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ABSTRACT

A BEHAVIORAL APPROACH TO HUMAN-ROBOT
COMMUNICATION

FEBRUARY 2010

SHICHAO OU

B.S., SOUTH CHINA UNIVERSITY OF TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic Grupen

Robots are increasingly capable of co-existing with human beings in the places

where we live and work. I believe, however, for robots to collaborate and assist

human beings in their daily lives, new methods are required for enhancing human-

robot communication. In this dissertation, I focus on how a robot can acquire and

refine expressive and receptive communication skills with human beings. I hypothesize

that communication has its roots in motor behavior and present an approach that

is unique in the following aspects: (1) representations of humans and the skills for

interacting with them are learned in the same way as the robot learns to interact

with other “objects,” (2) expressive behavior naturally emerges as the result of the

robot discovering new utility in existing manual behavior in a social context, and (3)

symmetry in communicative behavior can be exploited to bootstrap the learning of

receptive behavior.
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Experiments have been designed to evaluate the approach: (1) as a computational

framework for learning increasingly comprehensive models and behavior for commu-

nicating with human beings and, (2) from a human-robot interaction perspective that

can adapt to a variety of human behavior. Results from these studies illustrate that

the robot successfully acquired a variety of expressive pointing gestures using multiple

limbs and eye gaze, and the perceptual skills with which to recognize and respond to

similar gestures from humans. Due to variations in human reactions over the training

subjects, the robot developed a preference for certain gestures over others. These

results support the experimental hypotheses and offer insights for extensions of the

computation framework and experimental designs for future studies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, there has been an increased demand for personal robots in aerospace,

elder-care and medical applications (Figure 1.1). For robots to operate and assist hu-

mans in such a variety of environments, they must possess the ability to convey their

intentions to human partners and infer human intentions from their actions as well.

Figure 1.1. Personal robots are being considered for new roles in aerospace, elder-
care and medical applications. Effective communication is essential for achieving
successful collaboration in these scenarios.
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This thesis addresses how a robot can acquire and refine communication skills

through daily interactions with humans. The main focus is the development of be-

havioral communication skills—gestures—rather than verbal ones. This distinction is

relevant and critical since it is my hypothesis that communicative skills convey inten-

tions and that intentions derive from behavior. It therefore follows that all forms of

communication have their roots in sensorimotor behavior. The hope is that through

studying the simpler problem of non-verbal communication, a grounded and scalable

approach can be developed that may extend to more expressive verbal communica-

tion, or at least shed some light on how it can be tackled. The psychology literature

[35] suggests that gesture and language are highly related, since in the human brain,

regions that handle these functions share common neurological pathways.

Communication has both expressive and receptive dimensions. On the expressive

side, current state-of-the-art approaches [8, 76, 23] often advocate for pre-programmed

communicative behavior emulating or mimicking important human social behavior

such as gaze direction, pointing, nodding, and beckoning. On the receptive side,

independent sensory modules are often proposed for the detection and recognition of

humans and human behavior. Impressive human-robot interaction dialogs using these

behaviors have been demonstrated [113, 77, 37]. However, these approaches do not

speak to the origins of such behavior, nor do they carry “meaning.” This thesis opts

for an approach that studies the origins of communicative behavior and how some

commonly understood gestures can arise naturally from interactions with humans in

the environment, without explicit third-party programming.

I advocate a learning approach because human gestures are dynamic. Even the

simplest gesture can take on many forms and the same motion can possess a variety

of meanings under different contexts or cultures. For instance, the hand waving

movement can mean “hello,” “good bye,” or even “no,” depending on the time and

the context under which the movement is performed. While in some cultures pointing
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with the index finger is generally acceptable behavior, in others this action is often

considered offensive [75]. For robots, due to the different physical appearance and

morphology (as seen in Figure 1.1), simple mimicry of human gestures may not be

the most effective way for a robot to communicate. For instance, it is reasonable to

assume that different robots will employ different means of indicating directions and

target positions. Sometimes, several versions of the gesture may be needed to convey

a given intention effectively in different contexts. A learning approach is useful in this

case because it enables the robot to acquire new communicative actions as the need

arises and to adapt communicative behavior to meet the context and the changing

needs of a communicative partner. Furthermore, a learning approach also has the

potential for specializing gestures to different tasks and populations.

For robots to develop expressive and receptive communicative skills autonomously

in the course of natural interactions with humans, a number of important questions

need to be addressed.

1. Under what conditions will communicative behavior naturally arise and how

can these conditions be maintained?

2. What are the action primitives? What states and actions represent communica-

tive and behavior, respectively?

3. How are expressive and receptive behavior related and how do they interact?

The next section presents an overview of the approach to these issues.

1.2 Approach

For robots to develop communicative behavior effectively in the course of natu-

ral interactions with humans, the conditions underlying “stable” human-robot dyads

must first be established and maintained. I hypothesize that stable dyads are formed
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when the individual agents are underactuated and mutually rewarded. Underactua-

tion specifies that there exist tasks that are achievable by a human-robot team that

neither agent alone can achieve. Objects can be too heavy, or objects can be unreach-

able by some agents and reachable by others. Mutual reward conditions require that

each agent in a human-robot team be rewarded for participating constructively in a

dyadic relationship, although the rewards can be different for different agents. For

example, in the case where the object is too heavy for either the robot or the human

to lift alone, when the robot conveys the intention to lift the object and the human

chooses to help, the robot is rewarded for lifting the object and the human receives a

sympathetic reward for successfully helping the robot to achieve its goal.

Predicated on these conditions for fostering communication, this thesis presents

a learning framework (Chapter 3) for developing expressive communicative behavior

for engaging a human’s assistance, as well as recognizing the intentions of the human

partner and acting to reciprocate the gesture. There are three distinctions between the

learning approach adopted here and related work in human-robot interaction (HRI):

(1) expressive communicative actions are learned in conjunction with manual skills

using the same framework, (2) models of humans and skills for interacting with them

are learned in the same way as the robot models and learns to interact with other

“objects,” and (3) expressive and receptive communicative behavior share knowledge

structures and therefore expressive behavior can be used for interpreting intentions

of others and thus the receptive learning process benefits as a result.

This work argues for an approach to develop communicative behavior in con-

junction with manual skills because I believe gesture has its roots in manipulation

behavior. It has been suggested in the psychology and neuroscience literature that

for humans, the development of manual, gestural and language skills are highly inter-

related [38, 7, 35, 28]. However, in the field of robotics and AI, most research considers

these problems separately. This work argues that manipulation and communicative
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behavior share many important learning issues. The development of communicative

behavior benefits from a learning framework with support for hierarchy, generaliza-

tion, and knowledge transfer, as do other forms of sensorimotor behavior. I will use

the control basis framework developed in the Laboratory for Perceptual Robotics at

UMass over the past several years. Using this framework, I believe it is possible for

robots to learn to reuse manipulation behavior for the purpose of communication

and knowledge supporting manipulation behavior can likewise be applied to convey

information. These properties make this approach efficient for learning and therefore

well-suited for human-robot interaction where training occurs in real-time.

Figure 1.2. Humans and objects are modeled in this work as behavioral affordances.
At run-time, the robot differentiates objects using not only visual features, but also
known behavioral responses. For instance, humans afford tracking, respond to point-
ing, and are likely to play “throw and catch” with the robot. Comparatively, a chair
is much less responsive and affords only tracking.

As a natural outcome of combining manual and communicative behavior learning,

the affordances of human beings are learned in the same way as affordances of objects

in the environment (Figure 1.2). In essence, the proposed learning framework is an

affordance-based modeling approach that subscribes to the Gibsonian view [34] that
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our perception and understanding of the world is stored and applied in terms of the

behavior that the environment affords. Similarly, exploratory interactions with hu-

mans provide information regarding how behavior is afforded by humans and therefore

are stored as a collection of affordances rather than conventional visual appearance.

The models of the affordances of human beings are learned and enriched over time

as the robot’s means of interaction grows. This is in contrast to research that uses

hand-coded perception and social behavior. This approach observes sensory invari-

ants of the human social partners to support recognition and inform strategies for

interaction. Humans are special objects with complicated kinematic structure, in-

dependent motion, whose appearance changes day to day. In this work however, I

hypothesize that human behavior, though dynamic and varied, under the social con-

text of underactuation and mutual reward is relatively more predictable than human

visual appearance and therefore can lead to informative models of social behavior.

Receptive behavior, on its surface, seems to require insight into the state of mind

and goals of the expressive communicate partner [96], while expressive behavior can

be viewed as a direct extension of goal-oriented manual behavior. This has lead to

challenges regarding uniform methods for learning. The approach explored in this

dissertation takes a decidedly different tack. I take the position that there exists

symmetry between expressive and receptive behavior, and therefore receptive social

behavior can benefit from the knowledge gained from the expressive gesture learning

process. This approach is consistent with recent observations of mirror neurons [89]

from the psychology and neuroscience literature where it is found that the same neu-

rological pathways responsible for generating actions also participate in recognizing

intentions from another agent. Similarly, empirical studies in recent years have also

led developmental psychologists [29, 118] to conclude that infants’ perception of oth-

ers’ actions is influenced by their own goal-directed action capabilities. In my work,

existing behavioral programs are used for robots to parse events and interpret actions
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performed by humans. This is made possible by the shared knowledge structure due

to the use of a consistent behavioral learning framework.

Prevailing approaches in the field [50, 68, 11] generally treat gesture recognition as

a motion capture recognition problem where human motion observations are matched

against motor templates derived from demonstration. These techniques rely on high

dimensional motion capture data to achieve reasonable matching performance. As

a result, the computational complexity is high and therefore matching is generally

performed as an offline process. When much noisier and sparser vision data are used,

the performance also degrades dramatically. Furthermore, under a constraint context

where the human employs alternative gestures to convey the same information, the

motion trajectory may be significantly different. In these approaches, all behavior

is represented in terms of time-series of Cartesian postural data. This is at best a

geometric simulation of human motor activity and does not reflect insight into shared

meaning between the human and the robot. It has been suggested that research is

lacking on extracting abstract conceptual/intentional motives from observed demon-

strations [97]. This limits the generality of approaches to date.

This work is takes a simpler approach that is inspired by the teleological stance

from Gergely [33], who suggested that one-year old infants extract “goals”, “means”

and “constraints” to interpret the behavior of others. In my work, I propose a mech-

anism for exploiting the symmetry between expressive and receptive behavior. This

is achieved by allowing the robot to create off-policy monitors and attach them to

existing behavior to find auxiliary models that correlate with rewarding events. I be-

lieve these models can be used as cues for interpreting human motion. As we will see

from examples in later chapters, this approach eases computational overhead because

it allows the robot to abstract sequential events rather than raw motion trajectory

data.
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Figure 1.3 provides a road map for communicative behavior learning: under social

conditions of underactuation and mutual reward expressive behavior emerges as a

continuation of manual skill learning. Robots can thus discover that human can be

recruited as external resources if the right action is performed. Receptive behavior

learning benefits from expressive programs learned since they are used as blueprints

for recognizing the same gesture coming from the human and from this a reciprocal

assistive behavior can be explored and learned. During the course of communicative

learning, interactions with humans also provide the robot with opportunities to build

increasingly refined models of humans in the form of control circuits for behavioral

affordances of human beings. Although beyond of the scope of this dissertation, it is

conceivable that effective communication can lead to guidance from humans for the

robots to learn more complicated manual skills, thus completing the cycle.

Experiments have been designed to demonstrate the feasibility of the approach.

Each experiment consists of a number of stages that involves a bi-manual humanoid

robot and a human partner. Subjects of convenience participate in each stage of the

study and interact with the robot, some for training and some for evaluation, one

person at a time.

Experiment 1 demonstrates how the framework enables the robot to reuse existing

manual behavior for establishing an increasingly complex affordance model of humans,

in a series of learning stages. From a simple initial concept that a human is a motion

segment of a certain size that affords visual tracking, it evolves into a more complex

model that a human-scale segment also contains multiple kinematically connected

parts that afford simultaneous tracking.

Experiment 2 places the robot in a situation where a desired object is out of

reach and the robot must recruit a nearby human and direct him to the object to

help accomplish its goal. Experimental design establishes plausible conditions of

underactuation and mutual reward and seeks to evaluate how well the robot can solicit
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Figure 1.3. A road map for learning communication skills. To learn expressive
behavior, the robot can first acquire manual skills through intrinsically motivated
learning. These skills under the appropriate context naturally give rise to expressive
behavior. By exploiting the symmetry in communicative behavior, receptive skill
can also be learned. The bottom of the figure illustrates using the same framework,
the robot can also incrementally build knowledge structure of human beings the
interaction continues.

appropriate human assistance. Subjects are not familiar with the goal of the project

and are not instructed as to which object the robot wishes to obtain. Results are

promising as the interactions produced two different communicative behaviors, both

of which clearly exhibited significantly better performance than a baseline where the

human has to make a random guess. results we can extrapolate how other gestures,

such as size-hinting, beckoning and rejection, can all arise naturally using the same

approach. Also in this stage, as the robot learns more behaviors while interacting

with humans, these behaviors can also be incorporated into the expanding knowledge

tree as part of a hierarchical affordance model of humans.
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Experiment 3 places the robot in a reciprocal setup to experiment 2, where the

objects are now placed out of reach of the human and are instead reachable by the

robot. With the added ability to track movements of different parts of the human

body, including the arms, I hypothesize the robot can reuse knowledge gained from

expressive behavior and use them as templates for recognizing the same behavior when

performed by the human. Results from interactions with subjects of convenience

confirm that the robot is able to recognize various pointing gestures exhibited by

different people and learn the appropriate behavior for assistance.

1.3 Contributions

The contributions of this dissertation are the following:

1. A unique approach for robots to learn about humans, where a human is modeled

as a collection of behavioral affordances the robot discovers from its experience.

It builds conditions under which a robot can make progress toward increasingly

sophisticated models of humans over time. Experiments demonstrate a series

of stages where the robot learns a kinematic model of the human body that

affords reliable tracking and later learns to include affordances for collaborative

behavior as the human-robot team negotiates strategies for collaborating to

achieve a common goal.

2. The extension of a behavioral learning framework intended for developing man-

ual skills to the domain of learning communicative behavior. An algorithm is

presented to enhance the framework’s ability to adapt to new contexts while

maintaining much of the previous acquired knowledge structure. It is applied

to enable robots learn expressive behavior. In addition, an approach is pro-

posed to allow robots to exploit the symmetry in communicative behavior for

the purpose of learning receptive behavior.
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3. The proposal of a developmental trajectory for robots to acquire communica-

tion skills to interact with humans. This begins with the robot first learning

various manual skills through intrinsically motivated exploration. Next, by sub-

jecting the robot to conditions of mutual reward and underactuation, expressive

communicative behavior emerges naturally as the robot discovers the utility of

manual behavior under the new context. Finally, receptive behavior is learned

by reusing existing manual skills and knowledge structure gathered during the

expressive behavior learning process.

1.4 Chapter Organization

Chapter 2 offers a review of the psychology and the computer science literature

to provide the theoretical background of the approach taken in this thesis. Chapter 3

describes the control basis framework for constructing multi-objective control circuits

that will be useful for learning communicative behavior. Examples are presented

to show how increasingly comprehensive behavior is learned as a humanoid robot

explores control configurations that employ different sensorimotor resources. The

remainder of the document focuses on individual components of the overall approach

for robots to learn communicative behavior with humans, and elaborates on each

separately.

Chapter 4 presents the affordance-based approach for modeling humans and demon-

strates how a robot can build an increasingly comprehensive model of the affordances

of humans from natural interactions. Chapter 5 presents a general algorithm for

robots to “repair” existing learned programs by generating sub-goals and learning a

new repair policy, and shows how this algorithm can be applied to enable a humanoid

bimanual robot to learn expressive communicative behavior by using existing manual

as the basis of learning. At the end of this chapter, the human affordance model is

further extended as the robot discovers that humans respond to pointing gestures.
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With a sufficiently comprehensive model of humans, Chapter 6 demonstrates how the

robot can use previously learned behavioral programs for parsing and recognizing the

same gesture from a human. Chapter 7 provides a discussion and conclusions of the

work presented in this document.
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CHAPTER 2

LITERATURE REVIEW

Research in several disciplines have influenced the proposed approach reported

in this dissertation. Section 2.1 shows supporting evidence from the psychology and

neuroscience literature for the inextricable connection between manual and commu-

nicative behavior during the development of a human infant. In Section 2.2, the

theory of mirror neurons and the associative memory in the neocortex is reviewed

as it motivates the computational model of memory advanced in this dissertation.

My goal here is to form a unified model capable of both expressing behavior with

explicit intention and recognizing intention in the behavior of others. Generalization

and transfer are the key ideas proposed for transforming sensorimotor behavior into

a gestural lexicon. My inspiration on this front comes once again from developmental

psychologists. In Section 2.3, the teleological stance of György Gergely and its impli-

cations for identifying intention and the object of intentional actions are discussed.

This thesis draws inspiration from the developmental processes of a human infant,

and observes that infants learn in stages and through constant interaction with the

world. Along these lines, Section 2.4 reviews research in developmental program-

ming for robots and Section 2.5 discusses the Gibsonian notion of affordance and its

application to knowledge organization and world modeling. Finally, Section 2.6 sum-

marizes the important issues in human-robot interaction and the current approaches

for tackling these problems. In particular, I focus on the prevailing methods with

which robots build models for the detection and tracking of humans, and compare

my work with these methods.
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2.1 Manual Behavior and Communicative Gestures

Psychologists acknowledge a tight connection between communicative gesture and

manual behavior. In the 1930s, Lev Vygotsky noted that “...initially, pointing is noth-

ing more than an unsuccessful attempt to grasp something...” [116]. In this case, a

manipulation behavior is described as the origin of the communicative pointing ac-

tion. As infants attempt to reach for out-of-reach objects, even though they inevitably

fail, in the presence of a caregiver, the action is recognized and interpreted as the “in-

tention” to acquire the object and thus the action becomes a gesture. When infants

become older, more sophisticated abstract gestural actions begin to emerge as an in-

fant’s manipulation skills continue to improve. For instance, it is common for infants

to pretend to drink from an empty cup to indicate the desire for a drink. Later this

often evolves to pantomiming without a cup as the infant’s understanding of semantic

meanings of actions improve [4].

Greenfield [38] hypothesized links between the origins of tool use and language,

and also suggested that manipulation behavior for tool use may have played a causal

role in the evolution of gestural communication. In both Bradshaw’s [7] and Gibson’s

[35] books, it is noted that patients with apraxia who have difficulty in executing pur-

poseful movements of the arm and hand and thus learning the use of tools, also have

trouble performing pantomiming gestures to convey their intention. These studies

provide evidence for the connection between communicative gesture and manipula-

tion behavior.

Similar evidence also exists in the neuroscience literature. It is found that in most

right-handed individuals, both the dominant hand and communication (including

language) are controlled by the same neural circuitary in the left hemisphere, and vice-

versa for the left-handed population [57]. Kimura concludes that the hemispherical

co-location of language and the dominant hand strongly suggests a commonality of

neural control for manipulative and communicative behavior. More recently, through
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the use of functional magnetic resonance imaging (fMRI), Frey [28] observed activities

in the same brain regions both when the subject performs manipulative tool-use

actions and when the subject performs a related communicative gesture.

In a comparative study [35] of chimpanzee and human infant development, Gibson

noted that despite the fact that both human and chimps possess potential tool-using

and symbolic capabilities, the behavior of infant chimps and infant humans differs

greatly in manipulative and communicative domains. From a very young age, human

infants begin to engage in repetitive object manipulation behaviors such as grasping,

shaking and kicking to recreate interesting “spectacles,” while the chimpanzees did

not. More importantly, by the second year, infants become more interested in object-

object relationships while chimpanzees are only interested in single objects. From this

evidence, it is suggested that the human infants’ capacity to learn complex sequential

actions involved in manipulation tasks and subsequent interest in object-object re-

lationships allows humans to eventually develop complex systems of communication,

including language, since sequencing behavior (utterances) to form more complicated

ones, and associating the causal outcome of manual actions are the key to developing

effective communication skills.

For this work, this insight is applied to robotics to show that it can lead a general-

purpose computational framework to enable robots to learn gesture in a grounded

manner. Importantly, I contend that these forms of communicative actions can be

built into social behavior without first constructing a complex mental model of the

human social partner—it relies only on discovering the causal relationships between

“gesturer” and “gesturee.” The “gesture” begins as a motor-artifact associated with a

sensorimotor function and is recognized as a reliable means of causation. Ultimately,

it is adapted for use as an effective means of communicating one’s intentions, and is

initiated and perhaps stylized to that purpose.
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2.2 Mirror Neurons, Action Generation and Recognition

Mirror neurons [89] has been suggested as a possible neural basis underlying both

action generation and predictions of other’s behaviors and mental states [10]. These

neurons show similar activity when a monkey observes the goal-directed action of

another agent and when it carries out that action itself. This observation has led

researchers to hypothesize that there exists a common coding between perceived and

generated actions [86, 83, 37, 29, 118]. Therefore, these neurons may play an impor-

tant role in processes used by humans and other animals to relate their own actions

to actions of others.

Several research groups have attempted to create a computational account of the

mirror neuron to enable robotic systems to learn from humans. Jenkins and Mataric

[50, 68] implement an on-line encoding process that maps observed joint angles onto

movement primitives. Thus a simulated upper-body humanoid can learn to recognize

and imitate a sequence of arm trajectories. Others (Demiris and Hayes [20], Atkeson

and Schaal [3]) have adapted the notion of mirror neurons to predictive forward models

that can be used to classify the observed trajectories. However, Jenkins’ approach

relies on motion capture data and Atkeson demonstrates behavior by moving the

robot directly. Neither method is suitable in the context of face-to-face human robot

interaction. Breazeal’s imitation learning work [10] on the other hand uses vision.

In this case, through an imitation game where the robot randomly generates facial

configurations through motor babbling, and the human imitates the robot’s facial

expressions, the robot gathers samples to train a neural network that maps between

perceived human facial features to its own facial joint space. Thus, the robot Leonardo

learns a generative model for facial expression recognition and generation.

Along the same lines, research on task oriented human-robot interaction has been

attempted where a robot engages in a lengthy dialog with a human, playing games

such “hide and seek” [113], “push the right button”[8] or “find object in boxes”
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[9]. In these studies, the focus is on higher level issues such as perspective taking

abilities or understanding visual occlusions. As a result, the idea of mirror neurons,

although mentioned, is de-emphasized in implementation. For instance, although the

robot recognizes the intention of the user by parsing observatins using templates or

schemas, these schemas and templates are not the result of the action generation

process, and are instead hand-crafted. Similarly, social behavior employed by the

robot is also the result of programming.

Although the approach taken by this thesis also finds support in the theory of mir-

ror neurons and treats the problems of generation and recognition of communicative

behavior as a whole, it differs from the methods mentioned above in several important

ways:

• While most work treats the action generation problem as a low-level motion

trajectory mapping problem [68, 3] or a joint space motor control problem [67],

this thesis advocates learning communicative behavior from a higher level using

motor-primitives acquired during manual skill learning. The level of abstraction

requires a framework that supports hierarchical learning and knowledge transfer

and has the benefit of allowing the interplay between the robot and the human

to be considered as part of the learning process.

• Rather than using mirror neuron analogies to focus on imitating human motion,

a process that ultimately does not lend insight into the origins of communicative

actions, this thesis takes the position that “purposeful action=communicative

behavior” and attempts to ground communicative behavior (the exchange of

useful information) using the same control primitives (actions) that support

other motor skills.

• The recognition process proposed in this work differs from previous work as it

does not attempt to identify intentions by matching entire motion trajectories,
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but instead focuses on extracting and matching simpler cues as those proposed

by Gergely in his teleological stance, which is the subject of the next discussion.

2.3 Teleological Stance for Recognition of Goal-directed Be-

havior

In the paper “What Should a Robot Learn From an Infant?” [33], Gergely argues

that psychological research reveals that one-year old infants are able to attribute goals

to actions and to evaluate the rationality of actions.

Figure 2.1. Gergely’s animated apparatus for establishing that one-year-old infant
infers goals and evaluates the rationality of actions [33].

To illustrate this, Gergely presented an example in which the infants were shown

a computer-animated goal-directed action (as shown in the left figure in Figure 2.1).

After the infants became familiar with this action (when their gazes began to shift

away), they were shown two other animated situations illustrated in the middle, and

the right panels of Figure 2.1. The results show that the infant’s attention focused on

the animation in the middle for longer period of time. A possible explanation is that

the infant can infer that this is not a rational action as the obstacle was no longer in

the way. In contrast, even though the action shown in the right is perceptually novel,

it was an expected rational action for the case.

To explain these remarkable inferential feats for one-year-olds, Gergely proposes

a non-mentalistic (reality-based) teleological action interpretational strategy called

the “teleological stance.” The teleological stance hypothesizes that infants perform
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inference based on a teleological explanatory relation among 3 aspects of reality:

the future state of reality in relation to the behavior (goal), the observed behavior

(means), and relevant physical contexts that constrain possible actions (constraints).

Figure 2.2. The “magic box” study where an adult demonstrates how to actuate a
light switch using an unusual head-bumping action, even though the hands are not
occupied and see if the infant would imitate the action [33].

To illustrate this, an experiment called the “magic box” study (Figure 2.2) was

conducted. An adult demonstrated how to actuate a light switch using an unusual

head bumping action in front of the infant. For one group of infants, a constrained

context was presented in which the adult’s hands were occupied with a blanket (Fig-

ure 2.2 left), and for another group, her hands were clearly free (Figure 2.2 right).

Results show that most infants in the first group (constrained context where the

demonstrator’s hands were occupied) did not imitate the action, because the condi-

tion that prohibited the demonstrator using her hands did not apply in their case.

Therefore, they chose to use their hand to turn on the light instead. However, for the

second group, most imitated the action because the hand constraints in this case did

not exist for the demonstrator and therefore, Gergely contends, the infants concluded

the choice of the demonstrator’s head to actuate the switch must be the result of a

rational decision. A possible interpretation of these experiments is that one-year-olds

understand the goals, and were able to determine the rationality of the action based

on the physical constraints of the current context. Moreover, these results also indi-
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cate that the infants’ recognition process relies on the end-state of the behavior as an

important cue for recognizing the intention of the others. The trajectory of motion

and in this case, even whether the same part of the body is used for bringing about

the end state matters little.

Compared to the traditional views where a complex mental model of others are

required, the teleological stance provides a simplier interpretation for one-year-old

infant’s ability to imitate the behavior observed in others. When this is applied to

AI and robotics, simplicity translates to computational efficiency. In this thesis, this

principle is applied to interpret gestures from a human and ultimately determine how

to help. First, the robot learns an array of skills/programs in its own terms and

masters these skills in a variety of run-time contexts. Then the robot can interpret

events in the world through the prism of these skills, even those that it observes

passively. To classify the behavior of a human, or any other agent, rather than

matching the entire skill program state-by-state, transition-by-transition, I propose

an approach for the robot to extract important cues for inferring intentions of others

based on its own prefernces for action in operating context. Chapter 6 demonstrates

the feasibility of this approach on a bimanual robot.

2.4 Developmental Learning

One of the key elements of the proposed learning approach for robots to de-

velop communicative behavior is the use of developmental stages—structured learn-

ing episodes, where the robot learns behavior incrementally through tasks of increas-

ing level of difficulty. The approach incorporates mechanisms for learning general

strategies and subsequently assimilating additional run-time contexts to control the

incremental complexity of learning in an “open” environment. Developmental staging

can be observed in infant development, engaging processes of growth and maturation

and supported by external constraints that parents put on the environment. Some
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constraints are there to guarantee the infant’s safety, while some are intentionally

introduced to allow infants to play with toys of different levels of complexity at the

frontier of the infants developing world model. This approach to acquiring skills is the

key concept behind developmental robotics. It aims to explore theories of epigenetic

development to build adaptable and more capable robotic systems [1, 71, 84].

Developmental staging has been successfully demonstrated for robots to learn

useful behavior. Gomez [36] and Lee [63] both provide time-varying developmental

constraints to guide robot exploration. Constraints are relaxed incrementally as the

robot gains more competency. Staged learning provides a means for an agent to build

knowledge incrementally and learn increasingly complex skills [2, 55, 15]. Edsinger

and Kemp showed how a humanoid can develop knowledge about its appendages (i.e.,

its hands and fingers) and held tools in a coarse-to-fine, proximal-to-distal, multi-stage

experiments [24, 23].

In contrast to traditional approaches, where complete and deterministic knowledge

of the world is needed to ensure success, developmental roboticists advocate situated

learning where the system uses its sensorimotor resources to explore the environment.

A number of researchers, e.g., Sandini [93], Grupen et al. [85, 14, 47], and Asada et

al. [1], have proposed computational methods for robotic systems to learn in situ by

exploring interactions with the environment using combinatorics of their sensorimotor

resources. They have argued that this approach can lead to adaptive complex behavior

suitable for acting in unstructured “open” environments.

Situated learning also implies that physical embodiment is required for a learning

agent—another key distinction between developmental robotics methods and tradi-

tional methods in artificial intelligence. From the rule-based approach [81, 73], to

the formal representation of commonsense knowledge [43, 45, 18], traditional arti-

ficial systems learn using symbolic abstractions of the world, rather than grounded

sensorimotor signals. For instance, large-scale knowledge collection projects such as
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CYC [65] and OpenMind [105] gather knowledge in the form of logical assertions

through textual analysis. However, these systems have yet to achieve real-world com-

petence in any behavioral task. A possible explanation, argued by the developmental

robotists, is that knowledge acquired through symbolic and textual analysis lacks the

sensorimotor grounding necessary for such knowledge to be applied to real-world sit-

uations. Learning through physically embodied robots ensures knowledge is acquired

in a grounded manner.

Grounded situated learning has been applied for robots to learn about the vi-

sual appearance of its own limbs [80]), or what things its hand and fingers can

actively control [24]. In the domain of language and communication, a number of

compelling recent studies in developmental robotics illustrate that robots can ground

language [108, 92, 82] by learning the association between words (as sound utter-

ances [90, 82] or textual tokens [110]) and actions.

2.5 Affordance Modeling and Behavioral Knowledge Repre-

sentation

In terms of knowledge representation, this work adheres to the theory of “affor-

dance learning.” J.J. Gibson states that ”... the affordances of the environment are

what it offers the animal, what it provides or furnishes, either for good or ill. [34]”

He argued that our perception and understanding of the world is stored and applied

in terms of behavior that the environment affords. Therefore, embodiment and inter-

action with the world are necessary for building grounded knowledge, a crucial part

of cognitive development. This work advocates a unified approach for acquiring and

representing knowledge and treats robot interactions with humans in precisely the

same way as it acquires skills for interacting with inanimate objects. I hypothesize

that not only are learning processes and representations shared between human be-

ings and inanimate objects, but knowledge regarding how to interact with inanimate
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objects also informs social interactions driven by social incentives (mutual reward

and underactuation). When directed toward humans, these behaviors automatically

become communicative in nature. In this section, a background review of the existing

applications of Gibson’s “theory of affordances” in the computer science literature is

provided.

Gibson’s theory of affordances has a significant impact on the field of Human

Computer Interaction (HCI). The theory of affordances is widely cited as the under-

lying guiding principle for software interfaces [30, 106] and high-degree-of-freedom

input device designs [120]. Affordance is interpreted to be an objective property of

the environment that is associated with specific capabilities of the actor, and can

be learned from experience. Conversely, prior experience can influence how a person

predicts affordances. If an affordance of an object does not match the expectation of

the actor, this often leads to confusion and the affordance may not be discoverd. For

instance, in Figure 2.3, doors with wide horizontal bars naturally suggest pushing on

the bar from a human’s previous experience with manipulation of objects in general.

However, if the design of the horizontal bar actually affords pulling and rotating in-

stead of just pushing, it can easily lead a human to believe the door is locked and

cannot be opened. This is an example that shows how a relatively small visual change

can have a dramatic impact on our policies for interacting with the larger concept of

“door.” The application of the affordance theory helps designer to ensure that user

interfaces are built to highlight the affordances of the devices, rather than obscuring

them [30].

In the field of robotics and AI, affordance theory is applied to learn generalizable

properties of objects that are more robust than visual appearance models. Several

recent robot learning techniques have been proposed and applied to demonstrate

the extraction of environmental affordances. Chamero defined affordances as a re-

lationship between an agent and an object in terms of the potential for action [12].
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Figure 2.3. Different door handles suggest different affordances. Narrow vertical
handles suggest grabbing and pulling, while wide horizontal bars suggest pushing.

Fitzpatrick et al. illustrated how a robot can learn “pushing” and “grasping” affor-

dances by interacting with objects [26]. Stoytchev’s robot has learned to use tools

by exploring object-object affordances between tools and other objects [111]. More

recently Sinapov has shown how the sounds derived from interacting with objects are

strongly correlated with other affordances and that by association, inform policies for

action [104].

Most work in the affordance modeling focuses on grounding knowledge by learn-

ing affordances in terms of low-level primitives or hand-coded behavior. In contrast,

the majority of work in traditional AI focuses on high-level symbolic planning with-

out low-level grounding in the robot behavior. To bridge the gap, a formalism of

affordances called “Object-Action Complexes” (or OACs) has been created to both

ground representations of the world in the robot’s interactions with objects and to

use them for higher-level planning tasks [32].

According to [70], there are two properties of affordances that Gibson implies

but never directly states. The first is that affordances can be nested so that the

potential for action can incorporate one or several action possibilities. For example,
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an apple affords eating, but eating is composed of biting, chewing, and swallowing.

Secondly, Gibson implies that affordances are binary: they either exist or they do

not. For example, an object is either graspable or it isn’t. However, in the real-

world, an action possibility exists probabilistically, conditioned on other properties

of the run-time environment. For instance, a stair is climb-able but the difficulty

level associated with this affordance depends on the number and size of the steps.

In robotics, OACs and the framework proposed in this work both allow modeling of

hierarchies of affordances. However, regarding the second property, OACs [32] uses

binary assertions, while the framework in this thesis supports encoding affordances

in terms of probabilities.

2.6 Modeling Humans for Human-Robot Interaction

The HRI research community is focused on problems regarding collaboration, i.e.,

how activities of a human and a robot can be coordinated to produce an adaptive

policy for cooperation [97]. Schaal pointed out that for the collaboration between

humans and robots to be successful, there exist a number of significant challenges:

the detection of humans in the environment, the recognition of human gestures and

intentions, and the conveyance of intentions from the robot to the human using motor

actions. In Section 2.2, some of the seminal work in HRI relating to motor action

generation and recognition has already been reviewed.

Many studies in HRI [10, 23, 76] rely on existing methods from the computer

vision literature for the purpose of detection and tracking of human motion, or the

recognition of human gestural cues. In this section, an overview of these techniques

is provided.
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2.6.1 Computer Vision Techniques for Modeling Humans

Finding humans, tracking human motions and identifying them in natural settings

are difficult problems for computer vision. A great deal of research focues on different

aspects of these problems for decades. The literature on this subject is too exhaustive

to review completely. In this section, a few examples are described to illustrate the

current prevailing approaches.

Human detection is difficult because human appearance changes daily and body

motions are non-rigid. Occlusion, variations in pose, clothing, and articulated motion

all contribute to the challenge. Currently, the most effective approaches for whole-

body human detection and tracking are part-based methods, where human subjects

are modeled as assemblages of parts with kinematic relationships between features.

Earlier work in this line of research used 3D kinematic models [46, 31, 64]. However,

for these methods, stereo correspondence is an issue and also 3D models have many

parameters and degrees of freedom that introduce computational complexity.

As a simpler alternative, there have been approaches where the human body is

modeled as a tree of 2D parts [102, 48, 87] where a generative probabilistic model

of humans is learned using labeled training data. Inference (using non-parametric

belief propagation, or NBP) is performed on the graph structure to detect humans

and estimate their poses. For simplicity, some researchers do not rely on a complex

graphical model. Instead they define a number of constraints using prior knowledge

about the human body and then either search [74] or use dynamic programming to

assign labels to body segments [88]. However, these methods are computationally

intensive and so far do not satisfy the real-time performance requirements of human-

robot interaction. More importantly, none of these approaches have been proven to

work robustly in general, dynamic environments.

For many scenarios in human-robot interaction studies, robots interact with hu-

mans who are standing close to them, and directly facing their cameras. Therefore,
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for many, the use of human part detectors such as faces and hands are sufficient. Faces

and hands are two of the most broadly studied human features. For detection, many

methods have been proposed, focusing on a great variety of features such as color,

shape, texture [16, 44]. Texture-based approaches currently yield the best results,

since texture is relatively robust under different illumination conditions. The Viola

& Jones face detection algorithm [115] is an example of this type of approach, where

a cascade of rectangular texture-based classifiers (Figure 2.4) is trained to achieve

efficient and robust detection of faces. However, the down-side of using simple rect-

angular detectors is that they are much less descriptive than other types of features,

e.g. features derived from steerable Gaussian filters. As a result, these approaches

are prone to failure when the face is slightly rotated or partially occluded.

Figure 2.4. The rectangular features used in the Viola Jones face detection algo-
rithm. These features are simple to compute and their effectiveness has been demon-
strated in the face detection domain.

A great deal of work focuses on the problem of hand detection and tracking in-

dividually. Most attempts are made in the context of in-place video sequences (the

cameras remained fixed). Under such constrained conditions, many found skin-color-

based detection sufficient [54, 95]. There are many instances in a natural environment

where these methods will fail, for example, situations where other skin-color objects or

faces are present. Under constrained postural and viewing angle conditions (e.g. from
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the view of a head-mounted display of a wearable computer), robust hand detection

against arbitrary backgrounds can be achieved [61]. Here, the detector was trained

using the same cascade filter algorithm that Viola & Jones used for face detection.

Due to the descriptive limitations of the original rectangular detectors, the authors

augment the feature set with customized and more computationally expensive fea-

tures. As a result, a simpler, flock of features approach is devised for tracking once

the hand has been detected [60]. Many particle filter methods have been proposed

for hand tracking (c.f. literature review [6]), however, they are only effective after the

hand has been detected.

Finer features associated with eyes, mouth and eye-brows have been studied under

the context of facial expression recognition [21]. Applications that use eye tracking

as a natural pointing device to replace a computer mouse have been designed [49].

They are applications of different feature tracking algorithms such as particle filters

and are sometimes embellished with domain specific prior knowledge to increase ro-

bustness. They either assume a face is visible against a clean background or rely on

face detection algorithms to locate a facial region in cluttered environments in order

to initialize the tracker. Therefore, these methods fail in the same situations that

cause face detection to fail.

2.6.2 A Behavioral Approach to Human Modeling

The approach taken by this thesis is distinguished from prevailing methods in

computer vision and human-robot interaction (HRI) in two important aspects: (1)

robots can actively take actions to change their perception to make vision problems

simpler, (2) robots can take actions with incomplete knowledge of the surrounding

environment and make progress toward its goal while exposing new information.

However, this idea has been recently picked up by the robotics community and

several researchers demonstrated the utility of using basic behavior and interaction
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to improve visual learning. For instance, Steels’ Aibo experiments [109] show that

social learning through natural interaction contributes significantly to successful new

visual category formation and language learning (in the form of “first few words”).

Fitzpatrick [27] shows that a robot can use simple probing actions to overcome difficult

computer vision problems such as foreground object extraction. Katz and Brock [56]

uses these ideas to extract kinematic models of articulated objects using hand-crafted

motions. Edsinger’s humanoid robot, Domo, has been shown to make self-other

distinctions by identifying visual patches that are controllable [24].

However, to the best of my knowledge, this approach has not been applied to

learning about humans, where a robot improves its understanding of humans incre-

mentally through interactions. For instance, I hypothesize that it is possible for robots

to learn to model humans in a way similar to Edsinger’s work [24]—by finding actions

capable of “controlling” (albeit, indirectly) the human subject. Humans are indeed

independent agents whose actions cannot be completely predicted. However, humans

are social beings and therefore respond predictably to social cues and gestures under

the appropriate conditions. In this thesis, these conditions are defined by the “under-

actuation” and “mutual reward” conditions stated earlier. Given these conditions,

with the right learning framework, it is up to the robot to explore its actions and to

discover behavior that has a high likelihood of “persuading” the human to help by

conveying intentions and, in a sense, “controlling” the human in order to achieve a

mutual goal. Vice versa, this allows humans to control the robot as well, by engaging

the appropriate gestural actitity.

More specifically, this thesis proposes an affordance modeling approach for robots

to learn about humans by defining how humans afford controllable behavior. The

central thesis is that compared to visual appearance alone, behavioral patterns are

much more informative, predictable, and reliable than ungrounded symbols.
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2.7 Summary

In summary, the approach taken by this thesis is an advance in HRI on two fronts:

(1) it unifies the way the robot learns motor skills, objects, and human beings and as

a result, knowledge and skill transfer can occur due to a common representation and

learning structure, and (2) it creates learning mechanisms for robots to acquire models

of human beings and how to interact with them at the same time since behavior is now

the main focus of the learning processes in both cases. Furthermore I hypothesize

that this unification not only simplifies the learning process but also can provide

significant improvement in learning efficiency in many cases due to knowledge and

skill reuse. The goal of this thesis is to develop mathematical formalisms necessary

to realize these insights and to provide experimental results to support these claims.
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CHAPTER 3

A FRAMEWORK FOR LEARNING MANUAL
BEHAVIOR

The representational foundation for this work is based on the control basis, a

representation for learning hierarchical control programs given sensory and motor

resources. It was originally introduced by Huber and Grupen [47] as a means for

robots to autonomously construct controllers and actively explore the combinatoric

space of sensory and motor resources. The framework is recently extended by Hart

[40, 39] with elements of intrinsic motivation, hierarchy and generalization.

Using this framework, a designer can guide a robot’s learning process by control-

ling the resources and external stimuli made available to the robot at different times,

thus creating a series of increasingly challenging learning stages. The robot learns

simple programs first and subsequently moves onto more challenging scenarios using

programs learned in the previous stages.

Hart’s thesis [41] demonstrated the framework focusing on the development of ma-

nipulation skills through intrinsically motivated exploration using simple graspable

objects. In joint work with Hart, we proposed an affordance-based modeling approach

for objects. Hart demonstrated the approach on the constructions of object stacks.

To explore complex “objects” such as humans beings, this thesis further expands

the framework in several aspects: (1) a multi-modal sensory processing pipeline is

integrated with the behavioral learning framework, (2) the formalization of a hier-

archical catalog model suitable for representing humans, (3) a prospective learning

algorithm for robots to adapt behavior to situations where simple local generalization
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fails. These extensions lay the groundwork for modeling articulated objects and ob-

jects that possess “agency”—entities with the ability to make independent decisions

and goal oriented actions. This is essential for the development of communicative

behavior in later chapters.

In this chapter, the hierarchical manual behavior learning framework, as presented

by Hart [41], is briefly summarized to provide background for the extensions to be

described in later chapters. The sensory processing pipeline is introduced in Section

3.2. In Section 3.4, an example borrowed from Hart’s thesis is given to illustrate

the behavioral learning process. Finally, Section 3.6 describes several hierarchical

control programs, learned using the framework presented in this chapter. These

control programs will be used as the behavioral substrate for acquiring communicative

behavior in future chapters.

3.1 Control Action and State Estimation

The control basis is designed for robots to autonomously construct control actions

to explore the combinatoric space of sensory and motor resources. Primitive actions

in the control basis framework are closed-loop feedback controllers constructed by

combining a potential function φ ∈ Ωφ, with a feedback signals, and discrete motor

variables τ ∈ Ωτ .

The potential function φ is a scalar navigation function defined to satisfy prop-

erties that guarantee asymptotic stability. Motor variables are discrete, actuatable

degrees of freedom with continuous motor inputs uτ . Feedback for control circuits

consists of a variety of features extracted from a discrete set of feedback signals,

fσ ∈ (Ωo × Ωσ), where o denotes a convolution operator in a set of possible filters

Ωo and σ ∈ Ωσ represents a physical sensor that publishes a raw signal, gσ. Patterns

of individual responses define vectors f that can encode relational properties among

feedback channels and can likewise be used as feedback in hierarchical control circuits.
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Details regarding how f is computed will be given in Section 3.2. A specific instance

of a control circuit is denoted c(φ, fσ, τ) and the number of possible primitive actions

is thus bounded by |((Ωo × Ωσ)× Ωφ × Ωτ )|.
Currently, the set of potential functions Ωφ in the control basis includes:

• Quadratic potential function—a convex quadratic function of the feedback

errors. An example is Hooke’s law, defined as:

φs(fσref
, fσact) =

1

2
(fσref

− fσact)
T (fσref

− fσact) (3.1)

where the difference between the actual and the reference feedback signals,

σact, σref ⊆ Ωσ, captures virtual errors between two features of the same type.

This potential function can be employed for configuration control, spatial posi-

tion control or force control.

• Harmonic function—an artificial potential function that satisfies Laplace’s

equation. It has the property of no local minima or maxima and therefore is

used to compute collision-free motion paths.

• Kinematic conditioning functions—conditioning fields are used to provide

a natural way for the robot to optimize its kinodynamic configuration. Several

fields have been implemented to keep a manipulator away from joint range

limits (rang limits field), to optimize “manipulability” and avoid singularities

(manipulability field), and to maximize stereo triangulation quality (localizability

field).

For convenience of discussion in an example later in the chapter, the mathematical

definition of quadratic potential function has been given in equation 3.1. Detailed

definitions of other potential functions can be found in Hart’s thesis [41].
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The sensitivity of the potential to changes in the value of motor variables (uτ )

is captured in the task Jacobian, J = ∂φ(fσ)/∂uτ . Reference inputs to lower-level

motor units are computed such that

�uτ = −J#φ(fσ) = −(
φ(fσ)

∂uτ
)#φ(fσ), (3.2)

where J# is the Moore-Penrose pseudoinverse of J [78]. With no motor variables at-

tached, the controller becomes a monitor CM(fσ, φ) that simply observes the feedback

signals (off-policy) passively for the purpose of event detection. The use of monitors

will be discussed further in Chapter 6.

Multi-objective control actions are achieved in the control basis by combining

control primitives using nullspace composition [78]. Nullspace composition allows

control primitives be combined in a prioritized manner, ensuring the lower priority

controller does not interfere with the objective of the higher priority controller. For

instance, given a higher priority controller, c(φ1, fσ1 , τ1) and a lower priority controller

c(φ2, fσ2 , τ2), a multi-objective controller can thus be defined as

c(φ2, fσ2 , τ2) � c(φ1, fσ1 , τ1).

The operator “�”—read as “subject-to”—is used to represent the prioritized combi-

nation between any two control actions [47]. A concrete example of this controller

construction process is illustrated in Section 3.4.

The state of a control process, denoted as a predicate p(φ, φ̇), is created to describe

the status of the corresponding controller c(φ, fσ, τ) when its interacts with the task

domain. To support a natural discrete abstraction of the underlying continuous state

space, a simple discrete state summary of the dynamics based on quiescence events

was proposed in [40]. Quiescence events occur when a controller reaches an attractor

state in potential φ. For state description, Huber [47] proposed p(φ, φ̇) ∈ {0, 1}
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for the control basis, while Coelho [13] adopted a set membership approach that

built empirical models of first order control dynamics. Hart defined the state of a

controller as p(φ, φ̇) ∈ {X,−, 0, 1} [41]. In this dissertation, we will adopt Hart’s

state description from [41], more formally defined as:

p(φ, φ̇) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X : φ(fσ) controller is not activated

− : φ(fσ) has undefined reference

0 : |φ̇| > εφ, transient response

1 : |φ̇| ≤ εφ, quiescence,

(3.3)

where ε is a small positive constant. The “X” condition specifies that we either don’t

know or don’t care what the status of ci is. Typically, this is the initial state of all

controllers immediately after being engaged and before predicate pi is evaluated. The

“−” condition means that no target stimuli is present in the feedback signal σ, and

the environment does not afford that control action at that time. The “0” occurs

during the transient response of ci as it descends the gradient of its potential, and

“1” represents quiescence. Given a collection of n distinct primitive control actions, a

discrete state-space S ≡ (p1 · · · pn) is automatically formulated. Next, the processing

pipeline for extracting features and the available sensor signal set Ωσ are discussed.

3.2 Signal Processing Pipeline

This section provides a description of the signal processing pipeline for extracting

features fσ from sensory channels (Ωσ ). The resulting features form the perceptual

basis for robots to generate control actions using the control basis. The robot perceives

the world through a broad range of features extracted from visual, proprioceptive,

and force signals. This work employs two robotic platforms, Dexter and the uBot (as

shown in Figure 3.1). Both robots have a stereo camera pair mounted on a pan/tilt

head, two arms and two hands. The difference is that Dexter has two 7-DOF Whole-
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Arm Manipulators (WAMs) and two 3-finger 4-DOF hands, while the uBot has only

4-DOF arms and two 2-finger hands. However, the uBot is a dynamically balancing

mobile robot with two wheels and Dexter is fixed to the ground.

Figure 3.1. This work employs two robotic platforms, Dexter on the left and the
uBot on the right.

For these robots, signals from the following channels can be extracted:

• Visual: information is captured from the cameras mounted the robot. This

channel of information is sub-divided into subchannels with pre-processing and

filtering. A typical color camera image can be decomposed into RGB, YUV, or

hue, saturation and intensity (HSI) color spaces. Intensity/gray-scale images

are used to compute texture or motion segments.

– color - the hue, saturation and intensity color space is discretized into 18

channels of hue, 10 channels of saturation and 10 channels of intensity.

– texture - multi-scale Gaussian derivative operators according to the Koen-

derink scale-space theory [59]. Gaussian derivatives can be used to describe

various texture features such as scale space corners, ridges, and blobs.
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– motion segments - a channel of motion segments in the scene. For this

work, this channel is implemented as a union of all color channel features

in motion. Other alternatives such as dynamic background subtraction or

persistent backgrounding [22] have also been implemented.

This visual sensor resource set Ωγ is thus defined as:

Ωγ =
{
γmotion, γhue,i, γsat,j, γint,j | i ∈ {1, ..., 18}, j ∈ {1, ..., 10}}, (3.4)

where γi ∈ SO(2) is heading toward features on channel i.

• Force: a means of measuring when the robot makes contact with objects in its

environment, including itself. Forces and torques can be measured from load-

cells, strain gauges, capacitive surfaces, or from examining the motor currents of

a robot’s joints. For this channel a force vector (�f ∈ R
3 for Dexter and �f ∈ R

2

for uBot) is obtained from finger tip load cells of the robot, and a scalar value

fnet is computed by normalizing the force vector. This set of signals is

Ωf =
{
�f, fnet

}
, (3.5)

where �f is the force measured on the fingers, and fnet the normalized scalar

value of f .

• Proprioceptive: scalar joint angle values for each joint of the robot. These

values determine the robot pose and actuate the robot when modified. This set

of sensor resource is:

Ωθ = {θarm,θhand,θhead}. (3.6)
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where θarm are the configuration of the robot’s arm, θhand are the configuration

of the robot’s hand, and θhead are the configuration of the robot’s pan/tilt head.

Both robots have two arms, two hands and a pan/tilt head.

Figure 3.2. The visual signal processing pipeline: raw sensory input from each visual
channel is first filtered using a feature mask, then contiguous regions are segmented
and finally a Kalman filter is applied to provide a summary of the first order dynamics
of each type of feature in space and time.

For this work, only color channels (hue, saturation and saturation) in the visual

channel, finger tip forces and scalar joint angle values are processed to extract features.

These features are used as potential σ for constructing controllers. The visual channels

are processed using a signal processing pipeline (Figure 3.2), through a succession

of operators o ∈ Ωo. First, each channel of raw sensory input is filtered using a

corresponding feature mask operator om, e.g. hue values within a certain range.

For visual channels, a connected components operator oc is then applied to segment

contiguous regions that share a feature. Finally, a Kalman filter operator ok is applied
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to provide optimal, mean (ũ) and covariance (Σu) estimates of the feature distribution

as well as its first order dynamics (u̇, Σ̇u) in the presence of noise. Thus, a summary

of the first order dynamics of each type of feature in space and time is delivered as a

perceptual basis for the subsequent object/human modeling and behavioral learning.

It is up to the robot to explore this feature space by constructing controllers using

the control basis (discussed next) in search for ones that reliably lead to reward.

The discussion on how related features are modeled and archived is deferred until

Chapter 4, while how a robot uses the output from the signal processing pipeline to

construct actions for exploring the world is presented next.

3.3 Learning Hierarchical Behavior using Intrinsic Reward

To drive the learning process, this framework defines a simple intrinsic reward

function R that provides reward when a controller state transitions from a non-

convergent state to convergence. More formally, Hart defined intrinsic reward as the

following:

bki =
(
(pk−1
i �= 1) ∧ (pki = 1)

)
, (3.7)

rki =

⎧⎪⎨
⎪⎩

1 : if
(
bki ∧ (σi ⊆ Ωσ(env))

)
0 : otherwise

(3.8)

rk =
∑
i

rki . (3.9)

where pki is the state of a controller ci = c(φi, fσi
, τi) at step k, and bki is the binary bit

indicator for the convergent event for controller i at step k. As a result of Equation

3.9, the intrinsic reward function provides a unit of reward for all controllers that

converge at step k, and the reward the robot receives is the sum. The condition that

only controllers using feedback signals from the environment (σ ⊆ Ωσ(env)) can be
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rewarded is very important in this formulation since we are interested in learning the

effect of actions on the environment.

The state and action spaces S and A defined by the set {Ωφ × (Ωo × Ωσ) × Ωτ}
and reward function R form a Markov Decision Process (MDP) for control. Value

iteration algorithms like Q-learning [112] provide a means of estimating the value,

Φ(s, a), of taking action a in state s using the update-rule:

Φ(s, a)← Φ(s, a) + α
(
r + γ maxa′Φ(s′, a′)− Φ(s, a)

)

where γ ∈ [0, 1] is the discount rate, r is the reward received, and α > 0 is a step-size.

With sufficient experience, this estimate is guaranteed to converge to the optimal

value Φ∗. The optimal policy π∗ can then be extracted by selecting actions that

maximize the expected sum of discounted future reward, such that

π∗(s) = argmaxaΦ
∗(s, a).

To balance exploration and exploitation, an ε-greedy approach is used where the agent

with 1− ε probability selects a random exploratory action.

After value iteration converges, the value function, states and actions are pack-

aged in a control schema representing a policy for discovering rewards in a variety

of circumstances. Schemas can be viewed as a temporally extended abstract actions

with three probabilistic outcomes (Figure 3.3) plus the associated knowledge. This

abstraction preserves the semantics of primitive controllers and supports the hierar-

chical invocation of schema.

Representing behavior in terms of a value function provides a natural hierarchical

representation for control basis programs where absorbing states in the MDP repre-

sent quiescence events in the policy. Therefore, the state of a program can be captured

using the same state-predicate representation, {X,−, 0, 1}, as for a primitive action,
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even though that program may have complex internal transition dynamics (Figure

3.3). The learned program can be invoked hierarchically as an abstract action, thus

enabling the robot to acquire more complex behavior.

Figure 3.3. An iconic representation of a state transition when a temporally ex-
tended sensorimotor program called a schema is invoked hierarchically.

Hierarchy for this work is induced via a developmental staging strategy. Each

stage is defined by a set of resources. For example, the robot can be constrained to

recruit effector resources consisting of the pan/tilt degrees of freedom of the stereo

head, excluding arms and hands. Then, all behavior consists of visual tracking. Later,

effectors in the arms can be incorporated to reach to and touch interesting features it

tracks visually. Learning in incremental stages allows the programmer to direct the

exploratory behavior of the system and thus influence the size of the state and action

space. The unified framework on which knowledge is gathered and archived makes

reuse and transfer of knowledge feasible. For instance, behavior learned in an early

stage can be invoked in all the subsequent stages as a temporally extended action.

Examples of these hierarchical programs are given in Section 3.6.

3.4 Example: SearchTrack

In this section, the learning framework is illustrated with an example in which a

simple program that has been documented in Hart’s dissertation [41]. The descrip-

tion and some of the notations has been updated in this document to improve clarity.
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This program is called SearchTrack, it is useful for finding and tracking visual

stimuli with Dexter’s pan/tilt head is presented. In this stage, Dexter is only allowed

to use the effector that direct a pair of cameras, although the behavior depends on

sensor feedback, σ, from only one of them. We also assume that the environmental

reference that ultimately drives behavior is stimuli that reflect the most highly satu-

rated hues on the image plane of Dexter’s left camera, sat10. Given this constraint,

two controllers, Search and Track are employed.

Both controllers are defined using common resources in the control basis frame-

work. Both control circuits are constructed using feedback signals (σ ⊂ Ωσ) that

include the joint angle configuration of Dexter’s head, θhead. Moreover, both engage

these same degrees of freedom as effector variables (τ ⊂ Ωτ ). Search and Track

are distinguished solely by the source of their respective control references. Formally,

the two controllers are defined using the control basis formulation as follows.

Search - controller csearch = c(φ, σ, τ), where

σ = {Pr(θhead|sat10), (θhead)act}, and τ = θhead.

To generate the search potential, the error between the reference value sampled

from Pr(θhead|sat10) and the feedback (θhead)act is computed

ε1 = θsample − θact, and

φsearch = ε1
Tε1.

And finally, the error signal that drives the motor unit is computed as

Δuτ ∝ −
(
∂φ(σ)

∂uτ

)#

track

φ(σ)
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and search action is thus:

csearch � c(φsearch, ε1, θhead).

Track - controller csearch = c(φ, σ, τ), where

σ = {(θhead)obs, (θhead)act}, and τ = θhead.

To generate the track potential, the error between the observed sat10 image

reference and the feedback (θhead)act is computed

ε2 = θobs − θact, and, once again

φtrack = ε2
Tε2

And finally, the error signal that drives the motor unit is computed as

Δuτ ∝ −
(
∂φ(σ)

∂uτ

)#

track

φ(σ)

and the track action is thus:

ctrack � c(φtrack, ε2, θhead).

In Search, the control reference is sampled from a probability density function,

Pr(θhead|sat10), that summarizes the places where sat10 features have been found in
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Figure 3.4. The learned policy for searching and tracking features in the environ-
ment. The policy begins with a ’XX’ state indicating neither the Search nor the
Track controller has been activated. After executing both Search and Track
actions concurrently, if the feature stimuli has not yet been discovered (state ’0-’ or
’1-’) then the robot continues the search process. On the other hand, if the stimuli is
found (state ’00’) then the robot tracks until its gaze is foveated on the feature (state
’01’).

the past. This distribution begins with a uniform distribution and is updated as the

robot gathers more experience. For Track, the visual processing pipeline delivers

a stream of coordinates of sat10 defined in the heading space (altitude and azimuth

angles). A feedback error is computed between the observed heading reference for

sat10 (θobs) and the actual heading (θact) to keep up with the saturation cue. According

to the reward model, since the error is directly provided by the stimuli from the

enviroment environment, the robot receives reward for the quiescence of ctrack.

From these two actions, the state space Sst = (psearch ptrack), and the action set

Ast = {csearch, ctrack, csearch�ctrack, ctrack�csearch} were constructed, where csearch�ctrack

represents concurrent execution of both controllers using nullspace composition, while

ctrack has the higher priority. Given the actions, state space and intrinsic reward,

standard Q-learning was used and ε-greedy action selection was set to 20% exploration

rate. Dexter learned a policy for SearchTrack after 50 episodes of training. Each

episode ended when a rewarding event occurred (i.e., the track controller quiesced).
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A resulting policy is shown in Figure 3.4. The robot searches until a stimuli is found

and begins tracking.

3.5 Generalization

Figure 3.5. Sensorimotor programs are factored into abstract programs and pro-
cedural parameterizations such that the structure of the learned program can be
re-applied in new environmental contexts defined by fi ∈ F without starting from
scratch.

As shown in the SearchTrack example, with constrained context, e.g., limiting

the robot’s sensor resources to attend only to specific features and effector resources to

use only head degrees of freedom, the robot can quickly learn a program for handling

the specific context. Once the basic behavior has been learned, more challenging

contexts are introduced, such as using objects of various colors or sizes, or placng the

object in different regions of the workspace.

To adapt to new contexts, Hart presented a simple generalization strategy [39]

where the robot allocates different sensorimotor resources, e.g. if tracking with a
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previously learned sensor channel fails, search for another channel. The key to this

generalization technique lies in factoring the control program into a declarative com-

ponent and a procedural component (Figure 3.5). Factoring allows the robot to quickly

generalize to new contexts by observing features f and learning a mapping from f

to the appropriate sensorimotor resource (σ, τ) for a given context using a standard

decision tree algorithm C4.5.

3.6 Substrate for Learning Communicative Behavior

Using the hierarchical behavior learning framework presented in this chapter, Hart

demonstrated on Dexter that a robot can learn a series of increasingly complex manual

behavioral programs, with one bootstrapping on behavior learned in previous stages

[40]. These behaviors include: ReachTouch for reaching out and touching features

it sees, VisualInspect for bringing object closer for inspection, and PickPlace

for transporting object to desired locations, each using the previous behavior as an

abstract action. A schematic representation of these programs is shown in Figure 3.6.

In the following chapters, these manipulation programs become the behavioral

substrate for the learning of communicative behaviors. In Chapter 5, I will show that

by using this framework, when social conditions of mutual reward and underactuation

are introduced, expressive communicative behavior emerges naturally as the result of

intrinsically motivated learning and reusing existing manual behaviors. However, be-

fore the robot can learn communicative behavior with humans, it must first acquire

some basic concepts about the human object. Hart and I have colloborated on for-

malizing a technique for building world models using hierarchical manual behaviors

acquired in this chapter. Hart demonstrated its use for simple objects [41]. This tech-

nique enables robot to represent objects in terms of behavior they afford. In the next

chapter, I will introduce this technique under the context of modeling humans, where

humans are also learned and represented as a collection of affordances. For organizing
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these affordance I will also present a new hierarchical probabilistic representation for

this purpose.
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Figure 3.6. A hierarchy of manual behavior emerges as the resulting of intrinsic mo-
tivated learning using the framework presented in this chapter. From top to bottom,
the control basis formulation enables each behavior to invoke the behavior below
as an abstract action (illustrated using an iconic representation from Section 3.3),
thus expediting the learning process. The generalization process allows the robot to
quickly adapt to new situations and acquire new procedural knowledge in the form
of decision trees (as shown on the left of the figure).

48



CHAPTER 4

BUILDING AN AFFORDANCE MODEL OF HUMANS

We have learned from vision research that finding a robust and invariant represen-

tation of humans is a difficult problem because humans are dynamic in appearance

and activity. This difficulty is not limited to humans as Figure 4.1 demonstrates.

Occlusion, variation in pose, clothing and articulated motion all contribute to the

challenge. This work proposes that humans should be represented in terms of their

behavior.

In contrast to prevailing techniques where objects or humans are learned passively

using statistical machine learning algorithms on large, pre-collected data-sets offline,

the psychology literature has revealed that human infants learn by interacting. An

infant’s concept of an object incoporates the actions they afford. They grab the object,

shaking it, putting it into his mouth. Sometimes, new behavior (such as rotating the

object) is discovered and enables the infants to extend their understanding of the

object. These observations provide us with two important insights for our process

of modeling humans: (1) the process is incremental—models are learned and refined

over time and improved models lead to the acquisition of complex models and new

skills; (2) the process is highly integrated with behavior learning where actions need

to be part of the formulation. Neither of these has been demonstrated for a human

model.

The following are the hypotheses of this work:

1. Under the appropriate social contexts, human behavior is predictable.
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2. Recognizing human behavior does not necessarily require robust tracking of

human body parts, or depend on critically on any one feature (like the face),

but instead is also related to a holistic relationship between the human subject

and the observer and therefore often can rely on simple cues.

3. An incremental and integrated approach for building behavioral models of hu-

mans is both possible and desirable as it simplifies the learning process at each

step and produces a more robust model for recognition.

Predictability: We argue that in social contexts, human behavior conforms to

common standards that are highly predictable and uniquely human. For instance,

if you hand someone a book, you can expect that person to take the book, look at

the cover, maybe even flip through a few pages and ask some questions about it. If

however, the subject is a dog, then totally different behavior would be expected. So-

cial interactions depend on the relationships between the goals and existing behavior

of the conversants. Section 1.2 discusses the conditions that define the appropriate

social contexts for fostering communicative behavior in a computational framework.

Using Simple Cues: In a social context, the behavior of a human partner is

easier to recognize when it can be influenced by the behavior of the robot. In such

circumstances, the robot can detect simpler cause-effect aspects of the human with-

out having a complicated model of the human mind. Some researchers, Kruger [94]

and Kragic [58] have applied the idea to improve a robot’s ability to track human

limb motions by focusing on the object the human is interacting with, and using this

information to infer the position of the limb when visual tracking alone can produce

ambiguous results. This work takes this idea further and argues that humans are

defined not only by visual appearance, but more importantly, how we behave and

interact with the environment around us, including objects and other agents. This

work advocates a developmental approach that uses stages of learning, to build a

behavioral model of humans incrementally, beginning with simple cause-effect behav-
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ior at first, and then moving on to more complicated and detailed models later as

situations require.

An Affordance Model of Humans. The behavior modeling approach taken

by this work subscribes to the Gibsonian view that our perception and understanding

of the world is stored and applied in terms of the potential behavior that the envi-

ronment affords [34]. Therefore I argue that as a robot interacts with objects in the

world and learns effective manual skills for achieving reward, it can also accumulate

a collection of behavioral “affordances” that adequately describe the relationship be-

tween proprietary robot actions and the object. For instance, a cup can be described

as something that is “grasp-able”, “lift-able” and can be used to “contain” other ob-

jects. Chairs, on the other hand, all afford “sitting” by the actor and therefore can

be considered as “sit-able.”

Figure 4.1. Chairs and cups are sometimes difficult to recognize from visual appear-
ance alone.
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As shown in the examples shown in Figure 4.1, due to the arbitrary shapes and

forms that both cups and chairs can take, the recognition by appearance alone, using

passive vision techniques can be extremely challenging. On the other hand, behavioral

affordances, such as “grasp-able,” “lift-able”[41], “contain-able” [103], or “sit-able”

are all defined in terms of functional attributes tested by behavioral programs. The

successes (or failures) of which can be easily determined by experiment. Using af-

fordances as defining properties for cups or chairs is robust to variations in physical

appearance, or environmental condition changes. Thus, the affordance modeling ap-

proach yields “invariant” representations that should perform better than exclusively

appearance-based approaches.

We believe by employing the same learning framework that robots use to learn

sensory and motor behavior such as the “grasp-able” and “lift-able” properties of

objects, a robot can also learn the affordances of humans in the same manner. In

Section 4.3, examples are provided to demonstrate how a robot can incrementally

accumulate affordances of human using behavioral programs learned in the previous

manual skill learning stage. Furthermore, the acquired human model is carried over to

the next chapter, where I will show that learning interactive behavior is possible even

when the robot only has a coarse and incomplete model of humans. The resulting

behavior can be useful as a robust means of confirming human presence, and that

perceptual and motor skills also extend the model of objects and humans.

The rest of the chapter is organized as follows. First, we briefly discuss some prior

work and ideas that have been adopted for the purpose of modeling affordances of

humans. This includes probabilistic frameworks for modeling objects using visual fea-

tures because I believe they are possible candidate representations for organizing the

affordance information. Next, we focus on how we can combine these ideas and adapt

them to the control basis for learning multi-modal behavioral affordances of humans

through social interactions. Section 4.3 demonstrates how this framework is applied
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to enable a bimanual humanoid robot to acquire an affordance model of humans in-

crementally, using a series of interactions with multiple humans and later, how the

learned model is applied for recognition. Finally, in Section 4.5, the implications and

potential benefits of the proposed approach are further discussed.

4.1 Related Work in Object Modeling

Researchers in the computer vision community have spent a great deal of effort to

model and recognize objects. In recent years, increasing attention has been focused

on developing part-based and probabilistic methods. For instance, the feature con-

stellation model by Fergus et al. [25] and the And-Or Graph (AOG) image grammar

by Zhu et al. [121, 72] are generative modeling approaches that share the basic idea

that objects can be decomposed and represented as a collection of smaller parts. The

main difference is that AOG is designed for representing objects in deep hierarchies

while the feature constellation approach concentrates on single level decompositions.

This work chooses to adopt the graphical model formalism of the And-Or Graph for

the purpose of organizing learned affordances in a hierarchical manner. Details will

be given in Section 4.2.3.

While many vision techniques focus on modeling the visual appearance of objects

in a passive manner, researchers in the robotics community have demonstrated that

basic behavior and interaction can be used to improve visual learning [27, 56]. In

Chapter 2, we have also covered work by a number of developmental robotists who

were inspired by Gibson’s theory of affordance and proposed robot learning techniques

for modeling objects in terms of the behavior they afford. Using these methods, robots

were able to learn affordances of tool-use [111] and affordances in the auditory domain

[104].

While most works used hand-coded actions, Hart [41] proposed a computational

framework for robots to simultaneously learn new behavior and the environmental
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conditions that afford its use. The robot is capable of learning and refining behavior by

adapting to new contexts as required by the more sophisticated objects it encounters.

Hart has demonstrated the use of this framework for the acquisition of affordance

models for several objects, two of which are shown in Figure 4.2. Specifically, while

both objects afford SearchTrack, ReachTouch and BimanualTouch, only the

larger red ball with multi-color patches affords VisualInspect to reveal more multi-

color features that are not initially visible when the object is placed on the table.

Figure 4.2. Examples of an object “catalog” built using the behavioral affordance
modeling approach. Through a series of intrinsically motivated exploratory actions,
the robot learns different affordances for the small orange basketball and the larger
red ball.

Despite an abundance of attempts to model objects in terms of affordances, there

appear to be few applications of this idea to the understanding of human beings.

Therefore, this work proposes to model humans as a collection of affordances such

that the robot’s understanding of humans can be incrementally improved through

interactions. Representation-wise, this work shares similar ideas with the part-based

methods in the vision literature for probabilistically organizing the data, but adds

another dimension to the representation—behavior. My goal is to show how actions

can play an important part in the process of modeling the human and how associ-
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ated actions are represented in the same model. I also suggest how this behavioral

model can be used for both detecting humans in the environment and recognizing the

gestures and intentions of the human beings. This work demonstrates this approach

with experiments in Section 4.3.

4.2 The Affordance Model Learning Framework

This section presents the affordance model learning framework for robots to ac-

tively build knowledge structures of nearby objects in an incremental manner. Section

4.2.1 describes a representation called the affordance catalog for accumulating spa-

tially or behaviorally associated affordances. While most of the behavioral learning

framework has already been presented in the previous chapters, the remain pieces

relating to affordance learning and organzation are discussed in this chapter.

4.2.1 Catalogs of Affordances

According to Gibson, “affordances” are defined by the behavior that the environ-

ment supports (or “affords”). In this framework, objects in the world are represented

by a data structure called a catalog. Formally, we define a catalog C to be a collection

of n plausible affordances (behaviors) and the probability of achieving reward r if the

behavior a is executed:

C : {a, Pr(r|f, a)}n

where f is the result of some operator applied to signals from sensor resource σ

associated with a behavior ai ∈ A (the available sensor resources and signal operators

were covered in Section 3.2). It describes a distinctive environmental context and

thus allows the robot to build models of contexts that are likely to lead to reward

r if a given program ai ∈ A is executed. For this work, we model the probability

distributions as Gaussians.
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In a developmental learning framework, the robot first learns affordance as be-

havioral programs in simple contexts. Once the robot has acquired the basic skills,

the context is expanded and basic behavior is extended into a more comprehensive

set of circumstances. The above representation captures the affordance of an action

under the expanded environmental context defined by f . In the following sections, we

provide more details on how these affordances are learned and organized to describe

interactions with the world.

4.2.2 Affordance Learning

This work explores a unified learning framework based on the control basis to

learn behavior and knowledge regarding the world using the same processes. Much of

the framework and the resulting manual skills have already been covered in Chapter

3. To learn affordances, the robot can simply apply known behavioral programs in

search for ones that lead to reliable reward. Once found, these affordances are added

to a data structure called a catalog, which was described in Section 4.2.1.

An issue that has not been addressed thus far is related to the focus of attention

during the affordance modeling process. In its current form, it is possible for the

robot to repeatedly explore the same affordance over and over without any loss of

interest. This certainly is undesirable since it will be difficult for the robot to make

progress in uncovering new knowledge. The attention-span for an affordance needs

to be capped. However, the amount of time required for modeling an affordance is

dependent specifically on the features and behavior involved. It is possible to hand-

pick a duration for each type of feature-behavior relationships or for simplicity define

a single upper-bound fixed duration for all types of feature relationships. However,

a single upper-bound would be difficult to define and manually defining a duration

requires understanding of the modeling process and even access to the raw sensory in-

formation which are difficult for both novice and expert human users alike. Therefore,
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it is desirable for an autonomous agent to measure its affordance modeling progress

internally. More specifically, when the exploration of an affordance leads to no further

knowledge, the robot should direct its attention elsewhere.

This corresponds to habituation, a term from psychology for describing the de-

creasing motivation to attend to a stimulus when it persists over an extended period

of time. Computationally, in the control basis, this is defined as an information

gain, to capture the fact that there exists a decreasing opportunity to discover new

affordance-based facts about a context/object as exploration proceeds. This is similar

to work done by Schmidhuber [99, 98, 100] in which the robot seeks to take actions

that reduce the “entropy” of the system. Specifically, we define H by evaluating the

information gain of the affordance model Pr(r|f, ai) for taking action ai:

H = |Σi(t)− Σi(t− 1)|

where Σi(t) is the variance of the affordance model at time t. Intuitively, when a

feature is first discovered, the model (Pr(r|f, ai)) is inaccurate and uncertain. The

sensitivity of model variance to additional experience and exploration is high—the

marginal information gain is also high. Additional exploration causes model variance

to decrease at a diminishing rate until it stabilizes. When H decreases below a

threshold (H < th), we assume no more information can be gained, and the affordance

is habituated. Therefore, the context represented by a catalog is no longer compelling

and the agent is well served (cognitively) by attending to other contexts. This metric

allows contexts with more variation to be explored more. In Section 4.3, an example

is given to demonstrate how this mechanism can be applied to drive the robot’s quest

to learn an affordance-based kinematic model of humans.

57



4.2.3 A Hierarchical Affordance Representation for Complex Objects

This section further extends the affordance modeling technique done in conjunc-

tion with Hart and describes how the learned affordance catalog can be formulated

in terms of a principled probabilistic framework for organizing affordances hierarchi-

cally and for facilitating recognition. As the robot learns a collection of affordances,

contextual distinctions can be resolved into finer and more discriminative models.

For instance, human beings initially (and conspicuously) afford the visual tracking of

large scale motion cues. However, over time, and as more nuanced behavior with hu-

mans is acquired, the human “context” grows to include the appearance and motions

of smaller body parts, sounds and activities. To encode affordance hierarchically, this

work adapts a probabilistic framework of the And-Or Graph proposed by Zhu et al.

from image scene segmentation [121, 72] for the use of affordance modeling.

In Zhu’s approach, objects are modeled as a hierarchy of parts, that forms a parse

graph structure. As shown in Figure 4.3, a bicycle can be divided into a frame,

wheels a seat, while a wheel can be divided into smaller parts such as spokes and

tire. The And-node represents a decomposition of an entity into its parts, while the

Or-nodes act as switches for alternative sub-structures. The horizontal connections

between nodes encode relations and constraints. To adapt this framework to describe

hierarchy of affordances, we define each node in the AOG parse graph as an affordance

learned using existing behavioral programs.

More formally, the Affordance And-Or Graph can described as tuple:

G =< S, V,R, P >

where S is the root node, V are nodes that describe affordances of an operating

context, R is a set of observed relations between parts, P is the probability model of

the graph. The probability of each node vi on the graph can be recursively computed
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Figure 4.3. A bicycle can be decomposed and represented as a hierarchy of smaller
parts using an And-Or Graph image grammar framework. This figure is adapted
from [121].
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as a product of its N child nodes (vij, where j ∈ {1, ...Ni}) according to the structure

of the graph.

P (vi) =

Ni∏
j=1

p(vij)

where each p corresponds to the affordance probability Pr(r|f, a) described in Sec-

tion 4.2.1. The relational constraints between affordances in the AOG formulation is

modeled as a Markov Random Field (MRF) where a probability is computed on the

multi-feature affordances discovered by the robot. For instance, the human simulta-

neously affords tracking the movement of the torso feature and the head feature in

a kinematically constrained manner. This kinematic relationship can be encoded in

the form of an energy function E(G) in the MRF formulation:

P (M) =
1

Z
e−E(G)

=
1

Z
e−

∑
<i,j>∈V (ψ(vi,vj))

where ψ(vi, vj) denotes a pairwise relationship of the multi-feature affordance, and Z

is the standard Gibbs normalizing partition function. The probability for the entire

parse graph is then the product of the two,

P (G) = P (V )P (M)

= (

N(S)∏
j=1

p(vj))
1

Z
e−E(G)

=
1

Z
(

N(S)∏
j=1

p(vj))e
−∑

<i,j>∈V (ψ(vi,vj))

After the model is learned, the recognition process consists of finding the collection

of features and affordances that maximizes the P(G), s.t.,
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V ∗ = argmaxvP (G)

Figure 4.4. This figure shows a hypothetical 2-level hierarchy of a simple human
affordance model. The root node H is a random variable that represents a human.
The human in this case affords 3 behavior, encoded as random variable A, B and
C. The relation constraint between affordance A and B is encoded in the joint
distribution ψ(A,B).

The following is an example illustrating how this formulation is applied for the

purpose of representing human affordances in a hierarchical manner. Figure 4.4 shows

a hypothetical 2-level hierarchy of a simple human affordance model. The root node

H is a random variable that represents a human. The visual appearance of a human

can be decomposed into 2 parts: an upper-body (encoded as random variable A) and

a lower-body (random variable B), both afford tracking. The kinematic constraint

of the upper-body and the lower-body is encoded in the joint distribution ψ(A,B).

Assuming other than visual tracking, the human also afford another behavior, for

instance, a beckoning gesture, encoded as random variable C. Using the affordance

modeling technique described earlier in this chapter, the individual affordances P (A),

P (B), P (C) and relational affordance ψ(A,B) can be modeled. Thus, the overall

distribution for variable H can be computed using:

P (H) = P (V )P (M) =
1

Z
[P (A)P (B)P (C)]e−ψ(A,B)
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4.3 Case Study: Incremental Modeling of Human Affordances

To verify the proposed approach to incrementally learn affordance models of hu-

mans, we employ a bimanual upper-torso humanoid robot, Dexter. We will show

that Dexter can learn increasingly complex affordance models of humans by action

exploration. The learning occurs in a number of stages, as follows.

4.3.1 Stage 1: Learning Human Motion Affordances

This section describes how the robot acquires a preliminary model of humans in

the environment using a sequence of simple staged learning episodes. This is moti-

vated by the development of human infants where maturational constraints dramat-

ically influence the incremental complexity of learning about open interactions with

unstructured environments.

In the control basis learning framework, humans represent an operational “con-

text” that is modeled in the same fashion as the many other contexts that exist:

by allowing the robot to explore and find actions associated with perceived sensory

features that lead to reliable reward. To facilitate learning about humans, we initially

bias the robot’s visual sensing to be selectively sensitive to certain types of features,

e.g. regions of coherent large motion in the environment. This is similar to the matu-

ration process of a human infant where the infant’s vision is initially rather primitive

and is only responsive to large regions of motion and brightly colored or high-contrast

objects.

The regions of coherent motion are computed using a persistent backgrounding

technique [22] that enables robots to build background models of the environment.

The background model is constructed and updated when no one is in the room, by

stitching together snapshots of the scene as the robot randomly scans the surrounding.

Using this background model, foreground motion can be segmented and the robot

can thus track foreground motion generated by human movement. Although this is
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a coarse feature and can be ambiguous if objects such as chairs or tables are moved

before the background model is updated. However, the purpose of this work is to

demonstrate that robots can learn useful behavior for interacting with humans using

such coarse, ambiguous features. Behavior and the associated models can be used to

reduce uncertainty as well as to solicit help from humans in the environment. More

importantly, models acquired can also be used to bootstrap the learning of more

complicated models of humans and interaction.

Figure 4.5. The human affordance model after stage 1. The model contains a Track-
able affordance, i.e. the probability of reward Pr(r|f, a) given the SearchTrack ac-
tion. The top distribution shows where motion can be successfully tracked in pan/tilt
space. The brighter of the pixel, the higher the probability of reward/success. Simi-
larly, the bottom distribution shows the scale property of the tracked motion feature.
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Due to developmental staging, the robot’s choice of actions is at first limited—the

only affordance it can explore is at this stage is SearchTrack action (Section 3.4),

applied to regions of rigid body motion. Dexter is rewarded for successfully tracking

these features and such cues are available when humans are active in the environment.

Hence, humans are track-able and this affordance is added to the catalog (Figure

4.5). Dexter collects samples and uses them to construct the affordance probability

distribution Pr(r|f, a) (modeled as Gaussian distribution), i.e. the probability of

reward given the action that is configured to search and track fmotion. In this case,

fmotion = {fθ, fs}, where fθ is the pan/tilt configuration of the stereo head of when

the motion is tracked and fs denotes the spatial scale of the tracked motion. These

probability distributions (shown in Figure 4.5) reflect Dexter’s primitive concept of

humans: a) the pan/tilt dimensions of the motion feature show that human motions

are not likely to be found on the ceiling, nor low on the floor; b) human motion

exhibits a distinct distribution in scale space (human-scale motion).

4.3.2 Stage 2: A Kinematic Model

This section describes how the robot continues to refine its model of humans

using the same intrinsically motivated behavioral learning framework. In this stage,

the robot is allowed to explore color channels for possible kinematic relations. The

hue, saturation and intensity (HSI) color spaces are discretized into 18 channels of

hue, 10 channels of saturation and 10 channels of intensity (as described in Section

3.2). An example output from the sensory processing pipeline is shown in Figure 4.6.

These features are coarse and independently produce an ambiguous summary of the

scene. However, this work shows that with a robot capable of configuring controllers

to actively attend to features to explore their potential for generating reward, useful

structures can be extracted. Moreover, by using knowledge acquired from previous

stages, e.g. humans are large motion segments, the robot can now focus its exploration
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in regions where more rewards are likely to be found, rather than wasting exploratory

actions on background features. In this stage, to facilitate learning, the robot is

constrained to only use its head degrees of freedom.

Figure 4.6. Example output of the pipeline (described in Chapter 3). Given a scene
from a naturally cluttered lab environment, shown in top left, panels b) through f)
show the output of several channels where segment blobs are tracked. Panels b) and
d) correspond to clothing segements the subject is wearing (black jacket and blue
pants), c) is a skin color channel where the face and two arms of the human are
visible. Channels where the table and the floor show up, are in e) and f) respectively.

Given the enhanced sensor resources, the constrained effector resources, and the

reward model described in Section 3.3, the robot is intrinsically motivated to build

increasingly deep knowledge structure of complex objects. This is because according

to the reward model, the robot receives 1 unit of reward when it discovers a single

feature that can be tracked, and an additional unit of reward for finding an additional

feature that can be added to its memory structure, the affordance model catalog.

As humans move about in front of the robot, the robot is first attentive to the

already familiar human-scale motion (from stage 1). To discover more features that

are associated with the motion, the robot samples a feature from the output of the

visual processing pipeline (Figure 3.2), and attempts to gather information to ver-
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ify the sampled feature’s relationship with respect to the motion feature. This is

accomplished by using the composite tracking controllers (the only type of tracking

controllers valid for handling two or more features at once) to keep both features in

view for a period of time, giving the robot the opportunity to gather enough data

to both verify their relationship and build probability distributions for describing

the relationship. The composite tracking controller is constructed using principles of

nullspace composition as described in [40].

Figure 4.7. A fully connected feature relation graph (left) and a star model (right).
Using the star model (right), in which the position and scale distribution of each
feature is encoded with respect to a reference feature, in this case, the torso of the
human.

To discover features that can be tracked simultaneously and model feature rela-

tionships, one possibility is to do so for all pairs of features (Figure 4.7). In this case,

for simplicity and computational efficiency, we choose a star-shape model, where we

assume that there exists a reference feature with respect to which all other features

can be located. The star-shape model also provides a more basic kinematic relations

than non-adjacent segments. As a result, the modeling process is simplified such

that only the relationship between the reference feature and other features need to

be modeled. In this work, the reference feature is the first feature found to be a part
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of the original human-scale motion feature, which in this set of experiments, is the

feature that corresponds to the torso of the human. The exploration necessary to

discover kinematic relations is motivated by the intrinsic reward function, and the

duration of the exploration is determined by the habituation process as described in

Section 4.2.2. Thus, Dexter uncovers features that are part of the human one by

one and the affordance (control configurations) and kinematic models (probability

distribution functions) learned are added to the affordance catalog model.

Using the SearchTrack behavior aST , the robot simultaneously track both the

torso feature and features on other parts of the human. Thus data is gathered for

the affordance models. Figures 4.8 and 4.9 show two examples of these models. They

depict kinematic affordances of the legs and head respectively, relative to the trunk

of human. As shown, they remain approximately fixed throughout. Therefore, the

change of variance for the model distribution Pr(r|fx, aST ) converges very quickly

(see the information gain plot in Figure 4.8 and 4.9). Thus, motive to observe the

relation between these visual segments habituates and this behavior is added to the

human affordance model. After which, exploration is directed to other features in

search of the rest of the human catalog.

The learned kinematic models for the two arms are shown in Figure 4.10. The

rate of change of the model variance also drops over time. When the H value drops

below a threshold, the modeling process habituates.

Compared to the head and legs features, the attention to the relative pose of the

arms and torso habituates with a significant variance in the relative position. The

large variance indicates the arm feature indicate either a non-rigid connection to the

reference torso feature, or no connection. For these features, the potential kinematic

relationship can be verified with further observations. For instance, the torso and

the arm is connected via the shoulder joint. Therefore variance can be reduced if

the observation is made between the joint and the torso, or between the arm and the
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Figure 4.8. The kinematic relations between features associated with legs and torso.
The top-left figure shows the pipeline’s 4-stage process of a color channel. The top-
right figure shows the modeled distribution Pr(r|fx, aST )—the likely relative position
where the legs can be found and tracked, given the torso position. The bottom figure
shows that as more data are gathered and added to the model, theH metric gradually
decreases and the intrinsic motive to observe this relationship habituates.
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Figure 4.9. The affordance model of kinematic relation between features associated
with head and torso. Figure shows the modeled distribution Pr(r|fx, aST )—the likely
relative position where the head can be tracked given the torso position.
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Figure 4.10. The affordance model of the kinematic relation between features associ-
ated with arms and torso. Figure shows the modeled distribution Pr(r|fx, aST )—the
likely relative position where the arms can be tracked given the torso position.
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joint. The position of the shoulder joint can be estimated (Figure 4.11) from the arm

motion, using the standard Hough transform voting algorithm [101]. Over time, from

a series of estimated shoulder joint positions, the relative position of the shoulder

joint position with respect to the reference torso feature can be modeled.

Figure 4.11. Estimating the shoulder joint: a) motion trajectory of the arm feature,
b) using a Hough transform voting algorithm, the relative position the shoulder joint
can be estimated (the brightest spot), c) a low variance relative position model for
the shoulder joint.

Although we have limited our feature sampling to features within the foreground

motion feature, this is in fact not necessary. The above mentioned modeling method

can even handle features from the background, since the relative position model of

these features and any feature on the human will maintain a large variance that cannot

be reduced, regardless of how the feature relationship is modeled. For instance, shown

in Figure 4.6, the table that is not part of the human can also be tracked along with the

human feature. However, when tracking both features, the feature that corresponds

to the table moves in a kinematically independent fashion compared the motion of

the human. Result shows that for this case, the variance in relative motion is high

and cannot be reduced. Therefore, it can be determined that this feature is not a

part of the human.

71



At the end of this stage, the human catalog (Figure 4.12) is further augmented

with tracking affordances that forms a basic kinematic description of the human body.

The kinematic model includes feature distributions for describing different parts of

the human, such as head, torso, arms and legs, in terms of their relative position and

scale attributes.

Figure 4.12. The extended human affordance model after stage 2. The robot
discovers several new track-able affordances associated with the finer features and
estimates distributions that describe the kinematic relationships between different
parts of a human body.

4.4 A Hierarchical Behavior Representation using And-Or

Graph

Using the Affordance And-Or Graph formulation described in Section 4.2.3, the

learned human affordance catalog model can be transformed into a hierarchical tree

72



structure (Figure 4.13). Using this representation, each recognized affordance can

provide probabilistic evidence for finding and tracking humans in a principled man-

ner (Section 4.2.3). This layout clearly shows the coarse-to-fine progression of the

modeling process. At the top of the tree is the human root node. One level be-

low, it shows the human can be tracked using whole-body motion. Furthermore, it

shows that human object also affords tracking using kinematic structure information

where it is decomposed into simultaneous tracking affordances of smaller parts. The

horizontal links encode the pairwise affordance relation between the body parts. As

we will see in the next chapter, this affordance model will be further enhanced with

behavioral affordance that extends beyond visual tracking.

Figure 4.13. The hierarchical And-Or Graph of learned human affordances after
the first two stages. The hierarchical will be extended in the next chapter.
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This model is indirectly evaluated for human detection in the human-robot inter-

action study discussed in the next chapter (Chapter 5). Each subject interacted with

the robot for about 20 minutes. As shown in Figure 4.14, in a naturally cluttered

scene under various lighting conditions, the probabilistic hierarchical formulation en-

ables the robot to detect humans and track their different body parts in an robust

manner. Furthermore, the algorithm is able to maintain track of the body parts even

though sometimes the part may disappear and they reappear at a later time (Figure

4.14, second picture in the first row).

Figure 4.14. Examples of multi-body tracking of humans using the learned affor-
dance human catalog model. Note that the probabilistic approach enables the algo-
rithm to maintain a robust track of the human under partial occlusion or unstable
feature conditions (as shown in the second picture in the top row).
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4.5 Discussions

In summary, this chapter presented a novel affordance-based approach of model-

ing humans, where a robot’s understanding of humans is learned and represented in

terms of behavior they afford. A framework for learning affordances in an incremen-

tal manner is presented. To demonstrate the feasibility of the approach, experiments

have been carried out on a bimanual humanoid robot, and showed that the robot can

build an increasingly complex behavioral model of the humans it interacts with, in

incremental learning stages. In the initial stages, the robot’s first learned concept of

a human is simply a motion segment of a certain scale that affords tracking. In the

subsequent stage, the robot is able to further extend the human affordance model

and begin to pay attention to individual body parts and learns their correspond-

ing affordances via visual tracking. Lastly, for organizing the learned affordances, a

probabilistic Affordance And-Or Graph representation is presented and preliminary

results are shown where the learned affordance model allows humans to be detected

and tracked under naturally cluttered environments.

The incremental learning process allows the robot to build models of complexity

as required by the context. We believe multi-resolution models of humans are useful

because simple models enable robots to learn rewarding behavior that in turn leads

to a richer model. In the next chapter, we will discuss how a robot, using hierarchical

manual behavior as the basis of learning, can acquire behavior for conveying intentions

to a nearby human (detected using models learned in this chapter). Moreover, we will

also show that as the robot acquires new behavior for interacting with humans, using

the technique and representation discussed in this chapter, how the robot’s concept

of humans extends beyond simple visual tracking to potential resources that can be

“actuated.”
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CHAPTER 5

EMERGENCE OF EXPRESSIVE BEHAVIOR FROM
MANUAL BEHAVIOR

I am interested in how a robot can learn communicative behavior from direct

interactions. In this work, interactions with humans via communicative actions is

learned in the same manner as the robot learns to interact with other objects in the

environment. Furthermore, I am also interested in the variety of gestures that emerge

from natural interactions with human partners, as different people may respond to

gestures differently—a learning framework may produce some unexpected results.

Many advanced machine learning algorithms are best suited for offline processing

of large datasets or simulation runs that generally require tens of thousands of training

episodes [112]. For the domain of human-robot interaction (HRI), this is particularly

problematic since in order to acquire training data, a human needs to be present.

Tens of thousands of training episodes is out of the question. There has been a great

deal of work devoted to reducing the training time by teaching with demonstration.

Optimizing low-level motion trajectories to achieve tasks such as performing pole-

balancing[3], batting a table-tennis ball, or catching table-tennis ball in a cup have

been demonstrated. Similar work has focused on teaching robots to produce gestures,

but again they either treat gesture learning as a low-level motion trajectory problem

[11] or a joint space motor control problem [67]. None of these approaches consider

the interplay between the robot and human as part of the gesture learning process:

how environmental changes may affect the meaning of gestures, and how the robot

can learn to adapt accordingly.
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This chapter presents an extension to the control basis framework and attempts

to address issues including the origin, adaptivity, and learning efficiency in the de-

velopment of communicative behavior for robots. The approach formulates adaptive

human-robot interaction in the same framework designed to acquire skills for manual

(i.e., robot-object) interaction. As a result, gesture learning directly benefits from

the ideas of developmental staging, hierarchical learning and skill generalization that

already exist in the control literature [40]. We look specifically to communicative

behavior that reuses motor skills to convey goals and intentions between a human

and a robot partner.

5.1 Adapting Behavior to the Presence of Human Beings

The strategy taken in this work for fostering the emergence of expressive commu-

nicative behavior is to introduce more difficult contexts as in the case of developing

manipulation behavior. However, for the purpose of developing communicative ges-

ture, we introduce contexts where the robot is underactuated and humans are present.

To adapt to the new contexts, our robot Dexter relied solely on local behavior gen-

eralization techniques proposed by Hart [39]—if a known schema fails under a new

context, attempt to allocate different sensorimotor resources to the failed schema,

until the appropriate resources are found.

However, there exist many situations where allocating new resources is not suf-

ficient, for instance, the classic “pick-and-place” task often studied in the robotics

literature [53]. Consider a general purpose pick-and-place schema that acquires an

object (the “pick” goal) and delivers it to a desired position and orientation (the

“place” goal). A successful grasp of the object can depend on characteristics of the

place goal. For instance, if the object is a cylindrical peg that is to be placed at the

bottom of a cylindrical hole, then the mating surfaces between the peg and the hole

must be left unobstructed for the insertion to succeed. The decision about how to
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grasp the peg must respect this constraint. Now consider a robot with lots of prior

experience with pick-and-place tasks, but none directly focused on the constraints

surrounding peg-in-hole insertions. An arbitrary grasp on the peg will likely fail

during the place sub-task and the reason for this failure is likely inexplicable in the

existing pick-and-place framework. As we will see later (Section 5.3), similar prob-

lems exist when the robot attempts to learn gestures to communicate intentions to

the human partner. In these cases, both the declarative structure and procedural

knowledge must be extended simultaneously for the behavior to be adapted to the

dyadic context.

In general, the repair of a schema in response to a new situation can require a

larger temporal scope than indicated solely by the actions that fail. The error can

be associated with events that are not monitored by the schema and that occurred

at some indefinite time in the past. Prospective behavior is an important component

of computational approaches to transfer and generalization. It is a term, coined in

the psychology literature, to describe a process in which a human infant learns to

predict how a strategy might fail in the future and generates alternative strategies to

accommodate the new situation.

McCarty et al. studied the initial reach to a spoon laden with applesauce and

presented to infants in left and right orientations [69]. The developmental trajectory

observed is summarized in Figure 5.1. Initial policies are biased toward dominant

hand strategies that work well when the spoon is oriented with its handle to the

dominant side. However, when it is not, the dominant hand strategy fails. Variations

in the applesauce reward distinguish important categories in this process—dominant-

side and non-dominant-side presentations of the spoon. One hypothesis holds that this

process involves a search for perceptual features that distinguish classes of behavioral

utility. When this happens, new perceptual features have been learned that were

not present in the original representation. They have been selected from a possibly
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Figure 5.1. Prospective Behavior revealed in the Applesauce Experiment.

infinite set of alternatives because they form a valuable distinction in the stream of

percepts—valued for their ability to increase the reward derived from the infant’s

interaction with the task. One may view this process as one in which properties and

constraints imposed by the task are incorporated into a policy incrementally starting

with the latter (distal) actions and gradually propagating back through the action

sequence to early (proximal) actions.

The applesauce problem and the “pick-and-place” problem share many similar-

ities. However, traditionally in robotics and AI, the “pick-and-place” task is for-

mulated as a planning problem. In [66, 53], a back-chaining algorithm is used that

searches backward in time from the desired final state until the initial state is found.

This approach requires complete knowledge of the task to begin but does not speak to

where that knowledge came from. It is subject to uncertainty introduced by seemingly

small inaccuracies in backward chaining predictions compounded over multi-step se-

quences. Moreover, depending on how task knowledge is represented, this strategy

may not share common background (pick-and-place) knowledge with other related

tasks.
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This is in stark contrast to how the human child would approach this problem.

Extrapolating from the spoon and applesauce experiment, we expect that the infant

will employ a general-purpose strategy and demonstrate biases that apply generally

to the entire class of such tasks. Upon failing with this approach, and only upon

failing, will the child search for an explanation for the failure, starting at the peg

insertion and backing up to the transport phase, to the grasp, and ultimately to

the visual inspection of the peg and hole. Somewhere in this sequence is the reason

that the general-purpose strategy doesn’t work in this context. Once found, the

infant will begin experimenting with corrective actions. Throughout this process, the

infant’s search for a solution revolves around modifying existing behavior rather than

attempting to learn a new strategy from scratch.

The work described herein extends the control basis and presents a prospective

behavior repair algorithm for autonomous agents to rapidly accommodate a novel

task by applying existing behavior. The main idea of the algorithm is the following:

upon failure due to a new context, the robot attempts to fix the problem via local

adjustments whose scope expands until a compensatory subtask is learned to handle

the exception. Now, the general-purpose schema is extended with a call for the

compensatory subtask when the triggering percept is present. The result is a new,

integrated, and more comprehensive schema that incorporates prospective behavior

for accommodating the new context.

For the rest of this chapter, we will introduce the algorithm for discovering prospec-

tive behavior with a simple navigation task with multiple “door” contexts that pro-

duce prospective errors. We show that a general-purpose navigation policy in the grid

world can be extended with auxiliary percepts and compensatory actions to solve the

problem efficiently. We evaluate the proposed algorithm by comparing its perfor-

mance to that of a “flat” learning problem in which all the required state information

is provided a priori. Next, we provide a formal description on how the prospective
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repair algorithm is adopted in the control basis framework and present a case study

where the algorithm is applied to enable our robot, Dexter, to learn communicative

behavior in the presence of humans.

5.2 Example: A 2D Navigation Domain Problem

We introduce the prospective repair algorithm by way of a robot navigation task.

Figure 5.2 shows a grid world in which a simulated robot navigates through hallways,

rooms, doors, and uses buttons to actuate the doors. The circle is the robot’s starting

position and the triangle represents the goal. The robot’s task is to learn a path to

the goal, given that a random subset of the doors can be closed at the beginning of

each training episode. The buttons for opening doors are scattered in different rooms

of the map. The robot has to visit the appropriate buttons to open doors that blocks

a known path to the goal.

The robot can move left, right, up, or down. At each grid location, the robot

can observe its (x, y) location and three door status indicator bits that represent

the status of three, randomly chosen doors out of the six in the map. However, the

correspondence between the doors and the indicator bits are not directly observable.

The initial status of the doors is randomly assigned at the beginning of each trial.

We will evaluate two solutions to this problem. The first is a flat learning approach

informed by the full state description, and the second is the proposed prospective

repair approach using a sequence of reusable policies in the (x, y) state space with

prospective error suppression triggered by the door status indicators.

5.2.1 A Flat Learning Approach

A flat learning approach to the problem is formulated where all the required state

information is provided a priori and the task is presented to the robot in a sin-

gle learning stage. This is in contrast to the multi-stage learning approach that is
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Figure 5.2. A 30×30 grid-world navigation problem. The status of a door is toggled
when the robot visits the grid location where the corresponding button is located.

presented next. This grid world navigation task is formulated as a standard reinforce-

ment learning problem using the ε-greedy Q-learning algorithm [112] where the robot

is rewarded for finding an optimal path to the goal. The state, s, for this formulation

includes the (x, y) location of the robot and the 3 observable door status indicator

bits. The 4 actions: move up, down, left and right, form the robot’s the action set A.

A simple reward model is applied: the robot receives 1 unit of reward for achieving

the goal and −0.01 units of reward for every step it takes.

In this formulation, the robot receives maximum cumulative reward by taking the

fewest number of steps to reach the goal. For every state s the robot encounters

and every action a the robot can take from that state, an expected future reward

value, or Q-value is estimated. In the beginning, this value is initialized randomly for
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every state-action pair < s, a >. Through trial-and-error exploration, the Q-learning

algorithm enables the robot to incrementally update the Q-value for every < s, a >

it encounters. With sufficient exploration, the Q-value for all < s, a > is expected to

converge, thus allowing the robot to extract optimal policies for navigating to the goal

under all contexts. For these experiments, we define an episode to be one complete

traversal by the robot from start position to goal position. Early on, it may take

several thousand actions to get to the goal. A trial is defined as one complete learning

experiment (until asymptotic performance). Depending on the problem design, it may

take several thousand or tens of thousands of episodes before a trial concludes.
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Figure 5.3. Average cumulative reward over 100 trials for using a flat learning
approach

The result from the flat learning experiment is presented in Figure 5.3. In the

early episodes, the cumulative rewards are large negative numbers because the robot

starts out with no prior knowledge about the world, and randomly explores the map

with many extraneous steps, building up large negative reward before finally reach-

83



ing the goal. Slowly, as expected future reward estimates for each state-action pair

improve, the number of steps it takes for the robot to reach the goal decreases. As a

result, the cumulative reward rises, until it converges at around 30, 000 episodes. This

experiment used a discount factor, γ = 1.0, learning rate α = 0.1, and the ε-greedy

parameter is set to ε = 0.1.

The flat learning approach learns to solve this problem in 30, 000 episodes to learn

a policy with contingencies for random door configurations. This is a lot of training

for an on-line learner, but further reflection on the experiment yields insights that

can be used to reformulate the problem. State s includes the (x, y) location and 3

randomly selected door status bits at each cell in the map. However, in many states,

the part of s concerning door status is uninformative and optimal decisions can be

determined from (x, y) alone. Therefore, performance in the flat learning problem is

often compromised by too much state that is encoded inefficiently. In these states, a

more general strategy can be applied and much less training is required. To overcome

this problem, the hierarchical prospective repair approach is proposed.

5.2.2 A Prospective Learning Approach

In this section, the proposed prospective repair approach is presented in the con-

text of the multi-door navigation problem. In contrast to the flat-learning approach,

the original task is decomposed into a series of problems that can be presented to the

robot in an incremental manner. Initially, the robot is presented with the simplest

task. Later, it is challenged with more difficult contexts. In the navigation problem,

the simplest task is to find the optimal path for reaching the goal when all doors are

open. After this policy is acquired, the robot is challenged by closing a specific door

until the robot has acquired a policy for handling this case. These skills are reused

to construct contingencies for arbitrary door configurations.
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The proposed prospective repair algorithm is presented in Algorithm 1. It is

divided into 3 main components: (1) a general-purpose strategy is first learned in

the simplest context, (2) the robot is challenged with a new context and an auxiliary

perceptual feature is learned to differentiate the new context, and (3) a search is

conducted for local repairs whose scope expands until a policy is acquired to handle

the exception. Algorithm 1 also depicts the schemas created and/or modified after

each of these steps. The proposed approach assumes that a general-purpose strategy

exists that applies approximately to the different variations in the task. Subtasks

are represented as separate policies to preserve the general-purpose policy to remain

unaltered.

As shown in Algorithm 1, human guidance also plays an important role in the

prospective repair algorithm, in the form of structured tasks of increasing level of

difficulty. The simpler task ensures the robot can quickly learn a basic general-

purpose strategy while later tasks allow the robot to extend existing policies and learn

to handle more complicated contexts. More importantly, such structured tasks can

be created by simple adjustments of environmental constraints at an opportune time

in the learning process. For instance, opening or closing doors in the robot navigation

domain, or offering correctly oriented spoons in the apple sauce experiments. This

form of guidance is intuitive to a human teacher as similar strategies can often be

observed in human parent/child interactions [69].

Multi-stage training sequences provide for behavior reuse, but they are not suffi-

cient for causing an improvement in learning performance. The appropriate state rep-

resentation and provisions for re-use are required. This is the key difference between

this algorithm and previous approaches to prospective behavior using flat learning

algorithms[117]. The global state of the robot, in this case, is represented using only

its (x, y) coordinates. The basic policy relies principally on this information and aux-

iliary state, i.e. door status indicators, are stored separately and only in places where
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Algorithm 1 A Prospective Repair Algorithm

TEACHER

• construct a sim-
ple initial training
context

• challenge the fron-
tier of existing be-
havior

→ all doors open →

→ close single doors →

ROBOT

Given a set of percepts: f = {f1, ..., fi, fj , ..., fn}, and ac-
tions A = {a1, ...am}:
1: Apply factorization technique to define state s =
{f1, ..., fi} where s ∈ S contains features that are fre-
quently used for decision making and auxiliary per-
cepts F = {fj , ..., fn}.

2: Use Q-learning on MDP defined by < S,A,R > to
learn a general-purpose policy π, where R is the pre-
defined reward function for task T .

recognize the perceptual associations of the sub-
task

3: Execute policy π until it leads to repeated failure and
accumulate experience data set, D, recording features
f ∈ F and the success or failure of π in that context.

4: Apply a generic discriminative learning algorithm (e.g.
C4.5) on D to identify a decision boundary g(f) that
differentiates success and failure under policy π. Func-
tion g is said to accept f if it predicts success under
policy π.

accommodate the new context
5: Create a new MDP defined by < S,A,R′ >, where
R′ is a reward for restoring f to the condition where g
accepts f .

6: for all states s ∈ S in which g does not accept f do
7: Starting from s, learn a compensatory policy πg for

achieving the sub-goal defined by g.
8: end for
9: Merge πg with π to form a new hybrid policy π′.
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they are available and needed to trigger contingencies for handling exceptions to the

basic plan.
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Figure 5.4. Average cumulative reward over 100 trials using the prospective repair
approach. Each dip in the learning curve corresponds to a task change that leads
to a specific type of failure in the previously learned policy. Results show that the
prospective repair algorithm allows the robot to quickly adapt to each new context.

Figure 5.4 shows the resulting learning curve from the prospective repair/generalization

approach applied to the navigation scenario. The action set A remains the same as

in the flat learning formulation. Once again, the robot receives 1 unit of reward for

achieving the goal and −0.01 units of reward for every action it takes. The learning

parameters, γ = 1.0, α = 0.1, and ε = 0.1 remain the same as in the flat learning

problem. In the first stage, a path toward the goal is learned with all the doors open.

The initial policy, π, for traversing the unobstructed environment is illustrated in

Figure 5.5. It depends on (x, y) state information exclusively and serves as the initial

general-purpose solution. As Figure 5.4 illustrates, in each subsequent stage, a new

context is introduced wherein exactly one of the doors is closed causing the cumula-
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tive reward to decline sharply. At this point, a new learning problem is initiated to

recognize the new context and to repair the general strategy. Under the experimental

conditions described, the reward begins to climb until it converges once again as the

robot quickly adapts to the new context. For the particular map used, the closing of

some doors do not cause the general policy to fail, therefore there are only 4 dips in

the learning curve. The prospective repair process is complete after less than 2, 000

episodes compared to 30, 000 episodes for the flat-learning approach. We can extrap-

olate these results and conclude that the advantage would be even more significant

as more doors are added to the map, or when the robot has to pay attention to more

perceptual features.

Figure 5.6 illustrates learned paths to button 1 from any location on the general

policy π where the status of the corresponding door can be observed. The path that is

the shortest is selected as the compensatory behavior and integrated with the original

behavior to achieve a new and more comprehensive behavior.

Several design elements contributed to the performance improvement. First, the

choice of the initial state description does indeed provide a policy that serves the task

well from many positions in the map—there are only a small number of special cases

that the robot must handle. As a result, there is a significantly smaller state-action

space than there is with the flat learning approach. All guidance from a human

teacher that has this property is expected to produce the same utility in learning

performance. Moreover, the search for the prospective behavior is initiated as a sep-

arate learning problem with an independent goal and state transition structure, thus

enhancing re-use. When multiple doors are closed simultaneously, the prospective

repair approach naturally decomposes the original problem into sub-problems associ-

ated with navigating to buttons corresponding to closed doors en-route to the goal.

The robot can reuse previously learned contingencies for relevant doors rather than

having to learn them from scratch as in the case of the flat learning design.
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Figure 5.5. Learning result from stage 1: an unobstructed path π to the goal that
functions as the general-purpose policy.

5.2.3 Discussion

This work advocates an incremental learning paradigm towards behavior acqui-

sition in robots, where a human user can teach robots skills interactively, using a

sequence of increasingly challenging tasks. This is an open-ended process that re-

quires learning framework designers to build systems that can act based on incom-

plete information and that adapt to new situations where previously learned behavior

fails.

In this work, human guidance first comes in the form of training guidance—

structuring the environment and focusing exploration on a restricted set of sensors
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Figure 5.6. Learned paths to the button 1 for opening door 1 from any location
on the general policy π where the status of the corresponding door can be observed.
By integrating this policy with π, a new, more comprehensive policy for handling the
contingency of the closing of door 1 can be created.

and effectors and thus states and actions in order to facilitate the formation of new

skills. In subsequent stages, constraints are incrementally removed.

The proposed prospective repair algorithm has significant learning performance

advantage over the flat Q-learning approach for solving tasks that can be decomposed

into a series of problems and presented to the robot in an incremental fashion. The

significant improvement is the result of knowledge reuse including the preservation of

much of the previously learned path in the new strategy and only focused learning

on a new compensatory policy to open doors that block the path to the goal. Once

the robot has learned how to open any door individually, this knowledge is reused
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again for the case where multiple doors are closed simultaneously, thus minimizing

duplicated learning.

5.3 Case Study: Learning Expressive Pointing Gesture

Figure 5.7 illustrates how the prospective repair algorithm is applied within the

control basis framework. Through experience with success and failure, the algorithm

first learns a decision boundary g(f) is computed (using a standard decision tree

algorithm) for separating contexts that succeed, g(f) = 1, from those that fail, g(f) =

0. A new learning problem is automatically generated with g(f) = 1 as the (sub)goal.

Prospective learning back-tracks along the original policy until the earliest instance of

the context, f , can be observed. The robot explores the available actions and attempts

to find a policy that leads to the (sub)goal. After learning, the newly acquired repair

policy is incorporated into the original policy (Figure 5.7). Thus, prospective learning

enables the robot to adapt to the new context while maintaining the structure of the

previously learned program.

5.3.1 Experimental Setup

To verify the proposed approach for repairing defects in manual behavior due to

underactuation using communicative gestures, we conduct a series of demonstrations

using our bimanual upper-body humanoid, Dexter as show in Figure 5.8.

The same experimental setup for learning manipulation skills is used, however, we

change the learning context and move the objects away from the robot until they are

all out-of-reach. A human peer is brought into the experiment to interact with the

robot. This scenario naturally satisfies the conditions of underactuation and mutual

reward. The robot is underactuated since it is unable to reach the desired object unless

it is possible for the robot to influence the human to bring the object closer somehow.

The robot is motivated by achieving a Touch reward and the human is instructed
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Figure 5.7. Prospective learning. Left: a context change fj alters transitions gen-
erated by the existing policy π and results in an unrewarding absorbing state ’−’
(dotted circle region on the left). Right: the prospective learning algorithm attempts
to handle this context change by searching for repairs earlier on in the policy.
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Figure 5.8. Robot learning to gesture in the presence of a human

to interact with the robot and/or the object as they see fit, thus establishing, at least

for a time, the condition of mutual reward. Our goal is to determine whether the

robot can learn to reliably compel the human to help the robot acquire the object.

To facilitate the learning process, initially the robot explores actions associated

exclusively with motor variables in its head. In the second stage, this constraint is

lifted and the robot is allowed to use both its arms and its head to communicate.

The goal of the experiment is to see if the learning framework enables the robot to

learn sequences of actions that are useful for soliciting assistance from the human,

even though these actions derive from motor skill learning tasks.

Eighteen subjects of convenience tooks part in the evaluation process. Seven

were computer science students, including 2 lab members with extensive knowledge

of Dexter. The remaining 11 were diverse in educational background, in major, and

in level of education, ranging from high school students to undergrads, to graduate

students and working professionals. They were simply told to interact with robot for

a number of rounds, and that “the robot will randomly pick an object of interest in

each round, observe and help when necessary.” All interactions between the robot and

the subjects were recorded with consent for the purpose of offline analysis. Human
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detection in this work is achieved using the human model acquired in the previous

stage.

5.3.2 Prospective Learning and Communicative Behavior

Suppose that the robot detects that its strategy for acquiring an object has failed.

It discovers the failure when, in the course of intrinsically motivated exploration, a

primitive Touch controller fails to reach a rewarding transition to ”1” as expected.

When the contact feedback force is not detected, the Touch controller enters an

unrewarding absorbing ′−′ state.

Figure 5.9 illustrates how the prospective learning algorithm is applied in this

case to learn communicative behavior for soliciting human assistance. When the

target object is unreachable using autonomous options1, then the prospective learning

algorithm attempts to assimilate the new context into the existing motor behavior.

It does so by gathering positive and negative examples of the Touch transition in

question, and uses a discriminative learning algorithm (decision tree C4.5) to extract

feature f such that classifier function g(f) correctly predicts the outcome of Touch.

In this case, f corresponds to the x-coordinate of the object in the robot’s coordinate

frame, and the decision boundary classifier function gh(1.2m−x), is discovered where

gh() is the hard limiter function. The classifier returns 0 when the argument of gh()

is negative (x > 1.2m) and 1 when the object is within reach and Touch produces

the anticipated intrinsic reward.

The prospective learning (PL) algorithm back-tracks through the greedy rollout

of negative examples of Touch reward and finds the earliest state where the context

x > 1.2m can be observed, and PL formulates a subtask learning problem for the task

defined by gh(1.2m − x), and learns programs capable of achieving the sub-goal by

1We adopt the term ”autonomous” to denote that the option depends only on existing skills and
robot resources.
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Figure 5.9. Prospective human recruitment. When an object is out-of-reach, (1)
the robot detects the failure as it enters an unrewarding absorbing ′−′ state, (2) it
then uncovers a decision boundary (x > 1.2m) regarding when its knowledge of hand
preferences can no longer lead to the rewarding Touch event, (3) the robot back-
tracks through the program and finds the earliest state where the context x > 1.2m
can be observed, and (4) formulates a subtask learning problem.
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conveying the intention to Touch to the human partner and successfully recruiting

their assistance.

5.3.3 The Emergence of Gaze Pointing

The robot must now learn behavior for achieving the rewarding gh(f) = 1 con-

dition. To do so, it explores actions for recruiting human assistance efficiently. In

this developmental stage, Dexter is constrained to actions (and therefore states) that

use head degrees of freedom exclusively. This is a severe constraint that permits

only a single type of action; one that moves the head so as to track segments of the

retinal image—an action Hart called SearchTrack (ST), often parameterized by

the visual feature in question, i.e. ST(motion)[40]. Dexter can implement this type

of behavior in many different control circuits, directing attention to visual segments

distinguished by hue, saturation, and intensity. It may sample these referents from

the background, the object in question, or other objects. When a human enters the

context, Dexter can direct its gaze to the large motion cue as well as other elements

of the HRI context. These actions are the results of prior learning using the same

framework [40].

In addition, a monitor (see Chapter 3) is configured as a “off-policy” controller

(with no effector resources) that observes the X coordinate of the desired object.

The monitor reports 1 when the object is inside decision boundary x < 1.2 and re-

ports ”X,” ”−,” or ”0” otherwise. For short, this monitor is denoted as φobjm . The

resulting action set A available to Dexter is: A ∈ {ST (human), φobjm � ST (obj)},
where the monitor is concurrently executed with the SearchTrack action asso-

ciated with the object. According to the control basis (Section 3.1), from this ac-

tion set, A, a 3-predicate state space S is automatically formed for the subtask:

S : {pSThuman
, pSTobj

, pmobj
} with one predicate ST(motion) directed at the human,

one ST predicate directed to any feature associated with the object, and one pred-
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icate describing the status of the monitor. The robot is rewarded for reaching any

state where the gh(f) = 1 subgoal can be observed.

Figure 5.10. New policy for touching a target object, with a new modular gaze
gesture acquired by prospective learning. In the repair policy MDP, a0 corresponds
to behavior that searches for and tracks large scale motion cues and a1 is the same
behavior directed toward an object. Each state predicate in the MDP corresponds to
the dynamic state of the action and monitor. This policy alternates visual attention
directed at the human and the object in a cycle.

Given the state-action space, the goal and the reward, Dexter learns a policy

for reliably causing the object to be moved closer, using standard Q-learning with

α = 0.1, γ = 0.9, and ε = 0.9. After training, 10 more episodes were conducted using

10 subjects (three of whom were also involved in training) to test the performance

of the resulting policy. The learning curve is shown in Figure 5.11. This curve is

the average over 5 training subjects for the training phase and 10 evaluation subjects

for the testing phase. The dip in average reward at the beginning of the testing

phase is caused by the ambiguity of the gaze gesture because some subjects, who did

not participate in the training phase, are initially confused about where to place the

object.

97



Figure 5.11. Gaze gesture learning curve, averaged reward per state transition over
all subjects. The first 15 episodes are the training phase.

Figure 5.12 shows the performance of the “repaired” policy that makes use of

gaze gestures and human assistance. Even though the new policy is not yet ideal

for acquiring the appropriate response from the human, the standard deviation in

the performance plot shows that it is a significant improvement over random. The

recorded video footage reveals that a policy of sustained gaze, at either the motion

cue or the object, did not cause subjects to respond and was, therefore, not rewarded

as often as an alternating gaze strategy that provoked some response from everyone.

Gaze is imprecise as a deictic pointer because the motion is subtle and can therefore

result in inaction on the part of the human (especially is executed only once) or cause

the human to pick the wrong/adjacent object. Alternating gazes were much more

conspicuous and led to more reward. Most subjects quickly got the idea that the

robot was attempting to communicate with gazes within about 10 episodes, however,

they still made mistakes due to ambiguity in the robot’s gaze direction. Finally, even
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when the subject identified the target object correctly, it remained ambiguous as to

where the object should be placed to assist the robot. 60% of the subjects took several

tries to place the object within the reachable region of the robot. For these reasons,

one person showed confusion about the gaze gesture throughout his interaction with

Dexter, and managed to help only once.

Figure 5.12. Learned gaze gesture performance for acquiring human selects an
object at random. The expected random performance for 4 objects is 25%.

A more surprisingly observation is that, those subjects who presumed to be novices

with no experience with Dexter or robots in general had more successful rounds of

interaction than supposedly more “knowledgeable” subjects (Figure 5.13). A possible

explanation is that since this is a such a simple scenario, over-analyzing (speculating

on how Dexter receives reward, or what actions Dexter will take) tends to cause

more confusion and hesitation than if the person simply acted out instinctively. The

result is even more significant when we further divide the “knowledgeable” subjects

into two categories, one group contains people who have worked with Dexter and

the other contains the rest. The “Dexter-experienced” group performed the worst of

all subjects because they are used to Dexter gazing at objects with one of its eyes
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Figure 5.13. Comparison between “Knowledgable” subjects with robot experience
and naive subjects

and therefore attempted to parse the direction of the gaze using the dominant eye.

However, unknown to them, for this experiment, Dexter was configured to track using

both of its cameras and as a result, its gaze direction keeps the object in-between its

eyes. One of these “Dexter-experienced” students realized this in the middle of the

experiment and corrected accordingly, while the other persisted till the end and made

a few incorrect guesses, thus lowering the overall statistics.

5.3.4 Learning Arm Pointing

During the second stage, Dexter explored augmenting its strategy for recruiting

precise human assistance by using arms and previous manipulation behavior. In

addition to the gaze policy from the previous stage, an existing policy for reaching to

a triangulated visual target [40] is now permitted. Therefore the action set is: A2 ∈
{ST (human), ST (obj), φobjm �RT (obj)}, where RT denotes the learned ReachTouch

policy. The state space is augmented accordingly: S : {pSThuman
, pSTobj

, pRTobj
, pmobj

},
where mobj is the monitor predicate. As in the previous stage, the robot is rewarded

for reaching any state where g(f) = 1, where f is the monitor feature.
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Figure 5.14. Pointing gesture policy for repairing the original manual program. The
robot has learned to alternate between gazing at the human (a0) and reaching for the
object (a2). Each state predicate in the MDP corresponds to the dynamic state of
the actions and monitor.

Dexter learned an extended policy (Figure 5.14) within 30 additional training

episodes. Three people took part in the training process for 10 episodes each. The

resulting policy was tested by eight more subjects. Three subjects in this experiment

also participated in the previous gaze experiment.

Figure 5.15. Pointing policy performance in comparison with the previously learned
gaze policy

The resulting policy has the same structure as the previously learned gaze gesture.

This implies that if we reuse the structure of the gaze gesture and simply exchange the
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actions that direct gaze with actions for reaching to the object, it is possible for the

robot to obtain a skeleton of the arm pointing gesture with no additional training. Of

course, further training can be performed for the policy to be refined over time. This

time, as a natural outcome of exploring learned manipulation behavior, Dexter found

the failed attempt to reach and grab the desired object a more effective alternative

to the gaze gesture (Figure 5.15). This is expected because the arm pointing gesture

is less subtle, and less ambiguous regarding the target object and where it should be

placed. In fact, even the person who failed to attend to Dexter in the previous stage,

responded almost immediately in this stage.

5.3.5 Potential Issues of the Learned Pointing Gesture

The pointing experiment revealed a pathological flaw of the learned pointing ges-

ture: when the human handed the object to the robot’s out-stretched hand, sometimes

the object was visually occluded by the hand. As a result, the robot retracted its

arm and confused the subject who thought that they had selected the wrong ob-

ject. Although this did not occur often enough to prevent the robot from learning the

pointing gesture, it is conceivable that if smaller objects were used, more unsuccessful

attempts would arise.

This problem can be resolved if the robot develops the understanding of occlusion

as part of its manipulation skill set. One such possible alternative could be achieved

when a new manipulation behavior, i.e., to “pick and place” becomes available from

manual skill learning (see Section 3.6). This is because when parameterized properly,

the pick goal of the new behavior can indicate the object of desire, while the place

goal designates the placement location. Thus reducing the likelihood of occlusion

that exist for the pointing gesture.
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5.3.6 Maintaining Human Interest

For this set of experiments we assumed that the human subjects were benevolent

and therefore always behave to help the robot whenever possible. We also made

sure the training sessions were short enough so that human subjects would not lose

patience and violate the mutual reward assumption.

During the course of the experiments, we noticed that for most people, once they

discovered the general strategy for recognizing the robot’s intention, they patiently

repeated the strategy, placing the object in the same place until all required rounds

were completed. For these people, the general assumption of mutual reward is auto-

matically met.

However, two people behaved differently. They soon exhibited signs of boredom

after discovering the general strategy for helping the robot and started experimenting

with different options to test the capability of the robot by hiding the desired object

from the robot’s view, placing the object in random locations, moving the object while

the robot is pointing, or swapping objects or stacking them up. Due to robust motor

behavior, Dexter was able to handle most of testing situations posed by the human

and acted “sensibly,” i.e. using the left hand for objects placed on the left side and

the right hand for objects placed on the right, and the “point” dynamically followed

the object if it was moved. This intentional testing kept the subjects interested.

One subject performed 5 more rounds of training beyond the requested amount.

These observations lend support for the use of existing manual behavior as the basis

of communicative gestures as our results suggest that a robot with comprehensive

manual skills keeps the human mutually rewarded and engaged, and thus preserves

the constructive hiuman-robot dyad.
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5.4 Extending the Human Affordance Model—Object with

Agency

At the end of Chapter 4, although the robot has acquired a kinematic affordance

model of humans, it remained a passive observer of human behavior. However, in this

chapter, after learning expressive communicative behavior, the robot has acquired the

ability to use actions to influence the behavior of a human and is able to observe the

change in the environment.

As mentioned earlier, we hypothesize that although humans are objects with

“agency”, human behavior is predictable under the social contexts summarized as

conditions of underactuation and mutual reward. It has been established that the

experimental setup of this stage naturally satisfies both conditions of underactuation

and mutual reward. The question is “can Dexter reliably engage the human being as

an actuate-able resource such that the rewarding touch response can be achieved?”

If so, then such behavior can be considered as an affordance property of the human

and therefore can be added to the human affordance catalog.

The evaluation stages of the GazePoint and ArmPoint behavior were also

used as the affordance modeling process, through which Dexter gathered data to

learn the probability distribution for the concept “how likely would the large mo-

tion segment respond to a gaze of arm point gesture and help me get reward?”.

Mathematically, this affordance is denoted Pr(r|f, a), where f in this case is the fea-

ture human-scale motion, a is either the GazePoint or ArmPoint behavior. The

results from the evaluation stage show that the affordance model for GazePoint

Pr(r|f,GazePoint) habituates around 0.7, while Pr(r|f,ArmPoint) habituates

around 0.87. As shown in Figure 5.16, the human affordance catalog is augmented

with two affordances: both Actuate-able(Gaze) and Actuate-able(Point) are reliable

behaviors afforded by humans, indicating in addition to previous concepts of humans,

to the robot, humans are also “objects” that are “actuate-able” via pointing gestures.
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The hierarchical version of the affordance model is shown in Figure 5.17 where a new

branch of “actuate-able” affordances has been added.

Figure 5.16. The human affordance model after this stage. The robot has found
two reliable behavior for “actuating” the human resource. Thus they are behaviors
humans afford and are then added to the human affordance catalog.

Finally, the resulting affordance of this stage can be formulated succinctly as a

logical assertion:

((Trackablemotionh
∧ Trackableobj)∧!(Xobj < 1.2) ∧ (Gaze ∨ Point))→ (Xobj < 1.2)

This assertion represents an intuitive “actuate-able” concept regarding humans. Due

to the systematic nature of the prospective learning algorithm, this logical assertation

can be derived automatically since the first part, (Trackablemotionh
∧ Trackableobj),

represents the prerequisite conditions before the repair behavioral module can be

executed—the corresponding objects must be present. The second part (!(Xobj <

1.2)) corresponds to the failure conditions the robot has encountered that warrants

the repair policy, while the third part (Gaze∨Point) is the repair policy. Finally, the

last part (Xobj < 1.2) corresponds to the condition where the rewarding event can be

achieved.
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Figure 5.17. The hierarchical And-Or Graph of learned human affordances is aug-
mented with new expressive behavior affordances.

5.5 Discussion

This chapter proposes a grounded approach to the acquisition of expressive com-

municative behavior in robots and presents a framework in which a robot can learn

communicative actions and manual skills in conjunction. A human interaction case

study is presented to demonstrate the feasibility of this approach. The approach

enabled the reuse of manual skills acquired from previous intrinsically motivated be-

havior for interacting with objects in the environment.

Using manual behavior as the basis of communicative gesture, the robot was able

to learn behavior programs that effectively convey its intentions to humans in very few

on-line interactions with the human subjects. The robot learned in stages; initially

employing gaze exclusively and subsequently integrating pointing gestures with its

arms.
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Possible learning stages to further improve the effectiveness of the pointing gesture

are also suggested. The experiments provide support for using robust manipulation

behavior as the basis of socially interactive behavior. This approach can be beneficial

for maintaining the interest of the human subject and thus prolonging the interaction.

Finally, human detection in this work is achieved using the simple motion model

acquired during the first stage of the human modeling process. This provides support

evidence for the incremental human modeling approach employed by this thesis—

even simple models are useful in some cases for the robot to learn useful behavior.

In turn, learned behavior improves the robot’s ability to build more sophisticated

models. For instance, with the result of this stage’s behavior learning, the human

affordance catalog is augmented two new affordances, allowing the robot to acquire

a new concept that “humans are actuate-able via pointing gestures.” This raises the

robot’s understanding of humans from a passive notion of “moving objects that are

track-able” to objects with “agency”.

In future work, we hope to observe the emergence of more communicative gestures

by subjecting the robot to more challenging scenarios, while it acquires more complex

manuals skills. We expect that the size-hinting gesture can arise from the two-handed

grasping behavior when the object becomes too large for one hand. Beckoning can

emerge as the robot attempts to bring the human closer with the manual behavior

for bringing graspable objects closer; lastly, a “no” negation gesture can emerge as

the robot discovers the communicative utility of the push behavior when it attempts

to push unwanted objects away.
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CHAPTER 6

LEARNING RECEPTIVE BEHAVIOR

Previous chapters have demonstrated how a consistent learning framework and

knowledge structure enabled expressive behavior to emerge from manual behavior. I

have also demonstrated how these behaviors can be used to form affordance models of

humans. In the same spirit, this chapter focuses on receptive behavior and discusses

how a robot can take advantage of the previously learned programs for the purpose of

inferring intentions from human partners. A case study is presented to demonstrate

the feasibility of this approach: a robot interacts with a number of participants who

require the robot’s assistance for obtaining the object they desire. From these studies,

we wish to evaluate:

• whether the proposed approach can transfer background information from ex-

pressive behavior to infer the intentions of naive humans,

• whether the robot can learn to engage the appropriate behavior in response to

communicative action from human beings.

6.1 Related Work

In computer vision, many algorithms have been developed for gesture recogni-

tion. For static gestures, recognition is generally achieved by using template match-

ing, Principle Component Analysis (PCA) [42], or Elastic Graph Matching [114].

Algorithms for recognizing dynamic gestures often employ Hidden Markov Models

(HMMs) to parse sequences and observations. A time-series of hand or body postures
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Figure 6.1. Conventional approach for human gesture recognition where models
are learned from passive observation of human demonstrated motion, for gesture
recogition and imitation. The generation of assistive behavior (assist action selection
component) is normally not considered as part of learning process.

are used as training inputs and a model that fits the training examples is acquired.

After different models have been learned, the system can then be used for recogni-

tion by computing the match likelihood of the time series. This approach has been

demonstrated by Nam [79] and in Starner’s work [107] where real-time recognition

of 40 words in American Sign Language was achieved. This approach works best

when gestures are purely postural and do not refer to environmental entities. Other

variations of the HMM method such as Dynamic Time Warping (a simplification of

HMM) [17] and Bayesian time delay networks [119] have been proposed to simplify

the process.

In robotics, motor primitives are extracted from demonstrations and used to con-

struct adaptive behavior in novel contexts. Several methods have been introduced to

enable robots to learn models capable of recognizing novel, more complex behaviors.

Researchers [62, 51] have developed methods to represent high-dimensional motion-

captured data from human demonstrations by automatically segmenting the data and
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encoding them into motor primitives. Therefore novel demonstrations can be auto-

matically segmented, recognized in terms of their parts, and mapped onto the known

motion primitives. Kulic’s method [62] is HMM-based, while Jenkins [51] augmented

a manifold learning approach called Isomap by incorporating spatial and temporal

relationships and developed ST-Isomap. Although these methods were primarily de-

veloped to enable robots to learn by imitation or learn by demonstration (LbD) using

relatively few demonstrations, they can be also used for recognizing human gestures

as shown in [52].
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Figure 6.2. A number of tracked trajectories for the PickPlace behavior in Carte-
sian space. It would difficult to model these trajectories as they cover much of the
Cartesian space. The model can only become more ambiguous when more data is cap-
tured. This example shows that motion trajectory data is not uniformly informative
and are inherently ambiguous, since all actions share trajectory to some degree.

Figure 6.1 shows the commonalities among these methods. First, these approaches

depend on human demonstrations, in the form of dense motion capture data. These

motions are not uniformly informative and are inherently ambiguous since all actions

share trajectories to some degree (Figure 6.2). Also, learning how to help once the
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primitives are recognized is generally not a focus of methods currently in the literature.

However, I argue that there exists a more fundamental problem with these approaches:

the emphasis has been put on motion patterns which when performed out of context

does not directly communicate any information.

In contrast, the method proposed by this work focuses on the purposeful act itself

as well as the associated environment contexts. This approach begins from the robot

actively examining its own behavior under the context where itself requires assistance.

The reasoning behind this approach and its benefits are discussed in the next section.

6.2 Methodology: Learn to Infer Intention

Figure 6.3 provides an overview of the proposed approach for robots to learn to

recognize and understand intentions from humans. Comparing with Figure 6.1, its

key distinctions from previously mentioned methods are as follows:

1. the process begins with the robot building proprietary world knowledge and

models through autonomous exploration,

2. recognition is based on hierarchical structure of behavior and puts emphasis on

isolated events pertinent to the functional outcomes of purposeful behavior,

3. and finally, the robot actively explores and learns the compensatory behavior

for participating in a potential dyadic relationship.

In the next few sections, we expand and elaborate on each of these components in

detail.

6.2.1 Capturing Intentions by Building Proprietary World Models

In this work, we conjecture that robots can recognize and interpret intentions

in terms of their proprietary world knowledge—knowledge that the robot has ac-

quired while interacting objects and humans in the environment, using techniques we
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Figure 6.3. The proposed approach for robots to recognize intentional behavior from
other agents, by reusing knowledge acquired from prior learning sessions.

have discussed in earlier chapters. I hypothesize that these behavioral programs and

knowledge structures already captured much information regarding the behavior, the

associated intention and the environmental context. Though from the robot’s own

perspective, this information is valuable for bootstrapping the learning process of

receptive behavior. Compared with prior work where learning begins from human

motion demonstrations, this approach takes advantage of exiting knowledge and is

grounded in nature since in this case, the robot gathers knowledge about the behavior

in situ and therefore can associate the learned behavior with goals and intentions.

This approach is inspired in part by the discovery of mirror neurons [89]. Scientists

have found that certain neurons in monkeys exhibit similar activity when the animal

observes the goal-directed action of another agent as when it carried out that action

itself. This observation has led researchers to hypothesize that there exists a common

coding between perceived and generated actions [86, 10]. Therefore, these neurons
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may play an important role in how humans and other animals relate their own actions

to actions of others.

The proposed approach is based upon the same principle. Consider recognizing

a “pointing” behavior in human beings. In my framework, the robot first learns a

suite of pointing behavior itself. In the process, it makes the appropriate associations

between its actions, its own goal and intention, and the behavior of a peer. Later,

when the role is reversed and the human peer selects communicative actions to solicit

help from the robot, this background knowledge can be used by the robot to infer the

intentions of the peer in order to learn how to participate in the dyadic relationship.

The idea of role switching has been explored by Berlin et al. in [5] and Roy et

al. in [91], where the robot switches to the perspective view point of the other agent

to determine object visibility [5] or the object’s relative position [91]. This work

pushes the idea further and explores how role switching can be applied to a more

complex case where rather than a simple view-point change, reasoning with the help

of a schematic behavioral program is involved.

In the proposed control-basis (Chapter 3) approach, generative models are ac-

quired from first principles, using active exploration and learning in the context of

intrinsic motivations. These models exist in the form of behavioral schemas that

include information regarding observable states and the transitional probabilities be-

tween these states. The control basis provides mechanisms for automatically gener-

ating control actions for exploration in the combinatoric space of available sensors

Ωσ, effectors Ωτ , and potential functions Ωφ. It also has built-in mechanisms for

estimating state by observing control action dynamics. Given predefined resources,

Ωσ × Ωτ × Ωφ and a intrinsic reward function, the robot automatically formulates a

MDP and begins to learn the optimal policy for maximizing reward using Q-learning.

These schematic programs contain state transition probabilities that are similar to a

HMM model learned using an approach dedicated to model human motion demon-
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strations. More importantly, behavioral programs captured from first principles using

the control basis specifically encodes the relationship between action and goal by com-

puting the expected reward for each action at any given state. If this can be applied

for recognizing the same behavior from a human, then learning from scratch can be

minimized. This topic is discussed next.

6.2.2 Intention Recognition using Hierarchical Structure of Proprietary

Behavior

For recognition, in a teleoperation scenario, where a human “shows” the robot

how to perform a task either via motion capture devices or literally by holding the

robot’s hand, the robot can directly take advantage of these these schematic programs

by matching sensory observations to them in an on-line manner. For instance, Figure

6.4 shows the robot’s learned policy ReachTouch for reaching out and touching

objects of desire. The circles represent the states of the agent and the directed

edges are actions that cause the agent to transition from one state to the next. In

the definition of each control action, the appropriate sensor, effector and potential

function are specified to ensure the appropriate resources are allocated so that the

transition to the next state can be monitored. For recognition, the robot simply

keeps track of the state action transition of the current control policy and matches it

against the learned transitions in the behavioral program. As the robot transitions

from one state to the next, the traversed transition probabilities are multiplied to

give a likelihood match score. At any given time, the behavior that has highest score

is considered as the intended behavior by the human demonstrator.

However, for my work, I consider a different scenario where the human stands

across the table to the robot, in a face-to-face situation. In this case, the robot

observes the action performed by someone who is not “holding” its hand. While

the declarative structure of the behavior program is still useful, e.g. in the case of
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Figure 6.4. The learned hierarchical program, ReachTouch, although can be used
for intention recognition in a teleoperated task demonstration scenario, in a face-to-
face interaction scenario some procedural knowledge (such as the learned decision
boundary g(f) for determining the reachable regions) cannot be generalized to third-
party agents.

ReachTouch that if the agent cannot touch the desired object, a communicative act

is needed to “repair” the policy, some of the procedural knowledge does not generalize

to third-party agents. For instance, in the ReachTouch program, the rewarding

Touch event cannot be detected when the behavior is performed by a human, and

similarly, the decision boundary regarding whether a communicative action is needed

is specifically with respect to the kinematics of the robot and therefore does not

generalize to the length of arm for the human. The following section presents a

solution.

6.2.3 Focusing on Goals

The solution is inspired by the teleological stance proposed by psychologist Gergely

[33], who describes the development during the first year of an infant’s life as a process

that extracts goals, means and constraints to explain the behavior of others (for details

refer to Section 2.3). This is in contrast to other approaches, often collectively referred

to as the Theory of Mind (TOM) hypothesis [96], that requires a more complete

115



mental state of the other agent. The recognition process is simplified when teleological

principles are applied.

Based the experimental observations and principles, in the context of robot learn-

ing, I argue that isolated goal-related events and context cues are useful for inferring

intentions. As mentioned before, although similar information can be directly ex-

tracted from existing behavior programs and affordance models from manual and

expressive behavior learning, some of the knowledge does not generalize to humans.

Fortunately, using the same mechanisms we have described before the robot can also

build auxiliary off-policy affordance models that correlate with the on-policy events.

This can be achieved by creating off-policy monitors and attaching them to the exist-

ing behavioral programs. As discussed in Chapter 3, in the control basis, monitors can

be created the same way as controllers, by combining sampled resources, i.e. denoted

CM(fσ, φ). One distinction is that no effector resource τ is attached since a monitor is

a passive observer. Other crucial distinction is that features are sampled exclusively

from the operational space, as oppose to features extracted from sensors that are

internal to the robot, e.g. proprioceptive joint angle information. This distinction is

the key to abstracting away from the robot’s own body and acquiring knowledge that

generalizable for the recognition of behavior from a peer. To utilize this knowledge,

rather than matching the entire program state-by-state, transition-by-transition, an

agent using this approach simply looks for similar affordances in the stream of ob-

servation generated by the peer to identify the goal. This process is reflected in the

“Model Auxiliary Affordance” component as illustrated in Figure 6.3.

More specifically, given an existing behavioral program, goals are easily identifiable

since they are the terminating states where rewards occur. When the robot encounters

constraining conditions, a communicative act, e.g. arm pointing, is needed. To learn

auxiliary affordances that are highly correlated with each of these rewarding events,

Algorithm 2 is presented.
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Algorithm 2 A Sampling-based Algorithm for Building Auxiliary Affordances

1: Given a operational space feature set F = {f1, ..., fn}, a behavior program a and
its rewarding event e,

2: Sample m features Fs = {fi}m, where fi ∼ F .
3: for all f ∈ Fs do
4: Create a monitor CMi for each fi ∈ Fs, where each predicate pi corresponds to

the dynamic state of each monitor.
5: Attach monitor to action a, s.t. CMi � a.
6: end for
7: Executing action a.
8: for all f ∈ Fs do
9: if pi : 0→ 1 and e : 0→ 1 then

10: Update affordance model Pr(r|fi, CMi � a)
11: end if
12: end for

This is a sampling-based method where the robot creates monitors for sampled

features from the operational space feature set F = {f1, ..., fn} (as shown in line

1 ∼ 2). To abstract away from the robot’s own body, each operational space feature

f describes the relative property between a feature internal to the robot and a feature

from the external environment, e.g. relative distance between the hand of the robot

and a feature on the desired object. In general, feature set F can be either automati-

cally generated from given the sensor resources Ωσ, or hand-picked by the designer to

reduce the search space as part of a developmental learning strategy. While the robot

interacts with objects and humans in the environment, this algorithm runs repeatedly

in the background collecting statistics to update affordances that correlate with the

rewarding event e (line 7 ∼ 12). The statistics update in line 10 is triggered by the

detection of the convergence event of a monitor CMi and the co-occurence of the goal

event e : 0→ 1 (line 9).

During recognition, these highly correlated affordances are used as indicators for

predicting the rewarding event e when it is not directly observable by the robot.

An example is given next section, where a robot uses this algorithm to extract cues
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for detecting the pointing behavior from a human, and for inferring the rewarding

Touch event for the human which itself cannot directly experience.

6.2.4 Learning Reciprocal Behavior

Much of the previous research on learning by demonstration stops after the recog-

nition step and replays the motor pattern or executes a fixed response. In this work

however, we consider the recognition step as the first stage of a receptive behavior

where actions prepare the robot for recognition, as well as behavior for re-orienting if

an initial attempt at recognition fails. Furthermore, more complicated scenarios may

demand the robot to alternate between intention recognition and manual behavior

as the context requires. Such behavior involves sequencing other existing behavioral

programs, a skill that a general purpose behavioral learning framework such as the

control basis is designed for. A case study to demonstrate how the framework enables

the robot to learn the receptive behavior is described next.

6.3 Case Study: Learn to Recognize Pointing Gesture and

Assist Behavior

In this case study, we employ a bimanual mobile robot, the uBot-5, as shown

in Figure 6.5. The uBot-5 is a small and lightweight dynamically balancing mobile

manipulator with 13 DOF. It is designed to perform work with a whole-body approach

to mobility and manipulation, e.g. by exploiting the mass and dynamics of its entire

body to improve pushing and throwing performance [19]. Multiple hands have been

designed for the uBot and can be swapped in and out as the task requires. For the

purpose of this work, a light-weight simple 1-DOF servo-motor hand is used for the

uBot to perform simple grasping tasks. The uBot observes the world through its

stereo camera pair mounted on a pan/tilt head.
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Figure 6.5. The uBot performing plowing, stacking, pushing, and throwing tasks.

The behavioral programs that form the action primitives for this work are acquired

using a non-mobile upper-torso humanoid robot named Dexter. As a result, these

programs do not yet incorporate the uBot’s mobility. However, the programs for

manual and expressive communicative skills transferred to the uBot in a straight

forward manner. Only definitions of the uBot’s kinematics was required. To learn

receptive communicative behavior, the uBot was placed on a stand with its wheels

turned off to simulate the conditions in which the programs were originally learned.

We replicate the same experimental setup with which Dexter learned to point.

However, rather than placing the objects out of the uBot’s reach, the objects are

placed within reach of the robot and out of reach of the human. The uBot is already

familiar with these objects from the previous studies and therefore only finds activities

associated with the human rewarding. This scenario naturally satisfied our previously

defined conditions for natural emergence of communicative behavior: underactuation

and mutual reward. First, one of the agents, in this case the human, is unable to reach

the object unaided and is underactuated. However, it is possible for the robot to

assist the human to reach the desired object by virtue of the experimental statement.

Secondly, the robot and the human are mutually rewarded since the human is rewarded

for acquiring the out-of-reach object. On the robot’s side, it is possible for the robot

to infer the goals of the human in terms its own experienced goals and rewards under

similar circumstances, thus it receives reward that it does not directly experience.
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This reward model can be implemented to motivate the robot to learn the appropriate

receptive behavior for assisting the human, without the need of developing a complete

mental model for him.

Ten subjects of convenience are used for this study, half of whom were are com-

puter science students, while the rest are various members of the campus community.

three out of the ten were female. The humans are asked to stand across the table

to the robot one by one, randomly pick an object and try to enlist the robot’s help.

Four subjects are involved in the training session, using two objects. During training,

the robot has to learn the appropriate behavior to assist the human. Once trained,

all ten subjects are asked to participate in the evaluation phase where four objects

are used and the robot simply executed its learned behavior. All interactions be-

tween the robot and the subjects are recorded with consent for the purpose of offline

analysis. Humans motions are detected and tracked as a whole and individually with

the stereo camera-pair, using the multi-body kinematic model learned in Chapter 4.

Using stereo triangulation, each Cartesian coordinate of the human body is computed

and used as features to match against auxiliary affordance models for the human’s

intention to be recognized.

6.3.1 Recognizing Human Pointing

In the proposed approach, the first step towards recognizing the pointing gesture

from a human is to acquire the same behavior from the robot’s own perspective. It is

hypothesized that this allows the robot to make the association between the action

taken and the eventual reward when it own goal is satisfied.

For the uBot, the pointing schema was learned in a prior study (Chapter 5) on

a different robot—Dexter. Dexter was situated in a social context where it needs

to formulate its own behavior for soliciting human assistance in order to achieve its

goal. In such a situation where the robot’s previously learned ReachTouch behavior

120



failed, the robot adapted and learned a repair strategy for the original ReachTouch

by negotiating two different ways of communication with nearby humans. One of

which is the pointing gesture policy where the robot uses alternating gaze and arm

pointing actions to convey the intention.

The advantage of the control basis framework is demonstrated as the pointing

schema learned on Dexter was transfered to the uBot with little effort. This is because

only the declarative structure of the schema was transferred. At run-time the uBot

specific procedural knowledge, such as length of arm or handedness, was applied such

that the the appropriate resources can be instantiated. For instance, while Dexter

never performed a point using two arm, for the uBot, the underlying manual behavior

automatically gives rise to a two-arm pointing gesture for certain objects. Next, we

will show how the ReachTouch program can be used to bootstrap the learning of

the uBot for recognizing the same behavior performed by humans.

As shown in Figure 6.6, given the learned ReachTouch behavioral program with

built-in contingencies to point, the teleological processing begins by extracting goals,

means and constraints. In this case, the goal is the absorbing state in Figure 6.6 where

the robot is able to reach the object and detect Touch sensor responses from the finger

tip tactile sensors. Next, while the robot uses the pointing gesture to solicit nearby

human assistance for the out-of-reach objects, Algorithm 2 is applied to sample and

monitor configurations to learn auxiliary affordances that highly correlate with the

rewarding events via constructing off-policy monitors.

The monitor configuration is sampled from the feature set F that consists of the

relative position between features derived from the human partner and the experi-

mental objects on the table. In theory, the robot applies Algorithm 2 and samples

features to monitor while it executes the known behavior until correlated features

have been found. However, to expedite the learning process, a developmental learn-

ing strategy is employed to focus the robot’s attention on the operational space feature
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Figure 6.6. The learning of auxiliary affordances for ReachTouch. One affor-
dance, Pr(r|fσ, CM � RT ) (shown on the right), highly correlates with the Touch
event of the ReachTouch behavior, while the other correlates with the reward-
ing sub-task event (“object is within reach”) when communicative point gesture is
performed.

that describes the relative properties between a pair of features: one from the object

of interest and another from the catalog describing the robot. More specifically, a

monitor CM(fσ, φ) is created for each pair of these features, e.g., f : {Xobj, Xhand},
where Xobj and Xhand respectively represents the cartesian positions of the object and

the robot’s hand. A quadratic potential function φ = εT ε is used to compute a error

signal, where ε = Xobj −Xhand.

The robot updates the affordance models as explained in Algorithm 2 every time

a co-occurrence of the convergence event on its monitors and a rewarding event is

observed. After about 30 interactions, the collected statistics indicate that the relative

Cartesian position of the desired object and the hand of the robot exhibit a reliabe

relationship to the rewarding Touch event, such that whenever the relative distance

drops to zero, a Touch event is always observed. In a similar manner, another
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affordance, where the monitor converges but the relative distance does not reach

zero, is found to be highly correlated with the rewarding event for the repair task

where a pointing gesture is used (Figure 6.6).

For recognition, when the role is switched between the robot and the human, if

similar error dynamics is observed between the a part of the human’s body and an

object where the error converges at a non-zero value, the robot can thus infer that

the intention of the human is to also reduce the error to zero since it is sympathetic

to the need from its own experience. After obtaining an estimate of the intention of

the human, the next section discuss how the robot learns the appropriate behavior

for helping out.

6.3.2 Learning Receptive Behavior

After the uBot has learned cues for recognizing pointing behavior from a human, it

explores previously learned behavior to form a new integrated behavior for recognizing

the human’s need and acquiring a policy for assistance. The action set A available

to the uBot at this stage is: A ∈ {ST (human), ST (obj), φobjm � RT (obj), φobjm �

PP (obj)}, where RT denotes the learned ReachTouch program and PP denotes

the PickPlace program for picking up and transferring an object to a designated

location. Attached to the PP (obj) and the RT (obj) is a monitor φobjm for the Cartesian

distance between the out stretched human hand and the object, ε. Corresponding to

the action set, the state space is therefore: S : {pSThuman
, pSTobj

, pRTobj
, pPPobj

, pmobj
}.

From the previous step, the robot has inferred the intention of the human is to

touch the object. However, since it cannot directly observe the tactile event from the

human’s perspective, the robot is implicitly rewarded for observing the alternative

event it has found to highly correlate with the goal Touch event in the recognized

program—when the object and human hand distance remains ε < th (where th is a

small positive constant) when the object has been passed to him.
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For this experiment, 4 subjects of convenience participated in the training process,

while the learned policy was tested on 10 people. During the training process, 2

objects were used to ensure the robot was exposed to sufficient positive experience to

facilitate behavior formation. Once the robot acquired a stable policy for handling

the situation, 4 objects were placed on the table to evaluate the performance of the

policy.

Figure 6.7. Receptive pointing assist behavior learning curve, averaged reward per
state transition over all subjects.

Figure 6.7 shows the learning curve of the receptive behavior training process. It

can be observed that in the initial stages the average reward the robot achieved is

low since the robot was exploring different actions in a random fashion. The number

of actions it took for the robot to stumble upon the goal state was high, and thus

lowering the initial average reward. However, as the robot gained more experience

and began to propagate reward throughout the MDP, its value function improved

until greedy behavior was appropriate in most situations. As a result, the average

reward per episode for the robot rose and became stable.
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Figure 6.8. Receptive assist policy for recognizing the need of a human for acquiring
an out-of-reach object and original ReachTouch program. The robot has learned to
use gazes between the human and the objects (a0 is ST (human) and a1 corresponds
to ST (obj)) to recognize the human’s pointing gesture and identify the the object
of desire, followed by the PickPlace behavior (a3) to transport the object to the
human.

The uBot learns the policy, shown in Fig. 6.8, within a reasonable 20 training

episodes with 4 subjects. Due to developmental structuring, the resulting policy uses

only 3 actions and has a simplistic structure and therefore is easy for the robot to

discover. The final policy involves first a repeated SThuman action for a match of

the human affordance catalog and if any part of the observed human catalog moves

towards the objects, a STobj action is executed such that the distance between the

hand and the objects can be monitored and the desired object can be identified.

Finally, a PickPlace can be executed in order for the object to be passed to the

human.

After training, the 2-object setup is replaced with 4 objects and the effectiveness

of the learned policy is evaluated using all 10 subjects. As expected, the average

reward drops as the test setup is undoubtedly a more difficult task since more objects

generally lead to more mishaps such as grasp failure and objects being accidentally

knocked down by the robot.

Figure 6.9 provides a finer analysis of the success rate of the learned behavior. It

shows that although the overall success rate of the learned behavior is only around

64%, it is significantly higher than the 25% chance of picking the right object if the
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Figure 6.9. Point assist receptive behavior policy performance plot provides a finer
analysis of the success rates of the learned behavior

human’s attempt to communicate his intention was not recognized and the robot

had to pick an object at random. Furthermore, if eliminating the manipulation be-

havior failures such as the grasping mishaps, the success rate is raised to 78% for 4

objects and 96% for 2 objects respectively. These are reasonable results given that

highly ambiguous and coarse hue color features were used as the perceptual basis

for these experiments, and the experiments were performed in a naturally cluttered

lab environment where noisy background features and lighting changes can all easily

contribute to mistakes in object or human detection as well as stereo triangulation

error. Performance improvement can be expected when more robust features such as

edges or textures are used.

Finally, we discuss the observed behavior of the humans and their implications

with respect to future studies. Although no instructions were given to the humans

regarding how to communicate with the robot, we expected all humans would use
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Figure 6.10. Human social behavior comparison plot shows distribution of people
who exhibited different social behavior during the course of the experiment.

with the same pointing gesture since the scenario is simple. The outcome supports

our hypothesis and at the same time offers some interesting insights. Shown in figure

6.10, while all subjects used pointing gestures to convey the intention, there were

variations. For instance, while most people performed pointing by lifting the arm

and extending it in the direction of the desired object. However, one person used

exaggerated motions to emphasize the direction of the point when 2 objects were

used. More interestingly, when 4 objects were placed on the table, and the robot

began to falter in recognitions the intended object, 3 more people altered their point

gesture and exhibited exaggerated point behavior, seemingly adjusting their behavior

in attempt to be more conspicuous. Of the ten people participated in the experiment,

only one person was fully engaged, exhibiting multiple social behaviors that include

exaggerated pointing, nodding and praise when the robot correctly identified the

object and transported to her hand, and head-shaking when the robot chose the

wrong one. The other participants seemed much less engaged and used exhibited

only pointing behavior.
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One possible explanation for this observation is that because the uBot was placed

on a wooden stand and the actions were limited, most people did not quite view the

uBot as a social partner but rather a machine capable of moving objects. The person

who interacted with the uBot enthusiastically has a one-year old child and therefore

automatically entered into her mother-ese mode where she would use exaggerated

motion as well as different pitch of voice for interacting with children. While it is

sufficient for this experiment if the human only used one modality for conveying the

intention, it is however desirable to have people who exhibit more of their natural

social skills and participate actively for future learning sessions. This Give Robot

opportunities to learn about different social behaviors and how to react to them. Our

experience from this experiment may influence our experimental design decisions in

future studies.

6.4 Summary

This chapter is part of an effort to create a consistent framework for robots to

learn communicative behavior for assisting with humans in daily lives. While previous

chapters focused on how the framework enables a robot to learn expressive behaviors

and behavioral affordance-based models of humans in an incremental manner, this

work concentrates on the reciprocal problem: how can a robot recognize the same

behavior performed by a human, and learn the receptive behavior to address that

need. For this study, knowledge reuse continues to play a key role as it did in our

previous examples. With the shared knowledge representation, we extended the idea

to enable robots to reuse existing skills as behavioral templates and extract important

cues for the purpose of recognition. Upon detecting similar cues from a human, the

robot can then infer the human’s goal by reflecting on its own goals and intentions

when it performed the behavior. Given the extracted goal, the robot can thus explore

and find policies to meet the human’s needs. A case study has been presented to
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demonstrate the feasibility of this approach. It shows that sufficient information

can be extracted from a robot’s own pointing behavior for the bi-manual robot to

recognize pointing behavior exhibited by various subjects, which led to the successful

negotiation of proper assistive behavior that meets the human’s needs. Observations

of human behavior from this study also provide insights for the design of future, more

complicated learning stages.
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CHAPTER 7

CONCLUSIONS

Communication skills are needed for robots to collaborate and assist humans in

daily activities. Despite several state-of-art robots have incorporated a number of

social skills for this purpose, these skills are either hard-coded behavior or simple

replays of pre-defined motion trajectories. For my dissertation, I have presented an

approach that enables robots to learn these communication skills from first principles

and showed that a robot can learn these skills in an incremental fashion by adapting

to increasingly challenging interactions with humans.

On a technical level, the presented approach tackled the following important chal-

lenges: first, human beings are sophisticated objects that have been proven difficult

to model. Second, humans are independent agents with its own goals and activity,

robots need ways to learn skills for directing human attention, expressing intention

and soliciting human assistance. Third, previous attempts on developing communica-

tive skills for robots have different methodologies and representations for expressive

and receptive behavior. As a result, knowledge reuse is rare. However, for humans,

to develop complex skills or solve challenging problems we often take advantage of

previously acquired skills and knowledge. A unified framework for developing com-

munication skills that supports knowledge reuse and transfer has been presented in

this dissertation.
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7.1 Contributions

To address these challenges, this dissertation has made contributions in the fol-

lowing areas::

1. A unique approach for robots to learn and represent humans in terms

of behavior the humans afford. Although this affordance modeling approach

has recently gained attention in the developmental robotics community, most

work still only focuses on simple objects. Few attempts have been made on com-

plicated, articulated objects, let alone “objects” with independent motions such

as humans. This work has both outlined a computational framework for the

affordance modeling of humans, and provided learning examples to show how a

robot can construct an increasingly complex model of humans as the robot accu-

mulates manual, communicative skills. Beginning with an initial concept that a

human is just a big motion segment that moves, the robot extended this simple

concept into complex kinematic structures that afford simultaneous tracking.

As the robot gathers more interaction experience, the visual tracking model

was expanded to include social behavioral patterns such as the observation that

a human is likely to offer assistance to out-of-reach objects if a pointing gesture

is used.

2. The extension and application of behavioral learning framework in-

tended for developing manual skills for the purpose of learning com-

municative behavior. A change of operating context for teaching a robot

communicative behavior in the presence of humans presented several challenges:

to adapt the new contexts the robot must learn in a new state space, consider

using new actions and handle situations where local adjustments of the original

policy is no longer adequate. To address these issues, a prospective learning

algorithm has been presented to enhance the framework’s ability to adapt to

new contexts while maintaining as much of the previous acquired knowledge
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structure as possible. This framework compliments other efforts in the field by

providing a grounded means of learning social behavior. For learning recep-

tive behavior, this work also proposed a unique off-policy affordance modeling

approach that enables the robot to exploit the symmetry in communicative

behavior such that knowledge in existing behavior can be reused.

3. The proposal of a developmental trajectory for robots to acquire com-

munication skills to interact with humans. Previous attempts at develop-

ing communication skills treats expressive and receptive skills separately. The

use of the proposed developmental trajectory facilitates learning and promotes

knowledge reuse and transfer between these interrelated processes. The process

begins with the robot first learning various manual skills through intrinsically

motivated exploration. Next, by subjecting the robot to conditions of mutual

reward and underactuation, expressive communicative behavior emerges natu-

rally as the robot discovers the utility of manual behavior under the new con-

text. Finally, receptive behavior is learned by reusing existing manual skills and

knowledge structure gathered during the expressive behavior learning process.

7.2 Discussions and Future Work

Together, these contributions form a unique approach for robots to autonomously

develop non-verbal communication skills from on-line interactions with human part-

ners. Compared with the prevalent programming approaches, the approach presented

in this dissertation has the advantage of being adaptive to unexpected human re-

sponses, to skill transfer onto a different robot, and to different preferences of human

users. More importantly, compared with existing learning-based methods such as

programming-by-demonstration (PbD) or learning from imitation, the approach pre-

sented in this dissertation is grounded. While the end goal of PbD and learning

from demonstrations research generally focus on producing models to classify motion
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trajectories, poses or configurations, the learning framework in this work focuses on

associating actions with goals and intentions using intrinsically motivated learning:

the robot simply seeks to sequence actions that increase its chances for achieving re-

liable reward. On the other hand, as the result of the reward/goal oriented behavior

learning, expressive behavior is used as a template that forms the basis for recep-

tive behavior learning. Using methods presented in this thesis the existing methods

for producing expressive communicative gestures can be also grounded, since it is

conceivable for robots to explore and learn to associate reward and intentions with

actions produced by, PbD for instance, using the same behavioral learning framework.

Second, this work demonstrated the benefits of the proposed approach of studying

several problems—the learning of manual skill, expressive and receptive communica-

tive behavior—in a consistent framework. Effective knowledge reuse and transfer has

been illustrated as manual behavior is reused in the context of mutual reward and

underactuation such that its communicative nature is revealed and archived. Then,

the archived expressive communicative behavior is again reused as a template to fa-

cilitate the recognition process of the same behavior when performed by a human.

Furthermore, this work demonstrated efficient knowledge transfer of learned behavior

from one robot to another. Since only the structure of the behavior is transferred, the

robot is able to select the appropriate resources based on its own experience, rather

than simply applying the resource that may not be applicable. For instance, when

transferring pointing from Dexter to the uBot, the uBot can rely on its own proce-

dure knowledge for determining when a two-handed reach is appropriate rather than

rigidly use Dexter’s knowledge. Lastly, as the robot accumulates manual skills for

interacting with objects, and expressive and receptive behavior for interacting with

humans, this work also showed how these behaviors can be stored incrementally and

reused for the purposes of detecting humans and tracking articulated human motions.
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Observations of human reactions from the experiments offer interesting insights.

For instance, results from expressive behavior learning showed that in some situa-

tions, knowledge about robots in general may bias the human’s expectation of the

robot and therefore can affect learning performance negatively. Naive participants

typically reacted instinctively and performed better. The same set of experiments

also revealed that communicative behavior built on top of robust manual skills is

useful for maintaining the interest of the human participant. Also, evaluations of

the learned expressive behavior showed how timing of actions from the robot can

cause unexpected responses from naive humans and therefore lowering the overall

effectiveness of certain gestures. Although not yet addressed in this work, it can be

extrapolated that once more manipulation behavior becomes available to the robot,

the problem will be eventually resolved as the robot explores the utilities of these

new actions. This further strengthens the necessity of a learning approach taken by

this work. Similarly, results from the receptive behavior experiments suggested that

people who have young children are more engaged with the robot and thus more

often produced a wider variety of social behavior in response to the robot’s actions.

Therefore they may be more preferable participants for later stages since this would

give the robot more opportunities to learn about different social behaviors and how

to react to them. However, more carefully designed human subject studies would be

needed for these conclusions to be evaluated in a more rigorous manner .

This works shows an interesting developmental trajectory suitable for robots to

develop non-verbal communication skills: from manual skills emerge expressive com-

municative behavior, and that the learning of expressive skills preceded receptive

skills. This trajectory is supported by evidence from the psychology literature that

motor skill development preceded the emergence of communication behavior, and that

the concept of others is not developed till later stages. Even when different modalities

of communication are considered, this trajectory still seems to apply. For instance,

134



even crying in some sense is also a motor skill, albeit a built-in one, this basic motor

skill has to exist before the infant can learn to use it as an effective form of communi-

cation. However, it is unclear whether the reason for such a trajectory existed is the

same as the reasons (benefits) that motivated this work. There may also exist other

trajectories that lead to the same results. It is conceivable that some gestures may

be developed as the result of motor-babbling and some are simply genetically built-in

through evolution. For instance, infants at a very young age has been shown to be

responsive to the adult’s protruding tongue motion with that of their own. This is a

possible future research direction for this work.

Another question that was not addressed by this thesis is related to a similar, but

much more complex skill—verbal communication, i.e., language. Although this thesis

focuses on the development of non-verbal communication skills only, the proposed

approach as well as the findings may extend to the verbal domain, e.g. the advantage

of a consistent framework or the robot’s demonstrated ability to sequence actions to

maximize reward. This is because studies from psychology have suggested that the

human infants’ capacity to learn complex sequence actions in manipulation tasks and

their subsequent interest in object-object relationships allowed humans to eventually

develop complex systems of communication, including language, since sequencing

behavior (utterances) and associating the causal outcome are the key to developing

effective verbal communication skills as well. Although these issues are not addressed

in this dissertation, the resulting robotic platform and the learning framework provide

a formal vehicle using which these questions can be studied.
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