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Abstract—Testing for marginal and conditional indepen-
dence is a common task in machine learning and knowledge
discovery applications. Prior work has demonstrated that
conventional independence tests suffer from dramatically in-
creased rates of Type I errors when naively applied to relational
data. We use graphical models to specify the conditions under
which these errors occur, and use those models to devise novel
and accurate conditional independence tests.

I. INTRODUCTION

Procedures for testing marginal and conditional indepen-
dence are central to many algorithms for machine learn-
ing. For example, algorithms for learning the structure of
Bayesian networks search over possible conditioning sets to
identify pairs of variables that are conditionally independent
[1], [2]. Algorithms for feature selection test whether a new
feature is correlated with a dependent variable conditioned
on the existing features. Algorithms for learning association
rules evaluate whether new items are unexpectedly corre-
lated with a target item conditioned on the existing items in
the rule [3]. In each of these cases, assertions of marginal
and conditional independence are one of the key statistical
inferences made by the algorithm.

Unsurprisingly, inaccurate independence tests can cause
serious errors in these algorithms. When tests incorrectly
indicate independence, the algorithms disregard important
predictive features, reducing the accuracy of learned models.
When tests incorrectly infer dependence, algorithms add un-
necessary structure to models, increasing the computational
complexity of storing and employing those models. Finally,
absent or superfluous statistical dependencies can cause a
cascade of incorrect inferences in algorithms for learning
model structure, particularly causal structure.

Prior research has identified several cases in which con-
ventional tests of independence are seriously inaccurate,
particularly when the underlying generative process for the
data contains relational dependencies—statistical influences
that cross the boundaries of individual entities such that the
variables of related entities are correlated [4], [5]. Com-
mon domains that exhibit relational dependencies include
social networks (the attributes of one person can affect
the attributes of their friends), organizational networks (the
attributes of an organization can affect the attributes of its
members), and web pages.

In this paper, we formally specify causal generative mod-
els that can explain an observed dependence between a
pair of variables in a relational data set. We show how to
translate these models into non-relational generative models
by introducing additional variables that capture key aspects
of the relational structure. We show how the models di-
rectly produce computationally efficient tests of conditional
independence. These tests allow algorithms to draw correct
inferences despite conditions that mislead conventional tests.
Using the principles of d-separation [6], we show how
several classes of generative models can produce the same
observed correlations, and thus cause errors in algorithms
that assume a specific generative structure from these corre-
lations.

II. RELATIONAL DATA, PROPOSITIONALIZATION AND
TYPE I ERRORS

The errors we describe have their origins in the mismatch
between two data representations: the relational representa-
tion of the original data and the propositional representation
required by a conventional test of independence. Proposi-
tional representations assume that each data instance can
be represented solely by a vector of values; they cannot
represent relationships explicitly and they typically repre-
sent only a single entity type. Relational representations
often represent multiple entity types and explicitly represent
relationships among instances. Unique identifiers denote
instances of a specific type and indicate which instances
participate in a relationship.

Propositionalization, sometimes called flattening, trans-
forms data from a relational representation into a proposi-
tional one. Many relational learning algorithms incorporate
propositionalization either as a pre-processing step or as an
integral part of their search algorithms [7].

A. Propositionalization

Two key operations for propositionalization are replication
and aggregation. Propositionalizing simple data sets requires
only one of these operations, while propositionalizing more
complicated data may require several replication and aggre-
gation steps.

Figure 1a depicts a relational database representation of
bipartite data in which every entity of type A is linked to
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Figure 1. Relational database tables illustrating propositionalization
operations (a). Replication (b) is the result of a three-way INNER JOIN of
TA, TB and Tlink . Aggregation (c) is the result of a GROUP BY applied
to the same join used in conjunction with an aggregation function.

several entities of type B, where each entity type has a single
associated categorical variable (X and Y, respectively).

Propositionalizing with replication can be illustrated with
a three-way inner join between TA, TB , and Tlink. The two-
column projection of this join can be seen in Figure 1b.
Each link in the data set produces a tuple in the resulting
table. Since nodes with degree greater than one (e.g., A1)
participate in several tuples, their attribute values (in this
case, x1) are replicated in several rows.

Propositionalizing with aggregation can be illustrated with
the same three-way inner join between TA, TB , and Tlink.
However, in this case, multiple values of Y corresponding
to a single entity A are aggregated (Figure 1). The query
uses an aggregation function f() (e.g. SUM, AVG, MIN, or
MAX) to operate over sets of values and produce a single
value for the tuple. In database terminology, a GROUP BY
operator with a specified aggregation function or functions
is applied to the join. In our example, the X values of the
group of B entities associated with each A entity produce a
tuple in the target table, as seen in Figure 1.

Information about the relational structure of the data is
lost during propositionalization. Relational data sets with
different structures can produce the same propositionalized
data tables, and statistics calculated on such tables will
have the same values. However, the validity of statistical
inferences based on these values depends partially on this
lost information. In the following two sections, we discuss
two specific examples of ways in which propositionalization
can introduce spurious correlations.

III. EXPLAINING PATHOLOGY WITH GRAPHICAL
MODELS FOR PROPOSITIONALIZATION

A. Errors with replication

Prior work has demonstrated that propositionalization
with replication can lead to large increases in Type I errors
(falsely inferring statistical dependence). Varieties of this
effect have been known for more than a century [8], al-
though the consequences of this effect for relational learning

algorithms were first identified by Jensen & Neville [4].
Relational linkage and autocorrelation effectively reduce
the sample size of a data set, increasing the variance of
scores estimated using that set. Increased variability of
the estimated value of any test statistic [9], [4] results in
Type I error rates much higher than those expected from
independent instances.

Figure 2 depicts the observed distribution of the chi-
square statistic along with its Type I error rate for synthetic
data containing two types of entities, A and B, each of
which contains a single variable, X and Y, respectively. We
generate 200 A entities and link each to between 1 and 20
B entities. The level of autocorrelation is expressed as the
probability that any two “sibling” B entities will share the
same Y value, calculated from the class distribution of Y

and a parameter governing the strength of effect (for a data
set with no autocorrelation effect, this quantity is equal to
p
2 + (1 − p)2 for a binary variable with class probabilities

p and 1− p). Here, for a simulation with an autocorrelation
level of 0.8 (moderate effect, given an even class split), 38%
of the data sets generated had a chi-square value that was
statistically significant at the α = 0.01 level, substantially
larger than the expected Type I error rate of 1%. As seen in
the figure, the higher the level of autocorrelation among Y

values, the more severe the bias.
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Figure 2. Values of the chi-square statistic are biased for autocorrelated
data. Left: The empirical distribution has much higher variance than the
theoretical χ

2 with one degree of freedom. Right: The Type I error rate
greatly exceeds the expectation based on alpha; the bias becomes more
severe for higher levels of autocorrelation.

While only recently explored in the statistical relational
learning (SRL) community [4], [10], the effects of auto-
correlation have been identified in the social sciences since
the nineteenth century [8]. “Galton’s problem” denotes the
phenomenon of “group effects” causing instance dependence
and elevating Type I error [11].

B. Errors with aggregation and degree disparity bias

An alternative to replication is propositionalization
through aggregation. While aggregation avoids the types of
errors describe above, prior work has shown that aggregation
can also lead to mistaken judgments of dependence. Jensen,
Neville, & Hay [5] show that aggregation can make un-
correlated variables appear correlated when those data are



propositionalized in the the presence of degree disparity.
Degree disparity occurs when an attribute on an entity is
correlated with the number of links to or from that entity.
For instance, chronologically older researchers tend to have
authored more research papers and persons from certain
religious or ethnic backgrounds tend to have larger numbers
of siblings.

Degree disparity combines with some common aggrega-
tion functions to produce systematically higher or lower
aggregated values when the cardinality of the input values is
high. For example, SUM, MAX, and COUNT all return sys-
tematically higher values given high cardinality; MIN will
produce lower values; and MODE and AVG will produce
less extreme values. When data are propositionalized using
these aggregation functions, statistical dependencies between
attributes and the aggregated value can be erroneously
interpreted as dependence between the original attributes.
Figure 3 depicts the distribution of Z-scores for relational
data that exhibit degree disparity. Each of the different
aggregators exhibits a different amount of bias, though all
will clearly cause Type I errors for a two-tailed hypothesis
test. Even AVG, which is centered, has increased variance
when compared to the reference distribution.
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Figure 3. Distribution of z-score values for AVG, MAX, MIN, and
SUM in a relational data set with moderate degree disparity. The sampling
distributions indicate dependence even in the absence of dependence in the
original data. Here, even though X and Y are marginally independent, X

appears significantly correlated with aggregations of Y.

Figure 4 depicts Type I error curves for data with degree
disparity using the SUM and MAX aggregations. As in the
case with autocorrelation, error rates are much higher than
those expected at the α = 1% level. For data with a moderate
level of degree disparity, the MAX aggregator has an error
rate of 15% while SUM is greater than 70%.

C. Graphical models for propositionalization

The descriptions provided by prior work on independence
tests for relational data provides an informal explanation for
the existence and strength of the effects described above.
However, they provide relatively little formal machinery to
reason about these effects. In this section, we provide that
machinery.

The situation we described informally in Section III-A
can be described more formally by the directed acyclic
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Figure 4. Type I error as a function of alpha for MAX (left) and SUM
(right) aggregations under degree disparity. The value of X varies linearly
with degree (parameterized by coefficient βdeg). At the α = 0.01 level,
the Type I error rates are 15% and 70% for MAX and SUM, respectively.

probabilistic entity relationship (DAPER) models [12] in
Figure 5. Model H0 corresponds to the null hypothesis that
X and Y are marginally independent. Model H1 indicates
that X causes Y. Model H2 indicates that Y is caused by a
latent variable Z on the same entity as X , but otherwise is
marginally independent of X . The values of Y on different
entities B connected to the same A will be autocorrelated
in either of the models H1 or H2.1
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Figure 5. Three possible generative models for one-to-many data. In
Model H0, variables X and Y are independent. In Model H1, X influences
Y , while in H2, Y is independent of X but related to a latent variable Z.
Data generated by H1 and H2 will exhibit autocorrelation.

Model H2 uses a common convention in graphical mod-
els to produce autocorrelation among related entities. The
relational structure of the data indicates that a single entity
A will be connected to several entities B. As a result, the
dependence between a variable Z on A and several different
instances of a variable Y on B will induce dependence
among the values of Y on related entities B. This approach
is often used in the social sciences to represent a “group
effect” [13]. Models in machine learning frequently use this
approach to model autocorrelation among members of latent
groups [10] or among topics of related text documents [14],
[15].

According to prior work [4], independence tests will
frequently indicate that X and Y are marginally dependent

1The models in Figure 5 clearly do not exhaust the possible models
that could relate these variables, but are meant to demonstrate that multiple
generative models are consistent with the observed correlations. Examining
the entire space of possible models that relates these variables allows a
greater range of causal inferences, but that space is too large to discuss
here.



when those data are generated using either model H1 or
model H2. In general, given a significant value of a statistic
alone, it is impossible to determine whether model H1 or
H2 generated the data. Whether this distinction is impor-
tant depends on the domain. However, if gaining a causal
understanding is important, the distinction is crucial to
determining whether manipulating X will change Y [16].

The graphical structure of model H1 provides a clear
indication of why X and Y are dependent in data drawn
from this model, but model H2 does not provide any
correspondingly clear indication. One reason for this is
that the DAPER model represents data in its relational
state, and the results discussed in Section III-A derive from
propositionalized data. Propositionalization may introduce
additional dependencies not explicit in the DAPER model.
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Figure 6. Propositionalized versions of generative models for autocorre-
lated data. The plate structure is included here for clarity only, and is not
part of the graphical model.

Figure 6 shows propositionalized models corresponding to
DAPER models H1 and H2. The entity-relationship structure
is shown in gray for reference only and is not part of
the model. The propositionalized models introduce a new
variable: ID . The ID variable models the replication of the
values of the X and Z variables during propositionalization.
In the same way that Z models the autocorrelation among
values of Y , ID models the autocorrelation among replicated
values of X and Z variables.

The ID variable corresponds to the IDA and IDB

columns in the relational database tables depicted in Fig-
ure 1. The value itself is arbitrary and has no intrinsic
meaning; although frequently represented as a numeric value
it is a categorical attribute with unbounded cardinality.
Furthermore, it carries the constraint that no two entities in
the relational data share the same value, although multiple
data instances in propositional data can (and often do) have
the same value of ID .

The ID variable deterministically causes every other
variable whose values are replicated during propositional-
ization since information about an entity’s ID completely
determines the value of any variable associated with that
entity. Given this, the ID attribute is an example of an
infinite latent variable as proposed by Xu et al.[17] (only
having perfect predictive ability), or a cluster identifier in
the sense used by Kemp et al.[18].

Given the propositional models in Figure 6, the semantics
of d-separation provides a formal explanation for the results
from Section III-A [6]. In both models, the existence of an
undirected collider-free path from X to Y corresponds to the
observed correlations between the variables. In Model H1,
the path is direct; in Model H2, the path flows from X ←
ID → Z → Y. We can block the causal path by conditioning
on any of the variables along that path. Conditioning on
ID will d-separate X and Y under Model H2 (but not
Model H1), allowing us to differentiate between the two.
However, this fact does not provide a feasible test.

200 300 400 500 600 700

0
.0
0
0

0
.0
1
0

0
.0
2
0

!
idY

2

D
e
n
s
it
y 0.01

H1 :X" Y

H2 : Z" Y

#
2(199)

200 300 400 500 600 700

0
.0

0
0

0
.0

1
0

0
.0

2
0

!
idY | X

2

D
e

n
s
it
y 0.01

H1 :X " Y

H2 : Z " Y

#
2(199)

Figure 7. Empirical chi-square distributions for ID , Y. Top: Data gener-
ated under Model H1 is indistinguishable from data generated by Model H2
as both models create autocorrelation among Y values (captured here as
an association between ID and Y ). Bottom: The effect of conditioning on
X , allowing clear discrimination between models.

Fortunately, the propositional model suggests another
conditional independence test to differentiate Model H1

from Model H2. If the data were generated by Model H1,
we would expect that ID ⊥ Y |X . Figure 7 shows the
empirical distributions of χ

2
ID−Y when conditioned on X .

The association between ID and Y disappears when we
condition for Model H1, allowing us to retain the null
hypothesis. For data from Model H2, conditioning on X

does not diminish the value of χ
2, allowing us to reject

Model H1 in favor of Model H2. Thus, even with a graphical
model that relies on a latent variable (Z), we have a test that
allows us to differentiate between the two models.

We can use similar reasoning to understand and correct
the bias introduced by degree disparity. Figure 8 shows
three DAPER models representing alternative generative
structures for the situations discussed in Section III-B. The
variable E on the relationship between the A and B entities
represents the existence of the relationship itself. We assume
that degree disparity stems from a direct causal dependence
between the variable X and the probability that one or more
relationships exist. Thus, model H2 indicates that the degree



of entities A depends on the value of X .
Model H0 corresponds to the null hypothesis under which

X and f(Y ) are marginally independent. Models H1 and H2

represent data in which X and f(Y ) are correlated. Once
again, knowledge of marginal dependence between X and
f(Y ) can be used to reject H0, but it cannot differentiate
between H1 and H2.

A

X

B

Y

Model H
1

A

X

B

Y

Model H
0

A

X

B

Y

Model H
2

E E E

Figure 8. DAPER models for one-to-many data with degree disparity.
Model H0 represents the null hypothesis that X is marginally independent
of both Y and E, while Model H1 specifies that X has influence over Y .
Model H2 represents data that exhibit degree disparity.
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Figure 9. Propositionalized models of aggregated data corresponding to the
DAPER models in Figure 8. The effects of degree disparity are represented
by the dependence of the deg on X , coupled with an aggregation (f(Y ))
that is sensitive to degree (and therefore dependent on deg).

Propositionalizing the data produces the corresponding
models in Figure 9. The variable f(Y ) represents the vari-
able produced by aggregating Y values, and the variable
deg represents the number of related entities B (the degree
of A). In contrast to the DAPER models in Figure 8, the
propositionalized models make clear why both models H1

and H2 would exhibit dependence between X and f(Y ).
In both cases, a collider-free undirected path exists between
the variables. However, the models differ with respect to a
direct causal dependence between X and Y .

The propositional models also suggest a simple test of
conditional independence: conditioning on degree will d-
separate X and f(Y ). Figure 10 depicts the empirical
distributions of the conditional test for data generated under
both models. The data generated under Model H2 indicate
no significant dependence, while the data under H1 do show
significant dependence. Conditioning on degree successfully
differentiates between the two models.

D. Empirical results on Stack Overflow data

Stack Overflow (http://stackoverflow.com) is a website
that allows users to post questions and answers concerning
problems in computer programming. The Stack Overflow
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Figure 10. Conditioning on degree removes bias for statistics based on data
with degree disparity, allowing differentiation from data containing actual
association between X and Y . Top: Empirical distribution of Z-score for
data generated under Model H2. Bottom: Z-score distribution for data from
model H1.

data consists of users, questions, answers. Users may post
new questions or provide answers to existing ones, and may
vote (up or down) on the quality of both questions and an-
swers posted by others. Furthermore, as users use the system,
they are awarded badges designating some accomplishment.
For example, the “Fanatic” badge is awarded to users who
visit the site for a hundred days in a row, while the “Guru”
badge is given to users who provide an answer that receives
forty or more votes.

We examined the relationship between badge acquisition
and answer score (up-votes minus down-votes). The dataset
was drawn from February 1 and April 1, 2010. During this
time period, there were 237,505 answers provided by 61,625
distinct users. For each of the 43 badge types, we generated
a binary attribute on each user designating whether or not
that badge had been awarded before April 1. Since users
and answers are related in a one-to-many manner, we are
able to propositionalize the data using both replication and
aggregation. Using conditional independence tests, we can
differentiate between models using the procedures outlined
in Section III-C.

In the Stack Overflow data set, answer scores are heav-
ily autocorrelated through user; that is, users are fairly
consistent in the quality of the posts they provide (the
Pearson corrected contingency coefficient is 0.75. Thus, in
the replication case, every single badge attribute appeared
to be correlated with a discretized answer score when
naively tested. However, as discussed above, the marginal
dependence between badges and score can be explained by
different causal mechanisms as depicted in Figure 6 (for
the Stack Overflow data, the badges and scores correspond
to X , and Y respectively). Using the ID of each user, we
can differentiate between model H0 and H1 by performing a



hypothesis test on User.ID and Answer.score conditioned
on User.badge. In 22 of the 43 cases, the value of chi-
square in the conditional test is not significant, allowing us
to concluded that the relationship between that badge and
answer score is not causal.

In the aggregation case, measured the correlation between
the existence of a badge and an aggregated answer score
for each user, using the models from 9 (again, User.badge

corresponds to X and Answer.score corresponds to Y ).
By conditioning on degree, we can differentiate the cases
where the marginal dependence between badges and scores
are due to degree disparity vs. a direct causal mechanism.
For SUM, MAX, and AVG, all 43 badge types have a
marginal dependence with Answer.score; conditioning on
degree removes this dependence for 39, 40, and 41 of these.
Curiously, score is marginally dependent on only 3 badges,
and conditioning on degree induces a dependence.

Note that in the cases presented above, we considered
each badge in isolation in terms of its causal effect on answer
score. We leave a more thorough examination of the causal
interactions between badge attributes for future work.

IV. CONCLUSION

We have used the framework of d-separation to provide
the first formal explanation for two previously observed
classes of statistical dependencies in relational data. This
explanation applies to continuous and discrete variables and
essentially any test of conditional independence.

Finally, it is worth noting that many data sets are created
in propositional form, even when their underlying generative
processes could more accurately be described by a relational
representation. Thus, the propositional data sets initially
provided to many learning algorithms are “born” without
the information needed to draw correct inferences about
the underlying generative processes that produced them.
Disconcertingly, the effects discussed here apply equally to
propositional learning algorithms when the data they analyze
were originally drawn from relational domains.
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