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Abstract

In this paper we present novel techniques for Automatic Query Generation (AQG).
Query languages like Query by Example (QBE) allow programmers to create
queries without the having to learn more complex languages like SQL. However,
they still function in the same manner, with the programmers’ input being trans-
lated directly into a form of relational calculus or relational algebra. In this work,
we take the idea of querying by examples to its extreme, in which the user pro-
vides example tuples that should be returned and example tuples that should not
be returned. Though this may seem similar to the recent Query by Output (QBO)
paradigm, they are fundamentally different. The QBO system assumes that the
user already has access to a query that performs the desired lookup, while AQG
makes no such assumptions. The AQG techniques presented in this paper search
the space of Select-From-Where (SFW) SQL queries to find the simplest one that
best matches the example tuples provided. Thus, the difficulty of searching the
space of relational algebra or calculus queries for the desired query is relegated
to the AQG engine rather than the user. The benefit of this novel query language
is that it is extremely simple, which allows unskilled workers to generate SQL
queries.

1 Introduction

Query languages such as Query-by-Example (QBE) [4] allow unskilled workers to
write basic queries. However, contrary to its name, QBE is actually a query language
much like SQL, in which the user must know the structure of the relations and directly
specifies what he or she wants the query to do. For example, consider a query that
returns all people over a certain age. A QBE query will still explicitly encode this
contraint. In this work, we use automatic query generation (AQG) to allow the user
to create queries purely from examples. That is, the user provides desired tuples as
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well as a list of undesirable tuples. We then search for the simplest SQL query that
generates as many of the desired tuples as possible without including the undesirable
tuples.

Thus, AQG has some commonality with Query by Output (QBO) [3], where, for a
database D, the user provides Q(D), the output of some query Q, and the QBO algo-
rithm produces a set of Instance-Equivalent Queries (IEQs), or approximately equiva-
lent queries, Q1, Q2, ...Qn. When using QBO, the user must already have access to a
query Q that accomplishes the desired result, whereas AQG is a method for construct-
ing this initial Q. This difference will be further discussed in the Prior Work Section
(3).

The primary benefit of AQG is that the user needs minimal knowledge of databases
and of the specific relational schema being used. For example, the query to select
people over a certain age would look the same regardless of the structure of the rela-
tional table backend. So, if an elementary school student wished to find everyone in
her grade, she could provide a list of a few students she knows are in her grade, and a
few that are not. The AQG engine would then generate the query for her. Additionaly,
the AQG can be used as a sort of search engine. For example, a student may enter a
list of his friends and people that he doesn’t like. Ideally, the AQG would return a list
of other people that he might like. Another perk of the AQG is that the query can be
returned to the user for analysis. Thus, a skilled user could enter a list of people and
the AQG would return a query that determines what separates that group from others,
such as common interests.

In Section 2 we describe the problem that AQG tackles and in Section 3 we discuss
its relation to prior work. In Section 4 we describe our methods, followed by the
results in Section 5. We then discuss these results and conclude in Sections 6 and 7
respectively.

For the remainder of this paper, we will consider the example relational schema:
Person: (PID, Name, Age, JID, Gender)
Job: (JID, Title, Salary, Hours)
Manager: (MID, SID),

where MID and SID in the Manager relation correspond to PIDs in the Person relation.

2 Problem Statement

Provided a set of desired and a set of undesirable tuples, we wish to find the corre-
sponding SQL query that the user had in mind. This can be formalized by assuming the
user wishes to find Q(D), the output of query Q on database D, but does not know the
structure of D, and is unable to generate Q. However, the worker is able to generate
a small set of desired tuples desirable ⊆ Q(D) and undesired tuples undesirable ⊆
¬Q(D), where |desired| << |Q(D)| and |undesirable| << |¬Q(D)|. The goal is
to construct a Q′ such that Q′(D) contains the tuples in desired but not the tuples in
undesirable. In order to do this, we will assume that the desired query is a tradeoff
between simplicity and correctness. That is, if a very simple query exists that produces
a nearly correct result, and a very complex query produces the exact tuples specified,
the simple query will be preferred. However, this exact tradeoff will be left as a tunable
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parameter.

Consider the example Person relation

PID Name Age JID Gender
1 Alice 25 1 Female
2 Bob 30 2 Male
3 Charlie 24 1 Male
4 Debra 17 8 Female
5 Eve 15 7 Female
6 Frank 18 2 Male
7 Gretta 27 3 Female
8 Henry 34 2 Male
9 Ilene 12 5 Female

10 John 32 3 Male

A user may wish to find the names of all the people older than 23. A possible query
to find this could be the desired table:

Desired
Bob

Gretta
Alice

and the undesirable table:

Undesirable
Debra
Frank
Eve

The simplest SQL query to generate the tuples in the desired table without gener-
ating any of the tuples in the undesirable table is:

SELECT Name
FROM Person
WHERE Person.Age > 23

This is therefore the desired query, though other more complex queries exist that would
still return the correct tuples, such as:

SELECT Name
FROM Person
WHERE Person.Name = ”Bob”

OR Person.Name = ”Gretta”
OR Person.Name = ”Alice”
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The goal of this paper is to implement a AQG engine and determine how compli-
cated a query can be such that the target query can be reliably retrieved, when provided
with small desirable and undesirable sets. In the following section, we discuss prior
work, and clarify how previous systems differ from the AQG engine described in Sec-
tion 5.

3 Prior Work

As mentioned in the introduction, Query by Example (QBE) systems [4] are the most
similar to the AQG engine presented herein. The goal of QBE was to allow unskilled
workers to create database queries without having to learn a more complicated lan-
guage like SQL. To an extent, QBE achieved this by creating a simple interface for
constructing queries. However, QBE still requires a user to understand the structure
and relationships between tables in the database. In fact, when designing a QBE query,
a user is directly filling in fields within a corresponding SQL query. The primary flaw
with QBE is its foundation in relational calculus. The AQG engine removes these
requirements and simplifies query writing beyond the level of a QBE statement.

Additionally, QBE is incapable of representing more complicated queries. For ex-
ample, an unskilled worker would not be able to create a QBE query, on the relational
scheme proposed in Section 1, which returns the names of all people who have higher
salaries than their managers. Though this query is not within the space of possible
QBE queries, it is within the scope of possible AQG queries. However, this is a more
complex query, as it requires all three tables be joined, which results in a large search
space of SQL queries, making difficult for the AQG to find.

Though QBE was initially proposed in 1975, there have been few improvements
upon the original concept. Most additional research focusses on extensions to search-
ing for images by example [2] and generating query by example methods for creating
relational schemas rather than querying them [5].

Though superficially similary, Tran, Chan, and Parthasarathy’s Query by Output
(QBO) techniques [3], solve a different problem from AQG. QBO targets skilled work-
ers for companies with hundreds or thousands of tables, while we target very unskilled
workers working with small relational schemas. QBO can be used to provide further
insight into complicated queries, and to generate similar queries to one that is provided
(e.g. for security reasons [3]). QBO is not intended, nor suitable for use by unskilled
workers. The algorithm from as well as all examples and potential uses listed in [3]
require that a worker either already know the desired query Q, or its Q(D) on the tar-
get database D. This is the fundamental difference between QBO and AQG – AQG is
intended for situations in which a user does not know how to produce Q, but wishes
to obtain Q(D). Thus, QBO assumes the user already has the answer to the question
AQG answers.

This difference is exemplified by the differences in the input provided to QBO ver-
sus AQG. A QBO system can be provided with either Q or Q(D), from which it pro-
vides a set of identical or similar queries Q1, Q2, ..., Qn. The AQG engine is provided
with desired ⊆ Q(D) and undesirable ⊆ ¬Q(D), where usually |desired| <<
|Q(D)|, where | · | denotes the number of tuples in a relation. The AQG engine then
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produces Q̂, an approximation of the unknown Q.

Though different, QBO does provide some interesting results that carry over to
AQG, primarily that the task of finding a query that exactly matches the desired and
undesirable tables is NP-complete.

4 Methods

All trials were performed on a Sony VAIO VGN-FW running Microsoft Windows 7
with 4GB RAM, and an Intel Centrino 2 processor clocked at 2.534 GHz. Our soft-
ware was implemented in Python using the SQLite3 database engine. Indices were
constructed over all columns of all relations, resulting in execution time improvements
of up to an order on some queries. Notice that AQG does not require that such indices
exist. However, since the goal of this paper is only to test whether or not we can effec-
tively search the space of queries, without necessarily worrying about how optimized
the search engine is, the use of many indices is reasonable.

4.1 Heuristic Function

We use a genetic algorithm [1] to search the space of possible Select-From-Where
(SFW) SQL queries for the simplest one that best satisfies the constraints. In order to
use a genetic algorithm, we define a heuristic evaluation function h(R), which maps
a relation R returned by a query Q to the real numbers. This heuristic will be used to
evaluate the fitness of the relation returned by an SQL query. The heuristic must reward
returning tuples from the desired table and not returning tuples from the undesirable
tables. Additionally, it should punish queries for failing to return tuples in the desired
list and for returning tuples from the undesirable list.

Illegal SQL queries (such as ones that reference tables in the WHERE clause that
are not included in the FROM clause) must always receive a fitness of negative infinity.
Additionally, the heuristic must be able to handle tables with the incorrect number of
columns. To handle this, if the solution has too few columns, it is given a fitness of
negative infinity. If it has too many columns, and the desired table has n columns,
then only the first n columns of R are considered.

In order to simplify the problem and circumvent the problem that data types of
columns may not align, we forced all columns to be integers. For strings, we kept a
separate look-up table relating the integers to the corresponding strings (names, gender,
and job titles). Thus, internally the AQG engine need only handle integers.

Finally, the heuristic should also include a term that punishes complexity. In order
to implement this, we subtract a constant W from the fitness for every clause in the
query. That is, we subtract W for every term in the SELECT statement, every term in
the FROM statement, and every AND, OR, or NOT in the WHERE statement. Thus,
W is a tunable parameter that sets the tradeoff between the accuracy of the query and
its complexity.

The resulting heuristic, h, can be explicitly defined as a function over the returned

5



relation, R, from an SFW SQL query, Q:

h(R,Q) = Ilegal(R) + Icolumns(R) + 2 ∗ p(R)r(R)

p(R) + r(R)
+W ∗ c(Q) (1)

where Ilegal is an indicator function taking value 0 if R is legal, and negative infin-
ity otherwise, Icolumns(R) is an indicator function taking value 0 if R has n or more
columns, W is a tunable parameter setting the tradeoff between accuracy and complex-
ity, c(Q) is the complexity of the query Q, defined as the sum of the number of clauses
in the SELECT, FROM, and WHERE statements, r(R) denotes the recall:

r(R) =
TP

TP + FP
, (2)

and p(r) denotes the precision:

p(r) =
TP

TP + FN
, (3)

where TP is the number of true-positives: tuples in R that are also in desired, TN is
the number of true negatives: tuples not in R that are in undesired, FP is the number
of false-positives: tuples in R that are in undesired, and FN is th number of false-
negatives: the number of tuples not in R that are in desired. The middle term of the
heuristic defined in Equation 1 is called the F-measure, and represents the harmonic
mean of precision and recall. With W = 0, the maximum possible value produced by
this heuristic is always one, and the minimum zero.

In order to avoid misleading fitness results, the tuples R must be filtered to only
include those in the union of desired and undesired prior to the computation of TP ,
TN , FP , and FN . Initial implementations without this filter failed to converge to
reasonable queries for relatively simple tasks. Without the filter, the definitions of
these statistics break down because there are tuples that are in R but neither desired
nor undesired.

4.2 Genetic Algorithm

In order to simplify the genetic algorithm, the entire database is first modified so that
all columns have type integer, the values of which can be mapped back to the original
strings or other datatypes. This modification is transparent to the user, though it allows
the AQG to ignore all type-based constraints.

Aggregation operators, query unions, nested queries, and all complex operators are
left for future work, as this paper is a proof of concept showing the limitations of a
simple AQG implementation. The only operators allowed in the WHERE clause are
AND, OR, >, <, ≤, ≥, =, and <>. Notice that the NOT operator is not needed
because it can be achieved by taking the oposite operator (e.g. > becomes ≤) within
the Boolean clause.

The genetic algorithm implemented uses a population of p = 1000, and allows for
both mutations and crossovers. Children for the subsequent generation are selected by
directly copying over the queries with fitness in the top k1 = 5% (using the fitness
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function defined by h from Equation 1). The next k2 = 20% of the new population
are generated by mutating members of the top k1 = 5%, and the remaining members
(75%) are generated randomly. During a mutation, each of the possible mutations
is performed with a fixed probability and several different types of mutations can be
applied over the same query at the same time.

The mutation function takes on SQL query and generates a mutated version by ran-
domly selecting between the following list of possible mutations.

Flip Operator: A random operator (>, <, ≤, ≥, =, or <>) in the WHERE clause
is flipped to a different operator.

Swap Operands: The left hand side and right hand side of a boolean statement in
the WHERE clause are flipped. For example, (a ≤ b) would become (b ≤ a).

Flip Operand: The value of the left hand side or right hand side of a boolean state-
ment in the WHERE clause is changed to a random new value. This new value could be
numerical, or any column from a table in the FROM clause. The columns are chosen
uniformly over the available tables. Numerical values are chosen depending on tun-
able parameters. Numerical values are capped to be between 0 and 250, with a higher
weight on the values 0 and 1. These constraints are domain specific, though they could
be precomputed as a function of all tuples in the database.

Increment Operand: A numerical operand is incremented or decremented by either 1
or 10.

New Constraint: A new constraint is randomly generated and added to the WHERE
clause. It is appeneded with either AND or OR, chosen randomly. The condition can
be a test between the value of two colums, or a test between a column and a numerical
value.

Flip Column: One of the columns in the SELECT clause is replaced with a differ-
ent column.

Delete Column: One column from the SELECT clause is deleted from the SELECT
clause.

Add Column: A column is added to the SELECT clause, chosen uniformly from the
tables in the FROM clause.

Swap Columns: Swaps the order of two columns in the SELECT clause.

Flip Table: Replaces one of the relations in the FROM clause with a different rela-
tion and remove all references to it in the SELECT and WHERE clauses. Duplicate
tables are allowed, with different unique identifiers, so that self-joins are possible.

Add Table: Adds a new table, with a unique identifier, to the FROM clause.

Delete Table: Deletes a random table from the FROM clause and removes all ref-
erences to it in the SELECT and WHERE clauses.
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Delete Constraint: Deletes a constraints from the WHERE clause.

Flip Connector: Flips an AND to an OR or vice versa in the WHERE clause.

The crossover operator takes two SQL queries and combines them to create a new
query. Given two queries q1:

SELECT S
FROM F
WHERE W

and q2:
SELECT S′

FROM F ′

WHERE W ′

we generate a new query q3:
SELECT S, S′

FROM F, F ′

WHERE W AND W ′

For queries with n desired columns where q1 already returns n or more columns, the
fitness of q3 will be identical to that of q1 because the latter columns will be ignored
by the heuristic. However, future mutations of q3 can now relate the WHERE clauses
of q1 and q2 in novel ways. Preliminary tests showed that including crossovers did not
improve performance, so the following results do not include crossovers. The reason,
we believe, is that crossovers usually create new queries with very high complexity.
Since the fitness of a query depends on both its correctness and its complexity, the GA
quickly notices that it can improve upon its fitness by decreasing its complexity; i.e.,
by removing terms from its clauses. After such deletions are performed, however, most
of the resulting queries tend to look much like the ones that were originally used on the
crossover. In other words, crossovers tend to generate queries that are not qualitatively
better than the ones that already existed, and when it does, they tend to be so complex
that they are quickly removed from the population.

In order to improve performance, we allow the a programmer (skilled user) to deter-
mine general biases that are expected to improve performance. Such biases include the
various probabilities of different mutations and operators. Another example of a bias is
in the definition of the Flip Operand operator described above – the higher probability
of constants 1 and 0 is a bias that we inserted into the AQG.

In order to further improve the performance of the genetic algorithm, we also re-
quired that all joins over tables be done via foreign keys. In our relational schema,
this means that we can only compare PIDs, JIDs, MIDs, and SIDs to each other. All
other comparisons must be between two of the same column (e.g. Salary and Salary)
or a column and a numeric value (e.g. Salary at 10). This avoids exceedingly uncom-
mon comparisons, such as between Salary and Age. Though these comparisons may
be included in obscure queries, the benefit of including them is outweighted by their
increase in the size of the search space for all other queries.
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4.3 Queries

To test the genetic algorithm’s performance as an AQG engine, we created an instance
of the relational schema presented in Section 1, containing 36 tuples in the Job relation,
750 tuples in the Manager relation, and 1,000 tuples in the Person relation. Units for
all values, other than keys, were selected to be within the range 0 to 250, though some
columns, such as Job.Hours, do not cover this entire domain.

We then developed a list of queries to test the AQG. These queries are separated
into three classes: easy queries only require one table and one clause in the WHERE
statement, medium queries require one table and two clauses in the WHERE statement,
and hard queries require the join of two tables and two statements in the WHERE
clause. Notice that queries often ask for PIDs rather than names. This is because we
have a small set of names and a large set of people, so there are likely two people with
the same name who are older than and younger than 30, respectively. This quirk is a
result of the synthetic database created for this problem, as an actual database would
have greater diversity in names.

The desired (resp. undesirable) table was a randomly selected subset of the tu-
ples returned by the target query (resp. not returned by the target query). The sizes of
desired and undesirable are specified for each query.

Easy:
1. Select the PID of all people older than 30. Desired SQL query:

SELECT p.PID
FROM Person p
WHERE p.Age > 30

|Desired| = 10 and |Undesirable| = 10

2. Select the titles of all jobs with salaries greater than 80. Desired SQL query:
SELECT j.T itle
FROM Job j
WHERE j.Salary > 80

|Desired| = 10 and |Undesirable| = 10

Medium:
3. Select the PID of all people who are male and older than 30 Desired SQL query:

SELECT p.PID
FROM Person p
WHERE p.gender = ‘male′ AND p.Age > 30

|Desired| = 20 and |Undesirable| = 20

Hard:
4. Select the PIDs of all people who work more than 80 hours. Desired SQL query:

SELECT p.PID
FROM Person p, Job j
WHERE (j.Hours > 80) AND (p.JID = j.JID)

|Desired| = 20 and |Undesirable| = 20
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5 Results

In this section, we present the results of running the AQG on the target queries defined
in the previous section. We will report various results for each query, in order.

Query 1: Select the PID of all people older than 30. (Easy)
First, we ran the AQG on sets of 10 desired and 10 undesirable tuples, with W = 0,
and with the initial population populated by random queries containing one clause in
each of the SELECT, FROM, and WHERE statements. Below we present the results
of 10 executions, each lasting 20 generations.

SELECT Person.PID
FROM Person
WHERE Person.Age > 30

SELECT Person.PID
FROM Person
WHERE Person.Age > 34

SELECT Person.PID
FROM Person
WHERE Person.Age > 31

SELECT Person.PID
FROM Person
WHERE Person.Age > 34

SELECT Person.PID
FROM Person
WHERE 44 <= Person.Age

SELECT Person.PID
FROM Person
WHERE Person.Age >= 48

SELECT Person.PID
FROM Person
WHERE Person.Age >= 45

SELECT Person.PID
FROM Person
WHERE Person.Age > 30

SELECT Person.PID
FROM Person
WHERE Person.Age >= 30

SELECT Person.PID
FROM Person
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WHERE Person.Age >= 40

In all cases, the final fitness was 1.0, which was typically reached within 10 iterations.
Throughout all queries, we observed the trend that variance in constants increases as
the size of desired and undesirable decreases. This occurs because a smaller sam-
ple of points has a smaller probability of strictly enforcing the desired constraint. For
example, if we wish to find people older than 30, but only provide positive examples
of people older than 40, the AQG has no way of knowing whether the target query is
people older than 30 or people older than 40. Because our selection of desired and
undesirable tuples is random, the probability of tight bounds on constants increases
as the number of desired and undesirable tuples increases. However, if the tuples are
provided by a user, a tight bound can be implemented using fewer tuples.

When this test was repeated with the random initial queries having up to three
clauses in the WHERE statement and two columns in the FROM statement, but still
W = 0, the AQG finds a solution that is more complicated than necessary, but pro-
duces the desired result, such as the following query generated by the AQG (fitness =
0.947368421053):

SELECT Person.PID
FROM Person, Job
WHERE Job.JID = Person.JID AND 37 < Person.Age

If W is set to a value larger than zero, the AQG will again find the minimal query
with one column in the FROM statement and one clause in the WHERE statement.
Additionally, when using 5 desired and 5 undesirable tuples, the AQG finds the de-
sired query with higher variance in the age constant, though it always achieves perfect
fitness.

Query 2: Select the JID of all jobs with salary greater than 80. (Easy)
As with Query 1, we present the result of 10 runs with W = 0, and with random initial
queries containing one clause in the SELECT, FROM, and WHERE statements. Again,
we run for 20 generations. All results achieved a fitness of 1.0, and most converged
within 10 generations. Performance with different settings of W resulted in similar
results to those described for Query 1.

SELECT Job.JID
FROM Job
WHERE 89 < Job.Salary

SELECT Job.JID
FROM Job
WHERE Job.Salary >= 75

SELECT Job.Title
FROM Job
WHERE 79 < Job.Salary

SELECT Job.Title
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FROM Job
WHERE Job.Salary > 77

SELECT Job.Title
FROM Job
WHERE 98 <= Job.Salary

SELECT Job.JID
FROM Job
WHERE Job.Salary > 76

SELECT Job.JID
FROM Job
WHERE Job.Salary >= 73

SELECT Job.JID
FROM Job
WHERE Job.Salary >= 79

SELECT Job.JID
FROM Job
WHERE 68 < Job.Salary

SELECT Job.Title
FROM Job
WHERE Job.Salary >= 89

Query 3: Select the PID of males older than 30. (Medium).
Below we present the results of 10 consecutive AQG executions, with W = 0, 50 gen-
erations, and queries starting with 1 SELECT clause, 1 FROM clause, and 2 WHERE
clauses. Executions starting with up to 2 FROM clauses and 3 WHERE clauses re-
sult in the correct, though more complex, solution being found after more generations.
When using 3 WHERE clauses and two FROM clauses with W > 0, the AQG fails to
converge, though if the initial population is set to the results from a run with W = 0, a
subsequent run with W > 0 results in the least complex query, as desired. We suspect
that the reason for the divergence is that fixing W > 0 tries to enforce queries with
minimal complexity even during the initial phase of the algorithm when the space of
solutions should be explored more aggressively. Thus, by using W > 0 since the be-
ginning of the algorithm, several queries that could form the basis for correct solutions
might not be found.

Because the fitness is not always 1, the fitness of each query generated is also
provided below. Recall that all values were changed to integers, so male = 0 and
female = 1.

Fitness: 1.0
SELECT Person.PID
FROM Person
WHERE Person.Age >= 31 AND 0 >= Person.Gender
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Fitness: 1.0
SELECT Person.PID
FROM Person
WHERE Person.Gender <= 0 AND Person.Age > 30

Fitness: 0.975609756098
SELECT Person.PID
FROM Person
WHERE 156 >= Person.Name AND 34 <= Person.Age

Fitness: 1.0
SELECT Person.PID
FROM Person
WHERE 1 <> Person.Gender AND Person.Gender < 45

Fitness: 0.975609756098
SELECT Person.PID
FROM Person
WHERE Person.Age >= 25 AND 1 <> Person.Gender

Fitness: 1.0
SELECT Person.PID
FROM Person
WHERE 0 >= Person.Gender AND Person.Age >= 36

Fitness: 1.0
SELECT Person.PID
FROM Person
WHERE 0 = Person.Gender AND Person.Age >= 31

Fitness: 0.975609756098
SELECT Person.PID
FROM Person
WHERE Person.Name < 118 AND 26 <= Person.Age

Fitness: 0.952380952381
SELECT Person.PID
FROM Person
WHERE Person.Name < 130 AND Person.Name <> 51

Fitness: 0.93023255814
SELECT Person.PID
FROM Person
WHERE Person.Name < 114 AND Person.Age > 11

When run for more than 50 generations, the queries tend to converge to those with
perfect fitness (1.0). We report the results after only 50 generations to showcase the
AQG’s gradient ascending properties. That is, the target query is not found randomly.
Rather, queries such as those reported above slowly evolve until they represent the
target query.
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The weakness of the constraints in desired and undesirable when using random
subsets of the target tuples is evident in the first query returned above, in which it
returns all people older than 31, regardless of gender, but still achieves a fitness of 1.0
(perfect classification of the desired and undesirable tuples). Some of the queries
presented above show how unexpected solutions can also often be returned. In this
case, the AQG took advantage of the unintentional structure of the mapping from names
to integers. Specifically, all male names mapped to the integers from 1 to 123, while
124 to 221 are female names. Thus, the constraint that the person’s name is less than
than 114 is an alternate representation of the constraint that we desired PIDs of people
who are male.

The second to last result is particularly interesting, in that the query returned has
very high fitness, but doesn’t initially seem related to the target query. However, the
same name-mapping argument means that the first clause actually constrains the tu-
ples returned to be all males, with a few exceptions (those with certain names are not
returned). This query can have high fitness in cases where the desired set contains
mostly males, and the undesirable set contains mostly females and males with the
names that are filtered out. Such a result is indicative of a poor selection of the desired
and undesirable sets, as they do not well represent the age constraint.

Query 4: Select the PIDs of all people who work more than 80 hours. (Hard)
Again, we present the results of 10 consecutive executions of the AQG, with W = 0,
starting with one SELECT clause, two FROM clauses, and two WHERE constraints.
Results beginning with different numbers of clauses require additional time to con-
verge. We present the results after 50 generations, though the join of the Person and
Job table is usually discovered within 5 generations. All trials resulted in a query with
fitness 1.0.

SELECT Person.PID
FROM Job, Person
WHERE Job.JID = Person.JID AND 68 < Job.Hours

SELECT Person.PID
FROM Job, Person
WHERE Job.Hours > 80 AND Person.JID = Job.JID

SELECT Person.PID
FROM Job, Person
WHERE Person.JID = Job.JID AND Job.Hours >= 71

SELECT Person.PID
FROM Job, Person
WHERE Job.Hours >= 82 AND Person.JID = Job.JID

SELECT Person.PID
FROM Job, Person
WHERE Job.Hours > 79 AND Job.JID = Person.JID

SELECT Person.PID
FROM Person, Job
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WHERE Job.Hours > 79 AND Person.JID = Job.JID

SELECT Person.PID
FROM Job, Person
WHERE Job.JID = Person.JID AND Job.Hours >= 81

SELECT Person.PID
FROM Job, Person
WHERE Job.Hours > 67 AND Person.JID = Job.JID

SELECT Person.PID
FROM Person, Job
WHERE 78 < Job.Hours AND Job.JID = Person.JID

SELECT Person.PID
FROM Person, Job
WHERE 72 < Job.Hours AND Job.JID = Person.JID

The queries returned all contain the join of the Person and Job tables, and tend to
represent the constraint on hours-worked at least as well as the constraints in the first
and second (easy) queries.

6 Discussion

The results are encouraging, suggesting that AQG is feasible even for queries that re-
quire joins. We observed that the AQG often achieved perfect fitness, yet failed to
exactly predict the desired query. This occurs because there are multiple queries that
achieve perfect fitness for the given subset of desired and undesirable tuples. We
stated that we desire the simplest such query (i.e. with the fewest clauses), however
there are often many queries with perfect fitness and minimal clauses. An example of
this was the first query, in which the desired and undesirable tuples often failed to
specify exactly where the age boundary should be, with many queries returning only
people older than 35, rather than the ideal query of all people older than 30. Thus, if
a user provides desired and undesirable tuples, he or she should provide tuples that
tightly constrain the desired results. So, if one desired people older than 30, positive
examples of people who are 31, and negative examples of people who are 30 should be
provided.

All queries presented in the previous section resulted from trials with W = 0.
We noted that queries requiring more than one clause in the SELECT, FROM, and
WHERE statements are not found when W > 0. This is because the genetic algorithm
can rapidly improve fitness by removing clauses, until the entire population that carries
from generation to generation contains queries that are not complex enough to represent
the target query. Thus, we propose that the AQG first be executed with W = 0, and the
resulting query used to seed the population of a second run with W > 1. Trials of this
method on the third (medium) query in the previous section resulted in the target query
being found without extraneous clauses in the WHERE statement that are always true
or always false.
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Though these results are encouraging, we did observe that AQG encounters seri-
ous limitations when trying to solve more complicated queries. Specifically, consider
a query that requires three tables in the FROM clause, such as selecting all people who
are older than their managers. When the AQG is executed on such a query, it quickly
generates random queries that take the cross product of the person table (or any other
large table) with itself three times. This results in 1, 000, 000, 000 tuples being re-
turned, which results in exorbitant execution times. Future implementations should
include techniques for terminating queries that take too long to execute. Unfortunately,
SQLite3 does not allow for this. Thus, fitness computations of such queries kill the
performance of the AQG, causing it to hang for extended periods of time. An example
of such a query is provided below:

SELECT p1.PID
FROM Person p1, Person p2, Person p3
WHERE p1.PID >= 0

7 Conclusion

We have shown that AQG is capable of generating desired queries when provided with
only a small number of desired and undesirable tuples. Thus, an unskilled user can
formulate SQL queries without any knowledge of relational algebra, nor the structure
of data. In our review of the literature we have found that, though some methods are
superficially similar, this work is the first of its kind.

We conclude that AQG should be the focus of additional research. Specifically,
methods should be created to allow for the generation of queries including multiple
joins. Part of achieving this will likely involve the AQG allowing for the termination
of queries that run for extended periods of time and the inclusion of query execution
time in the heuristic.
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8 Addendum: Improved Results

In this section, we present results that were generated after the creation of this initial
report. Rather than rework the contents of the writeup to include these improvements,
we provide them as an addendum.

The conclusion stated that future work should focus on methods for extending AQG
to larger queries, which would likely require the termination of queries that run for
extended periods of time. In this addendum, we did just this, and managed to generate
queries including up to four clauses in the FROM statement, and five clauses in the
WHERE statement. We suspect that our current method would take excessive amounts
of time for more clauses in the FROM statement, though additional WHERE clauses
would not significantly affect performance.

We put a catch in place to terminate queries that run for more than a second, and
give them fitness of negative infinity. We then ran the AQG on the query: Select the
PIDs of everyone who manages someone younger than 20. An example query to com-
pute this is:

SELECT p1.PID
FROM Person p1, Person p2, Manager m
WHERE p1.PID = m.MID
AND p2.PID = m.SID
AND p2.Age < 20

Notice that this query has three clauses in the FROM statement and three clauses in
the WHERE statement. The following queries were all generated using the same setup
as the previous qeuries from this report, with 10 desired and 10 undesirable tuples.
In cases where the fitness reported below is not between 0 and 1, a different fitness
metric was used:

f(R,Q) = TP + TN − FN − FP +W ∗ c(Q) (4)

Each of the following queries was produced after a different number of generations, so
the number of generations is also reported. Each query below is from a different run -
they are not consecutive queries from a single run.

Generation 44
Fitness: 60 (optimal fitness: 60 )
Query:
SELECT m.MID
FROM Person p, Job j, Manager m
WHERE p.PID = m.SID
AND p.Age <= 22
AND p.JID = j.JID

Generation 35
Fitness: 60 (optimal fitness: 60 )
Query:
SELECT m.MID
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FROM Person p, Job j, Manager m
WHERE p.PID = m.SID
AND p.Age <= 32
AND p.JID = j.JID

Generation 51
Fitness: 60 (optimal fitness: 60 )
Query:
SELECT m.MID
FROM Person p, Manager m, Job j
WHERE p.PID = m.SID
AND 26 >= p.Age
AND p.JID = j.JID

Fitness: 0.952380952381
Query:
SELECT m.MID
FROM Person p, Job j, Manager m
WHERE j.JID = p.JID
AND j.Salary > 10
AND m.SID = p.PID

Fitness: 0.952380952381
Query:
SELECT m.MID
FROM Person p, Job j, Manager m
WHERE 10 < j.Salary
AND p.JID = j.JID
AND p.PID = m.SID

Fitness: 0.967741935484
Query:
SELECT m.MID
FROM Person p, Job j, Manager m
WHERE 24 > p.Age
AND m.SID = p.PID
AND p.JID = j.JID

These are all very succesfull runs, accurately predicting the target query. These queries
either generate the target query directly, or they use the trick that employees who have
a Salary > 10 is a very accurate prediction for employees with Age < 20. Over the
entire database, this is true approximately 95% of the time. Thus, the constraint 10 <
Salary is effectively equivalent to Age < 20.

Next, we ran an even more difficult query, requiring four clauses in the FROM
statement, and five in the WHERE statement. This query select people who work more
than 10 hours a week and manage someone younger than 20:
SELECT p1.PID
FROM Person p1, Person p2, Job j, Manager m
WHERE p1.PID = m.MID
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AND p2.PID = m.SID
AND p2.JID = j.JID
AND p1.Hours > 10
AND p2.Age < 20

Below we list three queries generated by the AQG when run on this desired query
with 10 desirable and 10 undesirable tuples.

Fitness: 0.739
SELECT m.MID
FROM Job j1, Manager m, Job j2, Person p1,
WHERE j2.Title <= 0
AND j1.JID = j2.JID
AND 27 <= p1.Age
AND j1.Title <> 186
AND p1.PID = m.SID

Fitness: 0.956
SELECT m.MID
FROM Job j1, Person p1, Manager m, person p2
WHERE 153 <> j1.Title
AND j1.JID = p1.JID
AND m.MID = p1.PID
AND p2.PID = m.SID
AND 23 <= p2.Age

Fitness: 1.0
SELECT p2.PID
FROM Manager m, Job j1, Person p1, Person p2
WHERE j1.JID = p2.JID
AND 152 <> j1.Title
AND m.MID = p2.PID
AND 31 < p1.Age
AND p1.PID = m.SID

Again, these are excellent results. The first one implements just part of the requirement
(selecting managers who manage someone younger than 20), and therefore receives
only mediocre fitness. The second two get the training set either perfectly correct or al-
most perfectly correct. They use the trick that managers who work more than ten hours
tend to be those whose job title is not 153. This works because the set of jobs with title
other than 153 happens to equal the set of jobs that require more than 10 hours of work
per week, with only a four tuple difference. Thus, the two constraints are interchange-
able for practical purposes, because the random selection of a JID, filtering by title <>
156, will be exactly the same as filtering by hours > 10 in 36/40 = 90% of the time.

In these additional results, we have shown that the AQG system is capable of gener-
ating fairly complicated queries when provided with only a small sample of desirable
and undesirable tuples. We believe that the performance would be greatly enhanced
by additional runtime and computational power. AQG is certainly worthy of future
research to determine its limits.
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