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ABSTRACT

DISCOVERY OF COMPLEX REGULATORY MODULES
FROM EXPRESSION GENETICS DATA

MAY 2010

MANJUNATHA N. JAGALUR

B.E., UNIVERSITY OF MYSORE

M.E., INDIAN INSTITUTE OF SCIENCE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David C. Kulp

Mapping of strongly inherited classical traits have been immensely helpful in un-

derstanding many important traits including diseases, yield and immunity. But some

of these traits are too complex and are difficult to map. Taking into consideration

gene expression, which mediates the genetic effects, can be helpful in understanding

such traits. Together with genetic variation data such data-set is collectively known

as expression genetics data. Presence of discrete and continuous variables, observed

and latent variables, availability of partial causal information, and under-specified

nature of the data make expression genetics data computationally challenging, but

potentially of great biological importance.

In this dissertation the underlying regulatory processes are modeled as Bayesian

networks consisting of gene expression and genetic variation nodes. Due to the under-
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specified nature of the data, inferring the complete regulatory network is impractical.

Instead, the following techniques are proposed to extract interesting subnetworks with

high confidence.

The network motif searching technique is used to recover instances of a known

regulatory mechanism. The local network inference technique is used to identify

immediate neighbors of a given transcript. Application of these two techniques often

results in identification of hundreds of individual networks. The network aggregation

technique extracts the most common subnetwork from those networks, and identifies

its immediate neighbors by collapsing them into a common network.

In all the above tasks, simulation studies were carried out to estimate the ro-

bustness of the proposed methods and the results suggest that these techniques are

capable of recovering the correct substructure with high precision and moderate re-

call. Moreover, manual biological review shows that the recovered regulatory network

substructures are typically biologically sensible.
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CHAPTER 1

INTRODUCTION

Genetical inheritance is influential in determining many important traits of an

organism including physical attributes, behavior and disease immunity. Some of

these traits such as sickle cell anaemia are determined by a single polymorphism

(genetic variation) and, are called Mendelian traits. Other traits such as eye color

are polygenic (determined by polymorphisms in multiple genes). However, in both

of these cases the trait is solely determined by the polymorphisms. Quantitative

traits such as adeposity are more complex and the trait is determined by the complex

interactions between the polymorphisms, gene expression and the environment. In

this dissertation methods are presented to infer such complex interactions using gene

expression data and genetic variation data which are collectively known as expression

genetics data.

1.1 Gene Regulation and Expression Genetics Data

A quintessential regulatory mechanism consists of a gene whose protein product

influences the expression of a given trait (Figure 1.1). The variation in the trait is

typically caused by two factors: the amount of protein that is transcribed, and the

three dimensional structure of the protein. The main causes of variation of these two

features are: environment, regulatory actions of other genes, and genetic inheritance.

An expression genetics experimental cross data set consists of genome-wide gene

expression profiles and genetic variation data collected from a set of specially bred

1



strains. As these organisms are raised under identical conditions, the environmental

source of variation is theoretically eliminated.

Qj

mRNA

Protein
Protein Folding

DNA

Translation

Trait

Amino Acid 
Sequence

Transcription

Transcription Factorj

{

{

{

T0

Ti

Qi
Qi

prom

{

{

{

Genei

A

B

Figure 1.1. Example of a Regulatory Mechanism A. Regulatory mechanism
modulating the trait: In this network gene i is responsible for modulating the trait.
A variation in the coding region of gene i can change the amino acid sequence of the
protein and, thereby, change its tertiary structure. In this example gene i is being
regulated by transcription factor j. A variation in either promoter region of i or the
coding region of j can impact the binding affinity of this transcription factor which
changes the amount of ith protein. B. Using the data available from an expression
genetics experiment this mechanism can be modeled as a Bayesian network. In this
scenario the genotype of transcription factor j (Qj) and the genotype of Gene i’s
promoter influence the variation of the trait (T0) through modulation of i’s transcript
(Ti). The genotype of i (Qi) directly affects the variation of the trait. The genotypes
(Qj, Qi and Qprom

i ) have discrete values and the traits (Ti and T0) are continuous
quantities.

1.2 Modeling of Regulatory Modules and Bayesian Networks

One of the most useful tools used in analysis of correlation structures is Bayesian

networks. It is a graphical model representing the conditional independencies betr-
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ween a set of random variables. This model is attractive in our case because: direct

and indirect influences can be easily modeled; in some cases it allows the inference of

the causality, and the domain knowledge can be easily incorporated.

The challenges in applying this method to expression genetics data are related to

the under-specified nature of the problem; the presence of hybrid data types and the

fact that many important variables are unobserved.

To overcome these challenges I introduce a set of three novel techniques that reli-

ably extract parts of the underlying network. The network motif searching technique

allows modeling known regulatory mechanisms as Bayesian networks and allows re-

covering regulatory instances with similar mechanism. The local network inference

technique finds the elements of the regulatory neighborhood of a given transcript

and constructs its local network. The multiple networks inferred from application

of these two methods are then assembled into a common network using the network

aggregation technique.

1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 contains the key

genetics concepts. Various breeding schemes to create the special strains are explained

here. The microarray technique for extracting expression and genetic variation is

described. And, the data-sets used in this dissertation are detailed.

In Chapter 3, previous work related to analyzing expression genetics data are

discussed. In this chapter the notations used in this dissertation are introduced. The

interval mapping technique, which is used in classical genetic mapping, is explained.

Bayesian networks are introduced along with examples of application to expression

data. Some of the existing Bayesian network based methods that have been applied

on expression genetics data are also reviewed.
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Chapter 4 deals with presenting an overview of methods that I adapted for the

analysis of expression genetics data using techniques from information theory and

Bayesian networks. In this chapter I explain some of the challenges with these ap-

proaches and detail how the methods presented in this dissertation overcome some of

these challenges.

In Chapter 5, the application of the motif searching method to infer instances of

Quantitative Trait Gene (QTG) model is discussed. The biological motivations for

proposing this model are explained. The methodology for recovering this model is

detailed. The results of the simulation studies to tests the robustness of this model

are presented. The application of this model on a yeast cross resulted in recovery of

thousands of QTG instances. Some of these instances are presented in this chapter

along with analysis of these networks.

In Chapter 6, use of local network inferencing for recovery of local regulatory

modules is discussed. The Markov blanket technique used for inferring elements of a

regulatory neighborhood is explained. The method for constructing the local network

is presented. The details of testing this method on simulated data are presented, and

the results on the application of this method on mice are analyzed.

In Chapter 7, application of network aggregation in analyzing genetic hotspots is

discussed. The biological significance of hotspots is explained. The method to infer

a set of potentially important primary transcripts is presented. This method is then

examined through simulation. Later, some of the aggregated networks inferred from

the analysis of a mice cross are shown.

In Chapter 8, the contributions of this dissertation are summarized. The effect

of dimensionality on the effectiveness of these methods are discussed. Some of the

experimental challenges are mentioned.

4



CHAPTER 2

KEY EXPRESSION GENETICS TECHNIQUES AND
DATA

Expression genetics data consists of mRNA transcript (gene expression) data and

the genotype data from a specially created genetically diverse population. In this

chapter various breeding schemes for creating such a population are discussed. Later,

methods used to collect genotype and expression data are detailed. And finally, data-

sets used in this dissertation are introduced.

2.1 Inbred strains and breeding schemes

Inbred strains are plants and animals in which the copies of the chromosomes are

identical and offspring resulting from intra-strain breeding also belong to the same

strain. Such strains are created by sibling-mating for multiple generations. After 20

generations of mating, 99% of the dissimilarity between the haplotypes is lost and

are technically deemed as inbred. Often selection is used to create strains that show

a particular trait.

Inbred strains are valuable in a genetic cross experiment for multiple reasons:

• As the offspring of inbreeding are genetically identical to their parents, the

experiments are reproducible with the same genetic background.

• Breeding two inbred strains for two or more generations results in offspring

whose genome sequence is made up of long subsequences of the parental strains.

The composition of each of the chromosomes can be reconstructed by genotyping

only a few markers.

5



• The strains derived from breeding two different inbred strains have uniform

distribution of alleles across the genome. Therefore the power of linkage studies

is uniform across the genome.

Some of the popular breeding schemes used in genetic cross experiments are shown

in Figure 2.1.

Mating of the inbred parental strains (F0, genotype AA and BB) results in off-

springs (F1) containing a copy of each chromosome from its parents (AB). Sibling

mating of F1 strains results in F2 offsprings whose allele at each position can be

homozygous of any of the parental strains or heterozygous (AA, BB, or AB). The ad-

vantage of using F2 strains is that all the possible genotypes can be observed, which

is helpful in recovering effects such as dominance. But the power of linkage studies

can be lower for the following two reasons: there are three allele at each location

(rather than two in other breeding techniques), and the allele frequencies are unequal

(P(AA)=P(BB)=25%,P(AB)=50%).

On the other hand back-crosses, created by breeding F1 strain (AB) with one of

the parent strain (for example BB), have two alleles (AB,BB). It is more powerful

than an F2 cross but lacks complex inheritance patterns (e.g. dominance).

Both of these crosses, F2 and back-cross, result in non-inbred samples which makes

the experiment non-reproducible. However F2 samples can be inbred for more than

20 generations to create recombinant inbred strains which contain only homozygous

alleles(AA,BB). Recombinant inbred strains are very useful because they represent

a reproducible stock for a set of traits derived from the crossing of the original F0

parental strains.

2.2 Genotyping and Phenotyping using Microarrays

The expression microarray is a technology used to measure the abundance of

thousands of mRNA transcripts. In this technology a panel is created containing

6



X

X

X X

X
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F1 Strain

F0 Strains

Back-cross strains

Recombinant inbred strains
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AB/BB

AA/AB/BB

AA/BB

Figure 2.1. Cartoon view of the breeding schemes The composition of one of
the chromosomes is shown. The exact number of crossovers depends on the frequency
of recombination.
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oligonucleotide probes specifically complementary to the sequence of each mRNA

transcript that needs to be measured. When treated with a sample containing cDNA

copies of mRNA, the free DNA molecules bind to their complementary sequences and

the amount of hybridization provides information about the presence and quantity

of each mRNA sequence. In this way, DNA expression microarrays quantify the

expression level of thousands of genes.

The DNA genotyping microarray is a similar technology in which the sample is

derived from an individual’s genomic DNA and the probe-DNA hybridization indi-

cates the presence or absence of specific genomic sequence. This allows for genotyp-

ing markers of interest, i.e. determining the un-phased diploid sequence at specific

chromosomal locations. In other words, hundreds or thousands of markers can be

genotyped along the chromosomes as either AA, BB, or AB.

In a genetic cross experiment, microarrays can be used to both genotype markers

and measure transcript abundance.

2.3 Expression Genetics Data-set

A typical expression genetics data-set consists of genotypes of various markers

and genomewide expression data along with other traits. The number of markers

depends on the genotyping technology and breeding scheme and a typical data-set has

anywhere between 102−105 markers. The number of genes (which determine number

of transcripts) ranges from 6000 in yeast to 20,000+ in mammals. Current available

data-sets have anywhere between 30 and 300 samples. A schematic representation of

expression genetics data is shown in Figure 2.2.

2.4 Data-sets used in this dissertation

The methods proposed in this dissertation were applied on one yeast data-set and

two mouse data-sets.
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Figure 2.2. Schematic View of the Expression Genetics Data The strains A
and B are bred to create samples AXB1, AXB2, AXB3 and AXB4. The genomes
of these samples are mozaics of the parental strains. These samples are genotyped at
many predetermined loci (also known as markers) M1, M2 and M3. Also, expression of
multiple genes are measured for each of these samples (T1, T1, · · ·, TN). Collectively,
the marker data and the expression are known as expression genetics data-set.
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Yeast (RMXBY) In this study [6] yeast strains BY4716 and RM11-1a were used

to create 113 samples. Each of the 113 strains were genotyped at 2957 SNP

markers, and 6164 transcripts were measured.

Mice (BXA) In this study [22] 120 F2 crosses of mouse inbred strains C57BL/6J (B)

and A/J (A) were created. The mice were genotyped using 173 SNP markers.

The liver samples of these mice were used to measure 16,463 transcripts.

Mice (BXD) In this study [43] mouse inbred strains C57BL/6J (B) and DBA/2J

were crossed to create 111 F2 samples. The resulting mice were genotyped using

134 micro-satellite markers. The liver samples of these mice were profiled for

23,574 transcripts.
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CHAPTER 3

PREVIOUS WORK

Classical quantitative traits such as seed size [41] and hypertension [53] have been

mapped to the genome since the beginning of 20th century. In the earlier years, as

there was no genetic map, these traits were mapped in relation to other strongly in-

herited discrete traits. (For example, the correlation between seed color and seed size

indicates that the genetic variations responsible for these traits are in the proximity

of each other.) After the discovery of genetic markers, whose locations were known on

the genome, more sophisticated mapping techniques were developed. Interval map-

ping [30] is one such technique where the relative locations of the consecutive markers

are used to infer the putative loci more accurately.

The mRNA transcript abundances were measured using microarrays under differ-

ent conditions such as stress, life cycle, tissue type and so on [48, 44]. Correlation

between conditions and the variation of transcripts were used to implicate the role

of specific genes with conditions. For example, using this approach genes involved

in the yeast life cycle were identified [17]. Further, using the correlation structures

between transcripts putative regulatory networks were constructed [19, 46].

When the first expression genetics experiments were conducted, the resulting data

were analyzed using a mixture of the above techniques [7, 43, 42]. The rest of the

chapter is organized as follows. In section 3.2, the interval mapping technique is

explained. In section 3.3 use of Bayesian networks to analyze expression data is sum-

marized. Later (section 3.4), methods that are currently being employed to analyze

expression genetics data are presented.
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3.1 Notation

For the rest of this dissertation T is used for measurable traits (both classical and

transcript) and Q is used for genetic variation. T s are always continuous and Qs

are always discrete variables. Any feature corresponding to a gene is denoted by the

corresponding subscript (Ti corresponds to transcript of gene i and Qi its genotype).

Subscript can also be a set of genes (eg. S = {1, 2, 3}, TS = {T1, T2, T3}). In some

cases the subscript is dropped when there is no ambiguity. The bold type of these

letters indicates set of all such variables (T = {T1, T2, · · · , TN} where N is the number

of traits).

I borrow some concepts from information theory. The sign “⊥” is used for data

independence. Eg. X ⊥ Y |Z indicates X is independent of Y conditioned on Z.

I(X;Y |Z) corresponds to mutual information between X and Y conditioned on Z.

3.2 Interval Mapping

Quantitative trait loci (QTL) of a trait consists of locations on the genome that are

responsible for variation of that trait. QTL mapping is done by finding the locations

across a genome whose genotypes are correlated with the variation of the trait. Due

to technological and cost constraints, the sample organism’s complete genome is not

sequenced, but rather a small set of markers spread across the chromosomes are

queried. The actual genotype at each chromosomal location is estimated using one

or multiple markers flanking the location.

For the simplest mapping case, where only the data at the markers are considered,

ANOVA techniques can be applied to identify loci correlated with a trait. In this

method the difference between means of traits in the genotype groups defined by the

marker is used to calculate the significance of the association. For example, in a two

allele (0,1) case,

s =
µ̂0 − µ̂1

σ̂
√
n

12



where µ̂0 and µ̂1 are the empirical means of the trait when marker allele was 0 and

1 respectively, σ̂ is the empirical standard deviation within the groups, and n is the

number of samples. The cumulative distribution of s in a normal distribution is used

to calculate the p-value of the linkage.

Many approaches have been used to extend this idea to any location. The means

of the segregates at the QTL can be modeled to be a sum of means at the marker

weighted according to recombination probability [51]. In the two allele case:

µ0 = (1− r)µM0 + rµM1 and µ1 = (1− r)µM1 + rµM0

are the trait means at a location which is at a recombination distance r from the

marker M .

Alternatively the likelihood of the trait (T ) can be modeled as a mixture [49]:

f(T ) =
∑
Q

b(r,Q,M)φ(
T − µQ
σ

)

where function b(r,Q,M) returns the probability of observing genotype (Figure 3.1 A)

Q at a location which is at a distance r from a single nearby marker whose genotype

is m. The parameters in this formulation, µQ,∀Q and σ, can be estimated by using

the expectation maximization (EM) strategy [30].

The relative positions of the consecutive markers can be used to provide a better

estimate of the linkage [30]. The above mentioned formulation can be be expanded

as:

f(T ) =
∑
Q

b(r1, r2, Q,M1,M2)φ(
T − µQ
σ

)

where r1 and r2 are the distances from the flanking markers M1 and M2. The calcu-

lation of probability function b(r1, r2, Q,M1,M2) is shown in Figure 3.1 B.
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r1/(r1+r2)r2/(r1+r2)

r1 r2 (1-r1r2)
r2/(r1+r2)r1/(r1+r2)
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M

0

Q=0 Q=1

1
1-r

1-rr
r

A

B

Figure 3.1. Probability observing a QTL genotype given genotypes of the
flanking marker(s) A. This figure shows the calculation of observing genotype Q
which is at a recombination distance r from m(b(r,Q,M)). B. This figure shows
the calculation of observing genotype Q which is at a recombination distance r1 and
r2 from M1 and M2 respectively (b(r1, r2, Q,M1,M2)). The figure on the left shows
the schematic representation of the locations and the table on the right gives the
probability distribution.

In some cases multiple QTLs synergistically influence the trait (example: logical

AND where both QTLs must be in a particular state to have an effect). Such a phe-

nomenon, known as epistasis [11], cannot be recovered using the single QTL methods.

To address this problem multiple QTL mapping methods have been proposed [47].

Compared to the number of samples, the complexity of this model can be very

high. For example, in the 2 allele situation, 4 mean parameters and the variance

parameter have to be estimated from only 100 samples. Therefore, sample size effec-

tively constrains the number of interacting QTLs that can be modeled. This problem

also affects much of our work where model complexity must be sacrificed to achieve

significant model fits.

A more detailed review of the QTL mapping methods can be found in [9] and [8].
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Figure 3.2. Schematic View of Interval Mapping A. The correlation between
the marker genotype and the trait along with the recombination frequency is used
to calculate the likelihood of a locus regulating the trait. B. This relation can be
expressed as a Bayesian network.
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3.3 Graphical Models and Expression Networks

Probabilistic graphical models provide an efficient way to represent the joint prob-

ability distribution of a set of random variables. In particular Bayesian networks are

directed acyclic graphs representing joint distributions as products of conditional

probabilities [20].

Formally, if a set of variables can be arranged as T1, ..., Tn such that

P (T1, ..., Tn) =
∏
i

P (Ti|Pa(Ti))

where Pa(Ti) ⊆ {T1, ..., Ti−1} is the parental set, then the joint probability can be

represented as a Bayesian network. The corresponding graph of the network can be

constructed with vertices {T1, ..., Tn} and drawing directed edges from Pa(Ti) to Ti.

A Bayesian network representation consists of two parts: the graph (G) which

represents the dependencies among the variables and is made up of a set of edges, and

the probability distribution (P) representing the nature of dependency. For example

the graphical models showing single QTL and multiple QTL models are shown in 3.3.

Learning an acyclic graph G from relational data T1, ..., Tn is called structure

learning, and learning the conditional probability distribution P from the data for a

given structure is known as parameter learning.

Multiple heuristics have been proposed for structural learning and they fall into

two broad categories. The most used approach is to use a scoring function that

determines the fitness of a graph in representing the given relational data [20]. Often

posterior probability is used as the score function:

S(G : T ) = log(P (G|T )) (3.1)

= logP (T |G) + logP (G)− logP (T ) (3.2)
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P(Q=q)=b(ML,rL,q,MR,rR)

P(T=t|Q=q)=N(μ0+q.μ1,σ)

Q1

T

G P

P(Q1=0)=P(Q1=1)=0.5

P(T=t|Q1 = q1,Q2 = q2)=N(μ0+q1.μ1+q2.μ2+q1.q2.μ3,σ)

Q2
P(Q2=0)=P(Q2=1)=0.5

A B

P(T=t|Q1 = q1,Q2 = q2)=N(μ0+q1.μ1+q2.μ2,σ)

(Accounts for epistasis)

or

ML MR

P(ML=0)=P(ML=1)=0.5
P(MR=0)=P(MR=1)=0.5

Figure 3.3. Bayesian networks showing one QTL and two QTL models
In each instance the graph G showing the dependencies is shown on the left, and
the probability distributions describing the nature of dependencies are shown on the
right. In the single QTL case the relation between markers and the QTL is explicitly
described whereas, for the sake of simplicity, such details are not shown in two-QTL
case.

=
∑
i

logP (Ti|Pa(Ti : G)) + logP (G)− logP (T ) (3.3)

The individual terms in the first part can be calculated by learning parameters

of the underlying distribution. The second part, logP (G), can be used to control

network complexity (example: the Akaike information criterion [1] (AIC) P (G) = k,

and the Bayesian information criterion [45] (BIC) P (G) = k log(n)/2, where k is

the number of free parameters and n is the number of samples) and incorporate

regulations imposed by domain knowledge [21]. The third part is constant over all the

structures and is ignored when choosing a G that maximizes the posterior probability.

The second approach in structure learning is using conditional independence state-

ments. A set of coherent independence statements can be aggregated into a Bayesian

network [57]. For example, given the statements Ti 6⊥ Tk,Tj 6⊥ Tk and Ti ⊥ Tj, the

network Ti → Tk ← Tj is constructed. These independence statements can be learned

from analyzing relational data [50, 52].
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Discovering the optimal Bayesian network from the relational data does not imply

that all the causal relations can be inferred from the network structure. Multiple

graphs can have the same score, the same undirected structure and denote the same

set of conditional independence relationship. Such a set of graphs are said to be in

the same equivalence class [20]. However, using domain knowledge about causation,

some of the remaining undirected edges can be directed. For example, in expression

genetics data only the state of the genotype determines the trait and not the opposite

and, therefore, an edge from a QTL to a trait is causally correct.

3.3.1 Using Bayesian networks to analyze expression data

Bayesian network analysis has been applied to expression data (versus expression

genetics data studied here) to identify potentially related genes from transcript abun-

dance alone. The dimensions of a typical expression data set, with 100s of samples

and 10,000s of genes, makes the task of structure prediction hard. The following two

approaches heavily influence our work.

The first approach to the problem of structure prediction given small sample size

is offered by Friedman et al. [19]. The authors propose a set of heuristics to efficiently

predict features, network proximity and causal order, of the underlying network. In

this method for a bootstrap instance (sampling with replacement) of the data, a graph

is built incrementally by adding or deleting the best edge without violating the acyclic

property of Bayesian networks. The Bayesian information criterion (BIC) is used as

a score and the distribution among variables is assumed to be either discrete or linear

Gaussian. This experiment is repeated over multiple bootstraps. Network proximity

is measured as the fraction of instances where two variables were found to be in the

Markov blanket (Markov blanket of a variable consists of its parents, children and

spouse nodes in the Bayesian network) of each other, and causality is predicted as

the fraction of instances where a variable is an ancestor of another.
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Although efficient for data containing 100s of genes, this algorithm is computa-

tionally inefficient for the large data sets containing 1000s of genes. Furthermore as

the parental set of any gene grows larger, the confidence on estimated parameters

decreases.

The second approach is to construct local modules around the transcript of interest

[37]. In this approach the elements of local regulatory network are inferred using the

Markov blanket inferencing algorithm. As the number of nodes in the Markov blanket

is typically very small, the optimal Bayesian network describing these nodes can be

recovered using an exhaustive search over all the possible network structures.

3.4 Analysis of expression genetics data

An Expression genetics data-set consists of both genetic variation data and gene

expression data. Given that the gene expression is a measure of an intermediate

molecule in determining the trait, this data set can be used to construct more delib-

erate regulatory networks. Figure 3.4 describes the biological relation between these

data and the summary of techniques that can be used to infer regulatory relations.

Most of the earlier expression genetics studies use interval mapping to analyze the

data. In Brem et al. [7] the authors applied QTL mapping of transcripts in a yeast

cross (described in 2.4) and discovered that 570 transcripts (out of 6164) were linked

to at least one loci (p < 5× 10−5). When these linkages were binned according to the

genomic locations, eight unusually large groups were identified. Using the domain

knowledge they were able to identify the putative regulator for six of these groups.

In Schadt et al. [43] three sets of expression genetics data were analyzed, one each in

mice, maize and human. The interval mapping of the mice transcripts revealed that

3,701 transcripts (out of 23,574) were linked to at least one QTL.

A few methods have been proposed to construct the gene regulatory modules using

Bayesian networks. In Zhu et al. [62] P (G) is composed of the product of individual
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Figure 3.4. Strategies for using genotype, gene expression and trait data
to study complex disease (From [27]) Red arrows represent the central dogma: the
biological path from genotype to trait. Blue arrows represent statistical approaches.
Quantitative trait locus (QTL) mapping uses genetic markers (genotypes) and is
based on meiosis. Expression association uses clustering, classification, and gene
filtering methods.

edge probabilities

P (G) =
∏
E∈G

P (E).

Probability of an edge Eij from Ti to Tj is calculated as:

P (Eij) = r(Ti, Tj)
N(Tj)

N(Ti) +N(Tj)

where r is the correlation coefficient calculated using overlap of QTL maps of Ti and

Tj, and N is a functions that returns number of QTLs. The intuition behind such

formulation is if Ti is upstream of Tj, then Tj will inherit variation from Ti.

Alternatively Li et al. [31] calculate probability of an edge using the QTL map of

the target and checking if there is a QTL around the physical location of the regulator.

P (Eij) =


1 if there is a QTL for Tj around the physical location of Ti;

0 otherwise.
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In both of these studies the putative regulatory network was constructed using

the Bayesian network reconstruction algorithm [19] and the prior probability of the

graphs (P (G) in Equation 3.3) were calculated using QTL mapping.

3.5 Research Opportunity

Q

T

Q

T

Q

T

........ T T

T T

T

T Q

T T

T

Q

A B

C

Figure 3.5. Examples of the networks recovered by each method A. Interval
mapping recovers QTL and transcript pairs which are correlated. The correlation
among multiple transcripts is ignored. B. The Bayesian networks of transcripts con-
structed using interval mapping as prior contain only transcript nodes. The direct
modulation of the transcript by the genotype is ignored. C. We propose a method to
recover complex networks that include genotype nodes. The explicit use of genotype
nodes makes it useful in recovering more instances instances of modulation.

Although the above methods provide ways to analyze expression genetics data,

there are several opportunities for improvement that we pursue in this work. The

interval mapping technique is suited for traditional cases where only a few traits are

collected. In an expression genetics data-set, thousands of transcripts are measured

and each of them can be considered as a trait. The correlation structure among these
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transcripts, which is ignored during interval mapping (Figure 3.5A), can also provide

additional clues regarding the regulatory process.

The suggested Bayesian network construction methods, instead of relying on the

direct correlation between genotype and expression, use latent observations such as

overlap in their interval mappings to discover instances of genetic modulation (Figure

3.5B).

In this dissertation we present a unified method that considers both transcripts

and genotypes simultaneously. Through Bayesian network modeling of these variables

we show that complex and causally informative regulatory structures can be recovered

(Figure 3.5C).
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CHAPTER 4

SYSTEMATIC MINING AND ANALYSIS OF
STATISTICALLY SIGNIFICANT SUB-NETWORKS

The objective of this dissertation is to use directed graphical models to infer regu-

latory relationships among the genotypes, transcripts and traits. Such a model would

consider an arbitrary number of variables, incorporate complex interactions, and in-

fer precise modulatory mechanisms. Due to the availability of very small number of

samples (usually in 102s) compared to the number of variables (in 104s), we propose

a method to recover sub-networks of interest rather than the complete network itself.

We propose a combination of three basic techniques to achieve this: network motif

searching, local network inference, and network aggregation.

This chapter begins with reasons for using Bayesian networks, some of the chal-

lenges in using it and how those problems are alleviated with use of the presented

methods. Later each of the methods are briefly introduced and are linked to some of

the actual implementations.

4.1 Why Bayesian Networks?

Bayesian networks are the natural choice for modeling gene regulation for the

following reasons:

• In some cases Bayesian networks allow inference of the direction of causality.

For example given three variables X, Y and Z, and if their correlation structure

suggests that Y is correlated with both X and Z, but X and Z are not correlate,

the only Bayesian network satisfying these conditions is X → Y ← Z which
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implies the causal explanation. The regulatory networks are, by nature, causal

and it would be immensely useful to be able to infer causal structure among

genes.

• Direct and the indirect influences can be modeled easily through Bayesian net-

works. In most cases the modulation of a trait takes place through a cascade

of regulatory actions. When modeled as a Bayesian network the presence of

an edge between two variables provides a strong indication of a direct regula-

tory relation between them. And the path between two variables provides the

information about the regulatory cascade.

• Prior knowledge about the possible regulatory structure can be easily integrated

in Bayesian networks. As shown in Equation 3.3 the prior probability term P (G)

can be set using the available domain information. For example, in a genetic

cross cross experiment the genotype of a locus in an organism is determined by

chance during meiosis, which in turn determines its traits. Therefore in expres-

sion genetics data, the genetic variation at a locus can influence the variation

of a trait, but not otherwise. This information can be used in restricting the

possible network space to only to Gs that do not have an edge from a trait node

to to a genotype node.

4.2 Challenges in adapting Bayesian Networks

The most important challenge in adapting Bayesian Networks in analyzing expres-

sion genetics data is data insufficiency. A typical expression genetics data consists

of thousands of variables and only a hundred samples. In this dissertation I present

methods that handle this problem using the following two core ideas:

Controlling Size of the Network: Instead of attempting to infer the complete un-

derlying network I focus on recovering small networks of interest with higher
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reliability. In network motif searching the network is decomposed into smaller

sub-networks with at most one dependent variable. The significant instances of

these subnetworks are later glued together to recover the original network. In

local network inference I restrict myself to a small subset of regulatory neigh-

bors in the Markov blanket of the variable of interest. In network aggregation

only a set of triplet of variables is considered at a time.

Clever Modeling of the Relation Between Genes: In this dissertation the re-

covery of complex modules is aided by the use of succinct, yet expressive mod-

eling. Instead of using a standard linear model (with respect to regulator’s

transcript and genotype) an interacting component is included. This action

enables recovering cases where the regulatory nature of a regulator changes

because of a polymorphism.

4.3 Network Motif Searching

In many cases there is some information about a common regulation mechanism.

That mechanism can be represented as a network motif i.e. a graph with known

structure, but unknown labels. Different combination of variables can be substituted

as labels, and for each combination the likelihood of the graph is calculated. The

combination of variables with significant likelihoods represent instances of the regula-

tion mechanism and I call this technique network motif searching. In fact, the process

of interval mapping itself can be represented as a network motif: Qi → Tj with Tj

being the trait of interest and Qi the unknown locus [29]. The set of Qis for which

the likelihood of this graph is significant are the QTLs of this trait.

In this dissertation a regulatory mechanism named Quantitative Trait Gene is

introduced that represents the process of Transcription regulation. Here the relation

between a regulator and a target was modeled to include both transcript and the

genotype of the regulator (Qi → Tj ← Ti). This model is presented in Chapter 5.
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Figure 4.1. Network Motif Searching: A. Graphical model of the process behind
Interval mapping: QI is the genotype of a location i flanked by markers MLi

and MRi
,

and Tj is the trait of interest. The value of Q is determined by the flanking markers
and Tj is modulated by Q. B. Quantitative Trait Gene model: In this case both
transcript Ti and genotype Qi of gene i influence j. The term Ti · Qi is added to
model changing rate of modulation due to change in genotype.

4.4 Local Network Inference

Instead of searching for data that fits the network model of a specific regulatory

process, we may need to infer the regulatory processes associated with a single trait

of interest. In such cases we find the variables in the regulatory neighborhood and

reconstruct the best possible local network. Our definition of a regulatory neigh-

borhood of a variable consists of its modulators, targets, and co-modulators (Figure

4.2). In directed graphical models, such a neighborhood definition corresponds to

the Markov blanket of the variable. From the perspective of information theory the

Markov blanket corresponds to the minimal set of variables that provide maximal

knowledge about a particular variable. Knowledge of additional variables do not

increase the knowledge about this variable.

In Chapter 6, a method to infer elements of a Markov blanket and a method for re-

construction of the network using information theoretic techniques are explained[23].
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Tj

Figure 4.2. Local Network Inference The goal of local network inferencing is
to (a) identify the variables in the regulatory proximity, (b) reconstructing the local
network.

4.5 Network Aggregation

The network motif searching and local network inference steps result in detec-

tion of thousands of networks. Often a common subnetwork is found repeating in

many of those network. The fact that it repeats frequently suggests that it is likely

to be biologically important. The network aggregation algorithm finds such a ker-

nel subnetwork, and infers its most likely neighborhood by aggregating over all the

networks.

Analysis of interval mapping of transcripts often reveals the presence of pleiotropic

genetic hotspots, i.e. loci that affect the expression of a large number of transcripts.

In Chapter 7, I present an application of this method for analyzing such hotspots.

In this chapter the relation among transcripts linked to the same hotspot is analyzed

using conditional independence tests and a set of primary transcripts, transcripts that

are directly modulated by the hotspot, is inferred [22] (Figure 4.3).
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Figure 4.3. Example of a genetic hotspot analysis A. Transcripts Ti, T2, ...TN
linked to Q are inferred using interval mapping. B. Using conditional independence
tests a set of primary transcripts TP 1 , TP 2 , TP 3 are inferred. These primary transcripts
are modulated directly by the hotspot Q, and they, in turn, modulate a large number
of transcripts. TP 4 is not identified as a primary transcript as it does not modulate
large number of transcripts.
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CHAPTER 5

CAUSAL INFERENCE OF REGULATOR-TARGET PAIRS
BY GENE MAPPING OF EXPRESSION PHENOTYPES

Correlations between polymorphic markers and observed phenotypes has been

widely used to implicate regions on the genome responsible for modulation of dif-

ferent traits [41, 53]. When the phenotype is gene expression, then loci involved in

regulatory control can theoretically be implicated. Recent efforts to construct gene

regulatory networks from genotype and gene expression data have shown that biolog-

ically relevant networks can be achieved from an integrative approach[27].

Inspired by epistatic models of multi-locus quantiative trait (QTL) mapping, I pro-

pose a unified model of expression and genotype representing cis- and trans-acting

regulation to identify quantitative trait genes (QTG). In this approach Bayesian net-

works are used to model the relation between the putative regulator and the target.

In addition, the conventional linear model is extended to include both genotype and

expression of putative regulator genes and their interactions. The model provides a

high-resolution mapping of specific genes in contrast to standard linkage approaches

that implicate large QTL intervals typically containing tens of genes.

5.1 Quantitative Trait Gene Model

The regulatory relationship between two genes is shown in Figure 5.1 A. This

relation is represented as a Bayesian network (5.1 B). The genotypes and the expres-

sion measures as numeric random variables are represented in this graphical model.

With respect to expression genetics data, where we do not have the genotypes of
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Figure 5.1. Transcription Regulation A. The transcription regulation process is
depicted. The transcript of the regulator (Tj) is modulated by the variation in its pro-
moter region (Qj) (in expression genetics data, due to low resolution of crossing, the
promoter and gene-coding regions are going to have same genotype). The variation in
target’s transcript (Ti) is modulated by the genetic variations in its promoter region
(Qi), coding region of the regulator (Qj) and transcript variation of the regulator
(Tj). B. This regulatory relation is modeled as a Bayesian network.

30



every location, a more refined version, the genotypes of the genes are further modeled

as the function of their flanking markers (as shown in Figure 5.2b). In the general

case of QTL interval mapping using sparse marker data, the genotype at a site of

interest is an unknown random variable, Qj, dependent on the observed genotypes of

the nearest upstream and downstream flanking markers, Mj,L,Mj,R. The conditional

probability of the unobserved genotype is a well-known function of the recombination

distances among Qj, and Mj,L,Mj,R[32]. Assuming that some observed phenotype

(here gene expression, Ti, where i ranges over the number of genes) is dependent on

Qj, then the graphical model is shown in figure 5.2a. QTL interval mapping is then

the likelihood of a mixture of each Qj and the selection of those Qj where the log

likelihood exceeds some threshold.

In this work I am concerned with the class of trans-acting regulators in which

the expression of the target is dependent on the expression of the regulating gene. I

consider three sub-classes of genotypic effect: cis-, trans-, and cis-trans-acting sites.

The cis- case corresponds to regulation by a variation around the physical location

of the gene and the trans- case corresponds to regulation by non-proximal locus. The

cis-trans- case corresponds to trans-regulation by a cis-regulated gene. For example,

a variation in the promoter region or 3’ end of the target gene may have a cis-

acting effect on the expression level of the target; a variation in the coding region

of the regulator may have a trans-acting effect, either directly or indirectly, on the

expression of a target gene, such as through the modification of a DNA-binding motif

in a transcription factor; and variation in or around the regulator gene may have a cis-

acting effect on the regulator’s expression which indirectly affords a trans-acting effect

on the target, i.e. cis-trans. No specific assumptions is made in this model regarding

the precise mechanism of the allelic effect even though it is convenient to imagine

examples of transcription factor binding. Variation can have direct or indirect effects
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Figure 5.2. Graphical model representation of QTG model (a) The repre-
sentation of conventional interval mapping as a graphical model. For an observed
i, all candidate genotype sites j are considered. (b) The QTG model of a single
regulator-target pair of genes (regulator is gene j and target is gene i). Subgraphs
of (b) represent (c) cis-, (d) trans-, (e) cis-trans- cases, and (f) no genotypic effect,
corresponding to the conventional BN. Colored and shaded nodes are observed.

on transcript abundance through a variety of mechanisms such as protein levels, RNA

degradation rates, splicing, and so on.

If only the genotype sites at the locations of the protein-coding genes in a fully

annotated genome are considered, then we can conveniently reference both genotypes

and genes with a common index, i.e. Qi represents the genotype for the gene i

with expression Ti. Figure 5.2b naturally follows. This model is referred to as the

full QTG model for a single quantitative trait gene and the process of estimating

regulatory genes for a given target as “QTG mapping”. The three genotype sub-

classes are subgraphs of the full model shown in figure 5.2c-f.

5.1.1 Inferring trans-acting Regulator

Here I address only the trans-acting regulator sub-class of figure 5.2d where the

target is dependent on both the genotype and expression of the regulator. It is im-
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Figure 5.3. Examples of QTG model Three examples of the combined and
interactive effects of the genotype and expression of a regulator gene on target gene
expression in yeast. X and Y axes are expression of regulator and target, respectively.
+ and × are the two genotypes. Open circles are ambiguous genotypes when flanking
markers differ. Regression lines are drawn for expression alone (blue) and by genotype
(black and green). For the first example, the regulation and target gene expression
appear anti-correlated, but are correlated with respect to genotype. The second
example shows the importance of an interacting term to capture the change in the
slope. The third example shows significant overlap in the range of target expression
for the two alleles, but a clear separation with respect to regulator expression and
genotype.

portant to recognize that this is a biologically reasonable scenario with many relevant

examples in the data. For example, the scatter plots in figure 5.3 show the rela-

tionships among the expression of a target gene and the expression and genotype

of putative regulators. In these cases only the combination, and sometimes inter-

action, of the regulator’s genotype and expression can adequately model the target

expression.

Therefore, to consider the possible interactions among genotype and expression,

the full model is

P (Ti|Qj, Tj, θ) = N (β0 + β1Tj + β2Qj + β3TjQj, σ) (5.1)

where θ is the β and σ model parameters.

As with standard interval mapping, Maximum likelihood estimation can be achieved

using an expectation maximization (EM) approach in which the genotype, Qj, and
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Figure 5.4. Sample QTG linkage map A sample QTG linkage map on the yeast
genome using the trans- model for the target gene ASP3-2. A separate permutation
test was performed per site and the corresponding threshold was subtracted from the
full model score. Thus, positive values represent locally significant results.

the variables, θ, are alternatively estimated until convergence. But the advantage of

this model over the standard mapping and multi-step approaches previously proposed

is that individual loci are automatically mapped in a single step by simultaneously

considering all available evidence.

Note that the strength of the genotypic effect is directly related to the ability

to infer causality. That is, as the contribution of the β2 and β3 terms decreases,

the confidence in the causal direction between genes i and j is reduced. We can be

precise about this directionality by comparing this model with the simpler model of

no genotypic effect (figure 5.2f). From equation(5.1), for each tested gene pair, i and

j, we can determine the strength of a relationship (the full model score) as

log10

P (Ti|Qj, Tj, θ)

P (Ti|Qj, Tj, θ : β1 = β2 = β3 = 0)
(5.2)

and the directionality (genotype reduced-model score) according to

log10

P (Ti|Qj, Tj, θ)

P (Ti|Qj, Tj, θ : β2 = β3 = 0)
(5.3)

Moreover, if the β2 and β3 terms are weak, then it indicates that the major effect is

the QTL interval and so the confidence in the specific regulator gene is correspondingly
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weak. Thus, confidence in the gene, Tj, as the actor in the relationship is found with

the expression reduced-model score

log10

P (Ti|Qj, Tj, θ)

P (Ti|Qj, Tj, θ : β1 = β3 = 0)
(5.4)

5.1.2 QTG Mapping

This model can be used to produce a QTG map (figure 5.4) for each target gene.

These maps are similar to conventional QTL maps, but differ in that peaks are usu-

ally narrow (unless confounded by local linkage) and there is no genome-wide LOD

significance threshold since the distribution of regulator transcript varies across the

genome. Instead, the local significance threshold at each test site is subtracted from

the LOD score such that positive values are significant.

5.2 Results

5.2.1 Function enrichment

As with networks derived from gene expression alone, the connectivity does not

necessarily imply physical interactions between genes. Yvert et al. previously ob-

served that genes within QTLs of gene expression traits were not enriched for tran-

scription factors or any other function[60]. Nevertheless, it was wondered whether

this lack of functional enrichment was due to the imprecise mapping of intervals that

contain usually tens of candidate genes. It was hypothesized that the QTG map-

ping method, which identifies specific candidate genes, might show enrichment for

transcription factors or other functional categories.

This hypothesis was tested by analyzing the yeast set consisting of 6164 gene ex-

pression measurements and 2957 genotype markers across 113 matings between two

distinct isogenic strains[6]. I computed the pairwise dependency among all pairs of

genes according to the full and reduced model scores, selecting those pairs with a

35



Table 5.1. Functional enrichment of regulators in GO: The set of GO terms
from the “molecular function” (F) and “biological process” (P) categories showing
significant enrichment among the candidate QTG. Total number of genes in yeast
genome is 6164. Total number of regulators in filtered set is 823.

# in
genome

# of regu-
lators

P-value GO
Type

GO ID GO Term

216 50 10−30 F GO:0003735 structural constituent
of ribosome

264 57 10−29 P GO:0006412 protein biosynthesis
60 19 10−22 P GO:0006364 rRNA processing
62 19 10−21 P GO:0006365 35S primary tran-

script processing
46 14 10−16 P GO:0030490 processing of 20S pre-

rRNA
39 12 10−14 P GO:0000027 ribosomal large sub-

unit assembly and
maintenance

91 19 10−12 P GO:0006468 protein amino acid
phosphorylation

145 27 10−12 F GO:0003723 RNA binding
8 5 10−11 P GO:0006109 regulation of carbohy-

drate metabolism
25 8 10−11 P GO:0000074 regulation of cell cycle
14 6 10−10 P GO:0000183 chromatin silencing at

ribosomal DNA
33 9 10−10 F GO:0003899 DNA-directed RNA

polymerase activity
53 12 10−10 F GO:0004672 protein kinase activity
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p < 0.00001 based on exhaustive permutation tests (required for each pair for the

full model and expression reduced-model). This p-value was biologically reasonable

in that we expect about 10 regulators per target gene — consistent with conventional

wisdom and recent studies[6]. This resulted in 22,923 predicted interacting pairs

yielding a modest false discovery rate of 1.7%. Finally, to avoid linkage disequalib-

rium effects, putative cis-trans-acting regulators (using a conventional p-value<0.05

cutoff) were excluded and regulator-target pairs residing on the same chromosome

were removed. This filtering likely removed some true pairs, but a conservative selec-

tion was chosen in order to detect any group-wide trends that would be obscured by

noise from false positives. After this filtering, the final set consisted of 4268 pairs.

I then considered the significance of each Gene Ontology (GO [3]) category in the

“biological process” and “molecular function” ontologies with respect to the known

GO assignments to the candidate regulators using the standard hypergeometric dis-

tribution test. Unlike previous reports, I found some highly significant classes shown

in table 1. However, there was no enrichment among transcription factors or related

activity, in agreement with Yvert et al.[60]. It is interesting, however, that there

is enrichment in many different regulatory and control related activities, including

cell cycle regulation, metabolism, and kinase activity. However, most enrichment is

for functions and processes related to protein translation. Ribosomal proteins and

related genes are well known to be highly co-expressed, but this analysis confirms the

stronger claim that these genes are auto-regulated to a high degree[61].

Even though no functional enrichment in transcription factors was found, we still

examined the predicted targets of transcription factors for evidence of physical inter-

action. Considering all the predicted targets of each transcription factor that met the

selection criteria above, I searched 500bp upstream of the target for matches to known

binding site motifs (TRANSFAC [34]). I found no significant enrichment for targets

containing known binding regardless of sequence similarity thresholds. For example,
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only 35 of 719 putative targets contained matches to known binding sites. And of

those, only 8 were known targets of their respective transcription factor regulators.

In a final attempt to recover a bias for transcription factors, I hypothesized that

QTGs associated with multiple target genes would be enriched for transcription fac-

tors. Those regulators were extracted from the set of 4268 pairs that had ten or

more target genes. The set included well known transcription factors FKH1, FKH2,

MSN1, KSP1, and ZAP1, but there was no significant enrichment in the total set

for transcriptional regulators. All these observations further confirm that regulatory

behavior captured in genotype/expression networks is not likely to be physical in-

teractions, but more complex, indirect relationships as suggested by the functional

enrichment found above.

5.2.2 Robustness

Next I wondered how well a causal relationship could be inferred when the regula-

tor was part of a multifactor regulation. Using the yeast data set of n = 6164 genes,

an n + 1 target gene was simulated according to an additive model of k = 2 . . . 5

regulators, with only one regulator having genotypic effect. Specifically, I simulated

Tn+1 = β1T1 + . . .+ βkTk + βk′TkQk + ε

where βk′ was set at random values such that the genotypic effect between the two

alleles, (µa − µb)/σ, was uniformly selected between 0.5 and 3.0. The other β’s were

selected from N (0, 1). Using the QTG trans model it was attempted to recover the

causal regulator of the simulated target among the background of the other n genes.

By modifying the full model threshold for equation 5.2, I obtained different trade-offs

between recall and precision. It was found that the QTG model was successful in

identifying the correct regulating gene, even for larger values of n (figure 5.5). Not

surprisingly, conventional QTL mapping alone, being a function of only the flanking

38



Figure 5.5. Performance of QTG model A plot of recall ( TP
TP+FN

) versus precision

( TP
TP+FP

) for varying full model scores. The red line corresponds to the performance
of QTL mapping and each of the black lines correspond to performance of QTG
mapping with varying number of regulators.
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markers, failed to accurately predict the precise regulating gene, but the QTL interval

was typically identified with reasonable success in the simulation cases.

5.2.3 Prediction of novel regulators

Six candidate QTL intervals analyzed in [7] representing highly pleiotropic loci

were considered. The intervals were each predicted as containing a regulator gene

associated with a large number of target genes, although the precise gene was un-

known. In the paper, a putative gene within each interval was predicted manually

by the authors according to published gene function annotations of regulator and

target genes. For the most part, QTG analysis was disappointing in these cases; as it

turned out, loci 1 through 5 were coincident with cis-acting QTLs. As a result, the

gene expression of most of the putative regulators are highly linked and the manually

predicted genes are no better fit than the neighboring genes.

However, a likely alternative regulator for the second of the six loci was predicted.

The region on chromosome III represented a common QTL for 21 genes identified

by Brem, who predicted that LEU2 was the putative regulator based on its similar

function to these 21 target genes. But I identified ILV6, about 13kb from LEU2, as

the more likely candidate. ILV6 is the best fit for the full and reduced models for 12

of the 21 genes with no other candidate gene showing significant fit for more than a

few targets. Scanning the genome, I also found an additional five target genes not

previously identified (table 2). This set of 17 putative targets of ILV6 are significantly

enriched for genes associated with branched chain family amino acid biosynthesis (p-

value 1.8 × 10−8) and related amino acid metabolism GO terms. Moreover, ILV6

has been shown through direct assays to be part of the superpathway for leucine,

isoleucine, and valine as the regulatory subunit of acetolactate synthase[15]. Thus,

ILV6 and its targets are functionally related and its highly plausible that modulation

of ILV6 directly affects the abundance of these other genes.

40



5.3 Discussion

In this chapter I presented the Quantitative Trait Gene model which improves

upon interval mapping. This method infers instances of regulation where genotype

and expression of the regulator interact while modulating the target.

Robustness of this method was tested through simulation and the results suggest

that the regulatory relation could be recovered with a precision of 80% and recall of

60% (Figure 5.5). This performance remained fairly constant even with simulating

larger networks.

The application of this model on a yeast cross returned numerous instances where

both genotype and transcription variation of the regulator were explaining a large

part of target gene’s transcript variation 5.3 and the number of such instances was

significantly higher than expected due to chance. The set of regulators found through

my analysis was not enriched for transcription factors as I had expected 5.1 which

indicates that the transcription regulation in yeast much more complex.
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CHAPTER 6

RECOVERY OF LOCAL NETWORK

In this chapter I present an extension of the QTG model where, instead of re-

stricting to a pre-determined graph, an arbitrarily complex regulatory network is

constructed around a transcript of interest. This method is a two-step process: start-

ing with a seed gene of interest, a Markov blanket over genotype and gene expres-

sion observations is inferred according to differential entropy estimation; a Bayesian

network is then constructed from the resulting variables with important biological

constraints yielding causally correct relationships.

This method was tested by simulating a five-node regulatory network within the

background of of a real data set. It was found that 45% of the genes in a regulatory

module can be identified and the relations among the genes can be recovered with

moderately high accuracy (> 70%). Since the sample size is a practical and economic

limitation, I considered the impact of increasing the number of samples and found

that recovery of true gene-gene relationships only doubled with an order of magnitude

increase in samples, suggesting that useful networks can be achieved with current

experimental designs, but that significant improvements are not expected without

major increases in the number of samples. When this method was applied to an

actual data set of 111 BXD mice cross, I was able to recover local gene regulatory

networks supported by the biological literature.

The rest of the chapter is organized as follows. In section 6.1 the problem is

concretely defined and methods for Markov blanket Inference and Bayesian Network

construction are introduced. A new regulatory network inference method is presented
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in section 6.2, and experiments are described in section 6.3.1. The results on appli-

cation on a mice data-set is presented in section 6.3.2.

6.1 Local Networks from Expression genetics Data

In some experiments it is important to understand the regulatory neighborhood of

a given trait. Here I present an improved Bayesian network reconstruction algorithm

for facilitating this goal. In particular the contributions of my approach are:

• Regulatory modules, instead of global regulatory networks, are inferred, which

mitigates some of the difficulties of BN structure inference when sample size is

small relative to the number of variables;

• Genotype values and expression levels are modeled together in a single BN,

which provides simultaneous integration of data types and the identification of

different kinds of regulatory control;

• Multiple genes and genetic effects are considered together, rather than a single

gene or a single QTL;

• Gene “self effects” are included, which incorporates the often significant effect

of cis-acting polymorphisms;

• and the interacting effect between genotype and expression level is modeled

(QTG model), which allows for complex regulatory behavior.

6.1.1 Markov blanket

The Markov blanket of a variable Xs ∈ X is defined as the minimal set of variables

MB ∈ X−{Xs} that provide the maximum possible information about Xs. Knowing
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the value of other variables outside of MB does not provide additional information.

Formally,

∀X̄⊆X−MB−{Xs}(X̄ ⊥ Xs|MB).

In a Bayesian network, the Markov blanket is the union of parent, child and spouse

(i.e. parents of children) nodes. In a gene regulatory network, the Markov blanket

of a gene contains its regulators, targets and co-regulators. Thus, a Markov blanket

of a gene of interest corresponds to the biological concept of a local gene regulatory

module (figure 6.1).

Recovering the Markov blanket using raw data is well-studied in the context of

feature selection[26, 56, 36]. Here I describe one particularly attractive approach.

Tj

Figure 6.1. Local regulatory network The local regulatory network of a tran-
script Tj consists of its modulators (parent nodes), targets (children nodes) and co-
modulators (spouse nodes). These nodes are inferred from the variable set containing
other transcripts and genotypes.

6.1.1.1 Incremental Association Markov blanket

Incremental association Markov blanket (IAMB) is an information theoretical ap-

proach to infer a Markov blanket (MB) from data[56]. This is a two-step algorithm.

In the first step, nodes are added to an interim MB∗ based on a greedy search for

variables that are not conditionally independent. Since it is a greedy algorithm some
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Algorithm 1 IAMB algorithm

INPUT: Data: X = {X1, X2, . . . , Xn}, Target: s, Threshold: θ OUTPUT: Markov
blanket: MB

1: MB = ∅
2: repeat
3: i = arg maxi 6=s I(Xi;Xs|MB)
4: if I(Xi;Xs|MB) > θ then
5: MB = MB ∪ {Xi}
6: end if
7: until MB does not change
8: repeat
9: i = arg minXi∈=MB I(Xi;Xs|MB − {Xi})
10: if I(Xi;Xs|MB − {Xi}) < θ then
11: MB = MB − {Xi}
12: end if
13: until MB does not change

nodes that should not be in the final MB might be present in MB∗. These nodes are

removed in the second step through an exhaustive search of all subsets of MB∗. When

the data set is faithful to the true distribution (i.e. empirical distribution is equal

to the true distribution) and the measure of conditional independence is accurate,

then this algorithm is guaranteed to give correct results. Usually conditional mutual

information is used for measuring conditional independence [56, 36]. In practice the

conditional independence test is deemed reliable only when the number of samples is

at least five times the number of degrees of freedom. For discrete data this imposes

a requirement of an exponential number of samples with respect to the number of

variables in the conditioning set. However, when data is continuous and Gaussian

distributed, as assumed here, then the number of required samples is only quadratic

with respect to the number of variables in the conditioning set.

Conditional independence for continuous data can be computed using the differ-

ential entropies of the involved variables. Differential entropy is a relative measure

that quantifies the amount of surprise (or information) of a continuous variable. It is

equal to the expected log of the probability density.
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h(x) = E(log(f(x)))

=
∫ +∞

−∞
f(x) log(f(x))dx

where f is the probability density function of x. For a multivariate Gaussian variable

X = {X1, X2, . . . , XN} differential entropy h(X) is equal to

h(X) =
1

2
ln{(2πe)Ndet(Σ)}

where Σ is the co-variance matrix of X. Conditional relative entropy is defined as

the amount of surprise in one variable when the condition variable is known.

h(X|Y ) = E(log(f(X|Y )))

= h(X, Y )− h(Y )

Mutual information quantifies the amount of information that is contained in

a random variable (X) about the other variable (Y ). It is equal to the difference

between the amount of information in one of the variables (which is entropy, h(X))

and the amount of information in it that is unexplained by the other variable (which

is conditional entropy, h(X|Y )). Under condition Z it is equal to:

I(X;Y |Z) = h(X|Z)− h(X|Y, Z)

6.1.2 Bayesian Networks

Constructing Bayesian networks is a well-studied problem[20, 18, 12]. For a given

network structure, the conditional probability distribution function of each variable

can be calculated using maximum likelihood estimates. Using these functions, the

posterior probability of the data can be calculated and a network can be scored. Let
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X = {X1, X2, . . . , XN} be the set of variables in the network. The posterior likelihood

of an observation x is given by:

P (x) =
N∏
i=1

P (xi|Pa(xi),Θ)

where Pa(xi|Θ) is the set of parent nodes corresponding to node Xi and Θ is the

hyper-parameter set determining the conditional probability distribution. For a data

set X = {x1, x2, . . . , xM} the posterior likelihood is given by:

P (X|Θ) =
M∏
j=1

N∏
i=1

P (xji |Pa(xji ))

Log likelihood is used as the scoring function:

LL(X ,Θ) =
M∑
j=1

N∑
i=1

log(P (xji |Pa(xji )))

Since the hyper parameter Θ is estimated using the finite number of samples, it is

always possible to increase the log likelihood of a graph by increasing its connectivity.

This over-fitting phenomenon can be be avoided by using a scoring scheme that takes

connectivity into consideration. Bayesian information criterion (BIC, also known as

Schwarz information criterion) is one such scheme.

ScoreBIC(X,Θ) = 2LL(X ,Θ)− k log(M)

where k is the number of free parameters in Θ. For linear Gaussian models k is equal

to the total number of edges in the network.

Given that the possible network structure space is super-exponential with respect

to the number of nodes, an exhaustive search through all possible graphs is usually not

feasible. Reasonable heuristics like node ordering[18] can be used when the number
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of samples is high and the number of variables is low. But those algorithms are

infeasible when the number of dimensions is high and inaccurate when the number of

samples is low. Another class of algorithms use information theory to construct these

networks. A polynomial time algorithm exists[12] when an oracle, which determines

if two variables are dependent conditioned on a set of variables, is available and the

data is DAG-faithful. Such an oracle can be constructed by calculating conditional

mutual information for the set of variables. But calculation of mutual information can

be problematic when the number of samples is low, just as with the Markov blanket

algorithms, as mentioned above, and when the number of variables is high. The

proposed method overcomes this limitation by restricting to building local networks

around the gene of interest. As the number of genes in the regulatory neighborhood

of a gene is usually low, the network searching problem remains tractable.

6.1.3 Extending the QTG Model

The conventional model for mapping linkage of loci to phenotypes is a linear model

of the form

P (Ti|Qj) = N (β0 + β1Qj, σ)

where Ti is the phenotype of interest (expression of a target gene) and Qj are inferred

genotypes of genes Gj along a chromosome.

In chapter 5, I suggested an alternative model that explicitly incorporated the

genotype and expression level at gene Gj as well as the potential interacting effect of

genotype and expression level, yielding

P (Ti|Qj, Tj, θ) = N (β0 + β1Tj + β2Qj + β3TjQj, σ) (6.1)

where θ is the β and σ model parameters. (Equation 5.1.)

A scanning method, like conventional QTL mapping, can be used in which pair-

wise relationships are found by computing the log posterior odds for all Gj in the
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genome. Equation 6.1 has the advantage of capturing complex dependency relation-

ships. However, the scanning method does not incorporate multi-locus regulatory

control.

6.2 Methods

Now I present an algorithm that finds the loci that are in the regulatory neighbor-

hood of a gene of interest and reconstructs the corresponding partial network. The

main advantage of this new method over QTG scanning method[29] is here I construct

networks involving multiple genes to specifically model the joint distribution, whereas

the previous approach could only identify putative pairwise relationships akin to a

relevance network[10].

6.2.1 Mixed Type Bayesian Network Under Biological Constraints

We model a gene regulatory network as a highly constrained Bayesian network

subject to the biological conditions as graphically described in Figure 6.2. A “gene” is

modeled as a meta-node, such that a node (Ga) consists of expression (Ta), genotype

(Qa) and interaction (TaQa) variables (Figure 6.2a). Edges denote regulation between

genes where edges are drawn from the regulator meta-node to a target meta-node. The

kind of regulatory control between two genes depends on which terms in the meta-

nodes were used (Figure 6.2b). Since genotypes are determined by chance during

the meiosis, it is implausible that phenotypes are causally upstream of genotypes.

Therefore, whenever a direct relation is found between a genotype and a phenotype

node, the edge is always directed away from genotype.

6.2.2 Markov blanket Inference

Algorithm 2 for inferring a Markov blanket is very similar to the IAMB algorithm

with several domain specific differences. The candidate variable set C consists of all

gene expression values (Ti, 1 ≤ i ≤ n, where n is the number of genes), all marker
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Figure 6.2. Modeling regulatory relation between genes (a) Elements of gene
A. Ta is the expression, Qa is the genotype and TaQa is the interaction variable. (b)
All edge types. Colors are used to visually code predicted networks (such as in figure
6.5. (c) Example of gene-gene relationship with two edge types involved.

genotypes (Mj, 1 ≤ j ≤ k, where k is the number of polymorphic markers) and

approximate interacting terms estimated from the product of expression and flanking

marker genotypes (where TQl
i is used to mean TiML(i), TQr

i to mean TiMR(i), and

ML(i) and MR(i) are the flanking left and right markers of gene Gi). In the forward

step, based on conditional independence, variables from C are incrementally added

to the Markov blanket MB and in the backward step false positives are removed. A

continuous form of conditional mutual information (as explained in section 6.1.1.1) is

used as the measure of conditional independence. Variables are assumed to follow a

multinomial Gaussian distribution. With the reasonable biological assumption that

any gene has no more than about ten genes in its local regulatory network[6], then only

(≈ 100) samples are required to accurately calculate conditional mutual information.
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Algorithm 2 Inferring Markov blanket of a gene. I calculates the conditional mu-
tual information as described in section 6.1.1.1. Functions max and min return
maximum/minimum element in the array and its index.

INPUT: Expression Levels: T = {T1, T2, . . . , Tn},
Marker Genotypes: M = {M1,M2, . . . ,Mk},
Interaction terms: I = {TQl

1, TQ
r
1, . . . , TQ

l
n, TQ

r
n},

Seed Gene s, Threshold α
OUTPUT: Markov blanket MB ∈ T ∪M ∪ I
1: MB=∅
2: C=(T ∪M ∪ I)− {Ts, TQl

s, TQ
r
s}

3: repeat
4: for Ci ∈ C do
5: scorei = I(Ci;Ts|MB)
6: end for
7: [maxI,maxi] = max(score)
8: if maxI ≥ α then
9: MB = MB ∪ {Cmaxi}
10: end if
11: until maxI < α
12: repeat
13: for Ci ∈MB do
14: scorei = I(Ci;Ts|MB − {Ci})
15: end for
16: [minI,mini] = min(score)
17: if minI < α then
18: MB = MB − {Cmaxi}
19: end if
20: until maxI < α
21: return MB
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6.2.3 Gene regulatory network reconstruction

Here an incremental algorithm similar to Cooper et al.[14] for constructing the

local network for a seed gene, s (Algorithm 3) given its Markov blanket, MBs is

used. The novelty of this method is that the unobserved genotype values Qi must be

simultaneously be estimated while constructing the graph edges.

I begin with an MBs that contains zero or more expression and genotype terms

(e.g. Ti, TQ
r
i , etc.) for each gene Gi. The regulatory neighborhood of seed gene s

the defined as RNs = MBs ∪ {Ts}. For all genes with a flanking marker in the MBs

I introduce the unobserved genotype Qi and estimate its maximum likelihood value

according to the distances to the flanking markers. Similarly any TQl
i and TQr

i terms

are replaced with TQi.

Next, the variables in RNs are consolidated into gene meta-nodes, such that all

variables associated with gene Gj are grouped. Then, beginning with an empty graph,

edges are added, removed, or reversed between variables in separate meta-nodes based

on an increase in the network score. Unlike a conventional Bayes Net construction,

I explicitly consider combined genotype and expression effects including interacting

effects. These different kinds of regulatory effects are represented as different types

of edges (figure 6.2b). The score is computed as the log of the joint probability with

a Bayesian Information Criterion (BIC) penalty term to control for complexity of the

network.

Finally, theQi terms are re-estimated based on the new graph structure (connected

genes and flanking markers). With the new values of Qi, a new graph structure

is generated. This EM-like iterative process is repeated until convergence, which

happens quickly in practice.

Purely genetic hyper-nodes are an interesting special case. In some cases a marker

variable Mi might not have a gene in MBs that it can be grouped with. In those

cases a dummy gene hyper node is created for this marker. These dummy genes are
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Algorithm 3 Algorithm for constructing local regulatory network. EstimateGeno-
type function estimates the genotype of a locus by using the genotypes of the flanking
markers and the distance to those markers. Score calculates the optimal score of a net-
work using EM strategy. In expectation step all the Qs and TQs are estimated using
the current value of hyper parameter set (Σ) and their priors. Later in maximization
step the Σ is re-calculated using the re-estimated values of Qs and TQs. AddScore is
the score of the new network when a edge is added, reversed or removed. This func-
tion also checks for DAG consistency of the network and if that is violated returns
−∞. getPossibleEdges returns the set of possible edges (edge = {from, to, kind})
in the network depending on the contents of hyper-nodes. from can be any node, to
node needs to have expression term in it and kind can be any kind of edge shown in
6.2 or of kind no edge (used when an edge needs to be deleted).

INPUT: Markov blanket MBs,
Expression profiles: T = {T1, T2, . . . , Tn},
Marker Genotypes: M = {M1,M2, . . . ,Mk},
Interaction terms: I = {TQl

1, TQ
r
1, . . . , TQ

l
n, TQ

r
n}

Seed Gene s, Threshold β
OUTPUT: Local Network BNs

1: RNs = MBs ∪ Ts
2: for each gene i do
3: Qi = EstimateGenotype(MLeftmarker(i),MRightmarker(i), Location(i))
4: end for
5: for each gene i do
6: Gi = {Ti, TiQi, Qi}
7: end for
8: CG = {Gi|Ti ∈ RNs ∨ TiQl

i ∈ RNs ∨ TiQr
i ∈ RNs}

9: BNs = ∅
10: curMaxScore = Score(BNs, CG)
11: while forever do
12: {from, to, kind} = argmax{from,to,kind}∈getPossibleEdges(RNs)

Addscore(BNs, {from, to, kind}, CG)
13: if AddScore(BNs, {from, to, kind}, CG)− curMaxScore > β then
14: if ∃kind s.t {from, to, kind} ∈ BNs then
15: BNs = BNs − {{from, to, kind}}
16: end if
17: if ∃kind s.t {to, from, kind} ∈ BNs then
18: BNs = BNs − {{to, from, kind}}
19: end if
20: BNs = BNs ∪ {{from, to, kind}}
21: else
22: return BNs

23: end if
24: end while
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Ta Qa Tb Qb

Tc QcTd
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Figure 6.3. Simulation strategy for local network inferencing Black nodes
were selected from the existing data and the red nodes were simulated using a linear
Gaussian model.

assigned a range of locations (determined using the location of markers Mi−1 and

Mi+1 that flank Mi) instead of having one exact location as with regular gene hyper

nodes. During the network optimization the exact location of this dummy gene is re-

calibrated to maximize the score. This strategy allows us to detect genetic elements

that are either not associated with any of the known genes. Such effects include, for

example, cis-acting QTLs and non-coding genes.

6.3 Experiments and Results

Simulations were performed to test the fidelity of the model, to set appropriate

threshold parameters, and to calculate the sample size needed to achieve good accu-

racy and recovery.

6.3.1 Simulations

Synthetic data was generated to test the viability of this approach. To keep the

simulation as realistic as possible and to preserve the distribution of the real data,

only a small set of simulated data was added to the existing data. Networks of various

size were simulated. Importantly, parent and spouse genes were not simulated, but

selected from existing genes. Target genes and their children were simulated using
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Figure 6.4. Performance of local network inferencing A. Accuracy vs recovery
plot for classification of variables in Markov blanket of candidate seed gene. Different
lines show results for different sample sizes. B. Accuracy vs recovery plot for graph
reconstruction using different graph evaluation criteria.

a linear model with Gaussian noise. A example of such simulated network is shown

in Figure 6.3. The coefficients of this linear model were selected from a Gaussian

distribution. To test the data requirement for sample sizes greater than the available

111 samples, I simulated additional expression values as Gaussian and genotypes from

linkage probabilities.

Results of these simulations are presented in Figure 6.4 for a 5 node network.

(For network sizes greater than 5, accuracy did not decrease substantially and the

number of recovered genes remained almost the same; data not shown.) Figure 6.4a

describes the performance of the Markov blanket recovery. Each line in the figure

corresponds to a sample size. Results suggest that this algorithm can recover parts of

the network with high accuracy at useful recovery rates. For example, greater than

45% of genes in the true Markov blankets were recovered at an accuracy of about 75%.

Reducing the threshold did not result in increased recovery but caused accuracy to

drop substantially. When I increased sample size to one thousand (ten times the

current available data) there was a marked improvement in recovery(> 75%) and

accuracy(> 85%).
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Figure 6.4b describes the performance of network inference, i.e. edge prediction,

over the Markov blanket variables. Considering only gene meta-node connectivity,

the algorithm exceeded 90% accuracy and 90% recovery for the correct placement

of edges. When the correct direction is also taken into account, accuracy of 85%

could be achieved with recovery of about 85%. Edges of correct direction and correct

edge type could be recovered with 70% accuracy and 70% recovery. Thus, a quite

reasonable reconstruction of a network could be achieved with a large majority of

edges properly labeled and oriented.

6.3.2 Biological Significance

For practical experimental results I used data collected by Schadt et al.[43], con-

sisting of gene expression profiles for 111 F2 mice derived from crossing C57BL/6J

and DBA/2J. The data-set contains expression for 23,574 genes and genotypes for

134 markers spread over 19 chromosomes.

When this algorithm was applied to construct local networks seeded by 400 highly

cited mouse genes in PubMed database, under the assumption that well-annotated

seeds are more useful when performing a manual, qualitative review of predicted

regulatory networks. Many networks found which were enriched for shared functions.

Several of these networks are shown in Figure 6.5 with the biological interpretations

and analysis. The inferred local regulatory network of Dlx2 is shown in figure 6.5a.

Three of the genes in the network, Dlx2, Aebp1 and Dnmt3a, are known transcription

factors. This indicates that these genes might be involved in a transcriptional cascade.

The local regulatory network of Rela (figure 6.5b) contains Mapk1 and both of these

are involved in organ morphogenesis. Rela seems to be regulating Usmg5, which is

involved in skeletal muscle growth, which suggests that Rela’s role is skeletal muscle

growth. The inferred local regulatory network of Pcna (figure 6.5c) suggests that

Pcna and Dmap1 might be co-regulating Prim1. This is interesting as these two
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genes are known to interact with similar domains[33]. The local network of Fgfr2

(figure 6.5d) is interesting in many ways. Biologically this network makes sense as

there is reasonable functional overlap among the genes n the network. Fgfr2 and

Ptk2 are involved in regulation of actin cytoskeleton. Fgfr2, Ptk2 and Gnaq are all

nucleotide binding proteins. This network is also interesting computationally as we

can predict the causality of this network though there are no genetic variables. In

this network all the genes are well correlated with the seed gene, but Ptk2 and Ppt

are uncorrelated. This is the only network that is able to capture these informational

dependencies accurately[57].

6.4 Discussion

In this chapter I presented an extension of the QTG model for analyzing regulation

involving multiple genes as a directed acyclic graph. In this study I investigated the

use of an information theoretic method for accurately constructing local gene regula-

tory network from a seed gene. This model allows use of both expression and genotype

in the same network thereby exploiting the natural dependencies. The method com-

bines conventional quantitative genetic mapping and model-based network inference

in one unified algorithm compared to approaches where genetic analysis is done first

and results are used to refine genomic study results.

The simulation results suggest that reasonably accurate small networks can be

constructed using this approach. Importantly, it was also found that small sample

size is the most important limitation on the utility of these data sets. The simulation

study also suggests that an order of magnitude increase in number of samples is

needed to identify reliable and complete gene regulatory networks, but such large

experiments are impractical in the near term.

A brief analysis of the local networks that are constructed around some well known

genes suggest that the proposed method is capable of recovering biologically relevant
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Figure 6.5. Sample local regulatory networks A. Dlx2. Dlx2, Aebp1 and
Dnmt3a are expressed inside nucleus and they are transcription factors. Napsa and
Aebp1 are involved in proteolysis. B. Rela. Mapk1, Rela and Lbh are nuclear proteins.
Mapk1 and Rela are involved in organ morphogenesis and Usmg5 is up-regulated dur-
ing skeletal muscle growth. This suggests that Rela might be involved in a signaling
cascade that controls muscle growth. C. Pcna. Pcna and Dmap1 are known protein
and DNA binding proteins. They are also known to interact with similar domains
[33]. D. Fgfr2. In this network, though there is no genetic component we can still
predict that this graph is causally correct. In this graph Fgfr2 is well-correlated with
other genes in the network: Ptk2, Ppl and Gnaq (with correlations of 0.53, 0.70 and
0.62). But Ptk2 and ppl are uncorrelated (with correlation 0.16). These numbers
suggest that this is the only plausible network that can be constructed with these
genes [57].
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networks from the expression genetics data. Most of the networks have edges between

the genes that are known to be functionally similar and/or are active in the same

cellular locations.
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CHAPTER 7

ANALYSIS OF GENETIC HOTSPOTS

Interval mapping of genomewide expression data often reveals existence of highly

localized regions that appear to regulate a number of transcripts. It is not always

clear whether these aggregations reflect real biology or whether they may be due to

experimental artifacts. In this chapter I present a method that analyzes such hotspots

and presents plausible regulatory elements responsible for such phenomenon. In this

method conditional independence analysis is applied to determine which transcripts

are directly modulated by allelic variation and which transcripts can be explained by

another transcript acting as a causal intermediary. Using simulated data it is shown

that it is possible to reliably detect these primary transcripts even when it is difficult

to elucidate the entire network of interactions. This method was applied to data from

a mouse intercross population to characterize a number of prominent hotspots. In

most cases it was found that a small set of local transcripts are primary and that each

influences a non-overlapping set of downstream transcripts. However one case was

identified in which a single distant transcript was acting as a causal intermediate for

most of the transcripts in the hotspot. Functional analysis of groups of transcripts

that are downstream from a common primary transcript revealed some biologically

interesting enrichments.

7.1 Genetic Hotspots

Expression genetics studies are now being conducted in many organisms to identify

genetic elements that influence genomewide transcriptional profiles and to infer their
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causal role in determining phenotypes and diseases. Transcript abundance, measured

using a microarray or similar platform, can be mapped as a quantitative trait in a

genetically variable population. Mapped loci associated with variation in transcript

abundance are referred to as expression quantitative trait loci (eQTL) [24]. In many

of these studies it has been observed that highly localized regions of the genome seem

to regulate an unexpectedly large number of transcripts [7, 43, 59]. These transcripts

are often associated with functionally coherent sets of genes involved in common bi-

ological processes. There are several plausible mechanisms that would give rise to

such hotspots such as presence of a pleiotropic gene [7, 59]. The simplest model for a

hotspot (Figure 7.1 A) would consist of a master locus with a polymorphic variation

that directly affects numerous downstream transcripts. The master locus could be a

transcription factor but this is not necessary [7]. A more general hierarchical model

(Figure 7.1B) assumes that polymorphism at the hotspot, influences the expression of

one or more primary transcripts, which in turn, mediate the affects on multiple sec-

ondary transcripts. Given a location on the genome and a list of all transcripts linked

to that locus, the objective is to identify the primary transcripts that are the imme-

diate downstream targets of the local polymorphisms. We also aim to identify groups

of secondary transcripts, which are modulated by a common primary transcript, and

characterize common functional features of these groups.

Brem et al. [7] identified eight hotspots in a segregating population of yeast and

for six of these they were able to identify putative regulator gene based on annotation

of transcripts linked to these loci. In Schadt et al.[43] the authors discovered seven

hotspots in a mouse intercross that each accounted for more than 1% of all eQTLs.

In Wu et al. authors were able to find many hotspots in a diverse panel of inbred

mice, that were linked to functionally coherent sets of transcripts, and they were able

to relate these to the known transcriptional factors [59].
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Figure 7.1. Genetic Hotspot models A. In the master locus model, polymor-
phisms linked to a single marker are directly regulating many transcripts. B. In the
hierarchical model local polymorphisms are regulating a few primary transcripts and
these in turn regulate additional secondary transcripts.
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However subsequent work by Breitling et al. [5] suggest that some of the apparent

hotspots may be artifacts due to confounding factors introduced during the microarray

experiment. Perez et al. [39] used simulated genotypes in combination with real

expression data to show that apparent hotspots can occur by chance. Wang et al. [58]

support this result by showing that the expression of the transcripts in a hotspot can

be highly correlated and that removing these correlated transcripts results in reduced

numbers of hotspots. They suggest pursuing hotspots where the correlation among

transcripts is low. Peng et al.[38] suggests calculating residuals for each transcript

with transcripts of stronger linkage as covariates and consider only the transcripts

whose residuals are also linked to the allele. These latter two approaches ignore the

fact that two independently regulated transcripts can still be highly correlated due to

shared genetic effects (correlation does not always imply causation). Furthermore a

strongly linked transcript can act as surrogate for the allelic state of the linked locus

and make the residual information less significant. Also it has been observed that

strongly linked transcripts can correspond to artifacts such as polymorphism in the

probes [2]. A more general algorithm to remove systemwide correlation was proposed

by Kang and Eskin [25].

There is no definitive method to determine whether an apparent hotspot is due to

a spurious unknown confounding factor or due to a pleiotropic polymorphism. In this

paper we try to understand the correlation structure among the transcripts linked

to the hotspot and predict a putative regulatory cascade that explains the data. In

specific a set of primary transcripts which are (a) directly modulated by the hotspot,

and (b) in turn, modulate multiple transcripts, are inferred.

7.2 Methods

Two random variables (X and Y ) are said to be independent (X ⊥ Y ) if knowing

the state of one does not provide any information about the state of the other, other-
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wise the variables are said to be dependent(X 6⊥ Y ). If two variables are dependent,

but knowledge of the state of a third variables (Z) makes this information redundant

then the variables are said to be conditionally independent given the third variable

(X ⊥ Y |Z).

In this setting we consider a genotype variable that defines the allelic states of a

locus (Q) and two correlated transcript abundances Ti and Tj that are both linked to

Q. When these conditions are met, there are four possible relationships among these

variables:

(i). Q is modulating Ti and Tj independently in which case Ti ⊥ Tj|Q. In this

case Ti and Tj are correlated due to the common influence of Q but additional

variation in Ti and Tj that is not due to Q will be uncorrelated

(ii). Q is modulating Ti which is in turn modulating Tj. In this case Q ⊥ Tj|Ti and

the correlation of Tj with Q is entirely explained by variation in Ti

(iii). Q is modulating Tj which is in turn modulating Ti. In this case Q ⊥ Ti|Tj

(iv). the relationship is complex involving mutual dependence among all three vari-

ables or involves unknown latent variable.

The conditional independence relations described in (i)-(iii) each provide insight into

causal relationships among the transcripts. If a transcript (Ti) is a causal intermediate

between a genotype (Q) and another transcript (Tj) such that Q ⊥ Tj|Ti then we say

that Ti shields Tj. If a transcript shields one or more other transcripts that are

linked to a common hotspot but itself is not shielded then we say it is a primary

transcript and the transcripts that are shielded by primary transcript are referred to

as secondary transcripts.
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7.2.1 Testing Conditional Independence Relationships

Conditional independence implies that the joint distribution is the product of the

marginal distributions, thus

X ⊥ Y |Q⇔ P (X, Y |Q) = P (X|Q) · P (Y |Q)

If the probability distributions of the variables are known then just checking for

the above condition would be sufficient to infer conditional independence. However,

when the probability distributions are estimated from the data the above conditions

for independence will never be precisely met due to random variation. Therefore we

consider the difference between the joint distribution and the product of the marginal

distributions and if the difference is sufficiently small, conditional independence is

inferred. One widely used measure of the difference between two probability distribu-

tions is Kullback-Leibler divergence [28] which is equivalent to the conditional mutual

information.

I(X;Y |Q) =
∑
q

∫
x,y
P (x, y, q) · log2

P (x, y|q)
P (x|q) · P (y|q)

dxdy

We will assume that the distribution of transcripts is Gaussian and that Gaussian

mixtures define the relation between transcript levels and genotypes. With these

distributional assumptions we can compute conditional mutual information from data.

In this work, we will use base 2 logarithm, thus mutual information will be measured

in bits.

For any set of three variables that are pairwise dependent (X 6⊥ Y , X 6⊥ Q and

Y 6⊥ Q) at most one of the three possible conditional independence statements can be

true. For example, X ⊥ Y |Q and X ⊥ Q|Y cannot be true simultaneously if X 6⊥ Y ,

X 6⊥ Q and Y 6⊥ Q. Thus we can use the criterion
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X ⊥δ Y |Q⇔ I(X;Y |Q) < min(δ, I(X;Q|Y ), I(Y ;Q|X))

to establish which, if any, of the conditional independence statements is true. The

sensitivity of this criterion can be modulated through the choice of δ. A lower value

of δ will result in fewer inferred conditional independencies. For our analysis we are

going to consider a threshold equivalent to the Bayesian Information Criterion (δBIC).

7.2.2 Detecting Primary Transcripts

Given a marker (Q) we first identify all transcripts (T1, T2, · · · , Tk) that are linked

to that marker. We used standard genome scans [30] applied to each transcript to

establish linkage. Significant linkages are determined by permutation tests [13].

To identify the primary transcripts that are being directly modulated by the allelic

variation near the marker, we created a binary shield matrix (Figure 7.2A and Figure

7.5) whose values indicate when one transcript shields another transcript. The shield

matrix elements are

Sδij =


1 if Tj ⊥δ Q|Ti

0 otherwise

Transcripts (Ti) that are not shielded themselves, but shield a significant number

of other transcripts are determined to be primary transcripts. We restricted our

attention to primary transcripts that shield 10% or more of the total number of

transcripts linked to a given hotspot. The shield matrices were computed for a range

of values of δ and the results are summarized using a variable threshold plot (Figure

7.2B and Figure 7.6). Each line on the plot corresponds to an unshielded transcript.

The X-axis of this plot is threshold δ and the Y-axis is the number of secondary

transcripts shielded.
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Figure 7.2. Analysis of a simulated network The shield matrix (A) was com-
puted for the simulated data using threshold δBIC = 0.0863 bits. Nodes in the
simulated network are ordered on both axes according to their depth, where 1,2,3 in-
dicates primary, secondary and indirect secondary nodes respectively. Random nodes
are included at right and top of the axes. Red point indicates that X-axis node is
being shielded by the Y-axis node (Q ⊥ Ti|Tj). In simulation the structure of the
graph is known and we can arrange the nodes according to their level. With real data
this is not possible and we will arrange transcripts along the axis according to their
location on genome. The variable threshold plot (B) shows the number of downstream
transcripts as a function of threshold δ, i.e. the number of transcripts a particular
transcript shields for some δ. Each line on the plot corresponds to a transcript and
the line is drawn for only the range of δ over which it is unshielded (i.e. the line is
terminated at the δ at which this transcript is shielded by another transcript) . The
dotted horizontal line corresponds to 10% of total number of nodes found to be linked
and the vertical line corresponds to δBIC . The five black lines correspond to primary
nodes in the simulated network.
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7.2.3 Functional Analysis

The sets of secondary transcripts shielded by each primary transcript were ana-

lyzed for functional enrichment using DAVID [16] and the top functional groups are

mentioned in the experimental results section (Section 7.3.2).

7.2.4 Simulations

To test this algorithm we carried out a simulation by generating data that are

similar to real data in size and structure, but with a known network of conditional re-

lationships embedded (Figure 7.3). Briefly, we selected one location from the genome

to be a QTL that directly affects 5 transcripts (Level 1), each of which affect 10

transcripts (Level 2. Total number: 50) directly and in turn, each of these affect 2

transcripts(Level 3. Total number: 100) (Figure 7.3). Level 1 transcripts are being

directly modulated by the QTL and they are the set of primary transcripts we are

aiming to recover. Level 2 and 3 transcripts are essentially secondary transcripts.

Although it in possible to further analyze secondary transcripts to classify them into

Level 2 and Level 3 transcripts, we do not attempt to do so here. The remaining

16,844 transcripts are drawn independently from a Gaussian distribution.

A linear model with Gaussian noise was used to model the values of descendants.

Ti = ciTparent(i) + ε
√

1− c2
i ε

where ε is white noise sampled from N (0, 1), and parent of each transcript can be

looked-up from the network structure shown in Figure 7.3. For example the primary

transcripts were simulated as:

Ti = ciT1 + ε
√

1− c2
i ,For i in 2, .., 6

and so on.
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We sample the values of c from the distribution of correlations between primary

and secondary transcripts we discovered from real hotspots.

Q

T1

T6

T56

........

QTL     1

Level 1    5
(Primary)     

Level 2    5X10

Level 3  5X10X2 +16,844 random nodes=17,000 nodes

Figure 7.3. Network model used in genetic hotspot simulations A total
of 156 transcripts were sampled from this tree-structured Bayesian network. The
correlation for each linear model was sampled from the correlation between primary
and secondary transcripts in real data.

7.3 Results

7.3.1 Simulations

From 100 instances of our simulation with δBIC = 0.0863 we found that the pri-

mary transcripts were found with 84.8%(±13.06) sensitivity and 100.0% specificity,

which is to say that most of the 5 simulated primary transcripts were recovered and

no secondary transcripts were misidentified as primary. Lowering the correlation, c,

in our model reduced sensitivity but not specificity. More generally, the 155 depen-

dent primary and secondary transcripts were found with 55.7%(±6.22) sensitivity

and 83.6%(±4.04) specificity. This indicates that all primary and most secondary

dependent transcripts can be identified, but some additional false associations with

additional transcripts are found. But these false discoveries have unique character-
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istics. As an example, figure 7.2A show the shield matrix for one instance of the

simulation (delta=0.1), which shows that primary transcripts are not shielded by

others but do shield downstream transcripts. The primary (level 1), direct secondary

(level 2), and indirect secondary (level 3) are ordered by index according to figure

3 so that stepwise lines can be seen indicating the parent-descendent relationships

from the simulated dependency tree. In addition, ”random” transcripts are shown

in the shield matrix, which are falsely discovered transcripts, i.e. those identified as

being part of the network, but were not. Note, that these false positive transcripts

are rarely being shielded and none shield others.

The threshold of δBIC = 0.0863 clearly separates the primary transcripts from oth-

ers without falsely introducing a large number of dependencies among the secondary

transcripts and introducing no false parent relationships to the random transcripts

that do not belong in the network to begin with.

7.3.2 Data Example

We identified a total of 10,784 significant (LOD score > 3.2) linkages involving

3,945 transcripts between the 173 markers and the 16,463 transcripts (Figure 7.4A).

Of these 6,818 were local linkages (i.e transcript and marker are located on the same

chromosome) and 3,968 distant linkage (i.e transcript and marker are located on

different chromosomes). The number of linkages per marker was computed separately

for distant and local linkages (Figure 7.4). The distribution of distant linkages is

concentrated in a few hotspots whereas local linkages are more evenly distributed. In

total, 21 out of 173 markers were found to have significant number of distant linkages

(p < 0.001).

We selected four hotspots, on chromosomes 1, 5, 14 and 18, each of which had

more than 100 distant linkages, for further analysis. Once we identified hotspots

based on this strategy, we used permutation tests (described in 7.2.2) to refine the
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Figure 7.4. Significant marker-transcript linkages Linkages (LOD > 3.2) are
indicated as points on the scatterplot with genomic location of transcript on Y-axis
and QTL location on X-axis. A prominent diagonal band of local QTL is apparent.
The lines at the bottom show the linkage counts for each of the markers (scale located
on the lower-right edge): the red line show the number of distant linkages and the
green line shows the number of local linkages. For our work we consider four markers
that have at least 100 distant linkages and are located on different chromosomes
(Chromosomes 1, 5, 14 and 18). The selected markers are indicated with crosses.
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list of linked transcripts. With a p-value of 0.001 we could identify more than 150

transcripts for each of the markers (Table 7.1). When corrected multiple testing, false

discovery rate (FDR) ranged from 5 to 10% which is less than FDR obtained with

simulated data for this step.

Table 7.1. Hotspots with more than 100 distant linkages.

Marker Location Local QTL Distant QTL Total QTL FDR
rs3724524 Chrom 1 @ 157.80 Mb 69 178 247 6.67%
rs3659933 Chrom 5 @ 46.36 Mb 36 125 161 10.23%
rs3676913 Chrom 14 @ 86.92 Mb 38 152 190 8.67%
rs3713429 Chrom 18 @ 47.80 Mb 33 254 287 5.74%

The chromosome 1 hotspot is linked to 247 transcripts. A visual inspection of the

shield matrix indicates that the local transcripts are less shielded than the distant

transcripts. The variable-threshold plot identified 7 primary transcripts, 5 of which

are on chromosome 1. The gene Fkbp9 codes for an enzyme involved in isomerase ac-

tivity and it shields a set of 78 transcripts. This set is enriched for steroid biosynthesis

(3 out of 78, p=0.0035). he gene Ensa is a known regulator of insulin secretion. It

shields 41 transcripts out of which 12 are glyco-proteins (12 out of 41, p=0.01). The

gene F11r is involved in protein binding and is active in membrane. It shields a set of

40 transcripts which are enriched for oxidoreductase activity (8 out of 40, p=0.002)

and many of them are active in endoplasmic reticulum (7 out of 40, p=0.003).

The chromosome 5 five out of seven identified primary transcripts are local. The

gene Ppat, a local primary transcript, is annotated as having transferase activity and

many of its descendants are involved in regulation of cell proliferation (6 out of 53,

p=0.005) and many of them are phospho-proteins (19 out of 53, p=0.02).

On chromosome 14 has 3 primary transcripts. The gene Entpd4, a local primary

transcript on chromosome 14, is an ion binding protein and many of its descendants
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Figure 7.5. Shield matrices for hotspots on chromosomes 1,5,14 and 18 In
every case transcripts are arranged according to their genomic location. A red dot
indicates that the corresponding transcript on the X axis shields the one on the Y axis.
A vertical run of points indicates a transcript that shields many other transcripts. In
A-C we can see that local transcripts shield many distant transcripts, but themselves
are not shielded as indicated by the white horizontal band. In the case of chromosome
18 (D), local transcripts shield very few distant transcripts. A threshold of 0.1 bits
was used to construct these shield matrices.
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Figure 7.6. Variable threshold plots for four hotspots in the BXA cross
(Chromosome 1 (A), Chromosome 5 (A), Chromosome 14 (A) and Chromosome 18
(A)). Each line on the plot corresponds to a transcript in the hotspot. The lines
extend only through thresholds where the transcript is not shielded by any other
transcript. Y-axis denotes the number transcripts it is shielding. Red lines indicate
local transcripts and the black lines indicate the distant transcripts. The dotted
horizontal line corresponds to 10% of total number of nodes found to be linked and
the vertical line corresponds to δBIC . Transcripts appearing on top right corner of
this plot are the most probable primary transcripts.
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were involved in electron transport (6 out of 59, p=0.006) and vesicle mediated trans-

port (6 out of 59, p=0.006).

The chromosome 18 hotspot has a different character from other hotspots. It is

very narrow in extent with little linkage spillover to the adjacent markers. There are

a few local eQTL that shield other transcripts. The shielding pattern is dominated

by a single distant transcript Gclc, that shields 202 out of 287 transcripts in the

hotspot. Gclc is involved in negative regulation of apoptosis and is under-expressed

in heterozygote state of this marker. Many of its descendants are involved in cellular

lipid metabolic process (15 out of 202, p=0.001).

7.4 Discussion

We have presented a method for analyzing the causal association structure of ge-

netic hotspots in expression genetics data. Our method uses conditional independence

tests to infer a set of primary transcripts that are candidates for direct regulation by

polymorphic loci near the hotspot marker as well as secondary transcripts that can

be grouped according to primary transcript that shields them. The secondary tran-

scripts, in many cases, are enriched for functional annotations that are related to the

known functions of the primary transcript.

My results provide insights into the complexity of the hotspots and it is possible

frame specific hypothesis about the mechanisms that produce this prominent feature

of eQTL data.

Simulation results shows that our method is capable of accurately identifying

primary transcripts in realistic data. Application to four hotspots spread over dif-

ferent chromosomes suggest that these results maybe biologically sensible although

additional experimental work may be needed to validate these relationships.

For each hotspot, we computed conditional independence tests for all pairs of

transcripts and constructed shield matrices (Figure 7.5). For chromosomes 1, 5 and 14
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local transcripts are rarely shielded by other transcripts, however and they often shield

numerous distant transcripts. This indicates that possibly one or more polymorphism

around the marker are regulating a small set of primary transcripts, mostly local, that

are in turn regulating a large number of secondary transcripts. However, the pattern

on chromosome 18 is distinct; local transcripts are rarely shielding other transcripts.

In our method we use a shield of size one to detect secondary transcripts that are

not directly downstream of the hotspot. But it is unlikely that any given network

is that simple. Our method eliminates candidate primary transcripts conservatively

and some of the putative primary transcripts might be in fact modulated by multiple

real primary transcripts. However, when we increase the shield size, our power to

detect independence relationships decreases and our results are difficult to interpret.

In addition most of the primary transcripts correspond to phenotypic differences

between the parent strains. A/J strain (http://jaxmice.jax.org/strain/000646.html)

is known to be resistant to obesity and diabetes. Among the primary transcripts

Lrpap1 is known to be related to obesity [35], and Ensa [54], Fmo4 [40], Ppat [55]

and Gclc [4] are known to be related to diabetes.

Presence of artifacts like SNP overlapping probes can make it seem that the cor-

responding transcript is strongly linked to the nearest marker and is likely to appear

on the top of the list if arranged according to the strength of linkage [2]. But these

transcripts are less likely to shield other transcripts as the additional variation, which

is not due to the SNP, will not be reflected in expression of other transcripts.

This approach is not guaranteed to find all the primary transcripts, however it

appears to provide an effective explanatory tool for interpretation of expression ge-

netics data. The power of this method is derived in part because we do not attempt

to search all possible models or to construct a large scale graphical model. Although

true dependence relationships are likely to be more complex than triplets, this simple

strategy finds many of them with high power.
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CHAPTER 8

CONCLUSION

In this thesis I presented a set of three methods to infer statistically significant

components of the underlying regulatory network by analyzing expression genetics

data. Specifically I modeled the regulatory network as a Bayesian network and pre-

sented techniques to recover instances of a known regulatory mechanism, infer local

regulatory networks of a transcript, and consolidate multiple networks.

Modeling of expression genetics data as a Bayesian network presented many chal-

lenges. The data was severely under-specified, many of the relevant variables were

not directly observed, and it consisted of multiple data types. These challenges were

alleviated by reducing the problem into subproblems of manageable complexity and

creating detailed models of the relationships between genes.

The Quantitative Trait Gene (QTG) model infers causal regulatory relations be-

tween genes. The interacting term in the QTG model helps it to recover more complex

instances of regulation. Unlike the Quantitative Trait Loci model, it also provides a

finer mapping of the causal elements. Also, this model provides an example of repre-

senting a regulatory mechanism as a directed graphs and inferring similar regulatory

instances.

The local network inferencing method extends the QTG model to recover regula-

tory modules around a transcript of interest. As compared to the QTG model this

method can infer modules of arbitrary size. Furthermore, as compared to other exist-

ing methods, it recovers both transcript and genetic variation nodes, which provides

a better biological understanding of the data.
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The hotspot analysis method presented in this thesis analyzes pleiotropic loci to

infer plausible explanations for observing such phenomena. This method considers

each linkage as a directed graph and aggregates multiple such graphs into a biologi-

cally meaningful network. The set of primary transcripts inferred from this analysis

are of greater influence in the global regulation. This analysis also shows that many

local linkages, even those with strong linkage, might not be involved in regulation.

The application of these methods on simulation data suggests that these tech-

niques were largely successful in recovering a majority of the regulatory relations

with modest error rates. Application on real world data-sets revealed biologically

interesting instances of regulation.

8.1 Challenges and Limitations

8.1.1 Dimensionality

The most important challenge in analyzing expression genetics data is its dimen-

sionality. The number of variables is very large as compared to the number of available

samples. In this thesis I address this challenge by considering much smaller subnet-

works in turn. The QTG model considers a network containing only three variables

at a time. In the local regulatory network, inferencing the size of the network is de-

termined by the number of elements in the Markov blanket – a much smaller number

than all possible variables. And, the hotspot analysis involves calculating the shield

matrix by considering just three variable at a time. This approach helped us to un-

cover many instances of biologically sensible networks, but it also misses many of the

true but non-significant relations in favor of statistical significance.

Even with only three variables and knowing the right probability distribution, it

is not always possible to empirically detect the right conditional independence (See

Figure 8.1).
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Figure 8.1. Accuracy of detecting conditional independence as a function
of correlation between the variables using mutual information Data was
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denotes the probability of detecting the correct relationship. Simulated samples of
120 samples were used to generate this plot. Lopsided correlation decreases the
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Moreover, even a perfect conditional independence testing algorithm for three

variables does not always return the right conditional independence relations in a

network of size four as shown in figure 8.2.
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Figure 8.2. Detecting Conditional Independence in larger networks In this
figure it is shown that applying a perfect conditional independence testing for three
nodes fails when applied on a network of four nodes. A. A simple network with four
nodes. B. The resulting networks when a perfect conditional independence testing
method for three nodes is applied. The dotted line indicates conditional independence.
C. The aggregated network constructed from the conditional independence testing.
The red line indicates the erroneous dependency.

The use of just three variables at a time is just a starting point. If there are

enough samples available, these methods should be extended as needed. Searching for

smaller networks reduces the number of false positives, but also increases the number

of false negatives. An accurate probability distribution in necessary to achieve a low

false positive rate. But accurate distributions are achieved from larger samples and

smaller networks at the expense of reduced model complexity. Thus, there remains a

critical trade-off between accurate inference and model complexity.

A similar trade-off is observed in the QTG model. Compared to the conventional

QTL model this model is more expressive, but at the cost of estimating an additional

parameter. Also, being a parametric model this approach misses many of the relations

that cannot be approximated by this model. Ideally a more expressive model would
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capture more complex relations, but it is unlikely that such models can be inferred

with high statistical significance.

8.1.2 Unobserved data and related problems

There are multiple sets of unobserved variables in this data-set. The samples

are genotyped only at the marker locations and genotypes at other locations need

to be estimated from these values. In this thesis the distribution of these variables

are estimated from the flanking markers and the recombination distance. Many other

important variables, such as protein abundance, are not directly measured and instead

transcript abundance is used as a proxy measurement. However, the correlation

between proteins and transcripts is known to be poor.

The data collecting methodology often induces artificial correlations among vari-

ables. If such errors are not corrected, applying these methods can result in the

inference of spurious networks. If the samples are collected or processed in different

batches, a large number of transcripts are going to be correlated to the grouping.

Applying hotspot analysis, without correcting for such confounding factors, would

reveal false regulatory cascades[5, 39, 38, 25]. In this thesis such corrections are not

made and it is not possible to conclude whether the detected networks are real or

spurious without the availability of additional data.

The probes of microarrays used to measure transcript abundance are assumed

to be designed using the genome sequence of a reference strain. When used with a

different strain, due to the genetic variations between the strains, these probes can fail.

In expression genetics data, where the samples are mixtures of their parental genomes,

the transcripts can be correlated to their nearest markers because of this strain-specific

probe hybridization problem, not because of actual changes in expression level. If

such probes are not filtered out before data analysis many spurious causal relation

are inferred.
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8.2 Conclusions

The expression genetics data is computationally challenging but is biologically

important. In this thesis I presented a set of methods to model this data as a Bayesian

network. This model consisted of both transcript nodes and genotype nodes, which

provided a thorough description of the underlying regulatory process.

I proposed three different methods: network motif searching, local network infer-

encing, and network aggregation. The network motif searching method is effective

when there is sufficient information about the common regulatory mechanisms, the

local network inferencing is useful when there is a list of interesting variables, and the

network aggregation is used to merge the networks obtained in the previous methods.

An instance of each of these methods were implemented and applied on real data-

sets. The process of pairwise transcription modulation was modeled as Quantitative

Trait Gene and application of this method on a yeast cross revealed many instances

where both genotype and transcript abundance of the regulator were interacting to

modulate the target. This method was extended to find the local regulatory network of

transcripts. The genetic hotspots were analyzed by aggregating the pairwise networks

and inferring the set of primary transcripts for many hotspots in a mice cross data.

Through these implementations I show that the Bayesian networks are an effective

modeling tool in analyzing the expression genetics data. This model allows detailed

and flexible modeling of the underlying mechanism. Although it is not possible to de-

cipher the complete underlying regulatory network, I present a case in favor of using

a combination of the presented methods, network motif searching, local network infer-

encing, and network aggregation, to reliably recover its significant components. This

argument is supported by systematic simulation studies and the biological reasonable

networks recovered from application on real data.
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