 2. A
step named “Assessment” describes this activity. It includes requests
for two resources, a doctor and a nurse. The AssessAndTest sub-tree
is then as shown in Figure 3.

Figure 3. ED process with less precise details

We set the scheduling time window to 2 and used a patient arrival
interval of 20. We estimated the execution time of the Assessment
step to range from 22 the time that would be taken if assessment is
done sequentially, down to 11, for the extreme case where
assessment is done completely concurrently by the doctor and nurse.
Other lengths of time between 11 and 22 are possible for cases
where the overlap of the efforts of the doctor and nurse is not
complete. The total simulated patient waiting time obtained for all
these lengths of time is shown in Figure 4. The additional detail,
namely that Assessment is the sequential performance of two
substeps, leads to substantial waiting time reduction and there is
increasing reduction as the concurrency of the actions of the doctor
and nurse are decreasingly complete. For completeness we also
show the results of using the process shown in Figure 4 both as the
basis of scheduling and as the basis for the simulation used to
compute waiting time. The results of using this less complete and
detailed process in this way are still less satisfactory, giving still
more support to our hypothesis that greater process detail seems to
provide important improvements in scheduling quality.

22000

24000

26000
28000

30000

32000

34000

36000
38000

40000

42000

11 12 13 14 15 16 17 18 19 20 21 22
Execution time of Assessment

To
ta

l p
at

ie
nt

 w
ai

tin
g

tim
e

Using the process
from Figure 4 for
scheduling and
simulation

Using the process
from Figure 4 for
scheduling, and
using Figure 2 for
running simulation

Using the process
from Figure 2 for
scheduling and
simulation

Figure 4. Total waiting time of less precise process under

different execution time of assessment
Improvement is most dramatic in the case where the elaboration of
the step is as sequential execution, suggesting the particular value of
this type of elaborative detail. Interestingly, domain experts say that
assessment is indeed usually performed sequentially by a doctor and
a nurse. Thus, the greater detail in the definition shown in Figure 2
seems to support the possibility of scheduling that could reduce
waiting time in a real-world ED.

5.2.2 Case Study 2: The effect of resource
specification detail on scheduling effectiveness.
Another hypothesis of our approach is that complete and precise
resource availability and capability specifications are the basis of
better scheduling schema. To evaluate this, we executed our
rescheduling approach using resource specifications that did not
include the SchedulableTimeTable attribute described in Section 4,
and compared the results to those obtained when this attribute was
specified. We applied a first come first serve discipline for resource

596

assignment, and compared results for patient arrival intervals
ranging from 25 to 34. The results are shown in Figure 5.

100

2100

4100

6100

8100

10100

12100

14100

16100

18100

25 26 27 28 29 30 31 32 33 34
Patient arrival interval (time unit)

To
ta

l p
at

ie
nt

 w
ai

tin
g

tim
e Schedule with

complete and
precise resource
availability and
capability
information

Schedule with less
complete resource
availability and
capability
information

Figure 5. Total waiting time using precise and less precise

resource descriptions
These results suggest that when the patient arrival rate is higher
resource contention increases and more precise resource
descriptions provide better support for scheduling. Decreasing
patient arrival rates reduce resource contention, and less precise
resource descriptions produce schedules that are increasingly close
to those obtained with more precise resource descriptions.

5.2.3 Case Study 3: Scheduling cost variation with
changing window size
Other case study was aimed at determining the window size that
represents a good compromise between lower costs of scheduling
over smaller windows vs. better schedules resulting from larger
windows. Figure 6 shows the effect of different window sizes on the
number of reschedulings, total simulation time, and scheduling
quality obtained with patient arrival set at 20 time units.

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9
Scheduling window size

Sc
he

du
lin

g
tim

e
or

 to
ta

l
w

ai
tin

g
tim

e
de

vi
de

d
by

 1
0

40

60

80

100

120

140

160

180

Nu
m

be
r o

f R
es

ch
ed

ul
in

g Scheduling
time

Total patient
waiting time
divide by 10

Number of
rescheduling

Figure 6. Scheduling time and number of rescheduling under

different window size
Note that when the size of the scheduling window increases from 1
to 2, the number of reschedulings decreases sharply and the total
time for all schedulings also decreases. As the window size keeps
increasing, the number of reschedulings decreases far more slowly,
but total time spent scheduling increases markedly, presumably
because the number of steps in each rescheduling is large, making
the cost of each rescheduling large as well. Interestingly, note that
when the window size reaches the number of patients being
processed concurrently some reschedulings will be triggered while
significant amounts of scheduling information from the previous
rescheduling has not yet been used. Rescheduling thus causes some
previous data to be superseded, thereby wasting effort. Moreover,
the diagram shows that scheduling quality (as measured by total
patient waiting time) does not necessarily improve as window sizes
increases. Thus this case study suggests that window size selection
should be carefully considered, and in fact might well best be
determined dynamically, based upon the state of process execution.

5.2.4 Case Study 4: GA cost and accuracy
Because GA is essentially a heuristic, it is not possible to be sure
that the results obtained are optimal, or even near-optimal. To help
us gain confidence in the quality of the results obtained using GA,
we compared them to results obtained using an exhaustive search
(ES) of the space of all scheduling possibilities. As the
computational complexity of ES is exponential, ES is possible only
for relatively small scheduling problems. But we used these small
scheduling problems to form a basis for comparison with results
obtained using GA.
We ran a number of simulations with the number of patients set to 8,
patient arrival interval set as 40 time units, setting the GA
generation number to be 100. We noted that GA consistently
obtained the exact same scheduling results as ES, indicating that GA
found the global optimum for all of these small problems. Indeed
GA invariably found the global optimum within the first 10
generations. On the other hand, GA offers substantial speed
advantages, as expected. Figure 7 shows the time required to do a
series of scheduling problems. In this figure, the X-axis represents
the number of nodes in a rescheduling window. The primary Y-axis
represents the amount of time consumed in the corresponding
scheduling (in seconds) by ES and the secondary Y-axis represents
the amount of time consumed in the corresponding scheduling (in
seconds) by GA. The value of each point is gotten from the average
of several runs.

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of nodes within a scheduling

Ti
m

e
sp

en
t b

y
E

S
(S

ec
on

d)

0

1

2

3

4

5

6

Ti
m

e
sp

en
t b

y
G

A(
S

ec
on

d)

ES
GA

Figure 7. Scheduling time comparison of GA and ES

6. ANALYSIS AND DISCUSSION
The time-window incremental rescheduling approach that we have
proposed seems to promise the following advantages:

• The approach seems to be able to use sufficiently complete and
precise specifications of processes and resources to deliver
effective scheduling results. The case studies in section 5.2.1 and
5.2.2 show that complete and precise specifications can improve
scheduling results, although these case studies also suggest that
some details seem to be of more potential value than others.
More research is needed to understand better which details are
worth specifying.

• The window size used matters. The case studies in sections 5.2.3
and 5.2.4 suggest that if the window size is appropriately set, the
benefits of lower scheduling cost and higher scheduling quality
can be both obtained. This research is still quite preliminary, but
it suggests that this window size may be context dependent and
that more research is needed to understand better what features
and state information should be used (and how) to suggest
optimal window size.

• Continuous scheduling decision support can be provided in a
process environment where frequent changes lead to continuous
uncertainty. Our case studies suggest that relatively small time

597

windows are likely to be most effective, perhaps because they
enable relatively rapid reaction to changes (e.g. the sudden arrival
of a new patient) and their attendant uncertainties.

• The GA scheduling heuristic seems effective. Our case study
showed that GA can produce optimal results quickly for small
scheduling problems. While this makes no assurance of GA
efficacy for larger problems, the initial results are encouraging.

7. SUMMARY AND FUTURE WORK
This paper has presented a time window based incremental resource
scheduling method that uses a genetic algorithm. We used this
method to develop a scheduling tool that was integrated with an
existing discrete event simulation system in order to study the
effectiveness of the approach in creating good resource allocation
schedules in affordable time. We used this system to support a
variety of simulations of hospital emergency department processes.
These initial case studies suggest that this approach can be effective.
Numerous directions of future work are suggested. Some specific
directions are:

Exploring realistic emergency department processes, resource
mixes, and resource allocation strategies: The work done so far
rests on very high level process definitions that lack details of real
ED processes. Appropriately detailed processes must be elicited,
and indeed research is needed to determine how effectively
languages such as Little-JIL will be able to capture the needed
details. In addition, the process presented here, and the optimization
goal used, are only examples of the kinds of ED processes and
problems that need to be explored. More diversity and more details
in processes, resources, and goals should be specified and explored.

Which details matter: The previous section suggested the need for
careful study of which process and resource details are actually
valuable in increasing the effectiveness of this scheduling approach.
We have seen evidence, for example, that more details about
process step sequentiality can lead to better schedules, but that
elaborating the details of concurrently running steps may be less
valuable. We need to determine which details are worthwhile, and
which seem to be less useful so that appropriate attention can be
focused on including in resource optimization studies the details that
matter the most.

Dynamic triggering of rescheduling: In this work rescheduling
was triggered at fixed, predetermined intervals. But our architecture
is designed to support dynamic determination of when to reschedule
based upon various runtime parameters. Future work should
explore when to carry out such dynamic rescheduling, and how to
use runtime parameters to define the rescheduling problem
parameters (e.g. the rescheduling window).

Analysis of different processes and parameters: this paper mainly
focuses on changing parameters of window size and patient arrival
interval in the specific hospital ED process described here. Different
processes should be studied as well, and for each of these different
processes GA parameters, such as crossover rate, mutation rate, and
generation number should also be the subjects of further study to
determine which combinations of these parameters are most
effective. Further, a mechanism should be sought for dynamically
adjusting these various parameters depending upon the process and
state of its execution.

Combine different value objectives in one scheduling: In this
work schedules suggested by different chromosomes were evaluated
using a single fixed objective function. But objectives may change

during the running of a system (especially a long-running system).
Thus it seems important to evaluate our approach using different
objective functions, weighted differently at different times during
process execution.

Pragmatic issues in using this approach in a real ED: This
research has suggested that the proposed approach could be
effective in supporting better scheduling of ED resources. But
bringing the advantages of this approach to a real ED requires
addressing numerous problems. It is not sufficient only to create an
optimized resource allocation. It is also necessary to be sure that it
is communicated to appropriate medical professionals in clear and
timely ways that are consistent with current communication patterns
and vehicles. Other research must address how to support
maintenance of the needed resource repositories. Research is also
needed to identify the kinds of actual ED process events that should
lead to the kinds of disruptions that are of most importance in
triggering rescheduling. In addition, it will be essential to carry out
research aimed at determining whether rescheduling algorithms are
indeed sufficiently fast to be used in the hectic real-time
environment of a busy ED.

8. ACKNOWLEDGMENTS
We would like to thank Dr. Philip L. Henneman for his insights into
the workings of a hospital ED and for providing details about both
the activities and the resources involved in providing care in an ED.
We also thank Bin Chen and Heather Conboy for their help with the
transformation from Little-JIL to RUFG, and Prof. Lori A. Clarke,
Dr. M. S. Raunak, and Sandy Wise for their valuable feedback
about this work. This paper is supported by the National Natural
Science Foundation of China under grant Nos. 90718042, the Hi-
Tech Research and Development Program (863 Program) of China
under grant No. 2007AA010303, 2007AA01Z186, as well as the
National Basic Research Program (973 program) under grant No.
2007CB310802. This work was also supported by the National
Science Foundation under Awards No. CCR-0205575, CCR-
0427071, and IIS-0705772. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

9. REFERENCES
1. Al-Fawzan, M.A., Haouari, M. A bi-objective model for robust

resource-constrained project scheduling International Journal of
Production Economics 96 (2005) 175-187

2. Barreto, A., Barros, M.d.O., Werner, C.M.L. Staffing a software
project: A constraint satisfaction and optimization-based
approach. Computer & Operations Research 35 (2008) 3073-
3089

3. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P.
Value-Based Software Engineering. Springer Berlin Heidelberg
(2005)

4. Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Stanley
M. Sutton, J., Wise, A. Little-JIL/Juliette: A Process Definition
Language and Interpreter. Proceedings of the 22nd International
Conference on Software Engineering, Limerick, Ireland (2000)
754-757

5. Connelly, L.G., Bair, A.E. Discrete event simulation of ED
activity: A platform for system-level operations research.
Academic Emergency Medicine 11 (2004) 1177-1185

598

6. Cowling, P., Johansson, M. Using real time information for
effective dynamic scheduling. European Journal of Operational
Research 139 (2002) 230–244

7. Draeger, M.A. An emergency department simulation model to
evaluate alternative nurse staffing. Winter Simulation
Conference (1992)

8. Fowler, J.W., Monch, L., Rose, O. Scheduling and Simulation.
In: Herrmann, J.W. (ed.): Handbook of Production Scheduling.
Springer US (2006) 109-133

9. Gen, M., Gao, J., Lin, L. Multistage-Based Genetic Algorithm
for Flexible Job-Shop Scheduling Problem. Intelligent and
Evolutionary Systems, SCI 187 (2009) 183-196

10. Ghezail, F., Pierreval, H., Hajri-Gabouj, S. Analysis of
robustness in proactive scheduling: A graphical approach.
Computers & Industrial Engineering (2009)

11. Herrmann, J.W. (ed.). Handbook of Production Scheduling
Springer US (2006)

12. Herroelen, W., Leus, R. Project Scheduling under Uncertainty:
Survey and Research Potentials. European Journal of
Operational Research 165 (2005) 289-306

13. Holland, J.H. (ed.). Adaptation in natural and artificial systems.
MIT Press Cambridge (1992)

14. Iima, H. Proposition of Selection Operation in a Genetic
Algorithm for a Job Shop Rescheduling Problem. EMO 2005,
LNCS 3410 (2005) 721-735

15. Jeong, K.-Y. Conceptual frame for development of optimized
simulation-based scheduling systems. Expert Systems with
Applications 18 (2000) 299–306

16. Kutanoglu, E., Sabuncuoglu, l. Experimental Investigation of
Iterative Simulation-Based Scheduling in a Dynamic and
Stochastic Job Shop. Journal of Manufacturing Systems 20
(2001) 264-279

17. Li, Z., Ierapetritou, M.G. Robust Optimization for Process
Scheduling Under Uncertainty. Industrial and Engineering
Chemistry Research 47 (2008) 4148-4157

18. McGuire, F. Using simulation to reduce length of stay in
emergency departments. In: Seila, J.T., Manivannan, S.,
Sadowski, D., A.F. (eds.): IEEE Winter Simulation Conference
(1994) 861-867

19. Mika, M., Waligora, G., Wezglarz, J. Simulated annealing and
tabu search for multi-mode resource-constrained project
scheduling with positive discounted cash flows and different

payment models. European Journal of Operational Research 164
(2005) 639–668

20. Moratori, P., Petrovic, S., Vazquez, A. Match-Up Strategies for
Job Shop Rescheduling. IEA/AIE 2008, LNAI 5027 (2008)
119-128

21. Pfeiffer, A.s., Kadar, B., Monostori, L.s. Stability-oriented
evaluation of rescheduling strategies, by using simulation.
Computers in Industry 58 (2007) 630–643

22. Pinedo, M. Scheduling: Theory, Algorithms, and System -
Second Edition. Pearson Education, Inc. (2005)

23. Rangsaritratsamee, R., Jr., W.G.F., Kurz, M.B. Dynamic
rescheduling that simultaneously considers efficiency and
stability. Computers & Industrial Engineering 46 (2004) 1–15

24. Rossetti, M.D., Trzcinski, G.F., Syverud, S.A. Emergency
department simulation and determination of optimal attending
physician staffing schedules. Winter Simulation Conference
(1999)

25. Samaha, S., Armel, W.S., Starks, D.W. The use of simulation to
reduce the length of stay in an emergency department.
Proceedings of the 35th conference on Winter simulation (2003)
1907-1911

26. Wang, J. A fuzzy robust scheduling approach for product
development projects. European Journal of Operational
Research 152 (2004) 180–194

27. Wise, A. Little-JIL 1.5 Language Report Department of
Computer Science, University of Massachusetts, Amherst
(2006)

28. Xiao, J., Osterweil, L.J., Wang, Q., Li, M. Dynamic Scheduling
in Systems with Complex Resource Allocation Requirements.
Department of Computer Science at the University of
Massachusetts Amherst. (2009) 1-10

29. Xiao, J., Osterweil, L.J., Wang, Q., Li, M. Disruption-Driven
Resource Rescheduling in Software Development Processes.
Proceedings of International Conference on Software Process,
LNCS6195 (2010) 234-247

30. Xiao, J., Wang, Q., Li, M., Yang, Q., Xie, L., Liu, D. Value-
based Multiple Software Projects Scheduling with Genetic
Algorithm. International Conference on Software Process 2009
(ICSP2009), LNCS 5543, Vancouver, Canada (2009) 50-62

31. Yang, B. Single Machine Rescheduling with New Jobs Arrivals
and Processing Time Compression. International Journal of
Advanced Manufacturing Technology 34 (2007) 378-384

599

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

