
PROBLEMS IN GENERIC COMBINATORIAL
RIGIDITY: SPARSITY, SLIDERS, AND EMERGENCE

OF COMPONENTS

A Dissertation Presented

by

LOUIS THERAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2010

Department of Computer Science

c© Copyright by Louis Theran 2010

All Rights Reserved

PROBLEMS IN GENERIC COMBINATORIAL
RIGIDITY: SPARSITY, SLIDERS, AND EMERGENCE

OF COMPONENTS

A Dissertation Presented

by

LOUIS THERAN

Approved as to style and content by:

Ileana Streinu, Chair

David A. Mix Barrington, Member

Robert Moll, Member

Tom Braden, Member

Andrew G. Barto, Department Chair
Department of Computer Science

For Kyung.

ACKNOWLEDGMENTS

The mentoring, guidance, and patience of my advisor, Ileana Streinu, all made

this work possible. I am forever in her debt.

My discussions with Audrey Lee-St. John on topics relating to rigidity and spar-

sity have been invaluable during the course of this work.

My wife, Kyung-min Kang has supported, encouraged, and put up with me

throughout my years in graduate school. I cannot understate her contributions.

Martin Allen, Fernando Diaz, Brent Heeringa, Michael O’Neill, and Charles Sut-

ton have all been generous with their time and advice to me over the years.

I extend my thanks to all the people named above.

v

ABSTRACT

PROBLEMS IN GENERIC COMBINATORIAL
RIGIDITY: SPARSITY, SLIDERS, AND EMERGENCE

OF COMPONENTS

SEPTEMBER 2010

LOUIS THERAN

B.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ileana Streinu

Rigidity theory deals in problems of the following form: given a structure defined

by geometric constraints on a set of objects, what information about its geometric

behavior is implied by the underlying combinatorial structure. The most well-studied

class of structures is the bar-joint framework, which is made of fixed-length bars

connected by universal joints with full rotational degrees of freedom; the allowed

motions preserve the lengths and connectivity of the bars, and a framework is rigid

if the only allowed motions are trivial motions of Euclidean space. A remarkable

theorem of Maxwell-Laman says that rigidity of generic bar-joint frameworks depends

only on the graph that has as its edges the bars and as its vertices the joints.

We generalize the “degree of freedom counts” that appear in the Maxwell-Laman

theorem to the very general setting of (k, `)-sparse and (k, `)-graded sparse hyper-

graphs. We characterize these in terms of their graph-graph theoretic and matroidal

vi

properties. For the fundamental algorithmic problems Decision, Extraction, Compo-

nents, and Decomposition, we give efficient, implementable pebble game algorithms

for all the (k, `)-sparse and (k, `)-graded-sparse families of hypergraphs we study.

We then prove that all the matroids arising from (k, `)-sparse are linearly repre-

sentable by matrices with a certain “natural” structure that captures the incidence

structure of the hypergraph and the sparsity parameters k and `.

Building on the combinatorial and linear theory discussed above, we introduce

a new rigidity model: slider-pinning rigidity. This is an elaboration of the planar

bar-joint model to include sliders, which constrain a vertex to move on a specific line.

We prove the analogue of the Maxwell-Laman Theorem for slider pinning, using, as

a lemma, a new proof of Whiteley’s Parallel Redrawing Theorem.

We conclude by studying the emergence of non-trivial rigid substructures in generic

planar frameworks given by Erdos-Renyi random graphs. We prove that there is a

sharp threshold for such substructures to emerge, and that, when they do, they are

all linear size. This is consistent with experimental and simulation-based work done

in the physics community on the formation of certain glasses.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

INTRODUCTION . 1

I Sparsity, decompositions, and algorithms 9

1. SPARSE HYPERGRAPHS AND PEBBLE GAME
ALGOTITHMS . 10

1.1 Introduction . 10

1.1.1 Preliminaries and related work . 11
1.1.2 Related work . 19
1.1.3 Our Results . 21

1.2 The pebble game . 24
1.3 Properties of sparse hypergraphs . 26
1.4 Hypergraph Decompositions . 29

1.4.1 Hypergraph arboricity . 29
1.5.1 Decompositions into maps . 30

1.8 Pebble game constructible graphs . 33
1.9 Pebble games for Components and Extraction . 36

1.9.1 The basic pebble game . 36

viii

1.9.2 Detecting components . 39
1.9.3 The pebble game with components . 41
1.9.4 Complexity of the pebble game with components 41

1.10 Critical representations . 42
1.11 Conclusions and Open Questions . 44

2. GRADED SPARSE GRAPHS AND MATROIDS 45

2.1 Introduction . 45
2.3 Preliminaries . 47

2.3.1 Sparse graphs and hypergraphs. 47
2.4.1 Pebble games . 48
2.5.1 Related work . 49

2.6 Graded sparsity . 50
2.7 Algorithms . 53

3. SPARSITY-CERTIFYING GRAPH DECOMPOSITIONS 55

3.1 Introduction and preliminaries . 55

3.1.1 Sparse graphs . 56
3.1.2 Sparsity-certifying decompositions . 56

3.2 Historical background . 59
3.3 The pebble game with colors . 60
3.4 Our Results . 64
3.5 Pebble game graphs . 66
3.6 The pebble-game-with-colors decomposition . 67
3.7 Canonical Pebble Game Constructions . 70
3.8 Pebble game algorithms for finding decompositions 77
3.9 Conclusions and open problems . 80

II Natural realizations and slider-pinning rigidity 82

4. NATURAL REALIZATIONS OF SPARSITY MATROIDS 83

4.1 Introduction . 83
4.2 The (k, `)-sparsity matroid . 88
4.4 Natural Realizations . 89
4.5 Extensions: non-uniform hypergraphs and graded sparsity 95
4.6 Conclusions and remarks on rigidity . 97

ix

5. SLIDER-PINNING RIGIDITY: A MAXWELL-LAMAN-TYPE
THEOREM . 99

5.1 Introduction . 99
5.2 Sparse and graded-sparse graphs . 105
5.3 Natural realizations for (2, 2)-tight and (2, 0, 2)-tight graphs 110
5.4 Direction network realization . 117

5.4.1 Direction network realization as a linear system 119
5.4.2 Realizations of direction networks on (2, 2)-graphs 120
5.4.3 Realizations of direction networks on Laman graphs 121

5.5 Direction-slider network realization . 124

5.5.1 Direction-slider realization as a linear system. 125

5.6 Axis-parallel sliders . 129
5.7 Generic rigidity via direction network realization . 132

5.7.1 Bar-joint rigidity . 132
5.7.2 Slider-pinning rigidity . 134
5.7.3 Generic bar-slider frameworks . 137
5.7.4 Proof of Theorem 5.2 . 137

III Emergence of components 138

6. RIGID COMPONENTS OF RANDOM GRAPHS 139

6.1 Introduction . 139
6.2 Preliminaries . 142
6.7 Proofs . 145
6.8 Conclusions and open problems . 149

BIBLIOGRAPHY . 150

x

LIST OF TABLES

Table Page

1.1 Hypergraph terminology used in this chapter. 15

1.2 Sparse graph terminology used in this chapter. 17

1.3 Sparse graph concepts and analogs in matroids and rigidity. 17

3.1 Sparse graph and decomposition terminology used in this chapter. 57

3.2 Pebble game notation used in this chapter. 64

xi

LIST OF FIGURES

Figure Page

1 Three types of rigidity theory. The geometric setting is naturally
formulated as a problem in algebraic geometry. The combinatorial
setting is purely graph-theoretic in nature. To pass back and forth
between them, the linear theory of infinitesimal rigidity is
introduced. Infinitesimal rigidity implies continuous rigidity and,
if a Maxwell-Laman-type theorem is available, coincides exactly
with a matroidal condition on the framework’s graph. 2

2 Contributions by area: How the results of each chapter fit into the
scheme of Figure 1 . 4

1.1 Two hypergraphs. The hypergraph in (a) is 3-uniform; (b) is
2-dimensional but not a 2-graph. 12

1.2 Lower dimensional representations. In both cases, the 2-uniform
graph on the right (a tree) represents the hypergraph on the left
(a hypergraph tree) with respect to (1, 1)-sparsity. The
2-dimensional representations of edges have similar styles to the
edges they represent and are labeled with the vertices of the
hyperedge. 12

1.3 Lower dimensional representations are not unique. Here we show two
2-uniform representations of the same hypergraph with respect to
(1, 1)-sparsity. 13

1.4 An oriented 3-uniform hypergraph. On the left, the tail of each edge
is indicated by the style of the vertex. In the 2-uniform
representation on the right, the edges are shown as directed
arcs. 13

1.5 Searching a hypergraph with depth-first search starting at vertex e.
Visited edges and vertices are shown with thicker lines. The
search proceeds across an edge from the tail to each of the other
endpoints and backs up at an edge when all its endpoints have
been visited (as in the transition from (c) to (d)). 15

xii

1.6 A (2,0)-tight hypergraph decomposed into two (1, 0)-tight ones (gray
and black). 16

1.7 The hypergraph from Figure 1.6, shown here in a lower-dimensional
representation, is a 2-map. The map-graphs are black and gray.
Observe that each vertex is the tail of one black edge and one
gray one. 18

1.8 Adding a 3-edge in the (2, 2)-pebble game. In all cases, the edge,
shown as a triangle, may be added because there are at least three
pebbles present. The tail of the new edge is filled in; note that in
(c) only one of the pebbles on the tail is picked up. 25

1.9 Moving a pebble along a 3-edge in the (2, 2)-pebble game. The tail of
the edge is filled in. Observe that in (b) the only change is to the
orientation of the edge and the location of the pebble that
moved. 25

1.10 The (1, 0)-sparse 2-graph K3 and its associated bipartite graphs B1
K3

.
The vertices and edges of K3 are matched to the corresponding
vertices in B1

K3
by shape and line style. 31

1.11 An orientation of a 2-dimensional 2-map-graph G and the associated
bipartite matching in B2

G. 31

1.12 Collecting a pebble and accepting an edge in a (2, 2)-pebble game on
a 3-uniform hypergraph H. H is shown via a 2-uniform
representation. In (a), the edge being tested, cde is shown with
thick circles around the vertices. The pebble game starts a search
to bring a pebble to d. (This choice is arbitrary; had e been
chosen first, the edge would be immediately accepted.) In (b) a
path from d to e across the edge marked with a think line is
found. In (c) the pebble is moved and the path is reversed; the
new tail of the edge marked with a think line is e. In (d) the
pebble is picked up, and the edge being checked is accepted. The
tail of the new edge, marked with a thick line, is d. 38

2.1 Example of a bar-slider framework and its associated graph: (a) a
bar-slider framework; (b) the same framework given
combinatorially as a graph with edges and loops 46

3.1 Examples of sparsity-certifying decompositions: (a) a 3-arborescence;
(b) a 2-map-graph; (c) a (2, 1)-maps-and-trees. Edges with the
same line style belong to the same subgraph. The 2-map-graph is
shown with a certifying orientation. 58

xiii

3.2 (a) A graph with a 3T2 decomposition; one of the three trees is a
single vertex in the bottom right corner. (b) The highlighted
subgraph inside the dashed countour has three black tree-pieces
and one gray tree-piece. (c) The highlighted subgraph inside the
dashed countour has three gray tree-pieces (one is a single vertex)
and one black tree-piece. 59

3.3 Examples of pebble game with colors moves: (a) add-edge. (b)
pebble-slide. Pebbles on vertices are shown as black or gray dots.
Edges are colored with the color of the pebble on them. 61

3.4 A (2, 2)-tight graph with one possible pebble-game decomposition.
The edges are oriented to show (1, 0)-sparsity for each color. (a)
The graph K4 with a pebble-game decomposition. There is an
empty black tree at the center vertex and a gray spanning tree.
(b) The highlighted subgraph has two black trees and a gray tree;
the black edges are part of a larger cycle but contribute a tree to
the subgraph. (c) The highlighted subgraph (with a light gray
background) has three empty gray trees; the black edges contain a
cycle and do not contribute a piece of tree to the subgraph. 63

3.5 Creating monochromatic cycles in a (2, 0)-pebble game. (a) A type
(M1) move creates a cycle by adding a black edge. (b) A type
(M2) move creates a cycle with a pebble-slide move. The
vertices are labeled according to their role in the definition of the
moves. 72

3.6 Outline of the shortcut construction: (a) An arbitrary simple path
from v to w with curved lines indicating simple paths. (b) An
(M2) step. The black edge, about to be flipped, would create a
cycle, shown in dashed and solid gray, of the (unique) gray tree
rooted at w. The solid gray edges were part of the original path
from (a). (c) The shortened path to the gray pebble; the new path
follows the gray tree all the way from the first time the original
path touched the gray tree at w′. The path from v to w′ is simple,
and the shortcut construction can be applied inductively to it. 74

3.7 Eliminating (M2) moves: (a) an (M2) move; (b) avoiding the (M2)
by moving along another path. The path where the pebbles move
is indicated by doubled lines. 75

3.8 Eliminating (M2) moves: (a) the first step to move the black pebble
along the doubled path is (M2); (b) avoiding the (M2) and
simplifying the path. 75

xiv

5.1 Examples of (2, 2)-graphs: (a) K4; (b) a larger example on 6
vertices. 106

5.2 Examples of Laman graphs. 106

5.3 Examples of looped-(2, 2) graphs. 107

5.4 Examples of looped-Laman graphs. 108

5.5 Contracting an edge of the triangle: (a) before contraction; (b) after
contraction we get a doubled edge but not a loop, since there
wasn’t one in the triangle before contracting. 109

5.6 The pattern of the matrices for trees and looped forests: (a) M1,1(G);
(b) M1,0,1(G). 113

5.7 The pattern of the matrices for (2, 2)-graphs and looped-(2, 2) graphs:
(a) M2,2(G); (b) M2,0,2(G). 115

5.8 Examples of color-looped graphs, shown with forests certifying the
color-looped property: (a) a color-looped (2, 2)-graph; (b) a
color-looped Laman graph. 131

5.9 The pattern of the rigidity matrices: (a) the matrix M2,3(G) for
bar-joint rigidity; (b) the matrix M2,0,3(G) for bar-slider
framework. 133

6.1 Laman graphs and rigid components: (a) a Laman graph on n = 6
vertices; (b) a flexible graph with its rigid components
indicated. 143

xv

INTRODUCTION

A planar bar-and-joint framework is a structure made of fixed-length bars con-

nected by universal joints with full rotational degrees of freedom. The allowed (con-

tinuous) motions are those that preserve the lengths and connectivity of the bars. If

the only allowed motions are rigid motions of the Euclidean plane, then the frame-

work is rigid ; otherwise it is flexible. A framework that is rigid, but ceases to be so

after the removal of any bar is defined to be minimally rigid.

More formally, a bar-and-joint framework is represented by:

• A graph G = (V,E), which captures the combinatorial data associated with the

framework.

• A vector ` = (`ij)ij∈E(G), giving the lengths of the bars. This is the geometric

data associated with the framework.

we call the tuple (G, `) an abstract bar-joint-framework. If the vertices of G are

assigned to a point set p ⊂ R2 such that ||pi − pj|| = `ij for all edges ij ∈ E(G), the

resulting structure G(p) is called a realization of the abstract framework (G, `).

In this language, a framework G(p) is rigid if p is topologically isolated in the

solution space of the equations ||pi − pj|| = `ij, modulo rigid motions of the plane.

This is the continuous rigidity question for frameworks.

The following remarkable theorem of Maxwell-Laman [29, 40] gives the motivation

for the results of this thesis.

Theorem (Maxwell-Laman Theorem [29, 40]: Generic planar bar-joint

rigidity.). A generic framework G(p) if and only if the graph G, has n vertices,

m edges, and:

1

• m = 2n− 3

• For all subgraphs with n′ vertices and m′ edges, m′ ≤ 2n′ − 3

The key thing readers new to rigidity should notice is that, generically (we will

discuss genericity more in a moment), the geometric question of continuous rigidity

is determined by a purely combinatorial condition.

From algebra to combinatorics and back

Because it is instructive to the philosophy behind the results presented here, let

us briefly sketch the recipe for proving the Maxwell-Laman Theorem. There are three

major steps. (We carry out this entire program for a new kind of structure, called

bar-slider frameworks in Chapter 5.)

Continuous Rigidity

Infinitesimal Rigidity

Combinatorial Rigidity

Algebraic geometry

Linear algebra

Combinatorics and matroids

G
en

er
ic

ity
La

m
an

-ty
pe

Th

eo
re

m
s

Intractible (NP-hard)

Tractable (polynomial time)

Efficient (quadratic, easy to program)

Figure 1. Three types of rigidity theory. The geometric setting is naturally for-
mulated as a problem in algebraic geometry. The combinatorial setting is purely
graph-theoretic in nature. To pass back and forth between them, the linear theory of
infinitesimal rigidity is introduced. Infinitesimal rigidity implies continuous rigidity
and, if a Maxwell-Laman-type theorem is available, coincides exactly with a matroidal
condition on the framework’s graph.

2

Step 1: Linearize the problem. Since establishing continuous rigidity directly

seems to be difficult, all knows proofs of Maxwell-Laman-type theorems proceed via

a linearization of the length equations known as infinitesimal rigidity. Thus the first

step is to determine the form of the so-called rigidity matrix, which is the formal

differential of the length equations.

Step 2: Show rigidity is a generic property via infinitesimal rigidity. There

is some loss of information when moving from the quadratic system of length equations

to its differential. In the second step one proves two key statements:

• When the rigidity matrix attains its maximum rank, which is called infinitesimal

rigidity, the associated framework is rigid.

• For all p avoiding a measure-zero algebraic set, called the non-generic set, rigid-

ity and infinitesimal rigidity of G(p) coincide.

Step 3: Show infinitesimal rigidity is, generically, combinatorial. The final

step is to show that, for generic entries, the rank of the rigidity matrix is determined

only by its filling pattern (the location of the zero and non-zero entries. This is a

property of the framework’s graph, not any specific realization, yielding the desired

result. There are two main steps here as well:

• Show that independence of rows in the rigidity matrix implies a sparsity condi-

tion. We call this the “Maxwell direction.”

• Prove the converse: that any graph satisfying the necessary condition has a full

rank realization. This is the (harder) “Laman direction.”

3

Continuous Rigidity

Infinitesimal Rigidity

Combinatorial Rigidity

Represented Matroids

Algorithms

Chapter 5: Slider-pinning rigidity

Chapter 5: Slider -pinning rigidity Chapter 4: Natural realizations

Chapter 1: Sparse hypergraphs
Chapter 2: Graded sparsity
Chapter 3: Decompositions
Chapter 6: Random graphs

Chapter 1–2: Pebble games
Chapter 3: Colored pebble games

Figure 2. Contributions by area: How the results of each chapter fit into the scheme
of Figure 1

Three types of rigidity theory: roadmap of results and guide

to reading

As we see from the program presented above, rigidity questions divide somewhat

naturally into three categories:

• The algebraic theory of continuous rigidity.

• The linear theory of infinitesimal rigidity.

• The combinatorial theory of matroidal families of graphs determined by hered-

itary sparsity conditions.

Figure 1 shows the relationship pictorially, and the roles of genericity and Laman-type

theorems.

The theme of this dissertation is the “rigidity from the combinatorics up” pro-

gram initiated by Ileana Streinu [31], in which we study the combinatorial and linear

theories in their broadest context, and then use the results developed to prove new

rigidity representation theorems.

In addition, the combinatorial theory has an important algorithmic side: although

the counts appearing in the Maxwell-Laman Theorem superficially appear to require

4

exponential time to check, there are efficient, elegant algorithms for answering many

generic rigidity questions. As Figure 1 shows, computational tractability rises as we

move from algebra to combinatorics.

Our contributions, then, are in four areas:

Combinatorics: We develop a general theory of (graded-)sparse hypergraphs, which

generalize, to a very large degree, the counting condition of the form m′ ≤ kn′−`

found in the Maxwell-Laman Theorem. The contribution here include charac-

terizations in terms of: graph-theoretic structure; matroids; and the rigidity

behavior of random graphs.

Algorithms: We develop efficient pebble game algorithms for answering the funda-

mental combinatorial rigidity questions in all the classes of graphs we study.

Matroid representation: We show that all the combinatorial sparsity matroids we

develop are linearly representable via a uniform construction. The representing

matrices we find have the filling pattern of the rigidity matrices appearing in

rigidity theory.

Generic combinatorial rigidity: We introduce a new class of structures, bar-slider

frameworks, which elaborate the bar-and-joint model to include sliders, which

each constrain a joint to move on a line that is rigidly attached to the plane.

The combinatorial model for bar-slider frameworks is given by the (k, `)-graded-

sparse graphs introduced here. We develop the complete rigidity theory for

bar-slider frameworks and prove the analogue of the Maxwell-Laman Theorem

in this setting.

Figure 2 shows the results of each chapter by area.

Each chapter is a self-contained unit, giving all the required background and

technical details, and thus they may be read in any order, based on the interests of

5

the reader. In the rest of the introduction, we give a more detailed sketch of each

chapter.

Contributions: sparse graphs and hypergraphs

Part I contains our combinatorial and algorithmic results. A graph G on n vertices

is (k, `)-sparse if, for all subgraphs on n′ vertices and m′ edges with at least one edge,

m′ ≤ kn′−`, for non-negative integer parameters k and `; if, additionally, G has kn−`

edges it is (k, `)-tight. As an example, the Maxwell-Laman Theorem’s minimally rigid

frameworks are exactly the (2, 3)-tight graphs. This definition appeared in Lee and

Streinu’s paper [31], where they studied the combinatorial, matroidal, and algorithmic

properties of (k, `)-sparse graphs.

Chapter 1 extends the results of [31] to the setting of hypergraphs (or set systems),

which are a generalization of graphs that allows the edges to have more (or less) than

two endpoints. Chapter 1:

• Characterizes the range of k and ` for which the (k, `)-sparse hypergraphs are

a matroidal family.

• Gives structural theorems on the behavior of (k, `)-tight subgraphs.

• Gives pebble game algorithms for the fundamental algorithmic questions relating

to (k, `)-sparse hypergraphs.

• Gives pebble game algorithms for lowering the number of endpoints in each

hyperedge to the minimum number possible while maintaining (k, `)-sparsity.

Chapter 2 pushes the (k, `)-sparse hypergraph concept further, introducing (k, `)-

graded-sparsity, which allows different types of edges to be subject to different sparsity

conditions. For certain values of k and `, this remains a matroidal family and the

6

structural and algorithmic results of Chapter 1 hold in this new setting. The im-

portance of Chapter 2 and the the (k, `)-graded-sparsity concept is that it is the

combinatorial setting for the slider-pinning rigidity of Chapter 5.

Chapter 3 returns to the setting of (k, `)-sparse graphs, giving algorithms for

finding decompositions into forests that certify a graph is (k, `)-sparse. The elegant

pebble game paradigm of [31] is specialized to this problem. As corollaries, we obtain

very simple, algorithmic proofs of the Nash-Williams-Tutte Theorem [43, 63] and

Ruth Haas’s [19] extension of Crapo’s [10] forest decomposition characterization of

Laman graphs. The decompositions appearing in Chapter 3 also play a role in the

characterization of slider-pinning rigidity proved in Chapter 5.

Contributions: natural realizations and slider-pinning rigidity

Part II is devoted to problems relating to linear representation of families of (k, `)-

sparse hypergraphs. In Chapter 4 we prove that for the entire (k, `)-graded-sparse

family of hypergraphs defined in Chapter 1 and Chapter 2 there is a matrix with

the property that its row independence relation is exactly the combinatorial sparsity

relation. Moreover, the filling pattern (i.e., location of the non-zero entries) of this

matrix coincides with the filling patter of the more-specialized rigidity matrices that

arise in all known proofs of the Maxwell-Laman Theorems (and the handful of similar

results).

Chapter 5 contains a much stronger representational result. We define a new class

of structures, called bar-slider frameworks and develop the complete rigidity theory

for them. The key result is the analogue of the Maxwell-Laman Theorem for bar-

slider structures. The proof is based on a novel technique for reducing the question of

infinitesimal rigidity to that of parallel redrawing, in which the relationship between

sparsity-certifying decompositions and very structured linear representations can be

profitably exploited.

7

Contributions: emergence of rigid components in random graphs

Part III contains Chapter 6, which studies the emergence of rigid substructures

(called rigid components) in random graphs. We prove that in the Erdös-Renyi model,

there is a sharp threshold for the emergence of non-trivial rigid substructures, and

that when they emerge, they are almost surely very large. This theoretical prediction

is consistent with empirical observations and simulations done by physicists.

A note on collaboration

Each of the chapters in this dissertation had either appeared by the time the

dissertation was presented or was available in preprint form. The work in each chapter

was done in collaboration with the listed coauthors.

The following lists the appropriate reference for each chapter as of August, 2010:

• Chapter 1 appeared as [54].

• Chapter 2 appeared as [33].

• Chapter 3 appeared as [53].

• Chapter 4 was available as preprint [55].

• Chapter 5 had been accepted for publication, and was available as preprint [56].

• Chapter 6 appeared as the conference paper [60].

8

Part I

Sparsity, decompositions, and
algorithms

9

CHAPTER 1

SPARSE HYPERGRAPHS AND PEBBLE GAME
ALGOTITHMS

1.1 Introduction

The focus of this chapter is on (k, `)-sparse hypergraphs. A hypergraph (or set

system) is a pair G = (V,E) with vertices V , n = |V | and edges E which are

subsets of V (multiple edges are allowed). If all the edges have exactly two vertices,

G is a (multi)graph. We say that a hypergraph is (k, `)-sparse if no subset V ′ ⊂ V

of n′ = |V ′| vertices spans more than kn′− ` edges in the hypergraph. If, in addition,

G has exactly kn− ` edges, we say it is (k, `)-tight.

The (k, `)-sparse graphs and hypergraphs have applications in determining con-

nectivity and arboricity (defined later). For some special values of k and `, the

(k, `)-sparse graphs have important applications to rigidity theory: minimally rigid

bar-and-joint frameworks in dimension 2 and minimally-rigid body-and-bar structures

in arbitrary dimension are both characterized generically by sparse graphs.

In this chapter, we prove several equivalent characterizations of the (k, `)-sparse

hypergraphs, and give efficient algorithms for three specific problems. The decision

problem asks if a hypergraph G is (k, `)-tight. The extraction problem takes an

arbitrary hypergraph G as input and returns as output a maximum size (in terms of

edges) (k, `)-sparse sub-hypergraph of G. The components problem takes a sparse

G as input and returns as output the inclusion-wise maximal (k, `)-tight induced

sub-hypergraphs of G.

The dimension of a hypergraph is its minimum edge size. A large dimension makes

them difficult to visualize. We also address the representation problem, which asks

10

for finding a suitably defined lower-dimensional hypergraph in the same sparsity class,

and we identify a critical behaviour in terms of the sparsity parameters k and `.

There is a vast literature on sparse 2-graphs (see Section 1.1.2), but not so much

on hypergraphs. In this chapter, we carry over to the most general setting the char-

acterization of sparsity via pebble games from Lee and Streinu [31]. Along the way,

we develop structural properties for sparse hypergraph decompositions, identify the

problem of lower dimensional representations, give the proper hypergraph version of

depth-first search in a directed sense and apply the pebble game to efficiently find

lower-dimensional representations within the same sparsity class.

Complete historical background is given in Section 1.1.2. In Section 1.2, we de-

scribe our pebble game for hypergraphs in detail. The rest of the chapter provides

the proofs: Sections 1.3 and 1.4 address structural properties of sparse hypergraphs;

Sections 1.5 and 1.6 relate graphs accepted by the pebble game to sparse hyper-

graphs; Section 1.7 addresses the questions of representing sparse hypergraphs by

lower dimensional ones.

1.1.1 Preliminaries and related work

In this section we give the definitions and describe the notation used in the chapter.

Note: for simplification, we will often use graph instead of hypergraph and edge

instead of hyperedge, when the context is clear.

Hypergraphs. Let G = (V,E) be a hypergraph, i.e. the edges of G are subsets

of V . A vertex v ∈ e is called an endpoint (or simply end) of the edge. We allow

parallel edges, i.e. multiple copies of the same edge.

For a subset V ′ of the vertex set V , we define span(V ′), the span of V ′, as the

set of edges with endpoints in V ′: E(V ′) = {e ∈ E : e ⊂ V ′}. Similarly, for a

subset E ′ of E, we define the span of E ′ as the set of vertices in the union of the

edges: V (E ′) =
⋃
e∈E′ e. The hypergraph dimension (or dimension) of an edge

11

(a) (b)

Figure 1.1. Two hypergraphs. The hypergraph in (a) is 3-uniform; (b) is 2-
dimensional but not a 2-graph.

abc

acd
bcd

c

a

b

d

c

a

b

d

(a)

abc abc

cd

c

a

b

d

c

a

b

d

(b)

Figure 1.2. Lower dimensional representations. In both cases, the 2-uniform graph
on the right (a tree) represents the hypergraph on the left (a hypergraph tree) with
respect to (1, 1)-sparsity. The 2-dimensional representations of edges have similar
styles to the edges they represent and are labeled with the vertices of the hyperedge.

is its number of elements. The hypergraph dimension of a graph G is its minimum

edge dimension. A graph in which each edge has dimension s is called s-uniform or,

more succinctly, a s-graph. So what is typically called a graph in the literature is a

2-graph, in our terminology. Figure 1.1 shows two examples of hypergraphs.

We say that a hypergraph H = (V, F) represents a hypergraph G = (V,E) with

respect to some property P , if both H and G satisfy the property, and there is an

isomorphism f from E to F such that f(e) ⊂ e for all e ∈ E. In this chapter, we are

primarily concerned with representations which preserve sparsity. In our figures, we

visually present hypergraphs as their lower dimensional representations when possible,

as in Figure 1.2. We observe that representations with respect to sparsity are not

unique, as shown in Figure 1.3.

12

abc abc

cd

abc
abc

cd
c

a

b

d

c

a

b

d

c

a

b

d

Figure 1.3. Lower dimensional representations are not unique. Here we show two
2-uniform representations of the same hypergraph with respect to (1, 1)-sparsity.

abc

acd
bcd

c

a

b

d

c

a

b

d

Figure 1.4. An oriented 3-uniform hypergraph. On the left, the tail of each edge is
indicated by the style of the vertex. In the 2-uniform representation on the right, the
edges are shown as directed arcs.

The standard concept of degree of a vertex v extends naturally to hypergraphs,

and is defined as the number of edges to which v belongs. The degree of a set of

vertices V ′ is the number of edges with at least one endpoint in V ′ and another in

V − V ′.

An orientation of a hypergraph is given by identifying as the tail of each edge one

of its endpoints. Figure 1.4 shows an oriented hypergraph and a lower dimensional

representation of the same graph.

In an oriented hypergraph, a path from a vertex v1 to a vertex vt is given by a

sequence

v1, e1, v2, e2, . . . , vt−1, et−1, vt (1.1)

where vi is an endpoint of ei−1 and vi is the tail of ei for 1 ≤ i ≤ t− 1.

The concepts of in-degree and out-degree extend to oriented hypergraphs. The

out-degree of a vertex is the number of edges which identify it as the tail and connect

13

v to V − v; the in-degree is the number of edges that do not identify it as the tail.

The out-degree of a subset V ′ of V is the number of edges with the tail in V ′ and at

least one endpoint in V − V ′; the in-degree of V ′ is defined symmetrically. It is easy

to check that the out-degree and in-degree of V ′ sum to the undirected degree of V ′.

We note that, in the case of self-loops (edges of dimension 1), there is a discrepancy

between the out-degree of a vertex v (the self-loop contributes 1 to the out-degee) and

the singleton set of vertices {v} (the self-loop does not contribute to the out-degree);

for our purposes, these definitions are the most suitable.

We use the notation NG(V ′) to denote the set of neighbors in G of a subset V ′ of

V .

The standard depth-first search algorithm in directed graphs, starting from a

source vertex v, extends naturally to oriented hypergraphs: recursively explore the

graph from the unexplored neighbors of v, one after another (ending when it has no

unexplored neighbors left). We will use it in the implementation of the pebble game

to explore vertices of hypergraphs. Figure 1.5 shows the depth-first exploration of

a hypergraph. Notice that the picture uses a uniform 2-dimensional representation

for a 3-hypergraph (the hyperedges should be clear from the labels on the 2-edges

representing them).

Table 1.1 gives a summary of the terminology in this section.

Sparse hypergraphs. A graph is (k, `)-sparse if for any subset V ′ of n′ vertices

and its span E ′, m′ = |E ′|:

m′ ≤ kn′ − ` (1.2)

A sparse graph that has exactly kn − ` edges is called tight; Figure 1.6 shows a

(2, 0)-tight hypergraph. A graph that is not sparse is called dependent.

14

cde

cde

cde

cde

a a b

c d

e

ce

abc
abc

abc

bce

(a)

cde

cde

cde

cde

a a b

c d

e

ce

abc
abc

abc

bce

(b)

abc

ce

cde

cde

cde

cde

a a b

c d

e
abc

abc

bce

(c)

bce
abc

ce

cde

cde

cde

cde

a a b

c d

e
abc

abc

(d)

bceabc

ce

cde

cde

cde

cde

a a b

c d

e
abc

abc

(e)

abc

bceabc

ce

cde

cde

cde

cde

a a b

c d

e
abc

(f)

abc

abc

bceabc

ce

cde

cde

cde

cde

a a b

c d

e

(g)

Figure 1.5. Searching a hypergraph with depth-first search starting at vertex e.
Visited edges and vertices are shown with thicker lines. The search proceeds across
an edge from the tail to each of the other endpoints and backs up at an edge when
all its endpoints have been visited (as in the transition from (c) to (d)).

Term Notation Meaning

Edge e e ⊂ V
Graph G = (V,E) V is a finite set of vertices ; E ⊂ 2V is a set of edges
Subset of vertices V ′ V ′ ⊂ V
Size of V ′ n′ |V ′|
Subset of edges E ′ E ′ ⊂ E
Size of a subset of edges m′ |E ′|
Span of V ′ E(V ′) Edges in E that are subsets of V ′

Span of E ′ V (E ′) Vertices in the union of e ∈ E ′
Dimension of e ∈ E |e| Number of elements in e
Dimension of G s Minimum dimension of an edge in E.
Max size of an edge s∗ Maximum size of an edge in E
Neighbors of V ′ in G NG(V ′) Vertices connected to some v ∈ V ′

Table 1.1. Hypergraph terminology used in this chapter.

15

a b

c

d

e

Figure 1.6. A (2,0)-tight hypergraph decomposed into two (1, 0)-tight ones (gray
and black).

A simple observation, formalized below in Lemma 1.3.1, implies that 0 ≤ ` ≤

sk − 1, for sparse hypergraphs of dimension s. From now on, we will work with

parameters k, ` and s satisfying this condition.

We also define Kk,`
n as the complete hypergraph with edge multiplicity ks− ` for

s-edges. For example Kk,0
n has: k loops on every vertex, 2k copies of every 2-edge,

3k copies of every 3-edge, and so on. Lemma 1.3.3 shows that every sparse graph is

a subgraph of Kk,0
n .

A sparse graph G is critical if the only representation of G that is sparse is G

itself.

There are two important types of subgraphs of sparse graphs. A block is a tight

subgraph of a sparse graph. A component is a maximal block.

In this chapter, we study five computational problems. The decision problem

asks if a graph G is (k, `)-tight. The extraction problem takes a graph G as input

and returns as output a maximum (k, `)-sparse subgraph of G. The optimization

problem is a variant of the extraction problem; it takes as its input a graph G

and a weight function on E and returns as its output a minimum weight maximum

(k, `)-sparse subgraph of G. The components problem take a graph G as input and

returns as output the components of G. The representation problem takes as input

16

Term Meaning

Sparse graph G m′ ≤ kn′ − l for all subsets E ′, m′ = |E ′|.
Tight graph G G is sparse with kn− ` edges.
Dependent graph G G is not sparse
Block H in G G is sparse, and H is a tight subgraph
Component H of G G is sparse and H is a maximal block
Decision problem Decide if a graph G is sparse
Extraction problem Given G, find a maximum sized sparse subgraph H
Optimization problem Given G, find a minimum weight maximum sized sparse subgraph H
Components problem Given G, find the components of G
Representation problem Given a sparse G, find a sparse representation of lower dimension

Table 1.2. Sparse graph terminology used in this chapter.

Sparse graphs Matroids Rigidity

Sparse Independent No over-constraints
Tight Independent and spanning Isostatic/minimally rigid
Block — Isostatic region
Component — Maximal isostatic region
Dependent Contains a circuit Has stressed regions

Table 1.3. Sparse graph concepts and analogs in matroids and rigidity.

a sparse graph G and returns as output a sparse graph H that represents G and has

lower dimension if this is possible.

Table 1.2 summarizes the notation and terminology related to sparseness used in

this chapter.

While the definitions in this section are made for families of sparse graphs, they can

be interpreted in terms of matroids and rigidity theory. Table 1.3 relates the concepts

in this section to matroids and generic rigidity, and can be skipped by readers who

are not familiar with these fields.

Fundamental hypergraphs. A map-graph is a hypergraph that admits an ori-

entation such that the out degree of every vertex is exactly one. A k-map-graph is

17

a graph that admits a decomposition into k disjoint maps. Figure 1.7 shows a 2-map,

with an orientation of the edges certifying that the graph is a 2-map.

a b

c

d

ea

ce

abc
abc

cde

cde

abc

bce

cde

cde

Figure 1.7. The hypergraph from Figure 1.6, shown here in a lower-dimensional
representation, is a 2-map. The map-graphs are black and gray. Observe that each
vertex is the tail of one black edge and one gray one.

An edge e connects disjoint subsets X and Y of V if e has an end in both X and

Y . A hypergraph is k-edge connected if |E(X, V −X)| ≥ k, for any proper subset

X of V , where E(X, Y) is the set of edges connecting X and Y .

A graph is k-partition connected if

∣∣∣∣∣⋃
i 6=j

E(Pi, Pj)

∣∣∣∣∣ ≥ k(t− 1) (1.3)

for any partition P = {P1, P2, . . . , Pt} of V . This definition appears in [14].

A tree is a minimally 1-partition connected graph. We remind the reader that

that this is the definition of a tree in a hypergraph, but we use the shortened termi-

nology and drop hyper. A k-arborescence is a graph that admits a decomposition

into k disjoint trees.1 For 2-graphs, the definitions of partition connectivity and edge

connectivity coincide by the well-known theorems of Tutte [63] and Nash-Williams

1In the graph theory literature, “arborescence” is sometimes used to refer to a rooted tree,
with edges oriented to the root. Our terminology here follows from the arboricity (spanning tree
decomposition) literature for 2-graphs.

18

[42]. We also observe that for general hypergraphs, connectivity and 1-partition-

connectivity are different; for example, a hypergraph with a single edge containing

every vertex is connected but not partition connected.

1.1.2 Related work

Our results expand theorems spanning graph theory, matroids and algorithms. By

treating the problem in the most general setting, we will obtain many of the results

listed in this section as corollaries of our more general results.

In this paragraph, we use graph in its usual sense, i.e. as a 2-uniform hypergraph.

Graph Theory and Rigidity Theory. Sparsity is closely related to graph ar-

borescence. The well-known results of Tutte [63] and Nash-Williams [42] show the

equivalence of (k, k)-tight graphs and graphs that can be composed into k edge-

disjoint spanning trees. A theorem of Tay [59] relates such graphs to generic rigid-

ity of bar-and-body structures in arbitrary geometric dimension. The (2, 3)-tight 2-

dimensional graphs play an important role in rigidity theory. These are the generically

minimally rigid graphs [30] (also known as Laman graphs), and have been studied

extensively. Results of Recski [47, 48] and Lovász and Yemini [37] relate them to

adding any edge to obtain a 2-arborescence. The most general results on 2-graphs

were proven by Haas in [19], who shows the equivalence of (k, k + a)-sparse graphs

and graphs which decompose into k edge-disjoint spanning trees after the addition

of any a edges. In [20] Haas et al. extend this result to graphs that decompose into

edge-disjoint spanning maps, showing that (k, `)-sparse graphs are those that admit

such a map decomposition after the addition of any ` edges.

For hypergraphs, Frank et al. study the (k, k)-sparse case in [14], generalizing the

Tutte and Nash-Williams theorems to partition connected hypergraphs.

19

Matroids. Edmonds [11] used a matroid union approach to characterize the 2-

graphs that can be decomposed into k disjoint spanning trees and described the

first algorithm for recognizing them. White and Whiteley [64] first recognized the

matroidal properties of general (k, `)-sparse graphs.

In [66], Whiteley used a classical theorem of Pym and Perfect [46] to show that

the (k, `)-tight 2-graphs are exactly those that decompose into an `-arborescence and

(k − `)-map-graph for 0 ≤ ` ≤ k.

In the hypergraph setting, Lorea [34] described the first generalization of graphic

matroids to hypergraphs. In [14], Frank et al. used a union matroid approach to

extend the Tutte and Nash-Williams theorems to arbitrary hypergraphs.

Algorithms. Our algorithms generalize the (k, `)-sparse graph pebble games of Lee

and Streinu [31], which in turn generalize the pebble game of Jacobs and Hendrickson

[25] for planar rigidity (which would be a (2, 3)-pebble game in the sense of [31]). The

elegant pebble game of [25], first analyzed for correctness in [2], was intended to be

an easily implementable alternative to the algorithms based on bipartite matching

discovered by Hendrickson in [21].

The running time analysis of the (2, 3)-pebble game in [2] showed its running time

to be dominated by O(n2) queries about whether two vertices are in the span of a

rigid component. This leads to a data structure problem, considered explicitly in

[31, 32], where it is shown that the running time of the general (k, `)-pebble game

algorithms on 2-graphs is O(n2).

For certain special cases of k and `, algorithms with better running times have

been discovered for 2-multigraphs. Gabow and Westermann [15] used a matroid union

approach to achieve a running time of O(n
√
n log n) for the extraction problem when

` ≤ k. They also find the set of edges that are in some component, which they call

the top clump, with the same running time as their extraction algorithm. We

observe that the top clump problem coincides with the components problem only

20

for the ` = 0 case. Gabow and Westermann also derive an O(n3/2) algorithm for the

decision problem for (2, 3)-sparse (Laman) graphs, which is of particular interest due

to the importance of Laman graphs in many rigidity applications. Using a matroid

intersection approach, Gabow [16] also gave an O((m + n) log n) algorithm for the

extraction problem for (k, k)-sparse 2-graphs.

1.1.3 Our Results

We describe our results in this section.

The structure of sparse hypergraphs. We first describe conditions for the ex-

istence of tight hypergraphs and analyze the structure of the components of sparse

ones. The theorems of this section are generalizations of results from [31, 57] to

hypergraphs of dimension d ≥ 3.

Theorem 1.1 (Existence of tight hypergraphs). There exists an n1 depending

on s, k and ` such that tight hypergraphs on n vertices exist for all values of n ≥ n1.

In the smaller range n < n1, such tight graphs may not exist.

Theorem 1.2 (Block Intersection and Union). If B1 and B2 are blocks of a

sparse graph G, 0 ≤ ` ≤ ik, and B1 and B2 intersect on at least i vertices, then

B1 ∪B2 is a block and the subgraph induced by V (B1) ∩ V (B2) is a block.

Theorem 1.3 (Disjointness of Components). If C1 and C2 are components of

a sparse graph G, then E(C1) and E(C2) are disjoint and |V (C1) ∩ V (C2)| < s. If

` ≤ k, then the components are vertex disjoint. If ` = 0, then there is only one

component.

Hypergraph decompositions. Extending the results of Tutte [63], Nash-Williams

[42], Recski [47, 48], Lovász and Yemini [37], Haas et al. [19, 20], and Frank et al.

[14], we characterize the hypergraphs that become k-arborescences after the addition

of any ` edges.

21

Theorem 1.4 (Generalized Lovász-Recski Property). Let G be (k, `)-tight hy-

pergraph with ` ≥ k. Then the graph G′ obtained by adding any ` − k edges of

dimension at least 2 to G is a k-arborescence.

In particular, the important special case in which k = ` was proven by Frank et

al. [14].

Decompositions into maps. We also extend the results of Haas et al. [20] to

hypergraphs. This theorem can also be seen as a generalization of the characterization

of Laman graphs in [21].

Theorem 1.5 (Generalized Nash-Williams-Tutte Decompositions). A graph

G is a k-map-graph if and only if G is (k, 0)-tight.

Theorem 1.6 (Generalized Haas-Lovász-Recski Property for Maps). The

graph G′ obtained by adding any ` edges from Kk,0
n −G to a (k, `)-tight graph G is a

k-map.

Using a matroid approach, we also generalize a theorem of Whiteley [66] to hy-

pergraphs.

Theorem 1.7 (Maps-and-Trees Decomposition). Let k ≥ ` and G be tight.

Then G is the union of an `-arborescence and a (k − `)-map.

Pebble game constructible graphs. The main theorem of this chapter, gener-

alizing from s = 2 in [31] to hypergraphs of any dimension, is that the matroidal

families of sparse graphs coincide with the pebble game graphs.

Theorem 1.8 (Main Theorem: Pebble Game Constructible Hypergraphs).

Let k, `, n and s meet the conditions of Theorem 1.1. Then a hypergraph G is sparse

if and only if it has a pebble game construction.

22

Pebble game algorithms. We also generalize the pebble game algorithms of [31]

to hypergraphs. We present two algorithms, the basic pebble game and the pebble

game with components.

We show that on an s-uniform input G with n vertices and m edges, the basic

pebble game solves the decision problem in time O((s+ `)sn2) and space O(n). The

extraction problem is solved by the basic pebble game in time O((s + `)dnm) and

space O(n + m). For the optimization problem, the basic pebble game uses time

O((s+ `)snm+m logm) and space O(n+m).

On an s-uniform input G with n vertices and m edges, the pebble game with

components solves the decision, extraction, and components problems in time

O((s+ `)sns +m) and space O(ns). For the optimization problem, the pebble game

with components takes time O((s+ `)sns +m logm).

Critical representations. As an application of the pebble game, we obtain lower-

dimensional representations for certain classes of sparse hypergraphs, generalizing a

result from Lovász [35] concerning lower-dimensional representations for (hypergraph)

trees.

Theorem 1.9 (Lower Dimensional and Critical Representations). G is a

critical sparse hypergraph of dimension s if and only if the representation found by

the pebble game construction coincides with G. This implies that G is s-uniform and

` ≤ sk − 1.

The proof of Theorem 1.9 is based on a modified version of the pebble game

(described below) that solves the representation problem. Its complexity is the

same as that of the pebble game with components: time O((s+ `)sns +m) and space

O(ns) on an s-graph.

As corollaries to Theorem 1.9, we obtain:

23

Corollary 1.1.1 (Lovász [35]). G is an s-dimensional k-arborescence if and only if

it is represented by a 2-uniform k-arborescence H.

Corollary 1.1.2. G is a k-map-graph if and only if it is represented by a k-map-graph

with edges of dimension 1.

Corollary 1.1.3. G has a maps-and-trees decomposition if and only if G is rep-

resented by a graph with edges of dimension at most 2 that has a maps-and-trees

decomposition.

1.2 The pebble game

The pebble game is a family of algorithms indexed by nonnegative integers k

and `.

The game is played by a single player on a fixed finite set of vertices. The player

makes a finite sequence of moves; a move consists of the addition and/or orientation

of an edge. At any moment of time, the state of the game is captured by an oriented

hypergraph. We call the underlying unoriented hypergraph a pebble game graph.

Later in this chapter, we will use the pebble game as the basis of efficient algo-

rithms for the computational problems defined above in Section 1.1.1.

We describe the pebble game in terms of its initial configuration and the allowed

moves.

Initialization: In the beginning of the pebble game, H has n vertices and no

edges. We start by placing k pebbles on each vertex of H.

Add-edge: Let e ⊂ V be a set of vertices with at least `+ 1 pebbles on it. Add

e to E(H). Pick up a pebble from any v ∈ e, and make v the tail of e.

Figure 1.8 shows an example of this move in the (2, 2)-pebble game.

24

⇒

(a)

⇒

(b)

⇒

(c)

Figure 1.8. Adding a 3-edge in the (2, 2)-pebble game. In all cases, the edge, shown
as a triangle, may be added because there are at least three pebbles present. The
tail of the new edge is filled in; note that in (c) only one of the pebbles on the tail is
picked up.

⇒

(a)

⇒

(b)

Figure 1.9. Moving a pebble along a 3-edge in the (2, 2)-pebble game. The tail of
the edge is filled in. Observe that in (b) the only change is to the orientation of the
edge and the location of the pebble that moved.

Pebble-shift: Let v a vertex with at least one pebble on it, and let e be an edge

with v as one of its ends, and with tail w. Move the pebble to w and make v the tail

of e.

Figure 1.9 shows an example of this move in the (2, 2)-pebble game.

The output of playing the pebble game is its complete configuration, which in-

cludes an oriented pebble game graph.

Output: At the end of the game, we obtain the oriented hypergraph H, and a

mapping peb(·) from V to N such that for each vertex v, peb(v) is the number of

pebbles on v.

25

Comparison to Lee and Streinu. The hypergraph pebble game extends the

framework developed in [31] for 2-graphs. The main challenge was to come up with

the concept of orientation of hyperedges and of moving the pebbles in a way that

generalizes depth-first search for 2-graphs. Specializing our algorithm to 2-uniform

hypergraphs gives back the algorithm of [31].

1.3 Properties of sparse hypergraphs

We next develop properties of sparse graphs, starting with the conditions on s, k,

` and n for which there are tight graphs.

Lemma 1.3.1. If ` ≥ ik, and G is sparse, then s > i.

Proof. If i ≥ s, then for any edge e of dimension s the ends of e are a set of vertices

for which (1.2) fails.

As an immediate corollary, we see that the class of uniform sparse graphs is trivial

when ` ≥ sk.

Lemma 1.3.2. If ` ≥ sk, then the class of s-uniform (k, `)-sparse graphs contains

only the empty graph.

We also observe that when ` < 0, the union of two disjoint sparse graphs need not

be sparse. Since this is a desirable property, for the moment we focus on the case in

which ` ≥ 0. Our next task is to further subdivide this range.

Lemma 1.3.3. Let G be sparse and uniform. The multiplicity of parallel edges in G

is at most sk − `.

Proof. (1.2) holds for no more than sk − ` parallel edges of dimension s.

The next lemmas establish a range of parameters for which there are tight graphs.

Lemma 1.3.4. Let ` ≥ (s− 1)k. There are no tight subgraphs on n < s vertices.

26

Proof. By Lemma 1.3.3 no sparse subgraph may contain edges of dimension less than

s.

Lemma 1.3.5. If ` ≥ (s − 1)k then there is an n1 depending on s, k at ` such that

for n ≥ n1 there exist tight s-uniform graphs on n vertices. For n < n1, there may

not be tight uniform graphs.

Proof. When ` ≥ (s − 1)k there are no loops in any sparse graph. Also, by Lemma

1.3.3 no edge in a uniform graph has multiplicity greater than k in a sparse graph. It

follows that any tight uniform graph is a subgraph of the complete s-uniform graph

on n vertices, allowing edge multiplicity k.

For tight uniform subgraphs to exist, we need to have

kn− ` ≤ k

(
n

s

)
(1.4)

For sufficiently large n this is guaranteed. We let n0 be the largest integer such that

(1.4) fails to hold, and set n1 = n0 + 1. To construct a (k, `)-tight hypergraph with

n vertices for n ≥ n1 vertices, we proceed as follows.

For n = 1, we start with the complete d-uniform hypergraph with edge-multiplicity

k, Kk
n1

. By construction, discarding up to ` edges all containing an arbitrary vertex

v results in a (k, `)-tight hypergraph Gn1 . We then proceed inductively, obtaining

a tight hypergraph Gn+1 from Gn by adding a new vertex and k distinct edges all

containing v.

We next characterize the range of parameters for which there are tight graphs.

Theorem 1.1 (Existence of tight hypergraphs). There exists an n1 depending

on s, k and ` such that tight hypergraphs on n vertices exist for all values of n ≥ n1.

In the smaller range n < n1, such tight graphs may not exist.

27

Proof. Immediate from Lemma 1.3.5; the existence of tight uniform hypergraphs

implies the existence of tight hypergraphs.

We next turn to the structure of blocks and components.

Theorem 1.2 (Block Intersection and Union). If B1 and B2 are blocks of a

sparse graph G, 0 ≤ ` ≤ ik, and B1 and B2 intersect on at least i vertices, then

B1 ∪B2 is a block and the subgraph induced by V (B1) ∩ V (B2) is a block.

Proof. Let mi = |E(Bi)| for i = 1, 2; similarly let vi = |V (Bi)|. Also let m∩ =

|E(B1) ∩ E(B2)|, m∪ = |E(B1) ∪ E(B2)|, v∪ = |V (B1) ∪ V (B2)|, and v∩ = |V (B1) ∩ V (B2)|.

The sequence of inequalities

kn∪ − ` ≥ m∪ = m1 +m2 −m∩ ≥ kn1 − `+ kn2 − `− kn∩ + ` = kn∪ − ` (1.5)

holds whenever n∩ ≥ i, which shows that B1 ∪B2 is a block.

From the above, we get

m∩ = m1 +m2 −m∪ = kn1 − `+ kn2 − `− kn∪ + ` = kn∩ − `, (1.6)

completing the proof.

From Theorem 1.2, we obtain the first part of Theorem 1.3.

Lemma 1.3.6. If C1 and C2 are components of a (k, `)-sparse graph G then E(C1)

and E(C2) are disjoint and |V (C1) ∩ V (C2)| < s.

Proof. Observe that since 0 ≤ ` < sk, components with non-empty edge intersection

are blocks meeting the condition of Theorem 1.2, as components intersecting on s

vertices. Since components are maximal, no two components may meet the conditions

of Theorem 1.2.

28

For certain special cases, we can make stronger statements about the components.

Lemma 1.3.7. When ` ≤ k the components of a (k, `)-sparse hypergraph are vertex

disjoint.

Proof. Since ` ≤ k, we may apply Theorem 1.2 with i = 1.

Lemma 1.3.8. There is at most one component in a (k, 0)-sparse graph.

Proof. Applying Theorem 1.2 with i = 0 shows that the components of a (k, 0)-sparse

graph are vertex disjoint. Now suppose that C1 and C2 are distinct components of a

(k, 0)-sparse graph. Then, using the notation of Theorem 1.2, m1 +m2 = kn1 +kn2 =

kn∪, which implies that C1 ∪C2 is a larger component, contradicting the maximality

of C1 and C2.

Together these lemmas prove the following result about the structure of compo-

nents.

Theorem 1.3 (Disjointness of Components). If C1 and C2 are components of

a sparse graph G, then E(C1) and E(C2) are disjoint and |V (C1) ∩ V (C2)| < s. If

` ≤ k, then the components are vertex disjoint. If ` = 0, then there is only one

component.

Proof. Immediate from Lemma 1.3.6, Lemma 1.3.7, and Lemma 1.3.8.

1.4 Hypergraph Decompositions

In this section we investigate links between tight hypergraphs and decompositions

into edge-disjoint map-graphs and trees.

1.4.1 Hypergraph arboricity

We now generalize results of Haas [19] and Frank et al. [14] to prove an equivalence

between sparse hypergraph and those for which adding any a edges results in a k-

arborescence.

29

We will make use of the following important result from [14].

Proposition 1.5 ([14]). A hypergraph G is a k-arborescence if and only if G is

(k, k)-tight.

Theorem 1.4 (Generalized Lovász-Recski Property). Let G be (k, `)-tight hy-

pergraph with ` ≥ k. Then the graph G′ obtained by adding any ` − k edges of

dimension at least 2 to G is a k-arborescence.

Proof. Suppose that G is tight and that ` ≥ k. Let G′ = (V, F) be a graph obtained

by adding `− k edges of dimension at least 2 to G, and consider a subset V ′ of V . It

follows that

|EG′(V ′)| ≤ |V ′|+ `− k ≤ kn′ − `+ `− k = kn′ − k, (1.7)

which implies that G′ is (k, k)-tight, since |F | = kn − k. By Proposition 1.5 G′ is a

k-arborescence.

Conversely, if adding any `− k edges to G results in a (k, k)-tight graph, then G

must be tight; if V ′ spans more than kn − ` edges in G, then adding ` − k edges to

the the span of V ′ results in a graph which is not (k, k)-sparse.

1.5.1 Decompositions into maps

The main result of this section shows the equivalence of the (k, 0)-tight graphs and

k-maps. As an application, we obtain a characterization of all the sparse hypergraphs

in terms of adding any edges.

Theorem 1.5 (Generalized Nash-Williams-Tutte Decompositions). A graph

G is a k-map-graph if and only if G is (k, 0)-tight.

Proof. Let G = (V,E) be a hypergraph with n vertices and kn edges. Let Bk
G =

(Vk, E, F) be the bipartite graph with one vertex class indexed by E and the other

30

by k copies of V . The edges of Bk
G capture the incidence structure of G. That is,

we define F = {vie : e = vw, e ∈ E, i = 1, 2, . . . , k}; i.e., each edge vertex in B is

connected to the k copies of its endpoints in Bk
G. Figure 1.10 shows K3 and B1

K3
.

Figure 1.10. The (1, 0)-sparse 2-graph K3 and its associated bipartite graphs B1
K3

.
The vertices and edges of K3 are matched to the corresponding vertices in B1

K3
by

shape and line style.

Observe that for any subset E ′ of E,

∣∣∣NBkG
(E)
∣∣∣ = k |V (E ′)| ≥ |E| . (1.8)

if and only if G is (k, 0)-sparse. By Hall’s theorem, this implies that G is (k, 0)-tight

if and only if Bk
G contains a perfect matching.

Figure 1.11. An orientation of a 2-dimensional 2-map-graph G and the associated
bipartite matching in B2

G.

The edges matched to the ith copy of V correspond to the ith map-graph in the

k-map, as shown for a 2-map-graph in Figure 1.11. Assign as the tail of each edge

away from the vertex to which it is matched. It follows that each vertex has out

degree one in the spanning subgraph matched to each copy of V as desired.

31

Theorem 1.5 implies Theorem 1.6.

Theorem 1.6 (Generalized Haas-Lovász-Recski Property for Maps). The

graph G′ obtained by adding any ` edges from Kk,0
n −G to a (k, `)-tight graph G is a

k-map.

Proof. Similar to the proof of Theorem 1.4. Because the added edges come from

Kk,0
n −G, the resulting graph must be sparse.

We see from the proof of Theorem 1.6, that the condition of adding edges of

dimension at least 2 in Theorem 1.4 is equivalent to saying that the added edges

come from Kk,k
n .

To prove Theorem 1.7, we need several results from matroid theory.

Proposition 1.6 (Edmonds [12]). Let r be a non-negative, increasing, submodular

set function on a finite set E. Then the class N = {A ⊂ E : |A′| ≤ r(A′),∀A′ ⊂ A}

gives the independent sets of a matroid.

We say that N is generated by r. In particular, we see that our matroids of sparse

hypergraphs are generated by the function rk,`(E
′) = k |V (E ′)| − `.

Pym and Perfect [46] proved the following result about unions of such matroids.

Proposition 1.7 (Pym and Perfect [46]). Let r1 and r2 be non-negative, submodular,

integer-valued functions, and let N1 and N2 be matroids they generate. Then the

matroid union of N1 and N2 is generated by r1 + r2.

Let M1,0 and M1,1 be the matroids which have as bases the (1, 0)-tight and

(1, 1)-tight hypergraphs respectively. That these are matroids is a result of White

and Whiteley from [64]. Theorem 1.5 and Proposition 1.5 imply that the bases of

these matroids are the map-graphs and trees and that these matroids are generated

by the functions r1,0(E ′) = |V (E ′)| and r1,1(E ′) = |V (E ′)| − 1.

With these observations we can prove Theorem 1.7.

32

Theorem 1.7 (Maps-and-Trees Decomposition). Let k ≥ ` and G be tight.

Then G is the union of an `-arborescence and a (k − `)-map.

Proof. We first observe that r1,0 meets the conditions of Proposition 1.7. Since r1,1

does not (it is not non-negative), we switch to the submodular function

r′(V ′) = n′ − c (1.9)

where c is the number of non-trivial partition-connected components spanned by V ′.

It follows that r′ is non-negative, since a graph with no edges has no non-trivial

partition-connected components. Observe also, that if V ′ spans c partition-connected

components with n1, n2, . . . , nc vertices we have

r1,1(V ′) =
c∑
i=1

(ni − 1) = n′ − c = r′(V ′), (1.10)

since the partition-connected components are blocks of trees, and thus disjoint.

Applying Proposition 1.7 to r1,0 and r′ now shows that the union matroid of k− `

map-graphs and ` trees is generated by

r(V ′) = (k − `)r1,0(V ′) + `r′(V ′) = (k − `)n′ + `n′ − `, (1.11)

proving that the union of the matroid with bases that decompose into (k − `) map-

graphs and ` trees is Mk,` as desired.

1.8 Pebble game constructible graphs

The main result of this section is that the matroidal sparse graphs are exactly the

ones that can be constructed by the pebble game.

We begin by establishing some invariants that hold during the execution of the

pebble game.

33

Lemma 1.8.1. During the execution of the pebble game, the following invariants are

maintained in H:

(I1) There are at least ` pebbles on V .

(I2) For each vertex v, span(v) + out(v) + peb(v) = k.

(I3) For each V ′ ⊂ V , span(V ′) + out(V ′) + peb(V ′) = kn′.

Proof. (I1) The number of pebbles on V changes only after an add-edge move.

When there are fewer than `+ 1 pebbles, no add-edge moves are possible.

(I2) This invariant clearly holds at the initialization of the pebble game. We verify

that each of the moves preserves (I2). An add-edge move consumes a pebble from

exactly one vertex and adds one to its out degree or span. Similarly, a pebble-shift

move adds one to the out degree of the source and removes a pebble while adding

one pebble to the destination and decreasing its out degree by one.

(I3) Let V ′ ⊂ V have n′ vertices and span m+ edges with at least two ends. Then

out(V ′) =
∑
v∈V ′

out(v)−m+ (1.12)

and

span(V ′) = m+ +
∑
v∈V ′

span(v). (1.13)

Then we have

span(V ′) + out(V ′) + peb(V ′)

=
∑
v∈V ′

out(v)−m+ +m+ +
∑
v∈V ′

span(v) +
∑
v∈V ′

peb(v)

=
∑
v∈V ′

(out(v) + span(v) + peb(v)) = kn′,

where the last step follows from (I2).

34

From these invariants, we can show that the pebble game constructible graphs are

sparse.

Lemma 1.8.2. Let H be a hypergraph constructed with the pebble game. Then H is

sparse. If there are exactly ` pebbles on V (H), then H is tight.

Proof. Let V ′ ⊂ V have n′ vertices and consider the configuration of the pebble game

immediately after the most recent add-edge move that added to the span of V ′. At

this point, peb(V ′) ≥ `. By Lemma 1.8.1 (I3),

kn′ ≥ span(V ′) + out(V ′) + `. (1.14)

When span(V ′) > kn′ − `, this implies that −1 ≥ out(V ′), which is a contradiction.

In the case where there are exactly ` pebbles on V (H), Lemma 1.8.1 (I3) implies

that span(V) = kn− `.

We now consider the reverse direction: that all the sparse graphs admit a pebble

game construction. We start with the observation that if there is a path in H from

u to v, then if v has a pebble on it, a sequence of pebble-shift moves can bring the

pebble to u from v.

Define the reachability region of a vertex v in H as the set

reach (v) = {u ∈ V : there is a path in H from v to u}. (1.15)

Lemma 1.8.3. Let e be a set of vertices such that H + e is sparse. If peb(e) < `+ 1,

then a pebble not on e can be brought to an end of e.

35

Proof. Let V ′ be the union of the reachability regions of the ends of e; i.e.,

V ′ =
⋃
v∈e

reach(v). (1.16)

Since V ′ is a union of reachability regions, out(V ′) = 0. As H + e is sparse and e is

in the span of V ′, span(V ′) < kn′ − `.

It follows by Lemma 1.8.1 (I3), that peb(V ′) ≥ `+1, so there is a pebble on V ′−e.

By construction there is a v ∈ e such that the pebble is on a vertex u ∈ reach(v)− e.

Moving the pebble from u to v does not affect any of the other pebbles already on

e.

It now follows that any sparse hypergraph has a pebble game construction.

Theorem 1.8 (Main Theorem: Pebble Game Constructible Hypergraphs).

Let k, `, n and s meet the conditions of Theorem 1.1. Then a hypergraph G is sparse

if and only if it has a pebble game construction.

Proof. For each edge e of G in any order, inductively apply Lemma 1.8.3 to the ends

of e until there are `+1 of them. At this point, use an add-edge move to add e to H.

That the edges may be taken in any order follows from the fact that the (k, `)-sparse

hypergraphs form the independent sets of a matroid [64]

1.9 Pebble games for Components and Extraction

Until now we were concerned with characterizing sparse and tight graphs. In this

section we describe efficient algorithms based on pebble game constructions.

1.9.1 The basic pebble game

In this section we develop the basic (k, `)-pebble game for hypergraphs to solve

the decision and extraction problems. We first describe the algorithm.

36

Algorithm 1.9.1 (The (k, `)-pebble game).

Input: A hypergraph G = (V,E)

Output: ‘sparse’, ‘tight’ or ‘dependent.’

Method: Initialize a pebble game construction on n vertices.

For each edge e, try to collect ` + 1 pebbles on the ends of e. Pebbles can be

collected using depth-first search to find a path to a pebble and then a sequence of

pebble-shift moves to move it.

If it is possible to collect `+ 1 pebbles, use an add-edge move to add e to H.

If any edge was not added to H, output ‘dependent’. If every edge was added and

there are exactly ` pebbles left, then output ‘tight’. Otherwise output ‘sparse’.

Figure 1.12 shows an example of collecting a pebble and accepting an edge.

The correctness of the basic pebble game for the decision and extraction prob-

lems follows immediately from Theorem 1.8. For the optimization problem, sort the

edges in order of increasing weight before starting; the correctness follows from ma-

troidal property of (k, `)-sparse hypergrpahs [64] and the characterization of matroids

by the greedy algorithm (discussed in, e.g., [44]).

The running time of the pebble game is dominated by the time needed to collect

pebbles. If the maximum edge size in the hypergraph is s∗, the time for one depth-

first search is O(s∗n + m), from which it follows that the time to find one pebble in

H is O(s∗n). To check an edge requires no more than s∗+ `+ 1 pebble searches, and

m edges need to be checked. To summarize, we have proven the following.

Lemma 1.9.2. Let G be a hypergraph with n vertices, m edges, and maximum edge

size s∗. The running time of the basic pebble game is O((s∗+`)s∗nm); for the decision

problem, this is O((s∗ + `)s∗n2), since m = O(n).

37

bce

abc
abc

cde

cde

a b

c

d

e

cde

abc

(a)

bce

cde

cde

abc
abc

a b

c

d

e

cde
abc

(b)

bce

abc

abc

cde

a b

e

d

e

cde

abc

cde

(c)

cde
cde

cde

cde

abc
abc

bce
a b

c

d

e

abc

(d)

Figure 1.12. Collecting a pebble and accepting an edge in a (2, 2)-pebble game on a
3-uniform hypergraph H. H is shown via a 2-uniform representation. In (a), the edge
being tested, cde is shown with thick circles around the vertices. The pebble game
starts a search to bring a pebble to d. (This choice is arbitrary; had e been chosen
first, the edge would be immediately accepted.) In (b) a path from d to e across the
edge marked with a think line is found. In (c) the pebble is moved and the path is
reversed; the new tail of the edge marked with a think line is e. In (d) the pebble is
picked up, and the edge being checked is accepted. The tail of the new edge, marked
with a thick line, is d.

38

All of the searching, marking, and pebble counting can be done with O(1) space

per vertex. Since H has O(n) edges, the space complexity of the basic pebble game

is dominated by the size of the input.

Lemma 1.9.3. The space complexity of the basic pebble game is O(m+ n), where m

and n are, respectively, the number of edges and vertices in the input.

Together the preceding lemmas complete the complexity analysis. The running

time for the decision problem on a d-uniform hypergraph with n vertices and kn− `

edges is O((s + `)sn2), and the space used O(n). For the optimization problem,

the running time increases to O((s+ `)sn2 + n log n) because of the sorting phase.

The extraction problem is solved in time O((s+ `)snm) and space O(n+m).

1.9.2 Detecting components

In the next several sections we extend the basic pebble game to solve the compo-

nents problem. Along the way, we also improve the running time for the extraction

problem by developing a more efficient way of discarding dependent edges. As the

proof of Lemma 1.9.2 shows, the time spent trying to bring pebbles to the ends of

dependent edges can be Ω(n2) if the edges are very large. We will reduce this to O(s),

improving the running time.

We first present an algorithm to detect components.

Algorithm 1.9.4 (Component detection).

Input: An oriented hypergraph H and e, the most recently accepted edge.

Output: The component spanning e or ‘free.’

Method: When the algorithm starts, there are ` pebbles on the ends of e, and a

vertex w is the tail of e. If there are any other pebbles on reach(w), stop and output

‘free’. Otherwise let C = reach(w), and enqueue any vertex that is an end of an edge

pointing into C.

39

While there are more vertices in the queue, dequeue a vertex u. If the only pebbles

in reach(u) are the ` on e, add reach(w) to C and enqueue any newly discovered

vertex that is an end of an edge pointing into C.

Finally, output C.

In the rest of this section we analyze the correctness and running time of 1.9.4.

We put off a discussion of the space required to maintain the components until the

next section.

We start with a technical lemma about blocks.

Lemma 1.9.5. Let G be tight and ` > 0. Then G is connected.

Proof. Consider a partition of V into two subsets. These span at most kn− 2` edges

by sparsity, but G has kn− ` edges.

Lemma 1.9.6. If 1.9.4 outputs ‘free,’ then e is not spanned by any component. Oth-

erwise the output C of 1.9.4 is the component spanning e.

Proof. 1.9.4 outputs ‘free’ only when it is possible to collect at least `+ 1 pebbles on

the ends of e. Lemma 1.8.2 shows that in this case, e is not spanned by any block in

H and thus no component.

Now suppose that 1.9.4 outputs a set of vertices C. By construction, the number

of free pebbles on C is `. Also, since C is the union of reachability regions, it has no

out edges. By Lemma 1.8.2, C spans a block in H. Since 1.9.4 does a breadth first

search in H, C is a maximal connected block.

There are now two cases to consider. When ` > 0, blocks are connected by Lemma

1.9.5. If ` = 0, blocks may not be connected, but there is only one component in H

by Lemma 1.3.8; add C to the component being maintained.

For the running time of 1.9.4 we observe that O(s∗) time is spent processing the

vertices of each edge pointing into C for enqueueing and dequeuing. Vertices are

40

explored by pebble searches only once; mark vertices accepted into C and also those

from which pebbles can be reached to cut off the searches. Since H is (k, `)-sparse,

it has O(n) edges. Summarizing, we have shown the following.

Lemma 1.9.7. The running time of 1.9.4 is O(s∗n).

1.9.3 The pebble game with components

We now present an extension of the basic pebble game that solves the components

problem.

Algorithm 1.9.8 (The (k, `)-pebble game with components).

Input: A hypergraph G = (V,E)

Output: ‘Strict’, ‘tight’ or ‘dependent.’

Method: Modify 1.9.1 as follows. When processing an edge e first check if it is

spanned by a component. If it is, then reject it. Otherwise collect ` + 1 pebbles on e

and accept it. After accepting e, run 1.9.4 to find a new component if once has been

created.

Output the components discovered along with the output of the basic pebble game.

The correctness of 1.9.8 follows from the fact that H + e is sparse if and only if e

is not in the span of any component and Theorem 1.8.

Lemma 1.9.9. 1.9.8 solves the decision, extraction and components problems.

1.9.4 Complexity of the pebble game with components

We analyze the running time of the pebble game with components in two parts:

component maintenance and edge processing.

For component maintenance, we easily generalize the union pair-find data struc-

tures described in [32]. If s∗ is the largest size of an edge in G, the complexity of

41

checking whether an edge is spanned by a component is O(s∗), and the total time

spent updating the components discovered is O(ns
∗
). The complexity is dominated

by maintaining a table with ns
∗

entries that records with s∗-tuples are spanned by

some component.

The time spent processing dependent edges is O(s∗ns
∗
); they are exactly those

edges spanned by a component. For each accepted edge, we need to collect ` + 1

pebbles. The analysis is similar to that for the basic pebble game. Since there are

O(n) edges accepted, we have the following total running time.

Lemma 1.9.10. The running time of 1.9.8 on a s-dimensional hypergraph with n

vertices and m edges is O((s∗ + `)s∗ns
∗

+m).

Since the data structure used to maintain the components uses a table of size

Θ(ns
∗
), the space complexity of the pebble game with components is the same on any

input.

Lemma 1.9.11. The pebble game with components uses O(ns) space.

Together the preceding lemmas complete the complexity analysis of the pebble

game with components. The running time on an s-graph with n vertices and m edges

is O((s+ `)sns +m) and the space used is O(ns). For the optimization problem, the

sorting phase of the greedy algorithm takes an additional O(m logm) time.

1.10 Critical representations

As an application of the pebble game, we investigate the circumstances under

which we may represent a sparse hypergraph with a lower dimensional sparse hyper-

graph. The main result of this section is a complete characterization of the critical

sparse hypergraphs for any k and `.

42

Clearly, by Lemma 1.3.1, when ` ≥ (s − 1)k, every sparse s-uniform hypergraph

must be critical. In this section we show that these are the only s-uniform critical

sparse hypergraph and describe an algorithm for finding them.

We first present a modification of the pebble game to compute a representation.

Only the add-edge and pebble-shift moves need to change.

Represented-add-edge: When adding an edge e to H, create a set r(e) which

is the set of vertices with the `+ 1 pebbles used to certify that e was independent.

Represented-pebble-shift: When a pebble-shift move makes an end v /∈ r(e)

the tail of e, add v to r(e) and remove any other element of r(e).

Let R be the oriented hypergraph with the edge set r(e) for e ∈ E(H).

We now consider the invariants of the represented pebble game.

Lemma 1.10.1. The invariants (I1), (I2), and (I3) hold in R throughout the pebble

game.

Also, the invariant:

1. (I4) spanR(V ′) + outR(V ′) + peb(V ′) ≤ spanR(V ′) + outH(V ′) + peb(V ′)

holds for all V ′ ⊂ V .

Proof. The proof of (I1), (I2) and (I3) are similar to the proof of Lemma 1.8.1.

For (I4), we just need to observe that since EH(V ′) ⊂ ER(V ′), the out degree in

H is at least the out-degree in R.

From Lemma 1.10.1 we see that R must be sparse, and by construction R has

dimension at least (`+1)/k. Since R is a pebble game graph, we see that G is critical

if and only if G = R for every represented pebble game construction.

Theorem 1.9 (Lower Dimensional and Critical Representations). G is a

critical sparse hypergraph of dimension s if and only if the representation found by

the pebble game construction coincides with G. This implies that G is s-uniform and

` ≤ sk − 1.

43

Proof. The theorem follows from the fact that we can always move pebbles between

the ends of an independent set of vertices unless there are exactly sk pebbles on it

already, which is exactly the acceptance condition for the (k, sk−1)-pebble game.

The observation that EH(V ′) ⊂ ER(V ′) also proves that any component in H

induces a block in R. It is instructive to note that blocks in R do not necessarily

correspond to blocks in H.

1.11 Conclusions and Open Questions

We have generalized most of the known results on sparse graphs to the domain

of hypergraphs. In particular, we have provided graph theoretic, algorithmic and

matroid characterizations of the entire family of sparse hypergraphs for 0 ≤ ` < ks.

We also provide an initial result on the meaning of dimension in sparse hyper-

graphs; in particular the representation theorem shows that the sparse hypergraphs

for l ≥ 2k are somehow intrinsically not 2-dimensional.

The results in this chapter suggest a number of open questions, which we consider

below.

Algorithms. The running time and space complexity of the pebble game with

components is the natural generalization of the O(n2) achieved by Lee and Streinu in

[31]. Improving our Ω(ns
∗
) running time to O(m+n2) may be possible with a better

data structure.

For the case where d = 2, the pebble games of Lee and Streinu are not the best

known algorithms for the maps-and-trees range of parameters. We do not know if the

algorithms of [15] and [16] generalize easily to hypergraphs.

Graph theory. Proving a partial converse of the lower-dimensional representation

theorem Theorem 1.9 is of particular interest to a number of applications in rigidity

theory.

44

CHAPTER 2

GRADED SPARSE GRAPHS AND MATROIDS

2.1 Introduction

A bar-and-joint framework is a planar structure made of fixed-length bars

connected by universal joints. Its allowed motions are those that preserve the

lengths and connectivity of the bars. If the allowed motions are all trivial rigid

motions, then the framework is rigid; otherwise it is flexible.

Laman’s foundational theorem [29] characterizes generic minimally rigid bar-and-

joint frameworks in terms of their underlying graph. A Laman graph has 2n−3 edges

and the additional property that every induced subgraph on n′ vertices spans at most

2n′ − 3 edges. Laman’s theorem characterizes the graphs of generic minimally rigid

frameworks as Laman graphs.

Laman’s hereditary counts have been recently generalized [31, 54, 64] to (k, `)-

sparse graphs and hypergraphs, which form the independent sets of a matroid called

the (k, `)-sparsity matroid.

In [56] we considered the problem of pinning a bar-and-joint framework by adding

sliders. Pinning means completely immobilizing the structure by eliminating all the

degrees of freedom, including the trivial rigid motions (rotations and translations).

We do this by constraining vertices to move along generic lines, much like a slider

joint in mechanics. A slider at vertex i is a line Li associated with the vertex. A

structure made from bars, joints, and sliders is called a bar-slider framework.

We model a bar-slider framework combinatorially with a graph that has vertices

for the joints, with edges (2 endpoints) for the bars and loops (1 endpoint) for the

45

(a) (b)

Figure 2.1. Example of a bar-slider framework and its associated graph: (a) a
bar-slider framework; (b) the same framework given combinatorially as a graph with
edges and loops

sliders. Figure 2.1 shows an example of a bar-slider framework and its associated

graph; the sliders are shown as dotted lines running through a vertex. The main

rigidity result of [56] is a Laman-type theorem.

Proposition 2.2 ((Bar-slider framework rigidity)). Let G be a graph with 2n−

k edges and k loops. G is realizable as a generic minimally pinned bar-and-slider

framework if and only if: (1) Every subset of n′ vertices spans at most 2n′ − 3 edges

(not counting loops), and (2) Every induced subgraph on n′ vertices spans at most 2n′

edges and loops.

The generalization of the Laman counts from Proposition 2.2 leads to a pinning

matroid, which has as its bases the graphs of minimally pinned generic bar-slider

frameworks.

Contributions. In this chapter, we generalize the counts from Proposition 2.2 to

what we call graded sparsity on hypergraphs. Graded sparsity has the same rela-

tionship to bar-slider structures as sparsity has to bar-and-joint frameworks. Com-

plete definitions will be given in Section 2.6. We also briefly indicate the algorithmic

46

solutions to the following fundamental problems (first posed in the context of pinning

in [56]), generalized to graded sparsity.

Decision problem: Is G a graded sparse graph?

Spanning problem: Does G contain a spanning graded sparse graph?

Extraction problem: Find a maximum sized graded sparse subgraph of G.

Optimization problem: Compute an optimal graded sparse subgraph of G with

respect to an arbitrary linear weight function on the edges.

Extension problem: Find a minimum size set of edges to add to G, so that it

becomes spanning.

Components problem: Find the components (which generalize rigid components

to graded sparsity) of G.

For these problems, we give efficient, easily implementable algorithms based on

pebble games for general sparse graphs (see the papers [31, 32, 54]).

2.3 Preliminaries

In this section, we give the necessary background (from previous work) to under-

stand our contributions. We start with sparse graphs and hypergraphs.

2.3.1 Sparse graphs and hypergraphs.

A hypergraph G = (V,E) is a finite set V of n vertices with a set E of m

edges that are subsets of V . We allow multiple distinguished copies of edges; i.e., our

hypergraphs are multigraphs. The dimension of an edge is the number of vertices

in it; we call an edge of dimension d a d-edge. We call the vertices in an edge its

endpoints. The concept of directed graphs extends to hypergraphs. In a directed

47

hypergraph, each edge is given an orientation “away” from a distinguished endpoint,

which we call its tail.

A hypergraph is (k, `)-sparse if every edge-induced subgraph with m′ edges span-

ning n′ vertices satisfies m′ ≤ kn′ − `; a hypergraph that is (k, `)-sparse (shortly,

sparse) and has kn − ` edges is called (k, `)-tight (shortly, tight). Maximal tight

subgraphs of a sparse hypergraph are called components.

Sparse hypergraphs have a matroidal structure, first observed by White and

Whiteley in the appendix of [64]. More specifically:

Proposition 2.4 ([54]). Let G be a hypergraph on n vertices. For large enough n,

the (k, `)-sparse hypergraphs form the independent sets of a matroid that has tight

hypergraphs as its bases.

When ` ≥ dk, all the edges in a sparse hypergraph have dimension at least d,

because otherwise the small edges would violate sparsity and the matroid would be

trivial. The (k, `)-sparsity matroid (for 0 ≤ ` < dk) is defined on the ground set K+
n ,

the complete hypergraph on n vertices, where edges of dimension d have multiplicity

dk.

2.4.1 Pebble games

Pebble games are a family of simple construction rules for sparse hypergraphs.

For history and references, see [31, 54]. In a nutshell, the pebble game starts with an

empty set of vertices with k pebbles on each vertex and proceeds through a sequence

of moves. Each move either adds a directed edge or reorients one that is already

there, using the location of the pebbles on the graph to determine the allowed moves

at each step.

Pebble games are indexed by non-negative integer parameters k and `. Initially,

every vertex starts with k pebbles on it. An edge may be added if at least `+1 pebbles

are present on its endpoints, otherwise it is rejected. When an edge is added, one of

48

the pebbles is picked up from an endpoint and used to “cover” the new edge, which is

then directed away from that endpoint. Pebbles may be moved by reorienting edges.

If an endpoint of an edge, other than its tail, has at least one pebble, this pebble

may be used to cover the edge. The edge is subsequently reoriented away from that

endpoint, and the pebble previously covering the edge is returned to the original tail.

The pebble game is used, as a basis for algorithms that solve the fundamental

sparse graph problems, in [31] and [54] (Chapter 1 of this thesis). The next proposition

captures the results needed later.

Proposition 2.5 (([54])). Pebble games for sparse hypergraphs: Using the

pebble game paradigm, the Decision problem for sparse hypergraphs with edges of

dimension d can be solved in O(dn2) time and O(n) space. The Spanning, Extrac-

tion and Components problems for hypergraphs with m edges of dimension d can

be solved in O(nd) time and space or O(nmd) time and O(m) space. Optimization

can be solved in either of these running times plus an additional O(m logm).

Not that in a hypergraph with edges of dimension d, m may be Θ(nd).

2.5.1 Related work

Because of their relevance to rigidity, Laman graphs, and the related families of

sparse graphs, have been extensively studied. Classic papers include [64, 66], where

extensions to sparsity matroids on graphs and hypergraphs first appeared. A more

detailed history and comprehensive developments, as well as recent developments

connecting sparse graphs and pebble game algorithms appear in [31, 54]. The graded

matroids of this chapter are a further generalization.

Another direction is encountered in [52], which consider length and direction con-

straints (modeled as edges of different colors). The associated rigidity counts require

(2, 3)-sparsity for monochromatic subgraphs and (2, 2)-sparsity for bichromatic sub-

49

graphs. This extends sparsity in a slightly different direction than we do here, and is

neither a specialization nor a generalization of our graded sparsity.

Our algorithms fall into the family of generalized pebble games for sparse hyper-

graphs [31, 32, 54]. They are generalizations of [25]’s algorithm for Laman graphs,

formally analyzed in [2].

2.6 Graded sparsity

In this section, we define the concept of graded sparsity and prove the main result.

Definitions Let G = (V,E) be a hypergraph. A grading (E1, E2, . . . , Es) of E is

a strictly decreasing sequence of sets of edges E = E1) E2) · · ·) Es. An example

is the standard grading, where we fix the Ei’s to be edges of dimension at least i.

This is the situation for the looped-Laman graphs of [56] (Chapter 5 of this thesis).

Fix a grading on the edges of G. Define G≥i as the subgraph of G induced by

∪j≥iEi. Let ` = {`1 < `2 < · · · < `s} be a vector of s non-negative integers. We

say that G is (k, `)-graded sparse if G≥i is (k, `i)-sparse for every i; G is (k, `)-

graded tight if, in addition, it is (k, `1)-tight. To differentiate this concept from the

sparsity of Proposition 2.4, we refer to (k, `)-graded sparsity as graded sparsity.

The components of a graded sparse graph G are the (k, `1)-components of G.

Main result It can be easily shown that the family of (k, `)-graded sparse graphs

is the intersection of s matroidal families of graphs. The main result of this chapter

is the following stronger property.

Theorem 2.1 (Graded sparsity matroids).

The (k, `)-graded sparse hypergraphs form the independent sets of a matroid. For

large enough n, the (k, `)-graded tight hypergraphs are its bases.

50

The proof of Theorem 2.1 is based on the circuit axioms for matroids. See [44] for

an introduction to matroid theory. We start by formulating (k, `)-graded sparsity in

terms of circuits.

For a (k, `)-sparsity matroid, the (k, `)-circuits are exactly the graphs on n′ vertices

with kn′ − `+ 1 edges such that every proper subgraph is (k, `)-sparse.

We now recursively define a family C as follows: C≥s is the set of (k, `s)-circuits

in Gs; for i < s, C≥i is the union of C≥i+1 and the (k, `i)-circuits of G≥i that do not

contain any of the elements of C≥i+1. Finally, set C = C≥1.

Example: As an example of the construction of C, we consider the case of k = 1,

` = (0, 1) with the standard grading. C≥2 consists of the (1, 1)-circuits of edges; a

fundamental result of graph theory [42, 63] says that these are the simple cycles of

edges. Using the identification of (1, 0)-tight graphs with graphs having exactly one

cycle per connected component (see [20] for details and references), we infer that the

(1, 0)-circuits are pairs of cycles sharing edges or connected by a path. Since cycles

involving edges are already in C≥2, C≥1 adds only pairs of loops connected by a simple

path.

We now prove a structural property of C that relates C to (k, `)-graded sparsity

and will be used in the proof of Theorem 2.1.

Lemma 2.6.1. Let d, k, and `i be such that (d− 1)k ≤ `i < dk. Then, every set in

C≥i is either a single edge or has only edges of dimension at least d.

Proof. A structure theorem from [54] says that for k and `i satisfying the condition

in the lemma, all sparse graphs have only edges of dimension at least d or are empty.

Since any proper subgraph of a (k, a)-circuit for a ≥ `i is (k, `i)-sparse, either the

circuit has only edges of dimension at least d or only empty proper subgraphs, i.e. it

has exactly one edge.

51

Lemma 2.6.2. A hypergraph G is (k, `)-graded sparse if and only if it does not

contain a subgraph in C.

Proof. It is clear that all the (k, `)-graded sparse hypergraphs avoid the subgraphs in

C, since they cannot contain any (k, `i)-circuit of G≥i.

For the reverse inclusion, suppose that G is not sparse. Then for some i, G≥i is

not (k, `i)-sparse. This is equivalent to saying that G≥i contains some (k, `i)-circuit

C. There are now two cases: if C ∈ C we are done; if not, then some C ′ (C is in C,

and G contains C ′, which completes the proof.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Lemma 2.6.2 says that it is sufficient to verify that C obeys

the circuit axioms. By construction, C does not contain the empty set and no sets of

C contain each other.

What is left to prove is that, for Ci, Cj ∈ C with y ∈ Ci∩Cj, (Ci∪Cj)−y contains

an element of C. Suppose that Ci is a (k, `i)-circuit and Cj is a (k, `j)-circuit with

j ≥ i. Let mi,mj,m∪ and m∩ be the number of edges in Ci, Cj, Ci∪Cj, and Ci∩Cj,

respectively. Similarly define ni, nj, n∪, and n∩ for the size of the vertex sets.

Lemma 2.6.1 implies that y has dimension d, where `j < dk; otherwise Cj would

have to be the single edge y, and this would block Ci’s inclusion in C (since j ≥ i).

Because Ci ∩ Cj (Cj, we have n∩ ≥ d and m∩ ≤ kn∩ − `j. By counting edges, we

have

m∪ = mi +mj −m∩ ≥ mi +mj − (kn∩ − `j)

= kni − `i + 1 + knj − `j + 1− (kn∩ − `j)

= kn∪ − `i + 2.

It follows that Ci∪Cj cannot be (k, `i)-sparse, and by Lemma 2.6.2, this is equivalent

to having an element of C as a subgraph.

52

2.7 Algorithms

In this section, we start with the algorithm for Extraction and then derive algo-

rithms for the other problems from it.

Algorithm 2.7.1. Extraction of a graded sparse graph

Input: A hypergraph G, with a grading on the edges.

Output: A maximum size (k, `)-graded sparse subgraph of G.

Method: Initialize the pebble game with k pebbles on every vertex.

Iterate over the edges of G in an arbitrary order. For each edge e:

1. Try to collect at least `1 + 1 pebbles on the endpoints of e. If this is not possible,

reject it.

2. If e ∈ E1, accept it, using the rules of the (k, `1)-pebble game.

3. Otherwise, copy the configuration of the pebble game into a “shadow graph”.

Set d← 1.

4. In the shadow, remove every edge of Ed, and put a pebble on the tail of the

removed edges.

5. Try to collect `d+1− `d more pebbles on the endpoints of e. There are three pos-

sibilities: (1) if the pebbles cannot be collected, reject e and discard the shadow;

(2) otherwise there are ≥ `d+1 + 1 pebbles on the endpoints of e, if e ∈ Ed+1

discard the shadow and accept e using the rules of the (k, `d+1) pebble game; (3)

otherwise, if e 6∈ Ed+1, set d← d+ 1 and go to step 4.

Finally, output all the accepted edges.

Correctness: By Theorem 2.1, adding edges in any order leads to a sparse graph

of maximum size. What is left to check is that the edges accepted are exactly the

independent ones.

53

This follows from the fact that moving pebbles in the pebble game is a reversible

process, except when a pebble is moved and then used to cover a new edge. Since

the pebbles covering hyper-edges in Ej, for j < i, would be on the vertices where

they are located in the (k, `i)-pebble game, for j < i, then 2.7.1 accepts edges in Ei

exactly when the (k, `i)-pebble game would. By results of [31, 54], we conclude that

2.7.1 computes a maximum size (k, `)-graded sparse subgraph of G.

Running time: If we maintain components, the running time is O(nd
?
), where

d? is the dimension of the largest hyperedge in the input. Without maintaining

components, the running time is O(mnd), with the caveat that m can be Θ(nd).

Application to the fundamental problems. We can use 2.7.1 to solve the re-

maining fundamental problems. For Decison a simplification yields a running time

of O(dn2): checking for the correct number of edges is an O(n) step, and after that

O(mnd) becomes O(n2d).

For Optimization, we consider the edges in an order sorted by weight. The

correctness of this approach follows from the characterization of matroids by greedy

algorithms. Because of the sorting phase, the running time is O(nd +m logm).

The components are the (k, `1)-components of the output. Since we maintain

these anyway, the running time for Components is O(nd).

Finally, for Extension, the matroidal property of (k, `)-graded sparse graphs

implies that it can be solved by using the Extraction algorithm on K+
n , considering

the edges of the given independent set first and the rest of E(K+
n) in any desired

order. The solution to Spanning is similar.

54

CHAPTER 3

SPARSITY-CERTIFYING GRAPH DECOMPOSITIONS

3.1 Introduction and preliminaries

The focus of this chapter is decompositions of (k, `)-sparse graphs into edge-

disjoint subgraphs that certify sparsity. We use graph to mean a multigraph, possibly

with loops. We say that a graph is (k, `)-sparse if no subset of n′ vertices spans more

than kn′−` edges in the graph; a (k, `)-sparse graph with kn′−` edges is (k, `)-tight.

We call the range k ≤ ` ≤ 2k− 1 the upper range of sparse graphs and 0 ≤ ` ≤ k the

lower range.

In this chapter, we present efficient algorithms for finding decompositions that

certify sparsity in the upper range of `. Our algorithms also apply in the lower range,

which was already addressed by [11, 12, 15, 16, 50]. A decomposition certifies the

sparsity of a graph if the sparse graphs and graphs admitting the decomposition

coincide.

Our algorithms are based on a new characterization of sparse graphs, which we

call the pebble game with colors. The pebble game with colors is a simple graph

construction rule that produces a sparse graph along with a sparsity-certifying de-

composition.

We define and study a canonical class of pebble game constructions, which corre-

spond to previously studied decompositions of sparse graphs into edge disjoint trees.

Our results provide a unifying framework for all the previously known special cases,

including Nash-Williams-Tutte and [19, 66]. Indeed, in the lower range, canonical

pebble game constructions capture the properties of the augmenting paths used in

55

matroid union and intersection algorithms[15, 16]. Since the sparse graphs in the

upper range are not known to be unions or intersections of the matroids for which

there are efficient augmenting path algorithms, these do not easily apply in the upper

range. Pebble game with colors constructions may thus be considered a strengthening

of augmenting paths to the upper range of matroidal sparse graphs.

3.1.1 Sparse graphs

A graph is (k, `)-sparse if for any non-empty subgraph with m′ edges and n′

vertices, m′ ≤ kn′ − `. We observe that this condition implies that 0 ≤ ` ≤ 2k − 1,

and from now on in this chapter we will make this assumption. A sparse graph that

has n vertices and exactly kn− ` edges is called tight.

For a graph G = (V,E), and V ′ ⊂ V , we use the notation span(V ′) for the number

of edges in the subgraph induced by V ′. In a directed graph, out(V ′) is the number

of edges with the tail in V ′ and the head in V − V ′; for a subgraph induced by V ′,

we call such an edge an out-edge.

There are two important types of subgraphs of sparse graphs. A block is a tight

subgraph of a sparse graph. A component is a maximal block.

Table 3.1 summarizes the sparse graph terminology used in this chapter.

3.1.2 Sparsity-certifying decompositions

A k-arborescence is a graph that admits a decomposition into k edge-disjoint span-

ning trees. Figure 3.1(a) shows an example of a 3-arborescence. The k-arborescent

graphs are described by the well-known theorems of Tutte [63] and Nash-Williams

[43] as exactly the (k, k)-tight graphs.

A map-graph is a graph that admits an orientation such that the out-degree of

each vertex is exactly one. A k-map-graph is a graph that admits a decomposition

into k edge-disjoint map-graphs. Figure 3.1(b) shows an example of a 2-map-graph;

56

Term Meaning

Sparse graph G Every non-empty subgraph on n′ vertices
has ≤ kn′ − ` edges

Tight graph G G = (V,E) is sparse and |V | = n, |E| =
kn− `

Block H in G G is sparse, and H is a tight subgraph
Component H of G G is sparse and H is a maximal block
Map-graph Graph that admits an out-degree-exactly-

one orientation
(k, `)-maps-and-trees Edge-disjoint union of ` trees and (k − `)

map-grpahs
`Tk Union of ` trees, each vertex is in exactly

k of them
Set of tree-pieces of an `Tk induced on
V ′ ⊂ V

Pieces of trees in the `Tk spanned by E(V ′)

Proper `Tk Every V ′ ⊂ V contains ≥ ` pieces of trees
from the `Tk

Table 3.1. Sparse graph and decomposition terminology used in this chapter.

the edges are oriented in one possible configuration certifying that each color forms

a map-graph. Map-graphs may be equivalently defined (see, e.g., [44]) as having

exactly one cycle per connected component.1

A (k, `)-maps-and-trees is a graph that admits a decomposition into k− ` edge-

disjoint map-graphs and ` spanning trees.

Another characterization of map-graphs, which we will use extensively in this

chapter, is as the (1, 0)-tight graphs [20, 66]. The k-map-graphs are evidently (k, 0)-

tight, and [20, 66] show that the converse holds as well.

A `Tk is a decomposition into ` edge-disjoint (not necessarily spanning) trees such

that each vertex is in exactly k of them. Figure 3.2(a) shows an example of a 3T2.

1Our terminology follows Lovász in [36]. In the matroid literature map-graphs are sometimes
known as bases of the bicycle matroid or spanning pseudoforests.

57

a

c
b

e

d

(a)

1

2

3

4

(b)

(c)

Figure 3.1. Examples of sparsity-certifying decompositions: (a) a 3-arborescence;
(b) a 2-map-graph; (c) a (2, 1)-maps-and-trees. Edges with the same line style belong
to the same subgraph. The 2-map-graph is shown with a certifying orientation.

Given a subgraph G′ of a `Tk graph G, the set of tree-pieces in G′ is the

collection of the components of the trees in G induced by G′ (since G′ is a subgraph

each tree may contribute multiple pieces to the set of tree-pieces in G′). We observe

that these tree-pieces may come from the same tree or be single-vertex “empty trees.”

It is also helpful to note that the definition of a tree-piece is relative to a specific

subgraph. An `Tk decomposition is proper if the set of tree-pieces in any subgraph

G′ has size at least `.

Figure 3.2(a) shows a graph with a 3T2 decomposition; we note that one of the

trees is an isolated vertex in the bottom-right corner. The subgraph in Figure 3.2(b)

has three black tree-pieces and one gray tree-piece: an isolated vertex at the top-right

corner, and two single edges. These count as three tree-pieces, even though they come

from the same back tree when the whole graph in considered. Figure 3.2(c) shows

another subgraph; in this case there are three gray tree-pieces and one black one.

58

0

1

2

3

4

5

(a)

0

1

2

3

4

5

(b)

0

1

2

3

4

5

(c)

Figure 3.2. (a) A graph with a 3T2 decomposition; one of the three trees is a single
vertex in the bottom right corner. (b) The highlighted subgraph inside the dashed
countour has three black tree-pieces and one gray tree-piece. (c) The highlighted
subgraph inside the dashed countour has three gray tree-pieces (one is a single vertex)
and one black tree-piece.

Table 3.1 summarizes the decomposition terminology used in this chapter.

The decomposition problem. We define the decomposition problem for sparse

graphs as taking a graph as its input and producing, as output, a decomposition that

can be used to certify sparsity. In this chapter, we will study three kinds of out-

puts: maps-and-trees; proper `Tk decompositions; and the pebble-game-with-colors

decomposition, which is defined in the next section.

3.2 Historical background

The well-known theorems of Tutte [63] and Nash-Williams [43] relate the (k, k)-

tight graphs to the existence of decompositions into edge-disjoint spanning trees.

Taking a matroidal viewpoint, Edmonds [11, 12] gave another proof of this result

using matroid unions. The equivalence of maps-and-trees graphs and tight graphs in

59

the lower range is shown using matroid unions in [66], and matroid augmenting paths

are the basis of the algorithms for the lower range of [15, 16, 50].

In rigidity theory a foundational theorem of Laman [29] shows that (2, 3)-tight

(Laman) graphs correspond to generically minimally rigid bar-and-joint frameworks

in the plane. Tay [59] proved an analogous result for body-bar frameworks in any

dimension using (k, k)-tight graphs. Rigidity by counts motivated interest in the

upper range, and Crapo [10] proved the equivalence of Laman graphs and proper

3T2 graphs. Tay [58] used this condition to give a direct proof of Laman’s theorem

and generalized the 3T2 condition to all `Tk for k ≤ ` ≤ 2k − 1. Haas [19] studied

`Tk decompositions in detail and proved the equivalence of tight graphs and proper

`Tk graphs for the general upper range. We observe that aside from our new pebble-

game-with-colors decomposition, all the combinatorial characterizations of the upper

range of sparse graphs, including the counts, have geometric interpretations [29, 58,

59, 66].

A pebble game algorithm was first proposed in [25] as an elegant alternative to

Hendrickson’s Laman graph algorithms [21]. Berg and Jordan [2] provided the formal

analysis of the pebble game of [25] and introduced the idea of playing the game on a

directed graph. Lee and Streinu [31] generalized the pebble game to the entire range

of parameters 0 ≤ ` ≤ 2k − 1, and left as an open problem using the pebble game to

find sparsity certifying decompositions.

3.3 The pebble game with colors

Our pebble game with colors is a set of rules for constructing graphs indexed

by nonnegative integers k and `. We will use the pebble game with colors as the basis

of an efficient algorithm for the decomposition problem later in this chapter. Since

the phrase “with colors” is necessary only for comparison to [31], we will omit it in

the rest of the chapter when the context is clear.

60

We now present the pebble game with colors. The game is played by a single

player on a fixed finite set of vertices. The player makes a finite sequence of moves;

a move consists of the addition and/or orientation of an edge. At any moment of

time, the state of the game is captured by a directed graph H, with colored pebbles

on vertices and edges. The edges of H are colored by the pebbles on them. While

playing the pebble game all edges are directed, and we use the notation vw to indicate

a directed edge from v to w.

We describe the pebble game with colors in terms of its initial configuration and

the allowed moves.

⇒
⇒

(a)

⇒
⇒
(b)

Figure 3.3. Examples of pebble game with colors moves: (a) add-edge. (b) pebble-
slide. Pebbles on vertices are shown as black or gray dots. Edges are colored with
the color of the pebble on them.

Initialization: In the beginning of the pebble game, H has n vertices and no

edges. We start by placing k pebbles on each vertex of H, one of each color ci, for

i = 1, 2, . . . , k.

Add-edge-with-colors: Let v and w be vertices with at least ` + 1 pebbles on

them. Assume (w.l.o.g.) that v has at least one pebble on it. Pick up a pebble from

v, add the oriented edge vw to E(H) and put the pebble picked up from v on the

new edge.

Figure 3.3(a) shows examples of the add-edge move.

Pebble-slide: Let w be a vertex with a pebble p on it, and let vw be an edge in

H. Replace vw with wv in E(H); put the pebble that was on vw on v; and put p on

wv.

61

Note that the color of an edge can change with a pebble-slide move. Figure

3.3(b) shows examples. The convention in these figures, and throughout this chapter,

is that pebbles on vertices are represented as colored dots, and that edges are shown

in the color of the pebble on them.

From the definition of the pebble-slide move, it is easy to see that a particular

pebble is always either on the vertex where it started or on an edge that has this

vertex as the tail. However, when making a sequence of pebble-slide moves that

reverse the orientation of a path in H, it is sometimes convenient to think of this path

reversal sequence as bringing a pebble from the end of the path to the beginning.

The output of playing the pebble game is its complete configuration.

Output: At the end of the game, we obtain the directed graph H, along with

the location and colors of the pebbles. Observe that since each edge has exactly one

pebble on it, the pebble game configuration colors the edges.

We say that the underlying undirected graph G of H is constructed by the

(k, `)-pebble game or that H is a pebble-game graph.

Since each edge of H has exactly one pebble on it, the pebble game’s configuration

partitions the edges of H, and thus G, into k different colors. We call this decompo-

sition of H a pebble-game-with-colors decomposition. Figure 3.4(a) shows an

example of a (2, 2)-tight graph with a pebble-game decomposition.

Let G = (V,E) be pebble-game graph with the coloring induced by the pebbles

on the edges, and let G′ be a subgraph of G. Then the coloring of G induces a set of

monochromatic connected subgraphs of G′ (there may be more than one of the same

color). Such a monochromatic subgraph is called a map-graph-piece of G′ if it

contains a cycle (in G′) and a tree-piece of G′ otherwise. The set of tree-pieces of

G′ is the collection of tree-pieces induced by G′. As with the corresponding definition

62

(a) (b) (c)

Figure 3.4. A (2, 2)-tight graph with one possible pebble-game decomposition. The
edges are oriented to show (1, 0)-sparsity for each color. (a) The graph K4 with a
pebble-game decomposition. There is an empty black tree at the center vertex and
a gray spanning tree. (b) The highlighted subgraph has two black trees and a gray
tree; the black edges are part of a larger cycle but contribute a tree to the subgraph.
(c) The highlighted subgraph (with a light gray background) has three empty gray
trees; the black edges contain a cycle and do not contribute a piece of tree to the
subgraph.

for `Tk s, the set of tree-pieces is defined relative to a specific subgraph; in particular

a tree-piece may be part of a larger cycle that includes edges not spanned by G′.

The properties of pebble-game decompositions are studied in Section 3.6, and

Theorem 3.2 shows that each color must be (1, 0)-sparse. The orientation of the

edges in Figure 3.4(a) shows this.

For example Figure 3.4(a) shows a (2, 2)-tight graph with one possible pebble-game

decomposition. The whole graph contains a gray tree-piece and a black tree-piece that

is an isolated vertex. The subgraph in Figure 3.4(b) has a black tree and a gray tree,

with the edges of the black tree coming from a cycle in the larger graph. In Figure

3.4(c), however, the black cycle does not contribute a tree-piece. All three tree-pieces

in this subgraph are single-vertex gray trees.

In the following discussion, we use the notation peb(v) for the number of pebbles

on v and pebi(v) to indicate the number of pebbles of color i on v.

Table 3.2 lists the pebble game notation used in this chapter.

63

Notation Meaning

span(V ′) Number of edges spanned in H by V ′ ⊂ V ; i.e. |EH(V ′)|
peb(V ′) Number of pebbles on V ′ ⊂ V
out(V ′) Number of edges vw in H with v ∈ V ′ and w ∈ V − V ′
pebi(v) Number of pebbles of color ci on v ∈ V
outi(v) Number of edges vw colored ci for v ∈ V

Table 3.2. Pebble game notation used in this chapter.

3.4 Our Results

We describe our results in this section. The rest of the chapter provides the proofs.

Our first result is a strengthening of the pebble games of [31] to include colors. It

says that sparse graphs are exactly pebble game graphs. Recall that from now on, all

pebble games discussed in this chapter are our pebble game with colors unless noted

explicitly.

Theorem 3.1 (Sparse graphs and pebble-game graphs coincide). A graph G

is (k, `)-sparse with 0 ≤ ` ≤ 2k − 1 if and only if G is a pebble-game graph.

Next we consider pebble-game decompositions, showing that they are a gener-

alization of proper `Tk decompositions that extend to the entire matroidal range of

sparse graphs.

Theorem 3.2 (The pebble-game-with-colors decomposition). A graph G is

a pebble-game graph if and only if it admits a decomposition into k edge-disjoint

subgraphs such that each is (1, 0)-sparse and every subgraph of G contains at least `

tree-pieces of the (1, 0)-sparse graphs in the decomposition.

The (1, 0)-sparse subgraphs in the statement of Theorem 3.2 are the colors of the

pebbles; thus Theorem 3.2 gives a characterization of the pebble-game-with-colors

decompositions obtained by playing the pebble game defined in the previous section.

Notice the similarity between the requirement that the set of tree-pieces have size at

least ` in Theorem 3.2 and the definition of a proper `Tk .

64

Our next results show that for any pebble-game graph, we can specialize its pebble

game construction to generate a decomposition that is a maps-and-trees or proper

`Tk . We call these specialized pebble game constructions canonical, and using

canonical pebble game constructions, we obtain new direct proofs of existing arboricity

results.

We observe Theorem 3.2 that maps-and-trees are special cases of the pebble-game

decomposition: both spanning trees and spanning map-graphs are (1, 0)-sparse, and

each of the spanning trees contributes at least one piece of tree to every subgraph.

The case of proper `Tk graphs is more subtle; if each color in a pebble-game

decomposition is a forest, then we have found a proper `Tk , but this class is a subset

of all possible proper `Tk decompositions of a tight graph. We show that this class

of proper `Tk decompositions is sufficient to certify sparsity.

We now state the main theorem for the upper and lower range.

Theorem 3.3 (Main Theorem (Lower Range): Maps-and-trees coincide

with pebble-game graphs). Let 0 ≤ ` ≤ k. A graph G is a tight pebble-game

graph if and only if G is a (k, `)-maps-and-trees.

Theorem 3.4 (Main Theorem (Upper Range): Proper `Tk graphs coincide

with pebble-game graphs). Let k ≤ ` ≤ 2k− 1. A graph G is a tight pebble-game

graph if and only if it is a proper `Tk with kn− ` edges.

As corollaries, we obtain the existing decomposition results for sparse graphs.

Corrollary 3.4.1 (Nash-Williams [43], Tutte [63], White and Whiteley [66]).

Let ` ≤ k. A graph G is tight if and only if has a (k, `)-maps-and-trees decomposition.

Corrollary 3.4.2 (Crapo [10], Haas [19]). Let k ≤ ` ≤ 2k− 1. A graph G is tight

if and only if it is a proper `Tk .

65

Efficiently finding canonical pebble game constructions. The proofs of Theo-

rem 3.3 and Theorem 3.4 lead to an obvious algorithm with O(n3) running time for the

decomposition problem. Our last result improves on this, showing that a canonical

pebble game construction, and thus a maps-and-trees or proper `Tk decomposition

can be found using a pebble game algorithm in O(n2) time and space.

These time and space bounds mean that our algorithm can be combined with

those of [31] without any change in complexity.

3.5 Pebble game graphs

In this section we prove Theorem 3.1, a strengthening of results from [31] to the

pebble game with colors. Since many of the relevant properties of the pebble game

with colors carry over directly from the pebble games of [31], we refer the reader there

for the proofs.

We begin by establishing some invariants that hold during the execution of the

pebble game.

Lemma 3.5.1 (Pebble game invariants). During the execution of the pebble game,

the following invariants are maintained in H:

(I1) There are at least ` pebbles on V . [31]

(I2) For each vertex v, span(v) + out(v) + peb(v) = k. [31]

(I3) For each V ′ ⊂ V , span(V ′) + out(V ′) + peb(V ′) = kn′. [31]

(I4) For every vertex v ∈ V , outi(v) + pebi(v) = 1.

(I5) Every maximal path consisting only of edges with color ci ends in either the first

vertex with a pebble of color ci or a cycle.

66

Proof. (I1), (I2), and (I3) come directly from [31].

(I4) This invariant clearly holds at the initialization phase of the pebble game

with colors. That add-edge and pebble-slide moves preserve (I4) is clear from

inspection.

(I5) By (I4), a monochromatic path of edges is forced to end only at a vertex

with a pebble of the same color on it. If there is no pebble of that color reachable,

then the path must eventually visit some vertex twice.

From these invariants, we can show that the pebble game constructible graphs are

sparse.

Lemma 3.5.2 (Pebble-game graphs are sparse [31]). Let H be a graph con-

structed with the pebble game. Then H is sparse. If there are exactly ` pebbles on

V (H), then H is tight.

The main step in proving that every sparse graph is a pebble-game graph is the

following. Recall that by bringing a pebble to v we mean reorienting H with pebble-

slide moves to reduce the out degree of v by one.

Lemma 3.5.3 (The ` + 1 pebble condition [31]). Let vw be an edge such that

H + vw is sparse. If peb({v, w}) < `+ 1, then a pebble not on {v, w} can be brought

to either v or w.

It follows that any sparse graph has a pebble game construction.

Theorem 3.1 (Sparse graphs and pebble-game graphs coincide). A graph G

is (k, `)-sparse with 0 ≤ ` ≤ 2k − 1 if and only if G is a pebble-game graph.

3.6 The pebble-game-with-colors decomposition

In this section we prove Theorem 3.2, which characterizes all pebble-game decom-

positions. We start with the following lemmas about the structure of monochromatic

connected components in H, the directed graph maintained during the pebble game.

67

Lemma 3.6.1 (Monochromatic pebble game subgraphs are (1, 0)-sparse).

Let Hi be the subgraph of H induced by edges with pebbles of color ci on them. Then

Hi is (1, 0)-sparse, for i = 1, . . . , k.

Proof. By (I4) Hi is a set of edges with out degree at most one for every vertex.

Lemma 3.6.2 (Tree-pieces in a pebble-game graph). Every subgraph of the

directed graph H in a pebble game construction contains at least ` monochromatic

tree-pieces, and each of these is rooted either at a vertex with a pebble on it or at a

vertex that is the tail of an out-edge.

Recall that an out-edge from a subgraph H ′ = (V ′, E ′) is an edge vw with v ∈ V ′

and vw /∈ E ′.

Proof. Let H ′ = (V ′, E ′) be a non-empty subgraph of H, and assume without loss of

generality that H ′ is induced by V ′. By (I3), out(V ′) + peb(V ′) ≥ `. We will show

that each pebble and out-edge tail is the root of a tree-piece.

Consider a vertex v ∈ V ′ and a color ci. By (I4) there is a unique monochromatic

directed path of color ci starting at v. By (I5), if this path ends at a pebble, it

does not have a cycle. Similarly, if this path reaches a vertex that is the tail of an

out-edge also in color ci (i.e., if the monochromatic path from v leaves V ′), then the

path cannot have a cycle in H ′.

Since this argument works for any vertex in any color, for each color there is a

partitioning of the vertices into those that can reach each pebble, out-edge tail, or

cycle. It follows that each pebble and out-edge tail is the root of a monochromatic

tree, as desired.

Applied to the whole graph Lemma 3.6.2 gives us the following.

68

Lemma 3.6.3 (Pebbles are the roots of trees). In any pebble game configuration,

each pebble of color ci is the root of a (possibly empty) monochromatic tree-piece of

color ci.

Remark: Haas showed in [19] that in an `Tk , a subgraph induced by n′ ≥ 2

vertices with m′ edges has exactly kn′−m′ tree-pieces in it. Lemma 3.6.2 strengthens

Haas’ result by extending it to the lower range and giving a construction that finds

the tree-pieces, showing the connection between the ` + 1 pebble condition and the

hereditary condition on proper `Tk .

We conclude our investigation of arbitrary pebble game constructions with a de-

scription of the decomposition induced by the pebble game with colors.

Theorem 3.2 (The pebble-game-with-colors decomposition). A graph G is

a pebble-game graph if and only if it admits a decomposition into k edge-disjoint

subgraphs such that each is (1, 0)-sparse and every subgraph of G contains at least `

tree-pieces of the (1, 0)-sparse graphs in the decomposition.

Proof. Let G be a pebble-game graph. The existence of the k edge-disjoint (1, 0)-

sparse subgraphs was shown in Lemma 3.6.1, and Lemma 3.6.2 proves the condition

on subgraphs.

For the other direction, we observe that a color ci with ti tree-pieces in a given

subgraph can span at most n − ti edges; summing over all the colors shows that a

graph with a pebble-game decomposition must be sparse. Apply Theorem 3.1 to

complete the proof.

Remark: We observe that a pebble-game decomposition for a Laman graph may

be read out of the bipartite matching used in Hendrickson’s Laman graph extraction

algorithm [21]. Indeed, pebble game orientations have a natural correspondence with

the bipartite matchings used in [21].

69

Maps-and-trees are a special case of pebble-game decompositions for tight graphs:

if there are no cycles in ` of the colors, then the trees rooted at the corresponding `

pebbles must be spanning, since they have n − 1 edges. Also, if each color forms a

forest in an upper range pebble-game decomposition, then the tree-pieces condition

ensures that the pebble-game decomposition is a proper `Tk .

In the next section, we show that the pebble game can be specialized to correspond

to maps-and-trees and proper `Tk decompositions.

3.7 Canonical Pebble Game Constructions

In this section we prove the main theorems (Theorem 3.3 and Theorem 3.4),

continuing the investigation of decompositions induced by pebble game constructions

by studying the case where a minimum number of monochromatic cycles are created.

The main idea, captured in Lemma 3.7.3 and illustrated in Figure 3.6, is to avoid

creating cycles while collecting pebbles. We show that this is always possible, implying

that monochromatic map-graphs are created only when we add more than k(n′ − 1)

edges to some set of n′ vertices. For the lower range, this implies that every color is a

forest. Every decomposition characterization of tight graphs discussed above follows

immediately from the main theorem, giving new proofs of the previous results in a

unified framework.

In the proof, we will use two specializations of the pebble game moves. The first

is a modification of the add-edge move.

Canonical add-edge: When performing an add-edge move, cover the new edge

with a color that is on both vertices if possible. If not, then take the highest numbered

color present.

The second is a restriction on which pebble-slide moves we allow.

Canonical pebble-slide: A pebble-slide move is allowed only when it does not

create a monochromatic cycle.

70

We call a pebble game construction that uses only these moves canonical. In

this section we will show that every pebble-game graph has a canonical pebble game

construction (Lemma 3.7.2 and Lemma 3.7.3) and that canonical pebble game con-

structions correspond to proper `Tk and maps-and-trees decompositions (Theorem

3.3 and Theorem 3.4).

We begin with a technical lemma that motivates the definition of canonical pebble

game constructions. It shows that the situations disallowed by the canonical moves

are all the ways for cycles to form in the lowest ` colors.

Lemma 3.7.1 (Monochromatic cycle creation). Let v ∈ V have a pebble p of

color ci on it and let w be a vertex in the same tree of color ci as v. A monochromatic

cycle colored ci is created in exactly one of the following ways:

(M1) The edge vw is added with an add-edge move.

(M2) The edge wv is reversed by a pebble-slide move and the pebble p is used to

cover the reverse edge vw.

Proof. Observe that the preconditions in the statement of the lemma are implied by

Lemma 3.5.1. By Lemma 3.6.3 monochromatic cycles form when the last pebble of

color ci is removed from a connected monochromatic subgraph. (M1) and (M2) are

the only ways to do this in a pebble game construction, since the color of an edge

only changes when it is inserted the first time or a new pebble is put on it by a

pebble-slide move.

Figure 3.5(a) and Figure 3.5(b) show examples of (M1) and (M2) map-graph

creation moves, respectively, in a (2, 0)-pebble game construction.

We next show that if a graph has a pebble game construction, then it has a

canonical pebble game construction. This is done in two steps, considering the cases

71

⇒
vw vw

(a)

⇒
v

w

v

w

(b)

Figure 3.5. Creating monochromatic cycles in a (2, 0)-pebble game. (a) A type
(M1) move creates a cycle by adding a black edge. (b) A type (M2) move creates a
cycle with a pebble-slide move. The vertices are labeled according to their role in
the definition of the moves.

(M1) and (M2) separately. The proof gives two constructions that implement the

canonical add-edge and canonical pebble-slide moves.

Lemma 3.7.2 (The canonical add-edge move). Let G be a graph with a pebble

game construction. Cycle creation steps of type (M1) can be eliminated in colors ci

for 1 ≤ i ≤ `′, where `′ = min{k, `}.

Proof. For add-edge moves, cover the edge with a color present on both v and w if

possible. If this is not possible, then there are ` + 1 distinct colors present. Use the

highest numbered color to cover the new edge.

Remark: We note that in the upper range, there is always a repeated color, so

no canonical add-edge moves create cycles in the upper range.

The canonical pebble-slide move is defined by a global condition. To prove

that we obtain the same class of graphs using only canonical pebble-slide moves,

we need to extend Lemma 3.5.3 to only canonical moves. The main step is to show

72

that if there is any sequence of moves that reorients a path from v to w, then there

is a sequence of canonical moves that does the same thing.

Lemma 3.7.3 (The canonical pebble-slide move). Any sequence of pebble-

slide moves leading to an add-edge move can be replaced with one that has no

(M2) steps and allows the same add-edge move.

In other words, if it is possible to collect ` + 1 pebbles on the ends of an edge to

be added, then it is possible to do this without creating any monochromatic cycles.

Figure 3.7 and Figure 3.8 illustrate the construction used in the proof of Lemma

3.7.3. We call this the shortcut construction by analogy to matroid union and

intersection augmenting paths used in previous work on the lower range.

Figure 3.6 shows the structure of the proof. The shortcut construction removes

an (M2) step at the beginning of a sequence that reorients a path from v to w with

pebble-slides. Since one application of the shortcut construction reorients a simple

path from a vertex w′ to w, and a path from v to w′ is preserved, the shortcut

construction can be applied inductively to find the sequence of moves we want.

Proof. Without loss of generality, we can assume that our sequence of moves reorients

a simple path in H, and that the first move (the end of the path) is (M2). The (M2)

step moves a pebble of color ci from a vertex w onto the edge vw, which is reversed.

Because the move is (M2), v and w are contained in a maximal monochromatic tree

of color ci. Call this tree H ′i, and observe that it is rooted at w.

Now consider the edges reversed in our sequence of moves. As noted above, before

we make any of the moves, these sketch out a simple path in H ending at w. Let z

be the first vertex on this path in H ′i. We modify our sequence of moves as follows:

delete, from the beginning, every move before the one that reverses some edge yz;

prepend onto what is left a sequence of moves that moves the pebble on w to z in H ′i.

73

w

v

(a)

v

w

(b)

w

v

w'

(c)

Figure 3.6. Outline of the shortcut construction: (a) An arbitrary simple path from
v to w with curved lines indicating simple paths. (b) An (M2) step. The black edge,
about to be flipped, would create a cycle, shown in dashed and solid gray, of the
(unique) gray tree rooted at w. The solid gray edges were part of the original path
from (a). (c) The shortened path to the gray pebble; the new path follows the gray
tree all the way from the first time the original path touched the gray tree at w′. The
path from v to w′ is simple, and the shortcut construction can be applied inductively
to it.

74

⇒

(a)

⇒

(b)

Figure 3.7. Eliminating (M2) moves: (a) an (M2) move; (b) avoiding the (M2)
by moving along another path. The path where the pebbles move is indicated by
doubled lines.

⇒
(a)

⇒
(b)

Figure 3.8. Eliminating (M2) moves: (a) the first step to move the black pebble
along the doubled path is (M2); (b) avoiding the (M2) and simplifying the path.

75

Since no edges change color in the beginning of the new sequence, we have elim-

inated the (M2) move. Because our construction does not change any of the edges

involved in the remaining tail of the original sequence, the part of the original path

that is left in the new sequence will still be a simple path in H, meeting our initial

hypothesis.

The rest of the lemma follows by induction.

Together Lemma 3.7.2 and Lemma 3.7.3 prove the following.

Lemma 3.7.4. If G is a pebble-game graph, then G has a canonical pebble game

construction.

Using canonical pebble game constructions, we can identify the tight pebble-game

graphs with maps-and-trees and `Tk graphs.

Theorem 3.3 (Main Theorem (Lower Range): Maps-and-trees coincide

with pebble-game graphs). Let 0 ≤ ` ≤ k. A graph G is a tight pebble-game

graph if and only if G is a (k, `)-maps-and-trees.

Proof. As observed above, a maps-and-trees decomposition is a special case of the

pebble game decomposition. Applying Theorem 3.2, we see that any maps-and-trees

must be a pebble-game graph.

For the reverse direction, consider a canonical pebble game construction of a tight

graph. From Lemma 3.5.2, we see that there are ` pebbles left on G at the end of

the construction. The definition of the canonical add-edge move implies that there

must be at least one pebble of each ci for i = 1, 2, . . . , `. It follows that there is

exactly one of each of these colors. By Lemma 3.6.3, each of these pebbles is the root

of a monochromatic tree-piece with n− 1 edges, yielding the required ` edge-disjoint

spanning trees.

Corrollary 3.7.4 (Nash-Williams [43], Tutte [63], White and Whiteley [66]).

Let ` ≤ k. A graph G is tight if and only if has a (k, `)-maps-and-trees decomposition.

76

We next consider the decompositions induced by canonical pebble game construc-

tions when ` ≥ k + 1.

Theorem 3.4 (Main Theorem (Upper Range): Proper `Tk graphs coincide

with pebble-game graphs). Let k ≤ ` ≤ 2k− 1. A graph G is a tight pebble-game

graph if and only if it is a proper `Tk with kn− ` edges.

Proof. As observed above, a proper `Tk decomposition must be sparse. What we

need to show is that a canonical pebble game construction of a tight graph produces

a proper `Tk .

By Theorem 3.2 and Lemma 3.7.4, we already have the condition on tree-pieces

and the decomposition into ` edge-disjoint trees. Finally, an application of (I4) shows

that every vertex must in in exactly k of the trees, as required.

Corrollary 3.7.4 (Crapo [10], Haas [19]). Let k ≤ ` ≤ 2k− 1. A graph G is tight

if and only if it is a proper `Tk .

3.8 Pebble game algorithms for finding decompositions

A näıve implementation of the constructions in the previous section leads to an

algorithm requiring Θ(n2) time to collect each pebble in a canonical construction:

in the worst case there are Θ(n) applications of the construction in Lemma 3.7.3

requiring Θ(n) time each, giving a total running time of Θ(n3) for the decomposition

problem.

In this section, we describe algorithms for the decomposition problem that run

in time O(n2). We begin with the overall structure of the algorithm.

Algorithm 3.8.1 (The canonical pebble game with colors).

Input: A graph G.

Output: A pebble-game graph H.

Method:

77

• Set V (H) = V (G) and place one pebble of each color on the vertices of H.

• For each edge vw ∈ E(G) try to collect at least `+ 1 pebbles on v and w using

pebble-slide moves as described by Lemma 3.7.3.

• If at least `+ 1 pebbles can be collected, add vw to H using an add-edge move

as in Lemma 3.7.2, otherwise discard vw.

• Finally, return H, and the locations of the pebbles.

Correctness. Theorem 3.1 and the result from [66] that the sparse graphs are the

independent sets of a matroid show that H is a maximum sized sparse subgraph of G.

Since the construction found is canonical, the main theorem shows that the coloring

of the edges in H gives a maps-and-trees or proper `Tk decomposition.

Complexity. We start by observing that the running time of 3.8.1 is the time taken

to process O(n) edges added to H and O(m) edges not added to H. We first consider

the cost of an edge of G that is added to H.

Each of the pebble game moves can be implemented in constant time. What

remains is to describe an efficient way to find and move the pebbles. We use the

following algorithm as a subroutine of 3.8.1 to do this.

Algorithm 3.8.2 (Finding a canonical path to a pebble.).

Input: Vertices v and w, and a pebble game configuration on a directed graph H.

Output: If a pebble was found, ‘yes’, and ‘no’ otherwise. The configuration of H is

updated.

Method:

• Start by doing a depth-first search from from v in H. If no pebble not on w is

found, stop and return ‘no.’

78

• Otherwise a pebble was found. We now have a path v = v1, e1, . . . , ep−1, vp = u,

where the vi are vertices and ei is the edge vivi+1. Let c[ei] be the color of the

pebble on ei. We will use the array c[·] to keep track of the colors of pebbles

on vertices and edges after we move them and the array s[·] to sketch out a

canonical path from v to u by finding a successor for each edge.

• Set s[u] = ‘end′ and set c[u] to the color of an arbitrary pebble on u. We walk

on the path in reverse order: vp, ep−1, ep−2, . . . , e1, v1. For each i, check to see if

c[vi] is set; if so, go on to the next i. Otherwise, check to see if c[vi+1] = c[ei].

• If it is, set s[vi] = ei and set c[vi] = c[ei], and go on to the next edge.

• Otherwise c[vi+1] 6= c[ei], try to find a monochromatic path in color c[vi+1] from

vi to vi+1. If a vertex x is encountered for which c[x] is set, we have a path

vi = x1, f1, x2, . . . , fq−1, xq = x that is monochromatic in the color of the edges;

set c[xi] = c[fi] and s[xi] = fi for i = 1, 2, . . . , q − 1. If c[x] = c[fq−1], stop.

Otherwise, recursively check that there is not a monochromatic c[x] path from

xq−1 to x using this same procedure.

• Finally, slide pebbles along the path from the original endpoints v to u specified

by the successor array s[v], s[s[v]], . . .

The correctness of 3.8.2 comes from the fact that it is implementing the shortcut

construction. Efficiency comes from the fact that instead of potentially moving the

pebble back and forth, 3.8.2 pre-computes a canonical path crossing each edge of H

at most three times: once in the initial depth-first search, and twice while converting

the initial path to a canonical one. It follows that each accepted edges takes O(n)

time, for a total of O(n2) time spent processing edges in H.

Although we have not discussed this explicity, for the algorithm to be efficient we

need to maintain components as in [31]. After each accepted edge, the components of

79

H can be updated in time O(n). Finally, the results of [31, 32] show that the rejected

edges take an amortized O(1) time each.

Summarizing, we have shown that the canonical pebble game with colors solves

the decomposition problem in time O(n2).

3.9 Conclusions and open problems

We presented a new characterization of (k, `)-sparse graphs, the pebble game

with colors, and used it to give an efficient algorithm for finding decompositions of

sparse graphs into edge-disjoint trees. Our algorithm finds such sparsity-certifying

decompositions in the upper range and runs in time O(n2), which is as fast as the

algorithms for recognizing sparse graphs in the upper range from [31].

We also used the pebble game with colors to describe a new sparsity-certifying

decomposition that applies to the entire matroidal range of sparse graphs.

We defined and studied a class of canonical pebble game constructions that corre-

spond to either a maps-and-trees or proper `Tk decomposition. This gives a new proof

of the Tutte-Nash-Williams arboricity theorem and a unified proof of the previously

studied decomposition certificates of sparsity. Canonical pebble game constructions

also show the relationship between the ` + 1 pebble condition, which applies to the

upper range of `, to matroid union augmenting paths, which do not apply in the

upper range.

Algorithmic consequences and open problems. In [15], Gabow and Wester-

mann give an O(n3/2) algorithm for recognizing sparse graphs in the lower range and

extracting sparse subgraphs from dense ones. Their technique is based on efficiently

finding matroid union augmenting paths, which extend a maps-and-trees decomposi-

tion. The O(n3/2) algorithm uses two subroutines to find augmenting paths: cyclic

scanning, which finds augmenting paths one at a time, and batch scanning, which

finds groups of disjoint augmenting paths.

80

We observe that 3.8.1 can be used to replace cyclic scanning in Gabow and West-

ermann’s algorithm without changing the running time. The data structures used in

the implementation of the pebble game, detailed in [31, 32] are simpler and easier to

implement than those used to support cyclic scanning.

The two major open algorithmic problems related to the pebble game are then:

Problem 3.9.1. Develop a pebble game algorithm with the properties of batch scan-

ning and obtain an implementable O(n3/2) algorithm for the lower range.

Problem 3.9.2. Extend batch scanning to the `+1 pebble condition and derive an

O(n3/2) pebble game algorithm for the upper range.

In particular, it would be of practical importance to find an implementable O(n3/2)

algorithm for decompositions into edge-disjoint spanning trees.

81

Part II

Natural realizations and
slider-pinning rigidity

82

CHAPTER 4

NATURAL REALIZATIONS OF SPARSITY MATROIDS

4.1 Introduction

Let G be a d-uniform hypergraph; i.e., G = (V,E), where V is a finite set of n

vertices and E is a multi-set of m hyperedges, which each have d distinct endpoints.

We define G to be (k, `)-sparse if, for fixed integer parameters k and `, any sub-

hypergraph G′ of G on n′ vertices and m′ hyperedges satisfies the relation m′ ≤ kn′−`;

if, in addition m = kn− `, then G is (k, `)-tight.

For a fixed n, and integer parameters k, `, and d satisfying 0 ≤ ` ≤ dk − 1, the

family of (k, `)-tight d-uniform hypergraphs on n vertices form the bases of a matroid

[64], which we define to be the (k, `)-sparsity-matroid. The topic of this chapter is

linear representations of the (k, `)-sparsity-matroids with a specific form.

Main Theorem.

Our main result is the following. Detailed definitions of (k, `)-sparse hypergraphs

are given in Section 4.2; detailed definitions of linear representations are given in

Section 4.4.

Theorem 4.1 (Natural Realizations). Let k, `, and d be integer parameters satis-

fying the inequality 0 ≤ ` ≤ kd− 1. Then, for sufficiently large n, the (k, `)-sparsity-

matroid of d-uniform hypergraphs on n vertices is representable by a matrix M with:

• Real entries

• k columns corresponding to each vertex (for a total of kn)

83

• One row for each hyperedge e

• In the row corresponding to each edge e, the only non-zero entries appear in

columns corresponding to endpoints of e

Novelty.

As a comparison, standard matroidal constructions imply that there is a linear

representation that is m × kn for all the allowed values of k, ` and d. For d = 2,

` ≤ k, the (k, `)-sparsity-matroid is characterized as the matroid union of ` copies of

the standard graphic matroid and (k− `) copies of the bicycle matroid, so the desired

representation follows from the Matroid Union Theorem [5, Section 7.6] for linearly

representable matroids.

Theorem 4.1, in contrast, applies to the entire matroidal range of parameters k,

`, and d. In particular, it applies in the so-called upper range in which ` > k. In

the upper range, no reduction to matroid unions are known, so proofs based on the

Matroid Union Theorem do not apply.

Motivation.

Our motivation for this work comes from rigidity theory, which is the study of

structures defined by geometric constraints. Examples include: bar-joint frameworks,

which are structures made of fixed-length bars connected by universal joints, with

full rotational freedom; and body-bar frameworks, which are made of rigid bodies

connected by fixed length bars attached to universal joints. A framework is rigid if

the only allowed continuous motions that preserve the lengths and connectivity of the

bars are rigid motions of Euclidean space.

In both cases, the formal description of the framework is given in two parts: a

graph G, defining the combinatorics of the framework; geometric data, specifying

the lengths of the bars, and their attachment points on the bodies. Rigidity is a

84

difficult property to establish in all cases, with the best known algorithms relying

on exponential-time Gröbner basis computations. However, for generic geometric

data (and almost all lengths are generic, see [56] for a detailed discussion), rigidity

properties can be determined from the combinatorics of the framework alone, as

shown by the following two landmark theorems:

Theorem 4.2 (Maxwell-Laman Theorem: Generic planar bar-joint rigidity

[29, 40]). A generic bar-joint framework in R2 is minimally rigid if and only if its

underlying graph G is (2, 3)-tight.

Theorem 4.3 (Tay’s Theorem: Generic body-bar rigidity [59]). A generic

body-bar framework in Rd is minimally rigid if and only if its underlying graph G is

(
(
d+1

2

)
,
(
d+1

2

)
)-tight.

All known proofs of theorems such as 4.2 and 4.3 proceed via a linearization of the

problem called infinitesimal rigidity. The key step in all of these proofs is to prove

that a specific matrix, called the rigidity matrix, which arises as the differential of the

equations for the length constraints, is, generically, a linear representation of some

(k, `)-sparsity matroid.

The rigidity matrices arising in Theorems 4.2 and 4.3 are specializations of our

natural realizations: they have the same pattern of zero and non-zero entries. The

present work arises out of a project to understand “rigidity from the combinatorics

up” by studying (k, `)-sparse graphs and their generalizations. Our main Theorem

4.1 and the implied natural realizations occupy an intermediate position in between

the rigidity theorems and the combinatorial matroids of (k, `)-sparse graphs. The

natural realizations presented here may be useful as building blocks for a new, more

general class of rigidity theorems in the line of 4.2 and 4.3.

85

Related work: (k, `)-sparse graphs.

Graphs and hypergraphs defined by hereditary sparsity counts first appeared as

an example of matroidal families in the the work of Lorea [34]. Whiteley, as part of a

project with Neil White, reported in [64, Appendix], studied them from the rigidity

perspective.

This chapter derives more directly from the sequence of papers by Ileana Streinu

and her collaborators: [31] develops the structural and algorithmic theory of (k, `)-

sparse graphs; [54] extends the results of [31] to hypergraphs; [20, 53] give charac-

terizations in terms of decompositions into trees and “map-graphs”; [33] extends the

sparsity concept to allow different counts for different types of edges.

Related work: matroid representations.

For the specific parameter values d = 2, ` ≤ k, natural realizations of the type

presented in Theorem 4.1 may be deduced from the Matroid Union Theorem [5,

Section 7.6]. In addition, White and Whiteley have shown, using the Higgs Lift [5,

Section 7.5] that all (k, `)-sparsity matroids for graphs and hypergraphs are linearly

representable; however, the resulting representation is not natural in our sense.

All known rigidity representation theorems [28, 29, 56, 59, 66] provide natural

realizations for the specific sparsity parameters involved. However, all these give

more specialized representations, arising from geometric considerations, with more

specialized proofs. All the arguments having a matroidal flavor seem to rely, in

one way or another, on the Matroid Union Theorem, or the explicit determinantal

formulas used to prove it.

Related work: rigidity theory.

Lovász and Yemini [37] introduced the matroidal perspective to rigidity theory

with their proof of the Maxwell-Laman Theorem 4.2 based on an explicit computation

of the rank function of the (2, 3)-sparsity matroid that uses its special relationship

86

with the union of graphic matroids. Whiteley [66] gives a very elegant proof of

Tay’s Theorem 4.3 [59] using the Matroid Union Theorem and geometric observations

specific to the body-bar setting.

In both [37, 66], as well as in more recently proven Maxwell-Laman-type theorems

of Katoh and Tanigawa [28] and the author’s [56] (Chapter 5 of this thesis), the

connection between (k, `)-sparsity and sparsity-certifying decompositions [53] of the

minimally rigid family of graphs appears in an essential way. Here, in contrast, we only

need to employ sparsity itself, yielding a much more general family of realizations.

The price for this added generality is that we cannot immediately deduce rigidity

results directly from Theorem 4.1.

Organization.

Section 4.2 introduces (k, `)-sparse hypergraphs and gives the necessary structural

properties. Section 4.4 gives the required background in linear representability of ma-

troids and then the proof of Theorem 4.1. In Section 4.5, we describe two extensions

of Theorem 4.1: to non-uniform (k, `)-sparse hypergraphs and to (k, `)-graded-sparse

hypergraphs. We conclude in Section 4.6 with some remarks on the relationship

between natural realizations and rigidity.

Notations.

A hypergraph G = (V,E) is defined by a finite set V of vertices and a multi-

set E of hyperedges, which are subsets of V ; if einE(G) is an edge and v ∈ e is a

vertex, then we call v an endpoint of the edge e. A hypergraph G is defined to be

d-uniform if all the edges have d endpoints. Sub-hypergraphs are typically denoted as

G′ with n′ vertices and m′ edges; whether they are vertex- or hyperedge-induced will

be explicitly stated. For d-uniform hypergraphs, we use the notation e1, e2, . . . , ed for

the d endpoints of a hyperedge e ∈ E(G).

87

Matrices M are denoted by bold capital letters, vectors v by bold lowercase letters.

The rows of a matrix M are denoted by mi.

The letters k, `, and d denote sparsity parameters.

4.2 The (k, `)-sparsity matroid

Let (k, `, d) be a triple of non-negative integers such that 0 ≤ ` ≤ dk − 1; we

define such a triple as giving matroidal sparsity parameters (this definition is justified

below in Proposition 4.3). A d-uniform hypergraph G = (V,E) with n vertices and

m hyperedges is (k, `)-sparse if, for all subsets V ′ ⊂ V of n′ vertices, the subgraph

induced by V ′ has m′ edges with m′ ≤ kn′ − `. If, in addition, m = kn − `, G is

(k, `)-tight. For brevity, we call (k, `)-tight d-uniform hypergraphs (k, `, d)-graphs.

The starting point for the results of this chapter is the matroidal property of

(k, `, d)-graphs. We define Kdk−`
n,d to be the complete d-uniform hypergraph on n

vertices with dk − ` copies of each hyperedge.

Proposition 4.3 ([34, 54, 64]). Let d, k and ` be non-negative integers satisfying

` ∈ [0, dk − 1]. Then the family of (k, `, d)-graphs on n, vertices forms the bases of a

matroid, for a sufficiently large n, depending on k, `, and d.

We define the matroid appearing in Proposition 4.3 to be the (k, `, d)-sparsity-

matroid.

From now on, the parameters k, ` and d are always matroidal sparsity parameters

and n is assumed to be large enough that Proposition 4.3 holds.

The other fact we need is the following lemma from [54] characterizing the special

case of (k, 0, d)-graphs. We define an orientation of a hypergraph to be an assignment

of a tail to each hyperedge by selecting one of its endpoints (unlike in the graph

setting, there is no uniquely defined head).

88

Lemma 4.3.1 ([54]). Let G be a d-uniform hypergraph with n vertices and m = kn

hyperedges. Then G is a (k, 0, d)-graph if and only if there is an orientation such that

each vertex is the tail of exactly k hyperedges.

4.4 Natural Realizations

In this section we prove our main theorem:

Theorem 4.1 (Natural Realizations). Let k, `, and d be integer parameters satis-

fying the inequality 0 ≤ ` ≤ kd− 1. Then, for sufficiently large n, the (k, `)-sparsity-

matroid of d-uniform hypergraphs on n vertices is representable by a matrix M with:

• Real entries

• k columns corresponding to each vertex (for a total of kn)

• One row for each hyperedge e

• In the row corresponding to each edge e, the only non-zero entries appear in

columns corresponding to endpoints of e

Roadmap.

This section is structured as follows. We begin by defining generic matrices and

then introduce the required background in linear representation of matroids. The

proof of Theorem 4.1 then proceeds by starting with the special case of (k, 0)-sparse

hypergraphs and then reducing to it via a general construction.

The generic rank of a matrix.

A generic matrix has as its non-zero entries generic variables, or formal polynomi-

als over R or C in generic variables. Its generic rank is given by the largest number r

for which M has an r× r matrix minor with a determinant that is formally non-zero.

89

Let M be a generic matrix in m generic variables x1, . . . , xm, and let v = (vi) ∈ Rm

(or Cm). We define a realization of M to be the matrix obtained by replacing the

variable xi with the corresponding number vi. A vector v is defined to be a generic

point if the rank of the associated realization is equal to the generic rank of M;

otherwise v is defined to be a non-generic point.

We will make extensive use of the following well-known facts from algebraic ge-

ometry (see, e.g., [9]):

• The rank of a generic matrix M in m variables is equal to the maximum over

v ∈ Rm (Cm) of the rank of all realizations.

• The set of non-generic points of a generic matrix M is an algebraic subset of

Rm (Cm).

• The rank of a generic matrix M in m variables is at least as large as the rank of

any specific realization; i.e., generic rank can be established by a single example.

Generic representations of matroids.

Let M be a matroid on ground set E. We define a generic matrix M to be a

generic representation of M if:

• There is a bijection between the rows of M and the ground set E.

• A subset of rows of M attains the rank of the matrix M if and only if the

corresponding subset of E is a basis of M.

Natural realizations for (k, 0, d)-graphs.

Fix matroidal parameters k, ` and d, and let G be a d-uniform hypergraph on n

vertices and m hyperedges. For a hyperedge e ∈ E(G) with endpoints ei, i ∈ [1, d],

define the vector aei = (ajei)j∈[1,k] to have as its entries k generic variables for each of

the d endpoints of e.

90

Next, we define the generic matrix Mk,0,d(G) to have m rows, indexed by the

hyperedges of G, and kn columns, indexed by the vertices of G, with k columns for

each vertex. The filling pattern of Mk,0,d is given as follows:

• If a vertex i ∈ V (G) is an endpoint of an edge e, then the k entries associated

with i in the row indexed by e are given by the vector aei .

• All other entries are zero.

For example, if G is a 3-uniform hypergraph, the matrix Mk,0,3(G) has the following

pattern:

e1 e2 e3

· ·

e 0 · · · 0 a1
e1
· · · ake1 0 · · · 0 a1

e2
· · · ake2 0 · · · 0 a1

e3
· · · ake3 0 · · · 0

· ·

.

Lemma 4.4.1. Let G be a d-uniform hypergraph on n vertices and m = kn edges.

Then Mk,0,d(G) has generic rank kn if and only if G is a (k, 0, d)-graph.

Proof. First, we suppose that G is a (k, 0, d)-graph. By Lemma 4.3.1, there is an

assignment of a distinct tail to each edge such that each vertex is the tail of exactly k

edges. Fix such an orientation, giving a natural association of k edges to each vertex.

Now specialize the matrix Mk,0,d(G) as follows:

• Let i ∈ V (G) be a vertex that is the tail of edges ei1 , ei2 , . . . , eik .

• In row eij , set the variable ajeij
to 1 and all other entries to zero.

Because each edge has exactly one tail, this process defines a setting for the entries

of Mk,0,d(G) with no ambiguity. Moreover, after rearranging the rows and columns,

this setting of the entries turns Mk,0,d(G) into the identity matrix, so this example

shows its rank generic is kn.

91

In the other direction, we suppose that G is not a (k, 0, d)-graph. Since G has

kn edges, it is not (k, `)-sparse, so some subgraph G′ spanning n′ vertices induces at

least kn′ + 1 edges. Arranging the edges and vertices of G′ into the top-left corner

of Mk,0,d(G), we see that G′ induces a submatrix with at least kn′ + 1 rows and only

kn′ columns that are not entirely zero. It follows that Mk,0,d(G) must be, generically,

rank deficient.

Corollary 4.4.2. The matrix Mk,0,d(K
dk−`
n,d) is a generic representation for the (k, 0, d)-

sparsity matroid.

Proof. Lemma 4.4.1 shows that a kn × kn matrix minor is generically non-zero if

and only if the set of rows it induces corresponds to a (k, 0, d)-graph, so the bases of

Mk,0,d(K
dk−`
n,d) are in bijective correspondence with (k, 0, d)-graphs.

Corollary 4.4.3. Let G be a (k, `)-sparse d-uniform hypergraph with m hyperedges.

The set of v ∈ Rdkm such that the associated realization of Mk,0,d(G) has full rank is

the open, dense complement of an algebraic subset of Rdkm.

Proof. Corollary 4.4.2 implies that the rank drops only when v is a common zero of

all the m×m minors of Mk,0,d(G), which is a polynomial condition.

The natural representation matrix Mk,`,d(G).

Fix matroidal sparsity parameters k, `, and d, and let G be a d-uniform hyper-

graph. Let U be an kn×` matrix with generic entries. We define the matrix Mk,`,d(G)

to be a generic matrix that is a formal solution to the equation (4.1) below, with the

entries of U fixed and the entries of Mk,0,d(G) as the variables:

Mk,0,d(G)U = 0 (4.1)

92

We note that the process of solving (4.1) does not change the location of zero and non-

zero entries in Mk,0,d(G), preserving the naturalness property required by Theorem

4.1.

With this definition, we can restate Theorem 4.1 as follows: the matrix Mk,`,d(K
dk−`
n,d)

is a generic representation of the (k, `, d)-sparsity matroid.

Main lemmas

The next two lemmas give the heart of the proof of Theorem 4.1. The first says

that if G is not (k, `)-sparse, then Mk,`,d(G) has a row dependency.

Lemma 4.4.4. Let k, `, and d be matroidal parameters and be G a d-uniform hy-

pergraph with m = kn− `. If G is not (k, `)-sparse, then Mk,`,d(G) is not generically

full rank.

Proof. Since G is not (k, `)-sparse, it must have some vertex-induced subgraph G′ on

n′ vertices and m′ > kn′− ` edges. The sub-matrix of Mk,0,d(G) induced by the edges

of G′ has at least kn′ − ` + 1 rows and only kn′ columns that are not all zero, so it

must have a row dependency.

The following is the key lemma. It says that, generically, the dependencies of the

type described by Lemma 4.4.4 are the only ones.

Lemma 4.4.5. Let k, `, and d be matroidal parameters and be G a d-uniform hyper-

graph with m = kn−`. If G is (k, `)-sparse, i.e., it is a (k, `, d)-graph, then Mk,`,d(G)

is generically full rank.

Proof. We prove this by constructing an example, from which the generic state-

ment follows. From Corollary 4.4.2 and Corollary 4.4.3, we may select values for

the variables ajei in the generic matrix Mk,0,d(G) so that the resulting realization M

of Mk,0,d(G) is full rank.

93

Denote by me, for e ∈ E(G), the rows of M. Define the subspace WG of Rkn

to be the linear span of the me. For each vertex-induced subgraph G′ on n′ vertices

of G define WG′ to be the linear span of {me : e ∈ E(G′)}; WG′ is a subspace of

Rkn, and, because the me span exactly kn′ non-zero columns in M, it has a natural

identification as a subspace of Rkn′ .

We will show that there is a subspace U of Rkn such that WG∩V ⊥ has dimension

kn − `; taking the matrix U to be a basis of U and then solving meU = 0 for each

row of M gives a solution to (4.1) with full rank. This proves the lemma, since the

resulting matrix will have as its rows a basis for WG∩U⊥, which has dimension kn−`.

Now let U be an `-dimensional subspace of Rkn with basis given by the columns

of the kn × ` matrix U. For each vertex-induced subgraph G′ of G on n′ vertices,

associate the corresponding kn′ rows of U to determine a subspace UG′ .

Let G′ be a vertex-induced subgraph of G on n′ vertices and consider the subspace

WG′ . Since dimWG′ = dim(WG′∩UG′)+dim(WG′∩U⊥G′), if dim(WG′∩U⊥G′) < dimWG′ ,

thenWG′ ∩ UG′ is at least one-dimensional.

Here is the key to the proof (and where the combinatorial assumption of (k, `)-

sparsity enters in a fundamental way): by the (k, `)-sparsity of G, the dimension of

WG′ is at most kn′ − `. Since UG′ is only (at most) an `-dimensional subspace of

Rkn′ , this only happens if the bases of WG′ and UG′ satisfy a polynomial relation.

Since there are only finitely many subgraphs, this gives a finite polynomial condition

specifying which U are disallowed, completing the proof.

Proof of the Main Theorem 4.1

With the two key Lemmas 4.4.4 and 4.4.5, the proof of Theorem 4.1 is very similar

to that of Corollary 4.4.2. We form the generic matrix Mk,`,d(K
dk−`
n,d). Lemma 4.4.4

and Lemma 4.4.5 imply that a set of rows forms a basis if and only if the corresponding

hypergraph G is a (k, `, d)-graph.

94

4.5 Extensions: non-uniform hypergraphs and graded spar-

sity

In this section, we extend Theorem 4.1 in two directions: to (k, `)-sparse hyper-

graphs that are not d-uniform; to (k, `)-graded sparse hypergraphs.

Non-uniform hypergraphs.

The theory of (k, `)-sparsity, which we developed in [54] (Chapter 1 of this thesis),

does not require that a hypergraph G be d-uniform. All the definitions are similar,

except we require only that if ` ≥ (d − 1)k, then each hyperedge have at least d

endpoints. The ground set of the corresponding sparsity matroid now is the more

complicated hypergraph on n vertices with ik − ` copies of each hyperedge with i

endpoints for i ≥ d.

The combinatorial properties enumerated in Section 4.2 all hold in the non-uniform

setting, and the proofs in Section 4.4 all go through verbatim, with slightly more

complicated notation, yielding:

Theorem 4.4 (Natural Realizations: non-uniform version). Let k, `, be integer

parameters satisfying the inequality 0 ≤ ` ≤ kd − 1. Then, for sufficiently large n,

the (k, `)-sparsity-matroid of non-uniform hypergraphs on n vertices is representable

by a matrix M with:

• Real entries

• k columns corresponding to each vertex (for a total of kn)

• One row for each hyperedge e

• In the row corresponding to each edge e, the only non-zero entries appear in

columns corresponding to endpoints of e

95

Graded-sparsity.

In [33], we developed an extension of (k, `)-sparsity called (k, `)-graded-sparsity.

Graded-sparsity is the generalization of the sparsity counts appearing in our work on

slider-pinning rigidity [56] (Chapter 5 of this thesis).

Define the hypergraph K+
n,k, to be complete hypergraph on n vertices, where

hyperedges with d endpoints have multiplicity dk. A grading (E1, E2, . . . , Es) of K+
n

is a strictly decreasing sequence of sets of edges E(K+
n) = E1) E2) · · ·) Es. Now

fix a grading on K+
n and let G = (V,E) be a hypergraph. Define G≥i as the subgraph

of G induced by E ∩ (∪j≥iEi). Let ` be a vector of s non-negative integers. We say

that G is (k, `)-graded sparse if G≥i is (k, `i)-sparse for every i; G is (k, `)-graded

tight if, in addition, it is (k, `1)-tight.

The main combinatorial result of [33] is that (k, `)-graded-sparse hypergraphs

form the bases of a matroid, which we define to be the (k, `)-graded-sparsity matroid.

Theorem 4.5 (Natural Realizations: graded-sparsity). Fix a grading of K+
n,k

and let k and ` be graded-sparsity parameters. Then, for sufficiently large n, the

(k, `)-sparsity-matroid s on n vertices is representable by a matrix M with:

• Real entries

• k columns corresponding to each vertex (for a total of kn)

• One row for each hyperedge e

• In the row corresponding to each edge e, the only non-zero entries appear in

columns corresponding to endpoints of e

Because of the presence of the grading, we need to modify the proof of Theo-

rem 4.1 to account for it. The formal matrix Mk,0,+(K+
n,k) is defined analogously to

96

Mk,0,d(K
dk−`
n,d), except we sort the rows by the grading. The counterpart to (4.1) then

becomes the system:

Mk,0,d(E≥i)Ui = 0, i = 1, 2, . . . , s (4.2)

where V1 is kn× `1, and each successive Ui is Ui with `i additional columns.

With this setup, the proof of Theorem 4.1 goes through with appropriate nota-

tional changes.

4.6 Conclusions and remarks on rigidity

We provided linear representations for the matroidal families of (k, `)-sparse hy-

pergraphs and (k, `)-graded-sparse hypergraphs that are natural, in the sense that

the representing matrices capture the vertex-edge incidence pattern. This family of

representations, which extends to the entire matroidal range of sparsity parameters,

may be useful as a building block for “Maxwell-Laman-type” rigidity theorems. We

conclude with a brief discussion of why one cannot conclude rigidity theorems such

as Theorem 4.2 and Theorem 4.3 directly from Theorem 4.1.

The proof of the critical Lemma 4.4.5 is very general, since it has to work for

the entire range of sparsity parameters. What it guarantees is that the entries of

Mk,`,d(G) are some polynomials, but not what these polynomials are. For rigidity

applications, specific polynomials are forced by the geometry, which would require

more control over the matrix U appearing in Equation (4.1) than the proof technique

here allows.

For example, in the planar bar-joint rigidity case the “trivial infinitesimal motions”

can be given the basis:

• (1, 0, 1, 0 . . . , 1, 0) and (0, 1, 0, 1, . . . , 0, 1), representing infinitesimal translation

97

• (−y1,−y2, . . . ,−yn, x1, x2, . . . , xn), representing infinitesimal rotation around

the origin

It is important to note that Theorem 4.1 cannot simply be applied with this col-

lection as the columns of U to conclude the Maxwell-Laman Theorem 4.2. However,

using specific properties of the parameters d = 2, k = 2, ` = 3 Lovász and Yemini

[37] do prove the Maxwell-Laman-theorem starting from an algebraic result in the

same vein as our Lemma 4.4.5, providing evidence that our results may have some

relevance to rigidity.

98

CHAPTER 5

SLIDER-PINNING RIGIDITY: A
MAXWELL-LAMAN-TYPE THEOREM

5.1 Introduction

A planar bar-and-joint framework is a planar structure made of fixed-length bars

connected by universal joints with full rotational degrees of freedom. The allowed

continuous motions preserve the lengths and connectivity of the bars. Formally, a

bar-and-joint framework is modeled as a pair (G, `), where G = (V,E) is a simple

graph with n vertices and m edges, and ` is a vector of positive numbers that are

interpreted as squared edge lengths.

A realization G(p) of a bar-and-joint framework is a mapping of the vertices of

G onto a point set p ∈ (R2)n such that ||pi − pj||2 = `ij for every edge ij ∈ E.

The realized framework G(p) is rigid if the only motions are trivial rigid motions;

equivalently, p is an isolated (real) solution to the equations giving the edge lengths,

modulo rigid motions. A framework G(p) is minimally rigid if it is rigid, but ceases

to be so if any bar is removed.

The Slider-pinning Problem. In this chapter, we introduce an elaboration of

planar bar-joint rigidity to include sliders, which constrain some of the vertices of a

framework to move on given lines. We define the combinatorial model for a bar-slider

framework to be a graph G = (V,E) that has edges (to represent the bars) and also

self-loops (that represent the sliders).

A realization of a bar-slider framework G(p) is a mapping of the vertices of G

onto a point set that is compatible with the given edge lengths, with the additional

99

requirement that if a vertex is on a slider, then it is mapped to a point on the slider’s

line. A bar-slider framework G(p) is slider-pinning rigid (shortly pinned) if it is

completely immobilized. It is minimally pinned if it is pinned and ceases to be so

when any bar or slider is removed. (Full definitions are given in Section 5.7).

Historical note on pinning frameworks. The topic of immobilizing bar-joint

frameworks has been considered before. Lovász [38] and, more recently, Fekete [13]

studied the related problem of pinning a bar-joint frameworks by a minimum number

of thumbtacks, which completely immobilize a vertex. Thumbtack-pinning induces a

different (and non-matroidal) graph-theoretic structure than slider-pinning. In terms

of slider-pinning, the minimum thumbtack-pinning problem asks for a slider-pinning

with sliders on the minimum number of distinct vertices. Recski [49] also previously

considered the specific case of vertical sliders, which he called tracks.

We give, for the first time, a complete combinatorial characterization of planar

slider-pinning in the most general setting. Previous work on the problem is concerned

either with thumbtacks (Fekete [13]) or only with the algebraic setting (Lovász [38],

Recski [49]).

On the algorithmic side, we [56] have previously developed algorithms for generic

rigidity-theoretic questions on bar-slider frameworks. The theory developed in this

chapter provides the theoretical foundation for their correctness.

Generic combinatorial rigidity. The purely geometric question of deciding rigid-

ity of a framework seems to be computationally intractable, even for small, fixed di-

mension d. The best-known algorithms rely on exponential time Gröbner basis tech-

niques, and specific cases are known to be NP-complete [51]. However, for generic

frameworks in the plane, the following landmark theorem due to Maxwell and Laman

states that rigidity has a combinatorial characterization, for which several efficient

algorithms are known (see [31] for a discussion of the algorithmic aspects of rigid-

100

ity). The Laman graphs and looped-Laman graphs appearing in the statements of

results are combinatorial (not geometric) graphs with special sparsity properties. The

technical definitions are given in Section 5.2.

Theorem 5.1 (Maxwell-Laman Theorem: Generic bar-joint rigidity [29,

40]). Let (G, `) be a generic abstract bar-joint framework. Then (G, `) is minimally

rigid if and only if G is a Laman graph.

Our main rigidity result is a Maxwell-Laman-type theorem for slider-pinning rigid-

ity.

Theorem 5.2 (Generic bar-slider rigidty). Let (G, `,n, s) be a generic bar-slider

framework. Then (G, `,n, s) is minimally rigid if and only if G is looped-Laman.

Our proof relies on a new technique and proceeds via direction networks, defined

next.

Direction networks. A direction network (G,d) is a graph G together with an

assignment of a direction vector dij ∈ R2 to each edge. A realization G(p) of a

direction network is an embedding of G onto a point set p such that pi−pj is in the

direction dij; if the endpoints of every edge are distinct, the realization is faithful.

The direction network realizability problem is to find a realization G(p) of a direc-

tion network (G,d).

Direction-slider networks. We define a direction-slider network (G,d,n, s) to be

an extension of the direction network model to include sliders. As in slider-pinning

rigidity, the combinatorial model for a slider is defined to be a self-loop in the graph

G. A realization G(p) of a direction-slider network respects the given direction for

each edge, and puts pi on the line specified for each slider. A realization is faithful is

the endpoints of every edge are distinct.

101

Generic direction network realizability. Both the direction network realization

problem and the direction-slider network realization problem give rise to a linear

system of equations, in contrast to the quadratic systems arising in rigidity, greatly

simplifying the analysis of the solution space.

The following theorem was proven by Whiteley as a consequence of the Laman’s

Theorem. We give a new, direct proof of Whiteley’s theorem for generic direction

network realization.

Theorem 5.3 (Generic direction network realization [64]). Let (G,d) be a

generic direction network, and let G have n vertices and 2n − 3 edges. Then (G,d)

has a (unique, up to translation and rescaling) faithful realization if and only if G is

a Laman graph.

For direction-slider networks we have a similar result.

Theorem 5.4 (Generic direction-slider network realization). Let (G,d,n, s) be

a generic direction-slider network. Then (G,d,n, s) has a (unique) faithful realization

if and only if G is a looped-Laman graph.

From generic realizability to generic rigidity. Let us briefly sketch how the

rigidity theorems 4.2 and 5.2 follow from the direction network realization theorems

5.3 and 5.4 (full details are given in Section 5.7). For brevity, we discuss how Theorem

5.3 implies Theorem 5.1. The proof that Theorem 5.4 implies Theorem 5.2 is similar.

All known proofs of the Maxwell-Laman theorem proceed via infinitesimal rigidity,

which is a linearization of the rigidity problem obtained by taking the differential of

the system of equations specifying the edge lengths and sliders to obtain the rigidity

matrix M2,3(G) of the abstract framework (see Figure 5.9(a)).

One then proves the following two statements about bar-joint frameworks (G, `)

with n vertices and m = 2n− 3 edges:

102

• In realizations where the rigidity matrix achieves rank 2n− 3 the framework is

rigid.

• The rigidity matrix achieves rank 2n − 3 for almost all realizations (these are

called generic) if and only if the graph G is Laman.

The second step, where the rank of the rigidity matrix is established from only a

combinatorial assumption, is the (more difficult) “Laman direction”. Our approach

is in two steps:

• We begin with a matrix M2,2(G), arising from the direction network realization

problem, that has non-zero entries in the same positions as the rigidity ma-

trix, but a simpler pattern: dij = (aij, bij) instead of pi − pj (see Figure 5.7).

The rank of the simplified matrices is established in Section 5.3 via a matroid

argument.

• We then apply the direction network realization Theorem 5.3 to a Laman graph.

For generic (defined in detail in Section 5.4) edge directions d there exists a point

set p such that pi − pj is in the direction dij, with pi 6= pj when ij is an edge.

Substituting the pi into M2,2(G) recovers the rigidity matrix while preserving

rank, which completes the proof.

The connection between direction networks and rigidity was first established by

Whiteley [64] who proved Theorem 5.3 as a consequence of the Maxwell-Laman The-

orem 4.2. The implication in the other direction appears in this chapter for the first

time. Section 5.7 contains a detailed discussion of the relationship between our results

and previous work of Tay [58] and Whiteley [64].

Genericity. In this chapter, the term generic is used in the standard sense of

algebraic geometry: a property is generic if it holds on the (open, dense) complement

of an algebraic set defined by a finite number of polynomials. In contrast, the rigidity

103

literature employs a number of definitions that are not as amenable to combinatorial

or computational descriptions. Some authors [37, p. 92] define a generic framework as

being one where the points p are algebraically independent. Other frequent definitions

used in rigidity theory require that generic properties hold for most of the point sets

(measure-theoretical) [65, p. 1331] or focus on properties which, if they hold for a

point set p (called generic for the property), then they hold for any point in some

open neighborhood (topological) [17].

For the specific case of Laman bar-joint rigidity we identify two types of conditions

on the defining polynomials: some arising from the genericity of directions in the

direction network with the same graph as the framework being analyzed; and a second

type arising from the constraint the the directions be realizable as the difference set

of a planar point set. To the best of our knowledge, these observations are new.

Organization. The rest of this chapter is organized as follows. Section 5.2 defines

Laman and looped-Laman graphs and gives the combinatorial tools from the theory

of (k, `)-sparse and (k, `)-graded sparse graphs that we use to analyze direction net-

works and direction-slider networks. Section 5.3 introduces the needed results about

(k, `)-sparsity-matroids, and we prove two matroid representability results for the

specific cases appearing in this chapter. Section 5.4 defines direction networks, the

realization problem for them, and proves Theorem 5.3. Section 5.5 defines slider-

direction networks and proves the analogous Theorem 5.4. In Section 5.6 we extend

Theorem 5.4 to the specialized situation where all the sliders are axis-parallel.

In Section 5.7 we move to the setting of frameworks, defining bar-slider rigidity

and proving the rigidity Theorems 4.2 and 5.2 from our results on direction networks.

In addition, we discuss the relationship between our work and previous proofs of the

Maxwell-Laman theorem.

104

Notations. Throughout this chapter we will use the notation p ∈ (R2)n for a set

of n points in the plane. By identification of (R2)n with R2n, we can think of p either

as a vector of point pi = (ai, bi) or as a flattened vector p = (a1, b1, a2, b2, . . . , an, bn).

When points are used as unknown variables, we denote them as pi = (xi, yi).

Analogously, we use the notation d ∈ (R2)m for a set of m directions in R2.

Since directions will be assigned to edges of a graph, we index the entries of d as

dij = (aij, bij) for the direction of the edge ij.

The graphs appearing in this chapter have edges and also self-loops (shortly,

loops). Both multiple edges and multiple self loops will appear, but the multiplicity

will never be more than two copies. We will use n for the number of vertices, m for

the number of edges, and c for the numbers of self-loops. Thus for a graph G = (V,E)

we have |V | = n and |E| = m + c. Edges are written as (ij)k for the kth copy of

the edge ij, (k = 1, 2). As we will not usually need to distinguish between copies, we

abuse notation and simply write ij, with the understanding that multiple edges are

considered separately in “for all” statements. The jth loop on vertex i is denoted ij

(j = 1, 2).

For subgraphs G′ of a graph G, we will typically use n′ for the number of vertices,

m′ for the number of edge and c′ for the number of loops.

A contraction of a graph G over the edge ij (see Section 5.2 for a complete

definition) is denoted G/ij.

We use the notation [n] for the set {1, 2, . . . , n}. If A is an m × n matrix, then

A[M,N] is the sub-matrix induced by the rows M ⊂ [m] and N ⊂ [n].

5.2 Sparse and graded-sparse graphs

Let G be a graph on n vertices, possibly with multiple edges and loops. G is

(k, `)-sparse if for all subgraphs G′ of G on n′ vertices, the numbers of induced edges

and loops m′+c′ ≤ kn′−`. If, in addition, G has m+c = kn−` edges and loops, then

105

G is (k, `)-tight. An induced subgraph of a (k, `)-sparse graph G that is (k, `)-tight

is called a block in G; a maximal block is called a component of G.

Throughout this chapter, we will be interested in two particular cases of sparse

graphs: (2, 2)-tight graphs and (2, 3)-tight graphs. For brevity of notation we call

these (2, 2)-graphs and Laman graphs respectively. We observe that the sparsity pa-

rameters of both (2, 2)-graphs and Laman graphs do not have self-loops. Additionally,

Laman graphs are simple, but (2, 2)-graphs may have two parallel edges (any more

would violate the sparsity condition). See Figure 5.1 and Figure 5.2 for examples.

(a) (b)

Figure 5.1. Examples of (2, 2)-graphs: (a) K4; (b) a larger example on 6 vertices.

(a) (b)

Figure 5.2. Examples of Laman graphs.

106

Graded sparsity. We also make use of a specialization of the (k, `)-graded-sparse

graph concept from our paper [33]. Here, ` is a vector of integers, rather than just a

single integer value. To avoid introducing overly general notation that is immediately

specialized, we define it only for the specific parameters we use in this chapter.

Let G be a graph on n vertices with edges and also self-loops. G is (2, 0, 2)-graded-

sparse if:

• All subgraphs of G with only edges (and no self-loops) are (2, 2)-sparse.

• All subgraphs of G with edges and self-loops are (2, 0)-sparse.

If, additionally, G has m + c = 2n edges and loops, then G is (2, 0, 2)-tight (shortly

looped-(2, 2)). See Figure 5.3 for examples of looped-(2, 2) graphs.

(a) (b)

Figure 5.3. Examples of looped-(2, 2) graphs.

Let G be a graph on n vertices with edges and also self-loops. G is (2, 0, 3)-graded-

sparse if:

• All subgraphs of G with only edges (and no self-loops) are (2, 3)-sparse.

• All subgraphs of G with edges and self-loops are (2, 0)-sparse.

If, additionally, G has m + c = 2n edges and loops, then G is (2, 0, 3)-tight (shortly

looped-Laman). See Figure 5.4 for examples of looped-Laman graphs.

107

(a) (b)

Figure 5.4. Examples of looped-Laman graphs.

Characterizations by contractions. We now present characterizations of Laman

graphs and looped-Laman graphs in terms of graph contractions. Let G be a graph

(possibly with loops and multiple edges), and let ij be an edge in G. The contraction

of G over ij, G/ij is the graph obtained by:

• Discarding vertex j.

• Replacing each edge jk with an edge ik, for k 6= i.

• Replacing each loop jk with a loop ik.

By symmetry, we may exchange the roles of i and j in this definition without chang-

ing it. We note that this definition of contraction retains multiple edges created

during the contraction, but that loops created by contracting are discarded. In par-

ticular, any loop in G/ij corresponds to a loop in G. Figure 5.5 shows an example of

contraction.

The following lemma gives a characterization of Laman graphs in terms of con-

traction and (2, 2)-sparsity.

Lemma 5.2.1. Let G be a simple (2, 2)-sparse graph with n vertices and 2n−3 edges.

Then G is a Laman graph if and only if after contracting any edge ij ∈ E, G/ij is a

(2, 2)-graph on n− 1 vertices.

108

(a) (b)

Figure 5.5. Contracting an edge of the triangle: (a) before contraction; (b) after
contraction we get a doubled edge but not a loop, since there wasn’t one in the
triangle before contracting.

Proof. If G is not a Laman graph, then some subset V ′ ⊂ V of n′ vertices induces a

subgraph G′ = (V ′, E ′) with m′ ≥ 2n′ − 2 edges. Contracting any edge ij of G′ leads

to a contracted graph G′/ij with n′ − 1 vertices and at least 2n′ − 3 = 2(n′ − 1)− 1

edges, so G′/ij is not (2, 2)-sparse. Since G′/ij is an induced subgraph of G/ij for

this choice of ij, G/ij is not a (2, 2)-graph.

For the other direction, we suppose that G is a Laman graph and fix a subgraph

G′ = (V ′, E ′) induced by n′ vertices. Since G is Laman, G′ spans at most 2n′ − 3

edges, and so for any edge ij ∈ E ′ the contracted graph G′/ij spans at most 2n′−4 =

2(n′ − 1)− 2 edges, so G′/ij is (2, 2)-sparse. Since this G′/ij is an induced subgraph

of G/ij, and this argument holds for any V ′ ⊂ V and edge ij, G/ij is (2, 2)-sparse

for any edge ij. Since G/ij has 2n− 2 edges, it must be a (2, 2)-graph.

For looped-Laman graphs, we prove a similar characterization.

Lemma 5.2.2. Let G be a looped-(2, 2) graph. Then G is looped-Laman if and only

if for any edge ij ∈ E there is a loop vw (depending on ij) such that G/ij − vw is a

looped-(2, 2) graph.

Proof. Let G have n vertices, m edges, and c loops. Since G is looped-(2, 2), 2n =

m + c. If G is not looped-Laman, then by Lemma 5.2.1, the edges of G/ij are not

109

(2, 2)-sparse, which implies that G/ij − vw cannot be (2, 0, 2)-graded-sparse for any

loop vw because the loops play no role in the (2, 2)-sparsity condition for the edges.

If G is looped-Laman, then the edges will be (2, 2)-sparse in any contraction

G/ij. However, G/ij has n− 1 vertices, m− 1 edges and c loops, which implies that

m− 1 + c = 2n− 1 = 2(n− 1) + 1, so G/ij is not (2, 0)-sparse as a looped graph. We

have to show that there is one loop, which when removed, restores (2, 0)-sparsity.

For a contradiction, we suppose the contrary: for any contraction G/ij, there is

some subgraph (G/ij)′ = (V ′, E ′) of G/ij on n′ vertices inducing m′ edges and c′

loops with m′+c′ ≥ 2n′+2. As noted above m′ ≤ 2n′−2. If (G/ij)′ does not contain

i, the surviving endpoint of the contracted edge ij, then G was not looped-(2, 2),

which is a contradiction. Otherwise, we consider the subgraph induced by V ′ ∪ {i}

in G. By construction it has n′ + 1 vertices, m′ + 1 edges and c′ loops. But then we

have m′ + 1 + c′ ≥ 2n′ + 3 = 2(n′ + 1) + 1, contradicting (2, 0, 2)-graded-sparsity of

G.

5.3 Natural realizations for (2, 2)-tight and (2, 0, 2)-tight graphs

Both (k, `)-sparse and (k, `)-graded-sparse graphs form matroids, with the (k, `)-

tight and (k, `)-graded-tight graphs as the bases, which we define to be the (k, `)-

sparsity-matroid and the (k, `)-graded-sparsity matroid, respectively. Specialized to

our case, we talk about the (2, 2)- and (2, 3)-sparsity matroids and the (2, 0, 2)- and

(2, 0, 3)-graded-sparsity matroids, respectively.

In matroidal terms, the rigidity Theorems 4.2 and 5.2 state that the rigidity ma-

trices for bar-joint and bar-slider frameworks are representations of the (2, 3)-sparsity

matroid and (2, 0, 3)-graded-sparsity matroid, respectives: linear independence among

the rows of the matrix corresponds bijectively to independence in the associated com-

binatorial matroid for generic frameworks. The difficulty in the proof is that the pat-

110

tern of the rigidity matrices M2,3(G) and M2,0,3(G) (see Figure 5.9) contain repeated

variables that make the combinatorial analysis of the rank complicated.

By contrast, for the closely related (2, 2)-sparsity-matroid and the (2, 0, 2)-graded-

sparsity matroid, representation results are easier to obtain directly. The results

of this section are representations of the (2, 2)-sparsity- and (2, 0, 2)-graded-sparsity

matroids which are natural in the sense that the matrices obtained have the same

dimensions at the corresponding rigidity matrices and non-zero entries at the same

positions.

In the rest of this section, we give precise definitions of generic representations of

matroids and then prove our representation results for the (2, 2)-sparsity and (2, 0, 2)-

graded-sparsity matroids.

The generic rank of a matrix. The matrices we define in this chapter have as

their non-zero entries generic variables, or formal polynomials over R or C in generic

variables. We define such a matrix M is to be a generic matrix, and its generic rank

is given by the largest number r for which M has an r × r matrix minor with a

determinant that is formally non-zero.

Let M be a generic matrix in m generic variables x1, . . . , xm, and let v = (vi) ∈ Rm

(or Cm). We define a realization M(v) of M to be the matrix obtained by replacing

the variable xi with the corresponding number vi. A vector v is defined to be a

generic point if the rank of M(v) is equal to the generic rank of M; otherwise v is

defined to be a non-generic point.

We will make extensive use of the following well-known facts from algebraic ge-

omety (see, e.g., [9]):

• The rank of a generic matrix M in m variables is equal to the maximum over

v ∈ Rm (Cm) of the rank of all realizations M(v).

111

• The set of non-generic points of a generic matrix M is an algebraic subset of

Rm (Cm).

• The rank of a generic matrix M in m variables is at least as large as the rank

of any specific realization M(v).

Generic representations of matroids. A matroid M on a ground set E is a

combinatorial structure that captures properties of linear independence. Matroids

have many equivalent definitions, which may be found in a monograph such as [44].

For our purposes, the most convenient formulation is in terms of bases : a matroidM

on a finite ground set E is presented by its bases B ⊂ 2E, which satisfy the following

properties:

• The set of bases B is not empty.

• All elements B ∈ B have the same cardinality, which is the rank of M.

• For any two distinct bases B1, B2 ∈ B, there are elements e1 ∈ B1 − B2 and

e2 ∈ B2 such that B2 + {e1} − {e2} ∈ B.

It is shown in [31] that the set of (2, 2)-graphs form the bases of a matroid on the

set of edges of K2
n, the complete graph with edge multiplicity 2. In [33] we proved

that the set of looped-(2, 2) graphs forms a matroid on the set of edges of K2,2
n a

complete graph with edge multiplicity 2 and 2 distinct loops on every vertex.

Let M be a matroid on ground set E. We define a generic matrix M to be a

generic representation of M if:

• There is a bijection between the rows of M and the ground set E.

• A subset of rows of M is attains the rank of the matrix M if and only if the

corresponding subset of E is a basis of M.

With the definitions complete, we prove the results of this section.

112

Natural representation of spanning trees. We begin with a lemma about the

linear representability of the well-known spanning tree matroid.

0 0 ⋅⋅⋅ aij ⋅⋅⋅ -aij ⋅⋅⋅ ⋅⋅⋅ 0 0 ij

vi vj

0 0 ⋅⋅⋅ aij ⋅⋅⋅ -aij ⋅⋅⋅ ⋅⋅⋅ 0 0 ij

vi vj

0 0 ⋅⋅⋅ ci1 ⋅⋅⋅ 0 ⋅⋅⋅ ⋅⋅⋅ 0 0 i1

Figure 5.6. The pattern of the matrices for trees and looped forests: (a) M1,1(G);
(b) M1,0,1(G).

Let G be a graph. We define the matrix M1,1(G) to have one column for each

vertex i ∈ V and one row for each edge ij ∈ E. The row ij has zeros in the columns

not associated with i or j, a generic variable aij in the column for vertex i and −aij

in the column for vertex j. Figure 5.6(a) illustrates the pattern.

We define M•
1,1(G) to be the matrix obtained from M1,1(G) by dropping any

column. Lemma 5.3.1 shows that the ambiguity of the column to drop poses no

problem for our purposes.

Lemma 5.3.1. Let G be a graph on n vertices and m = n− 1 edges. If G is a tree,

then

det
(
M•

1,1(G)
)

= ±
∏

ij∈E(G)

aij.

Otherwise det
(
M•

1,1(G)
)

= 0.

See [36, solution to Problem 4.9] for the proof.

Natural representation of looped forests. In the setting of looped graphs, the

object corresponding to a spanning tree is a forest in which every connected compo-

nent spans exactly one loop. We define such a graph to be a looped forest. Looped

113

forests are special cases of the map-graphs studied in our papers [20, 33, 53], which

develop their combinatorial and matroidal properties.

Let G be a looped graph and define the matrix M1,0,1(G) to have one column for

each vertex i ∈ V . Each edge has a row corresponding to it with the same pattern

as in M1,1(G). Each loop ij has a row corresponding to it with a variable cij in

the column corresponding to vertex i and zeros elsewhere. Figure 5.6(b) shows the

pattern. Lemma 5.3.1 generalizes to the following.

Lemma 5.3.2. Let G be a looped graph on n vertices and c+m = n edges and loops.

If G is a looped forest, then

det (M1,0,1(G)) = ±

 ∏
edges ij∈E(G)

aij

 ·
 ∏

loops ij∈E(G)

cij

Otherwise det

(
M•

1,0,1(G)
)

= 0.

Proof. By the hypothesis of the lemma, M1,0,1(G) is n × n, so its determinant is

well-defined.

If G is not a looped forest, then it has a vertex-induced subgraph G′ on n′ vertices

spanning at least n′ + 1 edged and loops. The sub-matrix induced by the rows

corresponding to edges and loops in G′ has at least n′+ 1 rows by at most n′ columns

that are not all zero.

If G is a looped forest then M1,0,1(G) can be arranged to have a block diago-

nal structure. Partition the vertices according to the k ≥ 1 connected components

G1, G2, . . . , Gk and arrange the columns so that V (G1), V (G2), . . . , V (Gk) appear in

order. Then arrange the rows so that the E(Gi) also appear in order. Thus the lemma

follows from proving that if G is a tree with a loop on vertex i we have

det (M1,0,1(G)) = ±ci1 ·

 ∏
edges ij∈E(G)

aij

114

since we can multiply the determinants of the sub-matrices corresponding to the

connected components.

To complete the proof, we expand the determinant along the row corresponding

to the loop i1. Since it has one non-zero entry, we have

det (M1,0,1(G)) = ±ci1 det (M1,0,1(G)[A,B])

where A is the set of rows correspond to the n − 1 edges of G and B is the set of

columns corresponding to all the vertices of G except for i. Since M1,0,1(G)[A,B]

has the same form at M•
1,1(G − {ij}) the claimed determinant formula follows from

Lemma 5.3.1.

The (2, 2)-sparsity-matroid. Let G be a graph. We define the matrix M2,2(G) to

have two columns for each vertex i ∈ V and one row for each edge ij ∈ E. The row ij

has zeros in the columns not associated with i or J , variables (aij, bij) in the columns

for vertex i and (−aij,−bij) in the columns for vertex j. Figure 5.7 illustrates the

pattern.

0 0 ⋅⋅⋅ aij bij ⋅⋅⋅ -aij –bij ⋅⋅⋅ ⋅⋅⋅ 0 0 ij

vi vj
x y x y

0 0 ⋅⋅⋅ aij bij ⋅⋅⋅ -aij –bij ⋅⋅⋅ ⋅⋅⋅ 0 0 ij

vi vj
x y x y

0 0 ⋅⋅⋅ ci1 di1 ⋅⋅⋅ 0 0 ⋅⋅⋅ ⋅⋅⋅ 0 0 i1

Figure 5.7. The pattern of the matrices for (2, 2)-graphs and looped-(2, 2) graphs:
(a) M2,2(G); (b) M2,0,2(G).

Lemma 5.3.3. The matrix M2,2(K2
n) is a generic representation of the (2, 2)-sparsity

matroid.

115

The argument given below is essentially the same as that used to prove the matroid

union theorem for linearly representable matroids (e.g., [5, Prop. 7.6.14]). We include

it for completeness.

Proof. The pattern of M2,2(K2
n) implies that it has two independent column depen-

dencies, so its rank is at most 2n− 2. Thus the lemma will follow from proving that

for any graph G on n vertices with m = 2n−2 edges, M2,2(G) has generic rank 2n−2

if and only if G is a (2, 2)-graph.

Let G be a graph on n vertices with 2n − 2 edges. Drop the two columns corre-

sponding to any vertex, leaving a (2n− 2)× (2n− 2) square matrix M′. We compute

the determinant of M′ using the Laplace expansion around the a· columns A; call the

b· columns B:

det(M′) =
∑
± det (M2,2(G)[A,X]) · det (M2,2(G)[B, Y])

where the sum is over complementary sets of n−1 rows X and Y . Each of the smaller

determinants on the right is of the same form as M•
1,1(G) from Lemma 5.3.1, so a

term in the sum is zero unless X and Y correspond to two edge-disjoint spanning

trees GX and GY , in which case the term is a multilinear monomial

 ∏
edges ij∈E(GX)

aij

 ·
 ∏

edges ij∈E(GY)

bij

Since combinatorially different trees give rise to combinatorially different monomials,

if there is one non-zero term, the sum is generically non-zero, and M2,2(G) has generic

rank 2n− 2.

To complete the proof, we apply the Tutte-Nash-Williams Theorem [43, 63]: a

graph G a decomposition into two edge-disjoint spanning trees if and only if it is

a (2, 2)-graph, implying that M2,2(G) has generic rank 2n − 2 if and only if G is a

(2, 2)-graph.

116

The (2, 0, 2)-graded-sparsity matroid. Let G be a looped graph and define the

matrix M2,0,2(G) to have two columns for each vertex, one row for each edge or self-

loop. The rows for the edges are the same as in M2,2(G). The row for a self-loop ij

(the jth loop on vertex i) has variables (cij , dij) in the columns for vertex i and zeros

elsewhere. (See Figure 5.7(b).)

Lemma 5.3.4. The matrix M2,0,2(K2,2
2) is a generic representation of the (2, 0, 2)-

graded-sparsity-matroid.

Proof. We need to show that if G has n vertices, and m + c = 2n edges and loops,

then the generic rank of M2,0,2(G) is 2n if and only if G is a looped-(2, 2) graph.

Since M2,0,2(G) is square, we expand the determinant around the a· columns with

the generalized Laplace expansion to get:

∑
± det (M2,0,2(G)[A,X]) · det (M2,0,2(G)[B, Y])

where the sum is over all complementary sets of n rows X and Y . Since each smaller

determinant has the form of M1,0,1(G) from Lemma 5.3.2, the sum has a non-zero

term if and only if G is the edge-disjoint union of two looped forests. Any non-zero

term is a multilinear monomial that cannot generically cancel with any of the others,

implying that the generic rank of M2,0,2(G) is 2n if and only if G is the disjoint union

of two looped forests.

The lemma then follows from the main theorems of our papers [33, 53], which

show that G admits such a decomposition if and only if G is looped-(2, 2).

5.4 Direction network realization

A direction network (G,d) is a graph G together with an assignment of a direction

vector dij ∈ R2 to each edge. The direction network realizability problem is to find a

realization G(p) of a direction network (G,d).

117

A realization G(p) of a direction network is an embedding of G onto a point set p

such that pi − pj is in the direction dij. In a realization G(p) of a direction network

(G,d), an edge ij is collapsed if pi = pj. A realization is collapsed if all the pi are

the same. A realization is faithful if ij ∈ E implies that pi 6= pj. In other words, a

faithful parallel realization has no collapsed edges.

In this section, we prove the first of our main results, which is a new, direct,

derivation of a theorem of Whiteley [64].

Theorem 5.3 (Generic direction network realization [64]). Let (G,d) be a

generic direction network, and let G have n vertices and 2n − 3 edges. Then (G,d)

has a (unique, up to translation and rescaling) faithful realization if and only if G is

a Laman graph.

Roadmap. Here is an outline of the proof.

• We formally define the direction network realization problem as a linear sys-

tem P(G,d) and prove that its generic rank is equivalent to that of M2,2(G).

(Lemma 5.4.1 and Lemma 5.4.2.)

• We show that if a solution to the realization problem P(G,d) collapses an

edge vw, the solution space is equivalent to the solution space of Pvw(G,d), a

linear system in which pv is replaced with pw. The combinatorial interpretation

of this algebraic result is that the realizations of (G/vw,d) are in bijective

correspondence with those of (G,d). (Lemma 5.4.6 and Corollary 5.4.7.)

• We then state and prove a genericity condition for direction networks (G,d)

where G is (2, 2)-sparse and has 2n− 3 edges: the set of d such that (G,d) and

all contracted networks (G/ij,d) is open and dense in R2m. (Lemma 5.4.8.)

118

• The final step in the proof is to show that for a Laman graph, if there is a

collapsed edge in a generic realization, then the whole realization is collapsed

by the previous steps and obtain a contradiction. (Proof of Theorem 5.3.)

5.4.1 Direction network realization as a linear system

Let (G,d) be a direction network. We define the linear system P(G,d) to be

〈
pi − pj,d

⊥
ij

〉
= 0 for all ij ∈ E (5.1)

where the pi are the unknowns. From the definition of a realization (p. 118, above

the statement of Theorem 5.3), every realization G(p) of (G,d), p is a solution of

P(G,d).

If the entries of d are generic variables, then the solutions to P(G,d) are polyno-

mials in the entries of d. We start by describing P(G,d) in matrix form.

Lemma 5.4.1. Let (G,d) be a direction network. Then the solutions p of the system

P(G,d) are solutions to the matrix equation

M2,2(G)p = 0

Proof. Bilinearity of the inner product implies that (5.1) is equivalent to

〈
pi,d

⊥
ij

〉
+
〈
pj,−d⊥ij

〉
= 0

which in matrix form is M2,2(G).

The matrix form of P(G,d) leads to an immediate connection to the (2, 2)-

sparsity-matroid.

119

Lemma 5.4.2. Let G be a graph on n vertices with m ≤ 2n− 2 edges. The generic

rank of P(G,d) (with the 2n variables in p = (p1, · · · ,pn) as the unknowns) is m if

and only if G is (2, 2)-sparse. In particular, the rank is 2n − 2 if and only if G is a

(2, 2)-graph.

Proof. Apply Lemma 5.4.1 and then Lemma 5.3.3.

An immediate consequence of Lemma 5.4.2 that we will use frequently is the

following.

Lemma 5.4.3. Let G be (2, 2)-sparse. Then the set of edge direction assignments

d ∈ R2m such that the direction network realization system P(G,d) has rank m is the

(open, dense) complement of an algebraic subset of R2m.

Proof. By Lemma 5.4.2 any d ∈ R2m for which the rank drops is a common zero of

the m×m minors of the generic matrix M2,2(G), which are polynomials.

Because of Lemma 5.4.3, when we work with P(G,d) as a system with numerical

directions, we may select directions d ∈ R2m such that P(G,d) has full rank when G

is (2, 2)-sparse. We use this fact repeatedly below.

Translation invariance of P(G,d). Another simple property is that solutions to

the system P(G,d) are preserved by translation.

Lemma 5.4.4. The space of solutions to the system P(G,d) is preserved by transla-

tion.

Proof. Let t be a vector in R2. Then
〈
(pi + t)− (pj + t),d⊥ij

〉
=
〈
pi − pj,d

⊥
ij

〉
.

5.4.2 Realizations of direction networks on (2, 2)-graphs

There is a simple characterization of realizations of generic direction networks on

(2, 2)-graphs: they are all collapsed.

120

Lemma 5.4.5. Let G be a (2, 2)-graph on n vertices, and let dij be directions such

that the system P(G,d) has rank 2n − 2. (This is possible by Lemma 5.4.3.) Then

the (unique up to translation) realization of G with directions dij is collapsed.

Proof. By hypothesis the system P(G,d) is homogeneous of rank 2n− 2. Factoring

out translations by moving the variables giving associated with p1 to the right, we

have a unique solution for each setting of the value of p1. Since a collapsed realization

satisfies the system, it is the only one.

5.4.3 Realizations of direction networks on Laman graphs

In the rest of this section we complete the proof of Theorem 5.3.

The contracted direction network realization problem. Let (G,d) be a direc-

tion network, with realization system P(G,d), and let vw be an edge of G. We define

the vw-contracted realization system Pvw(G,d) to be the linear system obtained by

replacing pv with pw in P(G,d).

Combinatorial interpretation of Pvw(G). We relate P(G/vw,d) and Pvw(G,d)

in the following lemma.

Lemma 5.4.6. Let (G,d) be a generic direction network. Then for any edge vw the

system Pvw(G,d) is the same as the system P(G/vw,d), and the generic rank of

Pvw(G,d) is the same as that of M2,2(G/vw).

Proof. By definition, in the system Pvw(G,d):

• The point pv disappears

• Every occurrence of pv is replaced with pw

Combinatorially, this corresponds to contracting over the edge vw in G, which shows

that Pvw(G,d) is the same system as P(G/vw,d). An application of Lemma 5.4.2

to P(G/vw,d) shows that its rank is equivalent to that of M2,2(G/vw).

121

Since the replacement of pv with pw is the same as setting pv = pw, we have the

following corollary to Lemma 5.4.6.

Corollary 5.4.7. Let (G,d) be a direction network and ij an edge in G. If in every

solution p of P(G,d), pi = pj, then p is a solution to P(G,d) if and only if p′

obtained by dropping pi from p is a solution to P(G/ij,d).

A genericity condition. The final ingredient we need is the following genericity

condition.

Lemma 5.4.8. Let G be a Laman graph on n vertices. Then the set of directions

d ∈ R2m such that:

• The system P(G,d) has rank 2n− 3

• For all edges ij ∈ E, the system P(G/ij,d) has rank 2(n− 1)− 2

is open and dense in R2m.

Proof. By Lemma 5.2.1 all the graphs G/ij are (2, 2)-graphs and since G is Laman,

all the graphs appearing in the hypothesis are (2, 2)-sparse, so we may apply Lemma

5.4.3 to each of them separately. The set of d failing the requirements of the lemma

is thus the union of finitely many closed algebraic sets in R2m of measure zero. Its

complement is open and dense, as required.

Proof of Theorem 5.3. We first assume that G is not Laman. In this case it has

an edge-induced subgraph G′ that is a (2, 2)-graph by results of [31]. This means that

for generic directions d, the system P(G,d) has a subsystem corresponding to G′ to

which Lemma 5.4.5 applies. Thus any realization of (G,d) has a collapsed edge.

For the other direction, we assume, without loss of generality, that G is a Laman

graph. We select directions d meeting the criteria of Lemma 5.4.8 and consider the

direction network (G,d).

122

Since P(G, d) has 2n variables and rank 2n−3, we move p1 to the right to remove

translational symmetry and one other variable, say, x2, where p2 = (x2, y2). The

system has full rank, so for each setting of p1 and x2 we obtain a unique solution.

Set p1 = (0, 0) and x2 = 1 to get a solution p̂ of P(G,d) where p1 6= p2.

We claim that G(p̂) is faithful. Supposing the contrary, for a contradiction, we

assume that some edge ij ∈ E is collapsed in G(p̂). Then the equation pi = pj is

implied by P(G,d). Applying Corollary 5.4.7, we see that after removing p̂i from p̂,

we obtain a solution to P(G/ij,d). But then by Lemma 5.2.1, G/ij is a (2, 2)-graph.

Because d was selected (using Lemma 5.4.8) so that P(G/ij,d) has full rank, Lemma

5.4.5 applies to (G/ij,d), showing that every edge is collapsed in G(p̂). We have now

arrived at a contradiction: G is connected, and by construction p1 6= p2, so some

edge is not collapsed in G(p̂).

Remarks on genericity. The proof of Theorem 5.3 shows why each of the two

conditions in Lemma 5.4.8 are required. The first, that P(G,d) have full rank, ensures

that there is a unique solution up to translation. The second condition, that for each

edge ij the system P(G,d) has full rank, rules out sets of directions that are only

realizable with collapsed edges.

The second condition in the proof is necessary by the following example: let G be

a triangle and assign two of its edges the horizontal direction and the other edge the

vertical direction. It is easy to check that the resulting P(G,d) has full rank, but it

is geometrically evident that the edges of a non-collapsed triangle require either one

or three directions. This example is ruled out by the contraction condition in Lemma

5.4.8, since contracting the vertical edge results in a rank-deficient system with two

vertices and two copies of an edge in the same direction.

123

5.5 Direction-slider network realization

A direction-slider network (G,d,n, s) is a looped graph, together with assignments

of:

• A direction dij ∈ R2 to each edge ij ∈ E.

• A slider, which is an affine line
〈
nij ,x

〉
= sij in the plane, to each loop ij ∈ E.

A realization G(p) of a direction-slider network is an embedding of G onto the

point set p such that:

• Each edge ij is drawn in the direction dij.

• For each loop ij on a vertex i, the point pi is on the line
〈
nij ,x

〉
= sij .

As in the definitions for direction networks in the previous section, an edge ij is

collapsed in a realization G(p) if pi = pj. A realization G(p) is faithful if none of the

edges of G are collapsed.

The main result of this section is:

Theorem 5.4 (Generic direction-slider network realization). Let (G,d,n, s) be

a generic direction-slider network. Then (G,d,n, s) has a (unique) faithful realization

if and only if G is a looped-Laman graph.

Roadmap. The approach runs along the lines of previous section. However, be-

cause the system S(G,d,n, s) is inhomogeneous, we obtain a contradiction using

unsolvability instead of a unique collapsed realization. The steps are:

• Formulate the direction-slider realization problem as a linear system and relate

the rank of the parallel sliders realization system to the representation of the

(2, 0, 2)-sparsity-matroid to show the generic rank of the realization system is

given by the rank of the graph G in the (2, 0, 2)-matroid. (Lemma 5.5.2)

124

• Connect graph theoretic contraction over an edge ij to the edge being collapsed

in all realizations of the direction-slider network: show that when S(G,d,n, s)

implies that some edge ij is collapsed in all realizations means that it is equiv-

alent to S(G/ij,d,n, s). (Lemma 5.5.4 and Corollary 5.5.5)

• Show that for looped graphs with combinatorially independent edges and one

too many loops, the system S(G/ij,d,n, s) is generically not solvable. (Lemma

5.5.3).

• Show that if G is looped-Laman, then there are generic directions and sliders

for M2,0,2(G) so that the contraction of any edge leads to an unsolvable system.

(Lemma 5.5.6.)

• Put the above tools together to show that for a looped-Laman graph, the re-

alization problem is generically solvable, and the (unique solution) does not

collapse any edges.

5.5.1 Direction-slider realization as a linear system.

Let (G,d,n, s) be a direction-slider network. We define the system of equations

S(G,d,n, s) to be:

〈
pi − pj,d

⊥
ij

〉
= 0 for all edges ij ∈ E (5.2)〈

pi,nij
〉

= sij for all loops ij ∈ E (5.3)

From the definition, it is immediate that the realizations of (G,d,n, s) are exactly

the solutions of S(G,d,n, s). The matrix form of S(G,d,n, s) gives the connection

to the (2, 0, 2)-sparsity matroid.

125

Lemma 5.5.1. Let (G,d,n, s) be a direction slider network. The solutions to the

system S(G,d,n, s) are exactly the solutions to the matrix equation

M2,0,2(G)p = (0, s)T

Proof. Similar to the proof of Lemma 5.4.1 for the edges of G. The slider are already

in the desired form.

As a consequence, we obtain the following two lemmas.

Lemma 5.5.2. Let G be a graph on n vertices with m ≤ 2n edges. The generic rank of

S(G,d,n, s) (with the pi as the 2n unknowns) is m if and only if G is (2, 0, 2)-sparse.

In particular, it is 2n if and only if G is a looped-(2, 2) graph.

Proof. Apply Lemma 5.5.1 and then Lemma 5.3.4.

We need, in addition, the following result on when S(G,d,n, s) has no solution.

Lemma 5.5.3. Let G be a looped-(2, 2) graph and let G′ be obtained from G by

adding a single loop ij to G. Then the set of edge direction assignments and slider

lines (d,n, s) ∈ R2m+3c such that the direction-slider network realization system

S(G′,d,n, s) has no solution is the (open, dense) complement of an algebraic sub-

set of R2m+3c.

Proof. By Lemma 5.5.1 and Lemma 5.5.2, the solution p = p̂ to the generic matrix

equation

M2,0,2(G)p = (0, s)T

has as its entries non-zero formal polynomials in the entries of d, n, and s. In

particular, the entries of p̂i are non-zero. This implies that for the equation

M2,0,2(G′)p = (0, s)T

126

to be solvable, the solution will have to be p̂, and p̂i will have to satisfy the additional

equation 〈
nij , p̂i

〉
= sij

Since the entries of nij and sij are generic and don’t appear at in p̂i, the system

S(G′,d,n, s) is solvable only when either the rank of M2,0,2(G) drops, which happens

only for closed algebraic subset of R2m+3c or when nij and sij satisfy the above

equation, which is also a closed algebraic set. (Geometrically, the latter condition

says that the line of the slider corresponding to the loop ij is in the pencil of lines

through p̂i.)

Contracted systems. Let vw ∈ E be an edge. We define Svw(G,d,n, s), the con-

tracted realization system, which is obtained by replacing pv with pw in S(G,d,n, s).

The contracted system has two fewer variables and one fewer equation (corresponding

to the edge vw).

The proof of Lemma 5.4.6 is identical to the proof of the analogous result for

direction-slider networks.

Lemma 5.5.4. Let (G,d,n, s) be a generic direction-slider network. Then for any

edge vw the system Pvw(G,d) is the same as the system P(G/vw,d,n, s), and the

generic rank of Pvw(G,d,n, s) is the same as that of M2,0,2(G/vw).

The following is the direction-slider analogue of Corollary 5.4.7.

Corollary 5.5.5. Let (G,d,n, s) be a direction-slider network and ij an edge in G.

If in all solutions p of P(G,d,n, s) pi = pj, then p is a solution to P(G,d,n, s) if

and only if p′ obtained by dropping pi from p is a solution to P(G/ij,d,n, s).

A genericity condition. The following lemma, which is the counterpart of Lemma

5.4.8, captures genericity for direction-slider networks.

127

Lemma 5.5.6. Let G be a looped-Laman subgraph. The set of directions and slider

lines such that:

• The system S(G,d,n, s) has rank 2n (and thus has a unique solution)

• For all edges ij ∈ E, the system S(G/ij,d,n, s) has no solution

is open and dense in R2m+3c.

Proof. Because a looped-Laman graph is also a looped-(2, 2) graph, Lemma 5.3.4 and

Lemma 5.5.2 imply that det(M2,0,2(G)) which is a polynomial in the entries of d and

n is not constantly zero, and so for any values of s, the generic system S(G,d,n, s)

has a unique solution p̂ satisfying

M2,0,2(G)p̂ = (0, s)T

The generic directions and slider lines are the ones in the complement of the zero set

of det(M2,0,2(G)), and the non-generic set has measure zero.

By the combinatorial Lemma 5.2.2, each edge contraction G/ij has the combina-

torial form required by Lemma 5.5.6. By Lemma 5.5.6, for each of m contractions,

the set of directions and slider lines such that the contracted system S(G/ij,d,n, s)

is an algebraic set of measure zero.

The proof follows from the fact that set of directions and slider lines for which

the conclusion fails is the union of a finite number of measure-zero algebraic sets:

det(M2,0,2(G)) = 0 is one non-generic set and each application of Lemma 5.5.6 gives

another algebraic set to avoid. Since the union of finitely many measure zero algebraic

sets is itself a measure zero algebraic set, the intersection of the complements is non-

empty.

Proof of Theorem 5.4. With all the tools in place, we give the proof of out

direction-slider network realization theorem.

128

Proof of Theorem 5.4. If G is not looped-Laman, then by Lemma 5.4.5 applied on a

(2, 2)-tight subgraph, G has no faithful realization.

Now we assume that G is looped-Laman. Assign generic directions and sliders

as in Lemma 5.5.6. By Lemma 5.5.2, the system S(G,d,n, s) has rank 2n and thus

a unique solution. For a contradiction, we suppose that some edge ij is collapsed.

Then by Lemma 5.5.4 and Corollary 5.5.5 this system has a non-empty solution space

equivalent to the contracted system S(G/ij,d,n, s). However, since we picked the

directions and sliders as in Lemma 5.5.6, S(G/ij,d,n, s) has no solution, leading to

a contradiction.

5.6 Axis-parallel sliders

An axis-parallel direction-slider network is a direction network in which each slider

is either vertical or horizontal. The combinatorial model for axis-parallel direction-

slider networks is defined to be a looped graph in which each loop is colored either red

or blue, indicating slider direction. A color-looped-Laman graph is a looped graph with

colored loops that is looped-Laman, and, in addition, admits a coloring of its edges

into red and blue forests so that each monochromatic tree spans exactly one loop of its

color. Since the slider directions of an axis-parallel direction-slider network are given

by the combinatorial data, it is formally defined by the tuple (G,d, s). The realization

problem for axis-parallel direction-slider networks is simply the specialization of the

slider equations to xi = sij , where pi = (xi, yi), for vertical sliders and yi = sij for

horizontal ones.

We prove the following extension to Theorem 5.4.

Theorem 5.5 (Generic axis-parallel direction-slider network realization).

Let (G,d, s) be a generic axis-parallel direction-slider network. Then (G,d, s) has a

(unique) faithful realization if and only if G is a color looped-Laman graph.

129

The proof of Theorem 5.5 is a specialization of the arguments in the previous

section to the axis-parallel setting. The modifications we need to make are:

• Specialize the (2, 0, 2)-matroid realization Lemma 5.3.4 to the case where in

each row coresponding to a slider ij ∈ E one of cij and dij is zero and the other

is one. This corresponds to the slider direction equations in the realization

system for an axis-parallel direction-slider network.

• Specialize the genericity statement Lemma 5.5.6

Otherwise the proof of Theorem 5.4 goes through word for word. The rest of the

section gives the detailed definitions and describes the changes to the two key lemmas.

Color-looped-(2, 2) and color-looped-Laman graphs. A color-looped-(2,2) graph

is a looped graph with colored loops that is looped-(2, 2), in addition, admits a col-

oring of its edges into two forests so that each monochromatic tree spans exactly one

loop of its color.

A color-looped-Laman graph is a looped graph with colored loops that is looped-

Laman, and, in addition, admits a coloring of its edges into red and blue forests so

that each monochromatic tree spans exactly one loop of its color.

Figure 5.8 shows examples. The difference between these definitions and the ones

of looped-(2, 2) and looped-Laman graphs is that they are defined in terms of both

graded sparsity counts and a specific decomposition of the edges, depending on the

colors of the loops.

Realizing the (2, 0, 2)-graded-sparsity matroid for color-looped graphs. Re-

call that the matrix M2,0,2(G) (see Figure 5.7(b)) realizing the (2, 0, 2)-sparsity ma-

troid has a row for each slider loop ij ∈ E with generic entries cij and dij in the

two columns associated with vertex i. For the color-looped case, we specialize to the

matrix Mc
2,0,2(G), which has the same pattern as M2,0,2(G), except:

130

(a) (b)

Figure 5.8. Examples of color-looped graphs, shown with forests certifying the color-
looped property: (a) a color-looped (2, 2)-graph; (b) a color-looped Laman graph.

• cij = 1 and dij = 0 for red loops ij ∈ E

• cij = 0 and dij = 1 for blue loops ij ∈ E

The extension of the realization Lemma 5.3.4 to this case is the following.

Lemma 5.6.1. Let G be a color-looped graph on n vertices with m + c = 2n. The

matrix Mc
2,0,2(G) has generic rank 2n if and only if G is color-looped-(2, 2).

Proof. Modify the proof of Lemma 5.3.4 to consider only decompositions into looped

forests in which each loop is assigned its correct color. The definition of color-looped-

(2, 2) graphs implies that one exists if and only if G is color-looped-(2, 2). As in the

uncolored case, the determinant is generically non-zero exactly when the required

decomposition exists.

Genericity for axis-parallel sliders. In the axis-parallel setting, our genericity

condition is the following.

Lemma 5.6.2. Let G be a color-looped-Laman subgraph. The set of directions and

slider lines such that:

• The system S(G,d,n, s) has rank 2n (and thus has a unique solution)

131

• For all edges ij ∈ E, the system S(G/ij,d,n, s) has no solution

is open and dense in R2m+3c.

Proof. Similar to the proof of Lemma 5.5.6, except using Lemma 5.6.1.

5.7 Generic rigidity via direction network realization

Having proven our main results on direction and direction-slider network realiza-

tion, we change our focus to the rigidity theory of bar-joint and bar-slider frameworks.

5.7.1 Bar-joint rigidity

We refer readers to a monograph such as [18] for an introduction to bar-joint

rigidity. In this section, we give a new proof of the Maxwell-Laman Theorem:

Theorem 4.2 (Maxwell-Laman Theorem: Generic planar bar-joint rigidity

[29, 40]). A generic bar-joint framework in R2 is minimally rigid if and only if its

underlying graph G is (2, 3)-tight.

The difficult step of the proof is to show that a generic bar-joint framework G(p)

with m = 2n− 3 edges is infinitesimally rigid, that is the generic rank of the rigidity

matrix M2,3(G), shown in Figure 5.9(a) has rank 2n− 3 if and only if G is a Laman

graph. We will deduce this as a consequence of Theorem 5.3; having proven it directly,

we obtain a new proof of the Maxwell-Laman Theorem.

Proof of the Maxwell-Laman Theorem 4.2.

Proof of the Maxwell-Laman Theorem 4.2. Let G be a Laman graph. We need to

show that the rank of the rigidity matrix M2,3(G) is 2n− 3 for a generic framework

G(p). We will do this by constructing a point set p̂ for which the rigidity matrix has

full rank.

132

ij

vi vj

X Y
vi vj

0 0 ai - aj 0 aj - ai 0 ⋅⋅⋅ 0 ⋅⋅⋅ 0 bi - bj 0 bj - bi 0 ⋅⋅⋅ 0

(a)

ij

vi vj

X Y
vi vj

0 0 ai - aj 0 aj - ai 0 ⋅⋅⋅ 0 ⋅⋅⋅ 0 bi - bj 0 bj - bi 0 ⋅⋅⋅ 0

i1 0 0 ci1 0 ⋅⋅⋅ 0 ⋅⋅⋅ 0 di1 0 ⋅⋅⋅ 0 ⋅⋅⋅ 0

i2 0 0 ci2 0 ⋅⋅⋅ 0 ⋅⋅⋅ 0 di2 0 ⋅⋅⋅ 0 ⋅⋅⋅ 0

(b)
Figure 5.9. The pattern of the rigidity matrices: (a) the matrix M2,3(G) for bar-joint
rigidity; (b) the matrix M2,0,3(G) for bar-slider framework.

Define a generic direction network (G,d) with its underlying graph G. Because d

is generic, the rank of M2,2(G) is 2n− 3 for these directions dij, by Lemma 5.3.3.

By Theorem 5.3, there is a point set p̂ such that p̂i 6= p̂j for all ij ∈ E and

p̂i− p̂j = αijdij for some non-zero real number αij. Replacing aij by αij(ai− aj) and

bij by αij(bi− bj) in M2,2(G) and scaling each row 1/αij we obtain the rigidity matrix

M2,3(G). It follows that M2,3(G) has rank 2n− 3 as desired.

Remarks on Whiteley’s Parallel Redrawing Theorem [64]. The connection

between direction networks and the Maxwell-Laman Theorem was first established by

Whiteley [64], who proved the direction network realization theorem as a consequence

of Maxwell-Laman. Here we proved the reverse implication.

Remarks on Tay’s proof of the Maxwell-Laman Theorem [58]. In [58], Tay

gives a proof of the Maxwell-Laman Theorem based on so-called proper 3T2 decom-

positions of Laman graphs (see [53] for a detailed discussion). The key idea is to

work with what Tay calls a “generalized framework” that may have collapsed edges;

in the generalized rigidity matrix Tay defines, collapsed edges are simply assigned

directions. Tay then starts with a generalized framework in which all edges are col-

lapsed for which it is easy to prove the generalized rigidity matrix has full rank and

then uses a 3T2 decomposition to explicitly perturb the vertices so that the rank of

133

the generalized rigidity matrix is maintained as the endpoints of collapsed edges are

pulled apart. At the end of the process, the generalized rigidity matrix coincides with

the Laman rigidity matrix.

In light of our genericity Lemma 5.4.8, we can simplify Tay’s approach. Let G be

a Laman graph, D ⊂ R2m is the set of directions for which M2,2(G) has full rank,

and P ⊂ D as P = {d ∈ D : ∃p ∈ R2n ∀ij ∈ E dij = pi− pj}; i.e., P is the subset of

D arising from the difference set of some planar point set. From the definition of P

and arguments above, if d ∈ P any realization of (G,d) interpreted as a framework

will be infinitesimally rigid.

Lemma 5.4.8 says that P is dense in D (and indeed R2m) if and only if G is a

Laman graph. In the language of Tay’s generalized frameworks, then, Lemma 5.4.8

gives a short, existential proof that a full rank generalized framework can be perturbed

into an infinitesimally rigid framework without direct reference to Theorem 5.3. By

making the connection to Theorem 5.3 explicit, we obtain a canonical infinitesimally

rigid realization that can be found using only linear algebra.

5.7.2 Slider-pinning rigidity

In this section we develop the theory of slider pinning rigidity and prove a Laman-

type theorem for it.

Theorem 5.2 (Generic bar-slider rigidty). Let (G, `,n, s) be a generic bar-slider

framework. Then (G, `,n, s) is minimally rigid if and only if G is looped-Laman.

We begin with the formal definition of the problem.

The slider-pinning problem. An abstract bar-slider framework is a triple (G, `, s)

where G = (V,E) is a graph with n vertices, m edges and c self-loops. The vector ` is

a vector of m positive squared edge-lengths, which we index by the edges E of G. The

vector s specifies a line in the Euclidean plane for each self-loop in G, which we index

134

as ij for the jth loop at vertex i; lines are given by a normal vector nij = (cij , dij)

and a constant eij .

A realization G(p) is a mapping of the vertices of G onto a point set p ∈ (R2)
n

such that:

||pi − pj||2 = `ij for all edges ij ∈ E (5.4)〈
pi,nij

〉
= eij for all self-loops ij ∈ E (5.5)

In other words, p respects all the edge lengths and assigns every self-loop on a vertex

to a point on the line specified by the corresponding slider.

Continuous slider-pinning. The configuration space C(G) ⊂ (R2)
n

of a bar-slider

framework is defined as the space of real solutions to equations (5.4) and (5.5):

C(G) = {p ∈
(
R2
)n

: G(p) is a realization of (G, `, s)}

A bar-slider framework G(p) is slider-pinning rigid (shortly, pinned) if p is an

isolated point in the configuration space C(G) and flexible otherwise. It is minimally

pinned if it is pinned but fails to remain so if any edge or loop is removed.

Infinitesimal slider-pinning. Pinning-rigidity is a difficult condition to establish

algorithmically, so we consider instead the following linearization of the problem. Let

G(p) be an axis-parallel bar-slider framework with m edges and c sliders. The pinned

rigidity matrix (shortly rigidity matrix) M2,0,3(G(p)) is an (m+ c)× 2n matrix that

has one row for each edge ij ∈ E and self-loop ij ∈ E, and one column for each

vertex of G. The columns are indexed by the coordinate and the vertex, and we

think of them as arranged into two blocks of n, one for each coordinate. The rows

corresponding to edges have entries ai − aj and bi − bj for the x- and y-coordinate

135

columns of vertex i, respectively. The x- and y-coordinate columns associated with

vertex j contain the entries aj − ai and bj − bi; all other entries are zero. The row for

a loop ij contains entries cij and dij in the x- and y-coordinate columns for vertex i;

all other entries are zero. Figure 5.9(b) shows the pattern.

If M(G(p)) has rank 2n (the maximum possible), we say that G(p) is infinites-

imally slider-pinning rigid (shortly infinitesimally pinned); otherwise it is infinitesi-

mally flexible. If G(p) is infinitesimally pinned but fails to be so after removing any

edge or loop from G, then it is minimally infinitesimally pinned.

The pinned rigidity matrix arises as the differential of the system given by (5.1)

and (5.5). Its rows span the normal space of C at p and the kernel is the tangent

space TpC(G) at p. With this observation, we can show that infinitesimal pinning

implies pinning.

Lemma 5.7.1. Let G(p) be a bar-slider framework. If G(p) is infinitesimally pinned,

then G(p) is pinned.

In the proof, we will need the complex configuration space CC(G) of G, which is

the solution space to the system (5.1) and (5.5) in (C2)
n
. The rigidity matrix has the

same form in this setting.

Proof. Since M(G(p)) has 2n columns, if its rank is 2n, then its kernel is the just the

zero vector. By the observation above, this implies that the tangent space TpCC(G)

is zero-dimensional. A fundamental result result of algebraic geometry [9, p. 479,

Theorem 8] says that the irreducible components of CC(G) through p have dimension

bounded by the dimension of the tangent space at p.

It follows that p is an isolated point in the complex configuration space and, by

inclusion, in the real configuration space.

136

5.7.3 Generic bar-slider frameworks

Although Lemma 5.7.1 shows that infinitesimal pinning implies pinning, the con-

verse is not, in general, true. For example, a bar-slider framework that is combi-

natorially a triangle with one loop on each vertex is pinned, but not infinitesimally

pinned, in a realization where the sliders are tangent to the circumcircle.

For generic bar-slider frameworks, however, pinning and infinitesimal pinning co-

incide. A realization G(p) bar-slider framework is generic if the rigidity matrix attains

its maximum rank at p; i.e., rank (M(p)) ≥ rank (M(p)) for all q ∈ R2n.

We reformulate genericity in terms of the generic pinned rigidity matrix M(G),

which is defined to have the same pattern as the pinned rigidity matrix, but with

entries that are formal polynomials in variables ai, bi, cij , and dij . The rank of the

generic rigidity matrix is defined as the largest integer r for which there is an r × r

minor of M(G) which is not identically zero as a formal polynomial.

A graph G is defined to be generically infinitesimally rigid if its generic rigidity

matrix M(G) has rank 2n (the maximum possible).

5.7.4 Proof of Theorem 5.2

We are now ready to give the proof of our Laman-type Theorem 5.2 for bar-slider

frameworks.

Theorem 5.2 (Generic bar-slider rigidty). Let (G, `,n, s) be a generic bar-slider

framework. Then (G, `,n, s) is minimally rigid if and only if G is looped-Laman.

Proof. Let G be looped-Laman. We will construct a point set p̂, such that the bar-

slider framework G(p̂) is infinitesimally pinned.

Fix a generic direction-slider network (G,d,n, s) with underlying graph G. By

Lemma 5.3.4, M2,0,2(G) has rank 2n. Applying Theorem 5.4, we obtain a point set p̂

with p̂i 6= p̂j for all edges ij ∈ E and pi − pj = αijdij. Substituting in to M2,0,2(G)

and rescaling shows the rank of M2,0,3(G) is 2n.

137

Part III

Emergence of components

138

CHAPTER 6

RIGID COMPONENTS OF RANDOM GRAPHS

6.1 Introduction

The problem of the phase transition between liquid and solid states of glasses is an

important open problem in material physics [1]. Glasses are highly disordered solids

that undergo a rapid transition as they cool.

To study the phase transition, Thorpe [26] proposed a geometric model for the

glass problem, in which bonds between the atoms are viewed as fixed-length bars

(the bonds) connected by universal joints (the atoms) with full rotational degrees

of freedom. Such a structure is called a planar bar-and-joint framework (shortly

bar-joint framework, or simply framework), and these are fundamental objects of

study in the field of combinatorial rigidity (see, e.g., [18] for a survey).

A bar-joint framework is rigid if the only continuous motions of the joints pre-

serving the lengths and connectivity of the bars are rigid motions of the plane,

and otherwise it is flexible. When a framework is flexible, it decomposes uniquely

into inclusion-wise maximal rigid substructures which are called rigid components

(shortly components); a component is non-trivial if it is larger than a single edge.

In the planar case, the celebrated Maxwell-Laman Theorem [29] gives a complete

characterization of generically minimally rigid bar-joint frameworks in terms of a

combinatorial condition, which allows rigidity properties to be studied in terms of

efficiently checkable graph properties.

The sequence of papers [7, 25, 26, 61, 62] studies the emergence of large rigid sub-

graphs in graphs generated by various stochastic processes, with the edge probabilities

139

and underlying topologies used to model the temperature and chemical composition

of the system. Two important observations are that: (1) very large rigid substruc-

tures emerge very rapidly; (2) the transition appears to occur slightly below average

degree 4 in the the planar bar-joint model.

Main result novelty

In this chapter, we study the emergence of rigid components in random graphs

generated by a simple, well-known stochastic process: the Erdős-Rényi random graph

model G (n, p), in which each edge is included with probability p, independently. We

consider edge probabilities of the form p = c/n, where c is a fixed constant, and

consider the size of the largest rigid components in G (n, p).

Our main result is the following statement about rigid components in G (n, c/n).

Theorem 6.1 (Size and emergence of a large rigid component). Let c > 0

be a constant. Almost surely, all rigid components in G (n, c/n) span 2, 3, or Ω(n)

vertices. If c > 4, then almost surely there are components of size at least n/10.

A random graph has a property almost surely if the probability of G (n, p) having

it tends to one as n→∞.

To the best of our knowledge, this is the first proven result on the emergence of

rigid components in random graphs that have, almost surely, close to 2n − 3 edges

(the number required for minimal rigidity) but no other special assumptions, such as

being d-regular or a subgraph of a hexagonal lattice, both of which play critical roles

in the previous results on the rigidity of random graphs.

It is important to note that rigidity is inherently a non-local phenomenon: adding

a single edge to a graph that has no non-trivial rigid components may rigidify the

entire graph (or removing a single edge may cause a large rigid component to shatter).

It is this property of rigidity that distinguishes it from the well-studied k-core problem

in random graph theory.

140

In the proof of Theorem 6.1, we formalize the experimental observation that rigid

components, once they appear, are very likely to grow rapidly. Although the proof of

Theorem 6.1 relies mainly on standard tools for bounding sums of independent ran-

dom variables, our result seems to be the first that directly analyzes rigidity properties

of G (n, p), rather than reducing to a connectivity property.

Related work.

Jackson, et al. [24] studied the space of random 4-regular graphs and showed that

they are almost surely globally rigid (see [8, 23]). They also established a threshold

for G (n, p) to be rigid at p = n−1(log n+ 2 log log n+ω(1)), which coincides with the

threshold for G (n, p) to almost surely have all vertices with degree at least 2. The

approach in [24] is based on combining results on the connectivity of random graphs

(e.g., [39, Theorem 4]) and theorems linking rigidity and connectivity proved in [24]

and also [23, 37]. In the G (n, p) model, the techniques there seem to rely on the

existence of a very large 6-core, so it does not seem that they can be easily adapted

to our setting when c is close to 4 (below the threshold for even the 4-core to emerge

[45]).

Holroyd [22] extended the formal study of connectivity percolation [4] to rigidity

percolation in the hexagonal lattice. He shows, via a reduction to connectivity per-

colation, that there is an edge-probability threshold for the existence of an infinite1

rigid component in the hexagonal lattice which is higher than that for connectivity.

It is also shown in [22] that the infinite component, when it exists, is unique for all

but a countable set of edge probabilities p. All the proofs in [22] rely in an essential

way on the structure of the hexagonal lattice (in particular that a suitably defined

tree in its dual graph is a dual of a rigid component).

1Rigidity of infinite frameworks is a subtle concept, and [22] devotes careful attention to its
development.

141

The fundamental k-core problem in random graph theory has been studied exten-

sively, with a number of complete solutions. Luczak [39] first proved that for k ≥ 3,

the (it is always unique, if present) k-core is, almost surely, either empty or has lin-

ear size. Pittel, et al. solved the k-core problem, giving an exact threshold for its

emergence and bounds on its size [45]. Janson and Luczak gave an alternative proof

of this result, using simpler stochastic processes [27]. All these results are based on

analyzing a process that removes low-degree vertices one at a time, which does not

apply in the rigidity setting.

6.2 Preliminaries

In this section we give the technical preliminaries required for the proof of Theorem

6.1.

Combinatorial rigidity

An abstract bar-and-joint framework (G, `) is a graph G = (V,E) and vector

of non-negative edge lengths ` = `ij, for each edge ij ∈ E. A realization G(p) of the

abstract framework (G, `) is an embedding of G onto the planar point set p = (pi)
n
1

with the property that for all edges ij ∈ E, ||pi−pj|| = `ij. The framework (G, `) is

rigid if it has only a discrete set of realizations modulo trivial plane motions, and is

flexible otherwise.

A graph G = (V,E) is (2, 3)-sparse if every subgraph induced by n′ ≥ 2 vertices

has at most 2n′ − 3 edges. If, in addition, G has 2n − 3 edges, G is (2, 3)-tight

(shortly, Laman).

The Maxwell-Laman Theorem completely characterizes the rigidity of generic pla-

nar bar-joint frameworks.

Proposition 6.3 (Maxwell-Laman Theorem [29]). A generic bar-joint framework

in the plane is minimally rigid if and only if its graph is (2, 3)-tight.

142

Genericity is a subtle concept, and we refer the reader to our paper [56] for a

detailed discussion. In the following it suffices to note that for a fixed G almost all p

are generic, and that, by the Maxwell-Laman Theorem, all generic frameworks G(p)

have the same rigidity properties.

IfG contains a spanning Laman graph it is (2, 3)-spanning (shortly rigid). A rigid

induced subgraph is called a spanning block (shortly block), and an inclusion-wise

maximal block is a spanning component (shortly component)2. By [31, Theorem

5], every graph decomposes uniquely into components, and every edge is spanned by

exactly one component. A component is non-trivial if it contains more than one edge.

Figure 6.1(a) shows and example of a Laman graphs. Figure 6.1(b) has an example

of a flexible graph with its components indicated; they are the two triangles and two

trivial components consisting of a single edge only.

(a) (b)

Figure 6.1. Laman graphs and rigid components: (a) a Laman graph on n = 6
vertices; (b) a flexible graph with its rigid components indicated.

An alternative characterization of Laman graphs is via so-called Henneberg con-

structions, which are local moves that transform Laman graphs on n vertices to

Laman graphs on n+ 1 vertices (see [31, Section 6]). The Henneberg I move adds a

new vertex n to a Laman graph G and attaches it to two neighbors in V (G)−n. It is

2In [31] the terms “block” and “component” are reserved for induced subgraphs of Laman graphs,
but there is no concern of confusion here.

143

a fundamental result of rigidity theory that the Henneberg I move preserves generic

rigidity [29]3.

We summarize the properties of rigid graphs and components that we will use

below in the following proposition.

Proposition 6.4 (Properties of rigid graphs and rigid components). Let G =

(V,E) be a simple graph with n vertices.

(a) G decomposes uniquely into rigid components (inclusion-wise maximal induced

Laman graphs), and every edge is in some component [31, Theorem 5].

(b) Adding an edge to a graph G never decreases the size of any rigid component

[31, Theorem 2].

(c) If G′ is a block in G with vertices V ′ ⊂ V and there is a vertex i /∈ V ′ with at

least two neighbors in V ′, then G′ is not a component of G.

(d) If G has at least 2n− 2 edges, then it contains a component spanning at least 4

vertices [31, Theorem 2 and Theorem 5].

What we have presented here is a small part of a well-developed combinatorial and

algorithmic theory of (k, `)-sparse graphs. We refer the reader to [31] for a detailed

treatment of the rich properties of sparse graphs.

Tools from random graph theory

One of our main technical tools is the following result on the size of dense sub-

graphs in G (n, c/n) due to Luczak [39].

3This fact, along with an analogous result for the so-called Henneberg II move, which adds a
vertex of degree 3, is the core of Laman’s proof.

144

Proposition 6.5 (Density Lemma [39]). Let a and c be real constants with a > 1

and c > a. Almost surely, G(n, c/n) has no subgraphs with at most k = t(a, c)n

vertices and at least ak edges, where

t(a, c) =

(
2a

c

) a
a−1

e−
a+1
a−1

is a constant depending only on a and c (in particular, it does not depend on n).

We will also make use of a fairly general form of the Chernoff bound for the upper

tail of the binomial.

Proposition 6.6 (Chernoff bound). Let Bin (N, p) be a binomial random variable

with parameters n and p. Then for all δ > 0,

Pr [Bin (N, p) ≥ (1 + δ)Np] ≤
(

eδ

(1 + δ)(1+δ)

)Np

Large deviation bounds of this type are attributed to Chernoff [6], and are stan-

dard in combinatorics. The specific form of Proposition 6.6 appears in, e.g., [41,

Theorem 4.1, p. 68].

6.7 Proofs

In this section we prove the main result of this chapter.

Theorem 6.1 (Size and emergence of a large rigid component). Let c > 0

be a constant. Almost surely, all rigid components in G (n, c/n) span 2, 3, or Ω(n)

vertices. If c > 4, then almost surely there are components of size at least n/10.

Proof outline.

Here is the proof strategy in a nutshell. Because any rigid component with n′ ≥ 4

vertices must be somewhat dense, the very general bound of Proposition 6.5 implies

145

that for p = c/n all the components are either trivial, triangles, or spanning a constant

fraction of the vertices in G (n, c/n) (Lemma 6.7.1). We then improve upon our

bounds on the probability of components of size sn, for s ∈ (0, 1) by formalizing

the observation that such components are likely to “grow” (Lemma 6.7.3) and then

optimizing s (Lemma 6.7.4).

The rest of this section contains the details.

Rigid components have either constant or linear size

We start by proving that non-trivial rigid components are all very large or trian-

gles, almost surely.

Lemma 6.7.1. Let c > 0 be a fixed constant. Almost surely, all rigid components in

G (n, c/n) have size 2, 3, or Ω(n).

Proof. By Proposition 6.4(a), any rigid component on n′ ≥ 4 vertices has at least 5
4
n′

edges (with equality for n′ = 4). The lemma then follows from Proposition 6.5 and

the well-known fact that almost surely G (n, c/n) contains a triangle [3, Theorem 4.1,

p. 79].

Remark: In fact, this proof via Proposition 6.5 implies a stronger result, which is

that almost surely G (n, c/n) does not contain any sub-linear size induced subgraphs

with enough edges to be non-trivial rigid blocks, except for triangles.

For c > 4, the number of edges in G (n, c/n) implies that it has at least one large

rigid component, almost surely.

Lemma 6.7.2. Let c > 4. Almost surely, G (n, c/n) contains at least one component

of size Ω(n).

Proof. For any ε > 0 G (n, (4 + ε)/n) has at least 2n− 2 edges with high probability.

Proposition 6.4(d) then implies that almost surely G (n, (4 + ε)/n) contains at least

146

one rigid component with at least 4 vertices. By Lemma 6.7.1, all of these span at

least t(a, 4 + ε)n vertices.

By Proposition 6.4(b) the size of rigid components is an increasing property and [3,

Theorem 2.1, p. 36], this lower bound on size holds, almost surely, for any c > 4.

For c > 4 the largest component is very large

We now turn to improving the lower bound on the size of rigid components. To

do this, we will use the maximality of components as well as their edge density.

Lemma 6.7.3. The probability that a fixed set of k vertices spans a component in

G (n, c/n) is at most

Pr
[
Bin

(
k2/2, c/n

)
≥ 2k − 3

] (
(1− c/n)k + k

c

n
(1− c/n)k−1

)n−k
(6.1)

Proof. To induce a component, a set V ′ of k vertices must span at least 2k−3 edges by

Proposition 6.4(a). By Proposition 6.4(c) if V ′ spans a component, no vertex outside

of V ′ can have more than one neighbor in V ′. The two terms in (6.1) correspond to

these two events, which are independent.

Remark: This estimate of the probability of a set of vertices inducing a compo-

nent is very weak, since it uses only the number of edges induced by V ′ (not their

distribution) and the simplest local obstacle to maximality. Any improvement in this

part of the argument would translate into improvements in the lower bound on the

size of components.

Lemma 6.7.4. For c > 4, almost surely all components span at least n/10 vertices.

Proof. With the assumptions of the lemma, by Lemma 6.7.2, G (n, c/n) almost surely

has no blocks of size smaller than tn, where t is a constant independent of n. It follows

from Proposition 6.4(a) that G (n, c/n) almost surely has no components smaller than

tn.

147

Let Xk to be the number of components of size k and let s be a parameter to be

selected later. We will show that
∑sn

k=4 E [Xk] = o(1), which implies the lemma by

a Markov’s inequality. As noted above,
∑tn

k=4 E [Xk] = o(1), so we concentrate on

k ∈ [tn, sn].

By Lemma 6.7.3

E [Xk] ≤
(
n

k

)
Pr
[
Bin

(
k2/2, c/n

)
≥ 2k − 3

] (
(1− c/n)k + k

c

n
(1− c/n)k−1

)n−k
≤
(en
k

)k
Pr
[
Bin

(
k2/2, c/n

)
≥ 2k

] (
(1− c/n)k + k

c

n
(1− c/n)k−1

)n−k
+ o(1)

Setting k = sn and letting c = 4 + ε, we use the Chernoff bound to obtain

(e
s

)sn
Pr
[
Bin

(
k2/2, (4 + ε)/n

)
≥ 2sn

] (
(1− (4 + ε)/n)sn+ cs(1− (4 + ε)/n)sn−1

)n−sn ≤
(e
s

)sn(
e
−εs−4s+4
s(ε+4)

(
−εs− 4s+ 4

s(ε+ 4)
+ 1

)−−εs−4s+4
s(ε+4)

−1
) 1

2
ns2(ε+4) (

e−(4+ε)s(1 + (4 + ε)s)
)n−sn

As ε→ 0 the right-hand side approaches

ens

(
e

1
s
−1

(
1

s

)−1/s
)2ns2 (

1

s

)ns (
e−4s(4s+ 1)

)n−ns

Substituting s = 1/10, this simplifies to

2−n/105−n79n/10e−2n/25 = e−Θ(n)

(which can be seen by taking the logarithm and factoring out n). Since this bound

is good for any s′ ∈ [t, 1/10], we have
∑n/10

k=tn E [Xk] ≤ ne−Θ(n) = o(1).

By Proposition 6.4(b) the size of rigid components is an increasing property and

[3, Theorem 2.1, p. 36], this lower bound on size holds almost surely for any c > 4.

148

6.8 Conclusions and open problems

We considered the question of the size and emergence of rigid components in a

random graph G (n, c/n) as c increases, and we proved that almost surely all rigid

components in G (n, c/n) are single edges, triangles or span Ω(n) vertices. For c > 4,

we proved that, almost surely, the largest rigid components span at least n/10 vertices.

The most natural open question is whether there is a threshold constant for rigid

components in G (n, p).

Question 6.8.1 (Existence of a threshold constant). Is there a constant cr at

which a linear-sized rigid component appears in G (n, (cr + ε)/n) almost surely, and

G (n, (cr − ε)/n) almost surely has no large rigid components?

The other important question is about the structure of large rigid components

when they emerge.

Question 6.8.2 (Structure of large rigid components in G (n, c/n)). Is there

almost surely only one large rigid component in G (n, c/n), and what are the precise

bounds on its size?

We have observed in computer simulations that when linear sized rigid components

are present, there is only one, and it is much larger than n/10.

149

BIBLIOGRAPHY

[1] P. Anderson. Through the glass lightly. Science, 267(5204):1615–1616, 1995.

[2] A. R. Berg and T. Jordan. Algorithms for graph rigidity and scene analysis.
In G. D. Battista and U. Zwick, editors, ESA, volume 2832 of Lecture Notes in
Computer Science. Algorithms - ESA 2003, 11th Annual European Symposium,
Budapest,Hungary, Springer, 2003. ISBN 3-540-20064-9.

[3] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, second edition, 2001. ISBN
0-521-80920-7; 0-521-79722-5.

[4] B. Bollobás and O. Riordan. Percolation. Cambridge University Press, New
York, 2006. ISBN 978-0-521-87232-4; 0-521-87232-4.

[5] T. Brylawski. Constructions. In N. White, editor, Theory of Matroids, Encyclo-
pedia of Mathematics and Its Applications, chapter 7, pages 127–223. Cambridge
University Press, 1986.

[6] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math. Statistics, 23:493–507, 1952. ISSN
0003-4851.

[7] M. V. Chubynsky and M. F. Thorpe. Rigidity percolation and the chemical
threshold in network glasses. J.Optoelectron.Adv.Mater, pages 229–240, 2002.
Festschrift honoring Stanford Robert Ovshinsky on his eightieth birthday. In-
cludes bibliographical references and indexes.

[8] R. Connelly. Generic global rigidity. Discrete and Computational Geometry, 33
(4):549–563, April 2005. doi: DOI:10.1007/s00454-004-1124-4.

[9] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Under-
graduate texts in Mathematics. Springer Verlag, New York, second edition, 1997.
ISBN 0-387-94680-2.

[10] H. H. Crapo. On the generic rigidity of plane frameworks. Technical Report
1278, Institut de recherche d’informatique et d’automatique, 1988.

[11] J. Edmonds. Minimum partition of a matroid into independent sets. J. Res.
Nat. Bur. Standards Sect. B, 69B:67–72, 1965.

150

[12] J. Edmonds. Submodular functions, matroids, and certain polyhedra [0270945].
In Combinatorial optimization—Eureka, you shrink!, volume 2570 of Lecture
Notes in Comput. Sci., pages 11–26. Springer, Berlin, 2003. doi: 10.1007/
3-540-36478-1 2.

[13] Z. Fekete. Source location with rigidity and tree packing requirements. Opera-
tions Research Letters, 34(6):607–612, November 2006.

[14] A. Frank, T. Kir, and A. Kriesell. On decomposing a hypergraph into k connected
subhypergraphs. URL citeseer.csail.mit.edu/frank01decomposing.html.

[15] H. Gabow and H. H. Westermann. Forests, frames, and games: Algorithms for
matroid sums and applications. Algorithmica, 7(1):465–497, December 1992.

[16] H. N. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. System Sci., 50, 1995.

[17] H. Gluck. Almost all simply connected closed surfaces are rigid. Lecture Notes
in Matehmatics, 438:225–239, 1975.

[18] J. Graver, B. Servatius, and H. Servatius. Combinatorial rigidity, volume 2 of
Graduate Studies in Mathematics. American Mathematical Society, November
1993.

[19] R. Haas. Characterizations of arboricity of graphs. Ars Combinatorica, 63:
129–137, 2002.

[20] R. Haas, A. Lee, I. Streinu, and L. Theran. Characterizing sparse graphs by
map decompositions. Journal of Combinatorial Mathematics and Combinatorial
Computing, 62:3–11, 2007.

[21] B. Hendrickson. Conditions for unique graph realizations. SIAM Journal of
Computing, 21(1):65–84, 1992.

[22] A. E. Holroyd. Existence and uniqueness of infinite components in generic rigidity
percolation. Annals of Applied Probability, 8(3):944–973, 1998.

[23] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations
of graphs. Journal of Combinatorial Theory Series B, 94(1):1–29, May 2005.

[24] B. Jackson, B. Servatius, and H. Servatius. The 2-dimensional rigidity of certain
families of graphs. Journal of Graph Theory, 54(2):154–166, 2007. ISSN 0364-
9024.

[25] D. J. Jacobs and B. Hendrickson. An algorithm for two-dimensional rigidity
percolation: the pebble game. Journal of Computational Physics, 137:346–365,
November 1997.

[26] D. J. Jacobs and M. F. Thorpe. Generic rigidity percolation: The pebble game.
Phys. Rev. Lett., (75):4051–4054, 1995.

151

citeseer.csail.mit.edu/frank01decomposing.html

[27] S. Janson and M. J. Luczak. A simple solution to the k-core problem. Random
Structures & Algorithms, 30(1-2):50–62, 2007. ISSN 1042-9832.

[28] N. Katoh and S. Tanigawa. A proof of the molecular conjecture. In Proc.
25th Symp. on Computational Geometry (SoCG’09), pages 296–305, 2009.
http://arxiv.org/abs/0902.0236.

[29] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathematics, 4:331–340, 1970.

[30] G. Laman. On graphs and rigidity of plane skeletal structures.
Journal of Engineering Mathematics (Historical Archive), 4(4):331–340,
1970. URL http://www.springerlink.com/openurl.asp?genre=article\

&id=doi:10.1007/BF01534980.

[31] A. Lee and I. Streinu. Pebble game algorihms and sparse graphs. Discrete
Mathematics, 308(8):1425–1437, April 2008. http://dx.doi.org/10.1016/j.

disc.2007.07.104.

[32] A. Lee, I. Streinu, and L. Theran. Finding and maintaining rigid components.
In Proceeding of the Canadian Conference of Computational Geometry. Windsor,
Ontario, 2005. http://cccg.cs.uwindsor.ca/papers/72.pdf.

[33] A. Lee, I. Streinu, and L. Theran. Graded sparse graphs and matroids. Journal
of Universal Computer Science, 13(10), 2007.

[34] M. Loréa. On matroidal families. Discrete Mathematics, 28:103–106, 1979.

[35] L. Lovász. A generalization of konig’s theorem. Acta Mathematica Hungarica,
21:443–446, 1970.

[36] L. Lovász. Combinatorial problems and exercises. AMS Chelsea Publishing,
Providence, RI, second edition, 2007. ISBN 978-0-8218-4262-1.

[37] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM J. Algebraic
and Discrete Methods, 3(1):91–98, 1982.

[38] L. Lovász. Matroid matching and some applications. Journal of Combinatorial
Theory, Series (B), 28:208–236, 1980.

[39] T. Luczak. Size and connectivity of the k-core of a random graph. Discrete
Math., 91(1):61–68, 1991. ISSN 0012-365X.

[40] J. Maxwell. On the calculation of the equilibrium and stiffness of frames. Philo-
sophical Magazine Series 4, Jan 1864.

[41] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, Cambridge, 1995. ISBN 0-521-47465-5.

152

http://www.springerlink.com/openurl.asp?genre=article\&id=doi:10.1007/BF01534980
http://www.springerlink.com/openurl.asp?genre=article\&id=doi:10.1007/BF01534980
http://dx.doi.org/10.1016/j.disc.2007.07.104
http://dx.doi.org/10.1016/j.disc.2007.07.104
http://cccg.cs.uwindsor.ca/papers/72.pdf

[42] C. S. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal
London Math. Soc., 36:445–450, 1961.

[43] C. S. A. Nash-Williams. Decomposition of finite graphs into forests. Journal
London Mathematical Society, 39:12, 1964.

[44] J. G. Oxley. Matroid theory. The Clarendon Press Oxford University Press, New
York, 1992. ISBN 0-19-853563-5.

[45] B. Pittel, J. Spencer, and N. C. Wormald. Sudden emergence of a giant k-core
in a random graph. Journal of Combinatorial Theory. Series B, 67(1):111–151,
1996. ISSN 0095-8956.

[46] J. S. Pym and H. Perfect. Submodular functions and independence structures.
J. Math. Anal. Appl., 30:1–31, 1970.

[47] A. Recski. A network theory approach to the rigidity of skeletal structures I.
Modelling and interconnection. Discrete Applied Math, 7:313–324, 1984.

[48] A. Recski. A network theory approach to the rigidity of skeletal structures II.
Laman’s theorem and topological formulae. Discrete Applied Math, 8:63–68,
1984.

[49] A. Recski. Matroid Theory and Its Applications in Electric Network Theory and
in Statics. Springer Verlag, 1989. ISBN 3-540-15285-7.

[50] J. Roskind and R. E. Tarjan. A note on finding minimum cost edge disjoint
spanning trees. Mathematics of Operations Research, 10(4):701–708, 1985.

[51] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly np-hard. In
Proc. of 17th Allerton Conference in Communications, Control, and Computing,
pages 480–489, Monticello, IL, 1979.

[52] B. Servatius and W. Whiteley. Constraining plane configurations in cad: Com-
binatorics of directions and lengths. SIAM Journal on Discrete Mathematics,,
12(1):136–153, 1999.

[53] I. Streinu and L. Theran. Sparsity-certifying graph decompositions. Graphs and
Combinatorics, 25:219–238, 2009. doi: 10.1007/s00373-008-0834-4.

[54] I. Streinu and L. Theran. Sparse hypergraphs and pebble game algorithms.
European Journal of Combinatorics, 30(8):1944–1964, November 2009. doi: 10.
1016/j.ejc.2008.12.018.

[55] I. Streinu and L. Theran. Natural realizations of sparsity matroids. Manuscript,
2008.

[56] I. Streinu and L. Theran. Slider-pinning rigidity: a Maxwell-Laman-type theo-
rem. Submitted to Discrete and Computational Geometry, May 2009. Available
on arXiv:0712.0031, 2009.

153

[57] L. Szegő. On constructive characterizations of (k, l)-sparse graphs. Technical
Report TR 2003-10, Egerváry Research Group, Eötvös University, Budapest,
Hungary, 2003.

[58] T.-S. Tay. A new proof of Laman’s theorem. Graphs and Combinatorics, 9:
365–370, 1993.

[59] T.-S. Tay. Rigidity of multigraphs I: linking rigid bodies in n-space. Journal of
Combinatorial Theory, Series B, 26:95–112, 1984.

[60] L. Theran. Rigid components of random graphs. In Proc. of the 21st Canadian
Conference on Computational Geometry, 2009.

[61] M. F. Thorpe and M. V. Chubynsky. Self-organization and rigidity in network
glasses. Current Opinion in Solid State Materials Science, 5:525–532, 2002.

[62] M. F. Thorpe, D. J. Jacobs, M. V. Chubynsky, and A. J. Rader. Generic rigidity
of network glasses. In Rigidity Theory and Applications, pages 239–277. Kluwer
Academic/Plenum Publishing, NY., 1999.

[63] W. T. Tutte. On the problem of decomposing a graph into n connected factors.
Journal London Math. Soc., 142:221–230, 1961.

[64] W. Whiteley. Some matroids from discrete applied geometry. In J. Bonin, J. G.
Oxley, and B. Servatius, editors, Matroid Theory, volume 197 of Contemporary
Mathematics, pages 171–311. American Mathematical Society, 1996.

[65] W. Whiteley. Rigidity and scene analysis. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 60, pages
1327–1354. CRC Press, Boca Raton New York, 2004.

[66] W. Whiteley. The union of matroids and the rigidity of frameworks. SIAM
Journal Discrete Mathematics, 1(2):237–255, May 1988.

154

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	I Sparsity, decompositions, and algorithms
	Sparse hypergraphs and pebble game algotithms
	Introduction
	Preliminaries and related work
	Related work
	Our Results

	The pebble game
	Properties of sparse hypergraphs
	Hypergraph Decompositions
	Hypergraph arboricity
	Decompositions into maps

	Pebble game constructible graphs
	Pebble games for Components and Extraction
	The basic pebble game
	Detecting components
	The pebble game with components
	Complexity of the pebble game with components

	Critical representations
	Conclusions and Open Questions

	Graded sparse graphs and matroids
	Introduction
	Preliminaries
	Sparse graphs and hypergraphs.
	Pebble games
	Related work

	Graded sparsity
	Algorithms

	Sparsity-certifying graph decompositions
	Introduction and preliminaries
	Sparse graphs
	Sparsity-certifying decompositions

	Historical background
	The pebble game with colors
	Our Results
	Pebble game graphs
	The pebble-game-with-colors decomposition
	Canonical Pebble Game Constructions
	Pebble game algorithms for finding decompositions
	Conclusions and open problems

	II Natural realizations and slider-pinning rigidity
	Natural realizations of sparsity matroids
	Introduction
	The (k,)-sparsity matroid
	Natural Realizations
	Extensions: non-uniform hypergraphs and graded sparsity
	Conclusions and remarks on rigidity

	Slider-pinning rigidity: a Maxwell-Laman-type Theorem
	Introduction
	Sparse and graded-sparse graphs
	Natural realizations for (2,2)-tight and (2,0,2)-tight graphs
	Direction network realization
	Direction network realization as a linear system
	Realizations of direction networks on (2,2)-graphs
	Realizations of direction networks on Laman graphs

	Direction-slider network realization
	Direction-slider realization as a linear system.

	Axis-parallel sliders
	Generic rigidity via direction network realization
	Bar-joint rigidity
	Slider-pinning rigidity
	Generic bar-slider frameworks
	Proof of Theorem 5.2

	III Emergence of components
	Rigid components of random graphs
	Introduction
	Preliminaries
	Proofs
	Conclusions and open problems

	Bibliography

