
SYSTEM SUPPORT FOR PERPETUAL MOBILE TRACKING

A Dissertation Presented

by

JACOB M. SORBER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2010

Computer Science

c© Copyright by Jacob M. Sorber 2010

All Rights Reserved

SYSTEM SUPPORT FOR PERPETUAL MOBILE TRACKING

A Dissertation Presented

by

JACOB M. SORBER

Approved as to style and content by:

Mark D. Corner, Chair

Emery D. Berger, Member

Deepak Ganesan, Member

Brian N. Levine, Member

Tilman Wolf, Member

Andrew Barto, Department Chair
Computer Science

to Trisha, Maren, Eliza, and Jane

ACKNOWLEDGEMENTS

This dissertation is the product of the time, ideas, advice, support, and hard work of

many people. I am indebted to them all. Specifically, I want to acknowledge:

Mark Corner, my advisor, who has funded my research since 2004. A patient mentor

through the many failures, frustrations, and victories, I would not be here without Mark’s

advice and encouragment along the way.

Professors Emery Berger, Brian Levine, Deepak Ganesan, and Tilman Wolf who served

on my committee and whose advice and encouragement on research, career planning, and

job hunting has been invaluable.

My wife, Trisha, whose selfless love has made graduate school infinitely more enjoy-

able; and my daughters, Maren, Eliza, and Jane, who always think my research is cool and

who happily provide diversions when I need a break.

The excellent members (past and present) of the PRISMS lab, especially Nilanjan

Banerjee, Aruna Balasubramanian, Ben Ransford, Shane Clark, Matt Brennan, Alex Kostadi-

nov, and Matt Garber, with whom I have worked on several different research projects.

Also, Allison Clayton for recording lectures for me during chemotherapy in 2004.

My parents and brothers who have supported me throughout my life and have never

discouraged a crazy idea. My grandfather, Glen Nelson, whose positive outlook and en-

couragement have been a great source of help to me and my family.

Matt Gruwell, Mark and John Hyde, Paul Picard, Harry Remer, and others for flyfishing

trips, bike rides, and other diversions.

All of my other family and friends for the many ways they have made graduate school

and life much more enjoyable. It would be impossible to list them all.

v

ABSTRACT

SYSTEM SUPPORT FOR PERPETUAL MOBILE TRACKING

SEPTEMBER 2010

JACOB M. SORBER

B.Sc., BRIGHAM YOUNG UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Mark D. Corner

Recent advances in low-power electronics, energy harvesting, and sensor technologies

are poised to revolutionize mobile and embedded computing, by enabling networks of mo-

bile sensor devices that are long-lived and self-managing. When realized, this new gener-

ation of perpetual systems will have a far-reaching and transformative impact, improving

scientists’ ability to observe natural phenomena, and enabling many ubiquitous computing

applications for which regular maintenance is not feasible.

In spite of these benefits, perpetual systems face many programming and deployment

challenges. Conditions at runtime are unknown and highly variable. Variations in har-

vested energy and energy consumption, as well as mobility-induced changes in network

connectivity and bandwidth require systems that are able to adapt gracefully at run-time

to meet different circumstances. However, when programmers muddle adaptation details

with application logic, the resulting code is often difficult to both understand and maintain.

vi

Relying on system designers to correctly reason about energy fluctuations and effectively

harness opportunities for cooperation among mobile nodes, is not a viable solution.

This dissertation demonstrates that perpetual systems can be designed and deployed

without sacrificing programming simplicity. We address the challenges of perpetual opera-

tion and energy-aware data delivery in the context of several applications, including in situ

wildlife tracking and vehicular networks. Specifically, we focus on two specific systems.

Eon, the first energy-aware programming language, allows programmers to simply express

application specific energy policies and then delegate the complexities of energy-aware

adaptation to the underlying system. Eon automatically manages application energy in or-

der to indefinitely extend a device’s operating lifetime, requiring only simple annotations

from the programmer. The second system, Tula, is a system that automatically balances the

inherently dependent activities of data collection and data delivery, while also ensuring that

devices have fair access to network resources. In our experiments, Tula performs within

75% of the optimal max-min fair rate allocation.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Thesis Statement . 2
1.2 Dissertation Overview . 2

2. PERPETUAL SYSTEMS . 4

2.1 Energy Awareness . 6

2.1.1 Modeling Energy . 7
2.1.2 Measuring Energy . 7

2.2 Adapting to Changing Conditions . 9
2.3 Sparse Mobile Networks . 10

3. APPLICATIONS AND DEPLOYMENTS: MOBILE TRACKING 12

3.1 Wildlife Tracking . 12

3.1.1 TurtleNet . 14
3.1.2 Mongooses . 15
3.1.3 Discussion . 16

3.2 UMass DieselNet . 17

viii

4. EON: LANGUAGE AND RUNTIME SUPPORT FOR
PERPETUAL SYSTEMS . 18

4.1 The Eon Programming Language . 20

4.1.1 Basic Eon Syntax . 21
4.1.2 Eon Extensions . 24

4.1.2.1 Power states . 24
4.1.2.2 Adaptive Timers . 25
4.1.2.3 Energy-State Based Paths . 26
4.1.2.4 Implementing Concrete Nodes . 26
4.1.2.5 Discussion . 27

4.2 The Eon Runtime System . 28

4.2.1 Design Goals . 28
4.2.2 Energy Adaptation Algorithm . 29

4.2.2.1 Energy Attribution and Consumption 30
4.2.2.2 Energy Source Model . 31

4.3 Implementation and Deployment . 32

4.3.1 Software . 32

4.3.1.1 Compiler . 32
4.3.1.2 Runtime System . 33
4.3.1.3 Trace-Based Simulator . 33

4.3.2 Hardware . 33

4.4 Deployment . 34

4.4.1 Turtle Tracking . 35
4.4.2 Automobile Tracking . 36
4.4.3 Remote Camera . 37

4.5 Evaluation . 37

4.5.1 User Study . 37
4.5.2 Adaptation . 41
4.5.3 Impact of Energy-State Based Paths . 43
4.5.4 System Overhead . 45
4.5.5 Measurement Accuracy . 46
4.5.6 Impact of Battery Capacity . 47

ix

4.6 Related Work . 48
4.7 Discussion . 50

5. TULA: FAIR AND BALANCED DATA DISSEMINATION 51

5.1 Challenges for Perpetual Networks . 53

5.1.1 Challenges . 55
5.1.2 Design Goals . 56

5.2 Tula Architecture . 58

5.2.1 Adapting Sensing . 59
5.2.2 Adapting Routing . 60

5.3 Rate Allocation . 60

5.3.1 Objective function . 62
5.3.2 Energy conservation constraint . 62
5.3.3 Downstream constraint . 63
5.3.4 Upstream constraint . 63

5.4 Incorporating Routing . 64

5.4.1 Routing through multiple nodes . 64
5.4.2 Replication . 67
5.4.3 Transitive routing . 67
5.4.4 Routing through an upstream neighbor . 68

5.5 Implementation . 69

5.5.1 NesC implementation . 69
5.5.2 Trace-based simulator . 70

5.6 Evaluation . 70

5.6.1 Methodology . 70

5.6.1.1 Trace collection . 72
5.6.1.2 Optimal rate allocation using an oracle 73

5.6.2 Network Performance . 73

5.6.2.1 Static rate allocation policies . 73
5.6.2.2 Semi-adaptive rate allocation policies 74
5.6.2.3 Network performance over DieselNet and Mesh 75

x

5.6.3 Fairness . 76
5.6.4 Overhead . 77

5.7 Related Work . 78

5.7.1 Mobile sensor networks . 78
5.7.2 Low power sensor networks . 79
5.7.3 Challenged networks . 79
5.7.4 Fair network rate allocation . 79

5.8 Discussion . 80

6. CONCLUSIONS AND FUTURE WORK . 81

6.1 Conclusion . 81
6.2 Future Work . 82
6.3 The Final Word . 83

BIBLIOGRAPHY . 84

xi

LIST OF TABLES

Table Page

4.1 Measurements of Eon overhead in comparison to GPS readings. 46

5.1 List of inputs that are exchanged between n and its neighbors to solve the
COP. Variables marked (up) are exchanged from n’s upstream
neighbors, and variables marked (down) are exchanged with n’s
downstream neighbors. 64

5.2 Variables that are estimated locally by n to solve the COP 64

5.3 Energy to sense vs. send for common sensors, and the XE1205 low-power
radio . 71

5.4 Measurements of Tula overhead. 78

xii

LIST OF FIGURES

Figure Page

2.1 Energy traces from solar-powered GPS devices over a two week period. 5

3.1 An early TurtleNet test deployment on a snapping turtle. 13

3.2 A gopher tortoise equipped with a TurtleNet tracking device. 13

3.3 A small indian mongoose (Herpestes auropunctatus) equipped with a
tracking device. 15

4.1 A condensed version of Eon source code for the tracking application used
in TurtleNet . 22

4.2 A graphical representation of the simplified turtle tracking code, shown in
Figure 4.1 . 23

4.3 Sample State Order. 25

4.4 The two implementations of the energy measurement and charging board
with a Mica2Dot and a TinyNode. 34

4.5 Photos of two of the test applications, a turtle tracking device, and a
remote camera. 35

4.6 User study results . 40

4.7 The average number of daily GPS readings taken are shown for different
energy policies and energy traces. Despite large variations in energy
supply, Eon is able to accurately approximate the best sustainable
energy policy. 43

4.8 This figure shows the amount of each trace’s energy that is consumed by
different parts of the system. The percent dead time is also shown for
traces that are not sustainable, above the corresponding bar. 44

xiii

4.9 Frame rates for a remote camera application are shown over a 16-month
trace, comparing Eon to two static policies. Periods of time when the
Eon camera disabled streaming as well as periods of dead time for the
static policies are shown across the bottom. 45

4.10 Device dead time is shown for different battery sizes for systems using
one and three solar panels. Performance using Eon’s EWMA predictor
is compared with perfect energy prediction (Oracle). The benefit of
better energy prediction is most notable when using a very small
battery and the cost of prediction errors is greatest. 48

5.1 Daily solar energy is shown for a TurtleNet node before and after
hibernation. 53

5.2 The average daily energy harvested by each TurtleNet node during a
1-month trace. 54

5.3 Harvested energy plotted against number of meetings for each node.
Energy-rich nodes are not necessarily better connected and vice
versa. 55

5.4 CDF of the pair-wise meeting frequency during 1 month of TurtleNet
operation. While some meetings occur too infrequently to be very
useful, 50% of the node pairs repeat at least 5 times. 57

5.5 The Tula architecture. 58

5.6 A simplified example to illustrate the Tula distributed allocation
algorithm. The algorithm is executed by node n, whose upstream
neighbors are u1, u2, . . . uk . 61

5.7 Energy allocation problem formulation solved by node n. The goal is to
estimate rn, the local sensing rate and ri, the rate at which n can route
packets for each of its neighbors ui . 65

5.8 Scenarios that complicate the simple Tula allocation algorithm 66

5.9 Comparison of three static allocation policies, Tula and Optimal. The
policies are compared across three metrics: battery dead time, energy
wasted since the battery was full and could not charge, and average
delivery rate. Tula avoids dead time and wasted energy successfully,
and delivers within 92% of the oracle-based optimal policy. 71

xiv

5.10 Comparison of two semi-adaptive allocation polices, Tula and Optimal.
The comparison is performed for different sensor applications with
varying sensing to routing ratio. 72

5.11 Delivery rate of Tula normalized to the optimal delivery rate over three
networks configurations: TurtleNet, a static 4x4 grid mesh network,
and the DieselNet vehicular traces. 76

5.12 TurtleNet traces: Average per-node delivery rate . 77

5.13 DieselNet traces: Average per-node delivery rate . 77

5.14 Mesh: Average per-node delivery rate . 77

xv

CHAPTER 1

INTRODUCTION

Due to three key innovations—small programmable sensors, energy harvesting [41,74],

and disruption tolerant networking—mobile systems are poised to answer many ques-

tions about a wide range of natural and manmade systems. Recent efforts focusing on

zebras [88], whales [25], turtles [74], people [37], and vehicles [20] have shown that in

situ monitoring using embedded devices can provide unprecedented and transformational

data. When these systems harvest energy from their environment and gather data in a robust

manner, they can become perpetual and self managing, streaming data directly to scientists

for decades.

Unfortunately, current mobile software systems have lagged behind. In particular, many

biological systems are inherently sparse and mobile and require longitudinal, multi-sensor

deployments, something that is poorly supported by current energy management systems.

Traditional energy management in embedded systems and applications has largely ne-

glected the challenges of two critical factors: perpetual operation, a paradigm by which

nodes are assumed to operate forever; and mobility, which creates variations in network

connectivity and bandwidth as well as energy consumption and production. Node mobility,

unpredictable network connectivity, and uncertain energy availability represent the greatest

challenges for untethered systems.

Expecting programmers to understand and correctly address these dynamic conditions

at run time is unreasonable. Using standard programming languages and tools to build

systems that adapt to shifting conditions, system designers are forced to incorporate adap-

1

tation with the core logic of the system. Such programs are difficult to port, maintain, and

understand, even for experts.

1.1 Thesis Statement

In response to the opportunities and challenges presented by perpetual systems, this

dissertation seeks to establish the following thesis:

Untethered mobile systems can operate perpetually and deliver data effectively, with-

out placing undue burden on system designers.

1.2 Dissertation Overview

In support of this thesis, we present novel programming language, runtime system, and

network techniques that allow system designers to simply build mobile tracking systems

that are energy-aware and self-managing. The organization of this dissertation is as follows.

Chapter 2 describes the benefits of perpetual systems, as well as the challenges pre-

venting their deployment, including variation and uncertainty in both energy harvesting

and energy consumption. We outline the fundamental requirements for perpetual mobile

systems—namely, making mobile devices energy-aware, adapting system behavior in re-

sponse to energy information, and communication in the presence of dynamically changing

network conditions.

We describe, in Chapter 3, the focus application for this dissertation—mobile tracking—

as well as the deployments and mobile networks that we use to both motivate and evaluate

our work. The primary example is TurtleNet [74], a network of 17 mobile tracking devices

that we deployed in 2008 on endangered tortoises in collaboration with Biologists at the

University of Southern Mississippi. We also describe another study focused on invasive

mongooses, as well as UMass DieselNet, a vehicular network including more than 40 tran-

sit busses servicing the Amherst, MA area. These systems contribute motivation and useful

data traces that we have used in this work.

2

Chapter 4 describes Eon a language and runtime system that simplifies the writing, de-

bugging, and maintaining of adaptive programs. Eon explicitly exposes the structure of

a program’s data and control flow, and provides a simple way to associate specific pro-

gram behavior with energy preferences. The Eon runtime system uses this information to

measure energy harvesting and consumption and automatically adjust program behavior as

energy conditions change.

Chapter 5 describes Tula, a system that extends Eon to account for network cooperation

in addition to managing local energy resources. Tula brings together adaptive sensing (e.g.

Eon [74]) and disruption tolerant networking [5, 75] in order to balance the inherently

dependent activities of sensing (data collection) and data delivery. Tula also ensures that

devices have fair access to network resources.

Finally, Chapter 6 describes our conclusions and future work.

3

CHAPTER 2

PERPETUAL SYSTEMS

Research on mobile computing systems has traditionally operated under one of two

assumptions: (1) that every mobile device will eventually run out of energy, or (2) that

every device has access to a wired energy source, such as a vehicle’s battery or a user

who ensures that the device’s battery is periodically recharged. These assumptions, while

appropriate for vehicular networks [6,20], laptops, and mobile phones, encourage designers

to build systems that depend heavily on either infrastructure or frequent user maintenance.

Many proposed applications and systems—including pervasive computing applications

with tens-to-hundreds of devices per user [62] and networks of sensors collecting scientific

data [25, 74, 83] in remote locations—violate these assumptions. For these systems, suc-

cess requires that devices operate for long periods of time without wired infrastructure and

without regular maintenance. By harvesting solar, wind, or vibration energy [49, 59, 69]

from the environment, it is possible for a mobile device to operate perpetually, limited

only by the eventual decay of its hardware components. Some ideal applications for per-

petual systems include wildlife tracking (TurtleNet [74], ZebraNet [88]), volcanic eruption

monitoring [83], and forest fire detection [36, 58].

However, despite their deployment advantages, these perpetual systems face numerous

challenges.

• Dynamic energy availability. Mobile devices that rely on environmental energy

must cope with changing energy conditions. Harvested energy is often difficult

to predict, and may change dramatically with location, time of day, time of year,

weather, and other environmental factors. An example of this variation is shown in

4

Avg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

200

400

600

800

1000

Day

En
er

gy
 /

Da
y

(J
)

(a) Daily solar energy harvested by two devices.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

Time (days)

E
n

e
rg

y
 /
 r

e
a
d

in
g

 (
J
)

(b) The amount of energy needed to take a GPS read-
ing over the same period.

Figure 2.1. Energy traces from solar-powered GPS devices over a two week period.

Figure 2.1(a). The amount of energy gathered by two mobile, solar-powered devices

over the same two-week period is plotted on a per-day basis. Although both devices

show elements of the same general weather trend, the two devices show significant

variation in the amount of gathered energy.

• Varying energy costs. The amount of energy required to perform tasks also may vary

widely, making it difficult to plan for future energy needs. Figure 2.1(b) shows the

amount of energy that one device required to acquire individual GPS readings over

the same two week period as Figure 2.1(a). Because the device is mobile and cloud

cover, foliage, and terrain vary, the amount of time (and thus energy) required to

synchronize with satellites varies over an order of magnitude. Comparing the graphs

from Figures 2.1(a) and 2.1(b) shows that times of substantial cost do not necessarily

correspond with times of plentiful energy; in this example, they are nearly opposite.

• Uncertain network conditions. Perpetual systems are often deployed without any

prior knowledge about future network conditions. A device may never have a di-

rect wireless connection to the network, and must rely on its neighbors’ mobility

5

for communication. Without basic parameters like connectivity, bandwidth, energy

availability in the network, it is impossible to appropriately tune routing and power-

management.

In order to cope with shifting energy conditions and changing topologies, perpetual sys-

tems must adapt their behavior as conditions change. All system tasks—data processing,

communication, sensing, etc—consume precious energy, and consuming too much energy

will exhaust energy reserves, leaving devices unable to provide desired functionality. Con-

versely, an overly conservative approach wastes resources and needlessly sacrifices system

performance. In order to avoid both of these extremes, perpetual systems must be able to

(1) reason about energy conditions, (2) trade application fidelity for energy savings, and (3)

communicate over sparse and changing connectivity.

2.1 Energy Awareness

Historically, computing systems have ignored energy as much as possible. A desktop

computer ignores energy completely. In response to limited battery capacity, a laptop, PDA,

or mobile phone estimates the energy stored in its battery, notifying the user when more

energy is needed. In this latter case, the user is energy-aware and assumes responsibility

for energy management, allowing the device’s operating system and programs to remain

energy-oblivious.

However, increases in scale and distance from users, reductions in size and energy

storage, and a desire for predictable system lifetimes are expanding the role of energy in

untethered computing systems. Recent systems have tuned network protocols [33, 72] and

automatically adjusted sensor duty cycles [44] based on energy information provided by a

variety of models and measurement techniques.

6

2.1.1 Modeling Energy

Using software models to estimate energy consumption is an attractive solution, since

most current hardware platforms are still unable to measure their own energy consumption.

The ECOSystem [87] estimated a laptop’s energy consumption based on the utilization

of the CPU, disk, and network. Dunkels et al. [17] similarly provided a linear model for

mote-class sensor devices which uses information about CPU states, communication, and

various sensor components to estimate consumption. Similar energy accounting function-

ality is also provided by a several sensor network simulators (e.g. PowerTOSSIM [73],

AEON [48]).

With these tools and models enable system designers to accurately reason about the

energy-related implications of their decisions with very little system overhead. Software-

only approaches can also be deployed without special hardware support; however, software-

only approaches also suffer from two serious limitations. 1) Every time a new hardware

component is introduced, energy measurements must be collected in all of its power states

and the model must be updated—a tedious and often error-prone process. 2) As mentioned

previously, energy consumption can vary due to environmental conditions like temperature,

foliage cover, device orientation, satellite configuration, and battery voltage. As a result,

systems that estimate energy consumption using only software models may perform poorly

when deployed different then those found in the lab.

2.1.2 Measuring Energy

When software-only models prove inadequate, several approaches have been proposed

for measuring a device’s energy profile. Many recent platforms provide information about

battery fullness either by directly measuring the battery voltage or using more sophisticated

hardware techniques. Measuring a platform’s battery voltage is fast, consumes very little

energy, and is supported internally, by many microcontrollers; however, variations due

to temperature, chemistry, and battery aging as well as the nonlinear mapping between

7

voltage and stored energy make accurate estimation difficult. Better fullness estimates

can be achieved using a fuel gauge IC—commonly found in laptop battery packs—which

measures energy consumed over time and compensates for temperature fluctuations, aging,

and battery chemistry.

In addition to estimating battery fullness, several approaches for fine-grain energy ac-

counting for battery-powered systems have also been explored. PowerMeasure [52] uses

a laptop’s built-in fuel gauge chip to try and discriminate the power consumed by vari-

ous components—a method also used in the Nemesis operating system [63], to discover

per-process power consumption. Later, the PowerScope [26] used an external oscilloscope

to measure individual process power consumption, as well as the energy consumption of

blocks of code using annotations. Additionally, systems like SPOT [40] and iCount [18]

provide energy accounting solutions for low-power sensors. Both allow systems to esti-

mate per-process or per-task energy consumption, at a very small cost in extra hardware

and energy consumption. The simplest of the two, iCount, requires only a single wire (or

board trace) from a switching power supply (already included in most low power sensor

devices) to one of the microcontrollers counter pins.

In addition to measuring battery fullness and energy consumption, perpetual systems

must also account for energy harvesting. Harvested solar [49], wind [69], or vibration [59]

energy from the environment depends on weather patterns and device mobility, and cannot

be predicted with only a software model. Algorithms for predicting solar energy have been

proposed [43, 44] that use information about past harvesting, time of day, etc. to reduce

the uncertainty, however, these algorithms all depend on the ability to measure a device’s

energy harvesting.

When a mobile device is able to measure its energy reserves (e.g., battery fullness),

its energy consumption, and its energy harvesting, it can be deployed into unknown envi-

ronments without exhaustive measurement and profiling in the lab. Designers can change

sensors, solar panels, or switch harvesting technologies without changing their applica-

8

tions. Section 4.3.2 describes the hardware techniques we have used in this dissertation for

measuring energy harvesting and consumption, allowing software to accurately estimate

the energy cost of individual program tasks at run-time. By providing a clear picture of a

device’s energy budget and relating its behaviors to energy consumption, this information

makes it possible to accurately adapt as conditions change.

2.2 Adapting to Changing Conditions

Energy awareness is key to the success of any perpetual system, but systems must also

make effective use of that energy information. System designers can trade performance

and fidelity for energy savings by adjusting system execution in a variety of ways—using

low power CPU modes [14], reducing the duty cycle of power-hungry components [68],

adjusting the transmit power of wireless radios [84], executing alternative low-power al-

gorithms [65], and disabling optional low-priority functionality [74]; however, employing

these adaptation techniques effectively is often challenging, even in simple systems.

One reason for the difficulty is that most systems have multiple significant energy con-

sumers, rather than a single dominant one. For example, a device may have sensors (e.g.,

accelerometer, magnetometer, or GPS receiver) to collect data, a CPU to process that data,

and a radio to deliver the processed results. Sensing, processing, and networking tasks all

add to the system’s energy load, and no single energy management approach (e.g., CPU

modes, sensing rates, or radio transmit power) is likely to extract the energy savings neces-

sary to ensure perpetual operation. In order to achieve the systems largest dynamic power

range, multiple techniques must be used in concert.

Dependences between individual energy management techniques complicate matters

further. Gathering sensor data at a lower rate also reduces the amount of data that must be

transmitted over the radio—thus reducing the energy consumption of both the radio and

sensors. Conversely, a simple data compression algorithm may require less CPU energy

9

than a more complex algorithm, while the lower compression ratio means more data to

transmit—potentially increasing the system’s energy load.

Adaptation decisions made without application-specific information may also result in

behavior that is not useful. For example, sensor data gathered too infrequently may make

it impossible to detect interesting events. Data gathered too often, may also provide no

benefit while consuming energy that could be spent elsewhere. Some sensors or types of

information may be more interesting or valuable than others. Prioritizing them also requires

an understanding of the application and its goals.

Finally, the greatest challenge for those designing adaptive systems is that traditional

programming languages and operating systems force designers to incorporate all of these

adaptation policies, constraints, and algorithms with the core logic of the system. This

muddling of system priorities results in programs that are difficult to port, maintain, and

understand. There is also a great deal of runtime functionality that must be replicated for

each new perpetual system, and every time the system is deployed on a new hardware

platform with new energy characteristics. In Chapter 4 describes Eon, a language and

runtime system that simplifies the programming of perpetual systems.

2.3 Sparse Mobile Networks

The ability to communicate and deliver data is a critical requirement of nearly all per-

petual systems, and traditional networking approaches do not account for the uncertain

connectivity, bandwidth, and energy resources of perpetual systems.

Prior work on perpetual systems either use local energy adaptation techniques with-

out considering data delivery [53, 74] or use adaptation techniques for purely static net-

works [24]. However, adapting to both energy and network variations is considerably more

difficult. Collecting sensor readings and delivering those readings costs energy; however,

sensing and delivery are inherently dependent and must be balanced if we are to gather as

much data from each node as the system’s limited energy and bandwidth resources will

10

permit. Sensing more data than can be delivered by the network is not useful, while gather-

ing less underutilizes the system’s potential. Similarly, systems that depend on cooperative,

replicating routing protocols [5, 75], must balance the energy devoted to sensing and rout-

ing their own data, with energy used to route data for other nodes. Techniques for balancing

these various networking concerns are described in Chapter 5.

11

CHAPTER 3

APPLICATIONS AND DEPLOYMENTS: MOBILE TRACKING

Perpetual systems—those that operate perpetually using harvested energy—represent a

new class of mobile system that promises to enable a wide and largely unexplored range of

potential applications. This vision includes systems that promise transformational advances

by monitoring the movements of animals [25, 74, 88], vehicles [6, 10, 20], and people [37].

Whether the goal is to advance scientific understanding, improve road maintenance, pro-

vide ubiquitous connectivity, or effectively share media within social networks, in situ mo-

bile tracking systems involve longitudinal deployments, size constraints, small batteries,

and mobile disruption-prone networks—the core challenges of any perpetual system.

This dissertation focuses specifically on addressing the challenges of these perpetual

mobile tracking systems. The performance and behavior of such systems depends heavily

on dynamic conditions that are difficult to predict. As a result, we inform our technical

solutions and test our hypotheses, within the context of several mobile systems—focusing

on Turtles, Mongooses, and transit buses—developed and deployed as part of the UMass

DOME (Diverse Outdoor Mobile Environment) testbed [1]. This chapter describes the

details of these experimental deployments that are relevant to our thesis.

3.1 Wildlife Tracking

Our understanding of the natural world is heavily dependent on gathering data about

habitat usage, social behavior, long-term population trends, and movement of species. Un-

fortunately, In spite of decades-worth of study, the movements and behaviors of most ani-

mal species in the wild are completely unknown. Scientists studying animal behavior cur-

12

Figure 3.1. An early TurtleNet test deploy-
ment on a snapping turtle.

Figure 3.2. A gopher tortoise equipped with
a TurtleNet tracking device.

rently rely almost exclusively on manual observation and trapping, a highly labor-intensive

and low-fidelity process. Mobile untethered systems hold great promise for addressing

this challenge by providing unprecedented data resolution and quantity, and by minimizing

human influence on test populations. Rather than manually tracking a small number of

animals, large numbers of perpetual tracking devices will automatically stream data to sci-

entists for years. This shift promises to answer long-debated questions about habitat usage,

population trends, and complex interactions between different species, including humans.

The ZebraNet project [88] provided an initial proof-of-concept for in situ mobility

tracking focusing on tracking a small number of Zebras in central Kenya. These first de-

vices were large (> 0.5kg) and masked energy variations using large batteries and solar

panels—too large for most animals to carry. Similarly, tracking projects using satellite

tags, like WhaleNet [25] have also shown impressive results for animals large enough to

carry the satellite tags. While not useful for all but the largest animal species, these initial

efforts have set the stage for future mobile tracking systems.

In light of these potential benefits and remaining challenges, we are working with bi-

ologists to fundamentally change the way wildlife tracking studies are done—making in

situ monitoring a viable option for animals both small and large. To date, this cooperation

has resulted in a series of system deployments on threatened tortoises and an anticipated

deployment on invasive mongooses.

13

3.1.1 TurtleNet

TurtleNet is a mobile network affiliated with the UMass DOME [1] testbed and de-

ployed with the goal of overcoming many of the challenges faced by perpetual sensing

systems. TurtleNet is a collaborative effort, involving biologists from the University of

Massachusetts Amherst and the University of Southern Mississippi and studying several

different species of turtles and tortoise.

Many turtle and tortoise species are currently in decline due to roadway death, poach-

ing, and the development of habitat [21]. However, current conservation efforts are ham-

pered by a general lack of detailed movement data. Current tracking methods involve

manually tracking the animals using radio telemetry and are limited to a single location

fix every 2–3 days for each animal being studied. The turtles often travel more than 1 km

between fixes and practical concerns preclude the collection of data at night.

We initially conducted small-scale test deployments on two species of turtles: Wood

Turtles (Clemys insculpta) and Common Snapping Turtles (Chelydra serpentina). Subse-

quent larger scale deployments on Gopher Tortoises (Gopherus polyphemus) began in Fall

2008. Photos of two of these deployments are shown in Figures 3.1 and 3.2. These various

tests and deployments have allowed us to explore packaging and attachment methods, eval-

uate new hardware and runtime systems, and to gain experience in working with biologists

and animals.

Our current deployment consists of 17 tracking devices attached to tortoises. Each

device consists of a Shockfish TinyNode (processor, flash storage, and low-power radio),

a solar panel, a battery, multiple sensors, and additional energy measurement hardware.

During operation, the devices record connection opportunities with neighboring nodes and

periodic sensor readings, including temperature, GPS coordinates, battery level, solar en-

ergy harvested and energy consumption.

Unlike traditional networks, these nodes rarely have an end-to-end connection to one of

the two deployed GPRS-enabled base stations, and devices must opportunistically deliver

14

Figure 3.3. A small indian mongoose (Herpestes auropunctatus) equipped with a tracking
device.

collected data using mobile-to-mobile routing [5, 76]. When two mobile nodes are within

communication range, called a connection opportunity, they exchange data. This data is

stored and then forwarded during subsequent connection opportunities until it is eventually

delivered to the sink.

3.1.2 Mongooses

In addition to preserving animal habitats, biologists are also concerned with the man-

agement of invasive species. The small Indian mongoose (Herpestes auropunctatus), shown

in Figure 3.3, was introduced to the island of St. Croix in the late 19th century to control

rats. They are presently considered to be a nuisance as well as a possible threat to local

fauna, including endangered sea turtle nesting sites, based on tracks found near exhumed

nests [61]. Today, biologists study wild mongooses by trapping them and implanting small

RFID PIT tags under their skin, so that each individual can be identified when recaptured

later. This approach provides only a very coarse view of both movement and behavior,

which is inadequate to determine whether mongooses pose a significant threat to indige-

nous species, or how best to mitigate their impact.

15

We are currently in the early-stages of another collaboration with biologists at UMass

Amherst and Westfield State College focused on addressing these concerns. The biological

goals of this project are similar to TurtleNet; however, differences in animal mobility (faster

and smaller animals) as well as energy harvesting performance (mongooses don’t bask)

provides additional challenges requiring different techniques.

3.1.3 Discussion

In both TurtleNet and the mongoose study, the use of small mobile embedded devices

has the potential to provide more detailed data and enable researchers to manage deploy-

ments involving larger numbers of animals. It is important to note, however, that this dis-

sertation is not focused on biological questions specifically—all animal care matters have

been handled by biologists—but rather on the systems design issues raised by working with

real systems.

Specifically, both studies face a variety of challenges common to many untethered mo-

bile systems, including size constraints, energy variations, and highly nonuniform network

conditions.

Size and weight limitations are inherent to wildlife tracking applications. Animal safety

guidelines limit devices to no more than 5% of the animal’s weight—less than 50g in our

deployment scenarios. Additionally, devices must not interfere with normal movement.

For example, tortoises are not able to adjust to unexpected increases in carapace height,

potentially resulting in problems navigating tight spaces. While these restrictions clearly

preclude the use of heavy or bulky components, they also critically limit energy storage

capacity. Since large deployments in remote locations make frequent battery changes or

other maintenance unmanageable, such systems must conserve energy in favor of extended

system lifetimes.

16

3.2 UMass DieselNet

In addition to wildlife tracking application, this dissertation also benefits from UMass

DieselNet—a mobile network of 40 transit busses—which has provided service to Amherst,

MA and the surrounding communities since 2004. In DieselNet, participating busses are

each equipped with a small server (Hacom OpenBrick) running Ubuntu Linux, a GPS re-

ceiver, and multiple radio interfaces (WiFi, 3G, and 900MHz Digi XTend). Commuters can

connect to the server over WiFi, which provides Internet connectivity through the AT&T

3G network. Users can also use an on-line bus locator to determine whether their bus is on

schedule. Finally, DieselNet provides a testbed and a large body of mobility and connectiv-

ity data that has enabled a wide range of research on disruption-tolerant and heterogenous

networks [5, 9, 11, 89, 90]

For the purposes on this dissertation, DieselNet provides a valuable contrast to TurtleNet,

with faster-moving nodes, shorter connection events, regular mobility patterns, and greater

bandwidth. We use the collected mobility and connectivity data from DieselNet in our de-

sign and experiments, in order to provide more generally applicable results. We discuss

these experiments in further detail in Section 5.6.

17

CHAPTER 4

EON: LANGUAGE AND RUNTIME SUPPORT FOR
PERPETUAL SYSTEMS

Throughout our experience in building deployable perpetual systems we have repeat-

edly found that the greatest impediment is programming adaptive systems. Designing adap-

tive code using traditional tools leads programmers to muddle adaptation details with the

core logic of the system—resulting in programs that are difficult to port, maintain, and

understand.

For instance, when porting programs between platforms with different energy charac-

teristics, large sections of code must be changed to compensate for increases or decreases

in energy consumption and production. Worse yet, incorporating the resource manage-

ment preferences of scientists necessarily requires a deep understanding of the rest of the

program, an untenable solution.

In this chapter, we describe techniques that significantly ease the burden placed on pro-

grammers during the development of perpetual mobile systems while opening the tuning

of the resource management system to less technical users, like scientists. Specifically, this

chapter describes Eon, a new language and runtime system designed for programming per-

petual computing systems. To our knowledge, Eon is the first energy-aware programming

language. Eon is a declarative coordination language, based on the Flux language [12],

that allows programmers to build programs from code written in a variety of languages,

including nesC and C. Eon provides a simple way to associate particular control flows with

abstract energy states that represent the available energy in the system. The Eon runtime

system executes only those flows that the Eon programmer has marked as suitable for the

18

given energy state. Thus, an Eon programmer can easily write programs that provide dif-

ferent functionality or data quality based on current and future energy availability.

This flow and energy state information enables automatic energy management, allowing

the runtime system to handle the complexities of adaptation. In response to changes in

energy, the Eon runtime system dynamically adjusts the execution rate of flows and enables

or disables application features. Because Eon programs describe energy abstractly (e.g.,

“high” and “low”), they are portable to hardware platforms with arbitrary energy profiles.

The language itself is also highly portable: the current Eon compiler generates code for a

variety of embedded platforms and operating systems, including Linux and TinyOS.

To demonstrate Eon’s utility and portability, we have built and deployed several Eon-

based perpetual systems, including two solar-powered systems: one for tracking turtles and

automobiles using GPS and another for capturing and transmitting images from remote

locations. To quantify the ease of programming perpetual systems in Eon, we conducted a

user study showing that programmers, who had just learned Eon, outperformed a control

group using C—taking only 0.25% as much time to produce equally efficient code.

Outline: The remainder of this chapter is organized as follows. First, Section 4.1 de-

scribes the Eon language, focusing on the description of flows and energy states. Next, Sec-

tion 4.2 describes Eon’s automatic energy management algorithms. Section 4.3 describes

implementation details of the hardware and software systems, including the compiler, run-

time system, and the trace-based simulator that the compiler can generate to predict per-

formance before deployment. Section 4.4 describes three Eon-based perpetual systems we

have built. Section 4.5 presents empirical results both for our user study and for one of

the perpetual systems deployments. Finally, Section 4.6 discusses the most closely-related

work.

19

4.1 The Eon Programming Language

Eon is a domain-specific language intended to support a broad range of perpetual sys-

tems. These include energy-limited systems that follow an event-response model of opera-

tion, such as devices that respond to external stimuli or to periodic, internally created inter-

rupts. Eon combines both simplicity and elegance: its goals are to make energy-adaptive

systems simple to write and easy to understand and to enable the use of optimized energy-

aware runtime systems that automatically choose the best sustainable level of service.

An Eon programmer writes code that describes the sequence of operations that fol-

lows in response to external events and the desired adaptation policy, i.e., which sequences

(flows) correspond to higher or lower power energy states. The Eon runtime system mea-

sures energy consumption and predicts the probable energy costs of each operation, the

probable workload in the system, and the probable amount of energy the system will har-

vest. The runtime system then automatically adjusts the execution of flows for each energy

state as indicated by the programmer.

It would be possible to build Eon’s energy-aware features into either an entirely new

general-purpose programming language or as extensions to an existing language. The first

approach would require programmers to learn a new language while muddling basic con-

structs such as loops and conditionals with policy. This approach would also preclude

the reuse of the vast amount of code already written in general purpose languages. Using

language annotations, on the other hand, would simplify adoption for new programmers;

however, the annotation syntax would have to be adapted to each new language. The result-

ing system would still mix the issues of adaptation with program logic. Most importantly,

conventional programming languages do not explicitly manage program flows: these are

implicit in program execution, and thus difficult to annotate.

Instead, we have designed Eon as a coordination language [74] that ties together code

written in a conventional programming language, like Java, C, or nesC [29]. This approach

provides programmers with a high level of abstraction that separates the details of energy

20

adaptation from program logic without sacrificing the reuse of existing code. Eon currently

supports a range of different languages (C/nesC) and operating systems (Linux/TinyOS).

This approach also makes it simple to port an Eon program to a new platform. For

example, porting an Eon program from an XScale-based device to a mote-class device

required only modification of the platform-specific code used to implement the program

logic. This portability makes Eon a natural candidate for use in embedded devices, given

the wide variety of platforms, operating systems, and languages currently in use.

4.1.1 Basic Eon Syntax

A coordination language describes the flow of data through different components. We

have built Eon on top of an existing coordination language called Flux [12], due to its fea-

tures, simplicity and available compiler tools. Flux is a declarative language that describes

a directed acyclic graph embodying the flow of data through the program. Flux sources

connect to abstract nodes, which consist of a series of concrete nodes. Concrete nodes

correspond to implementations written in a conventional programming language. Flux also

allows for conditional flow through a program—a feature that Eon leverages for energy

adaptation.

We illustrate Eon’s syntax using examples from Figure 4.1 and the graphical represen-

tation of the program in Figure 4.2. We first describe the parts of the program that are the

same as in Flux, and then describe Eon’s extensions.

Flux-based syntax: As in Flux, an Eon programmer first declares each source node in

the program and what types of data it outputs, such as ListenBeacon on Line 7, which

produces an output of type msg t.

Program execution always begins with event sources, which feed data into other con-

crete nodes, which correspond to functions implemented in conventional programming lan-

guages like C and nesC. Each concrete node takes a set of input arguments and produces

an output set of arguments. For instance, GetGPS (declared on Line 12) takes no input and

21

1 // Predicate Types
2 // SYNTAX: typedef PRED_TYPE PRED_TEST
3 t y p e d e f gotfix TestGotFix;
4
5 // Source Node Declaration
6 // SYNTAX: NODENAME () => (OUTPUTS);
7 ListenBeacon() => (msg_t msg);
8 GPSTimer() => ();
9

10 // Concrete Node Declaration
11 // SYNTAX: NODEAME (INPUTS) => (OUTPUTS);
12 GetGPS() =>
13 (GpsData_t data, bool valid);
14 LogGPSData(GpsData_t data bool valid)
15 => ();
16 LogGPSTimeout(GpsData_t data bool valid)
17 => ();
18 LogConnectionEvent(msg_t msg) => ();
19
20 // Regular Sources
21 // SYNTAX: source NODENAME => NODENAME;
22 source ListenBeacon => HandleBeacon;
23
24 // Timer Sources
25 // SYNTAX: source timer NODENAME => NODENAME;
26 // Eon Timer Source
27 source t imer GPSTimer => GPSFlow;
28
29 // Eon States
30 // there is always an implicit BASE state
31 s t a t e o r d e r {HiPower};
32
33 // Abstract Nodes and Predicate Flows
34 // SYNTAX: ABSTRACT[[type,..][state]] =
35 // CONCRETE->...CONCRETE;
36 GPSFlow = GetGPS -> StoreGPSData;
37 StoreGPSData:[*,gotfix][*] = LogGPSData;
38 StoreGPSData:[*,*][*] = LogGPSTimeout;
39
40 // Abstract Node using Energy Predicates
41 HandleBeacon:[*,*][HiPower]
42 = LogConnectionEvent;
43
44 // Eon Adjustable Timer
45 GPSTimer:[HiPower] = (1 hr, 10 hr);
46 GPSTimer:[*] = 10 hr;

Figure 4.1. A condensed version of Eon source code for the tracking application used in
TurtleNet

22

GPSTimer

GPSFlow

GetGPS

StoreGPSData

LogGPSData

ListenBeacon

HandleBeacon

LogConnectionEvent

LogGPSTimeout

HiPower State

Implicit

Error

Implicit Base State

Figure 4.2. A graphical representation of the simplified turtle tracking code, shown in
Figure 4.1

produces two output variables: a GpsData t and a boolean. The Eon compiler checks to

ensure that output and input types match in each flow.

Abstract nodes describe the flow of control and data through multiple concrete or other

abstract nodes. For instance, GPSFlow (defined on Line 36) is an abstract node that is the

combination of two other concrete nodes.

Conditional flows are implemented in Eon using predicate types: programmer-defined

boolean functions that are applied to a node’s output. In Figure 4.1, the StoreGPSData

abstract node specifies two possible execution paths on Lines 37 and 38. By applying the

gotfix predicate to the output of StoreGPSData, the Eon program decides which path to

take. The test is defined on Line 3.

Multiple paths in an Eon program have semantics similar to those of switch state-

ments in C. Paths are tested in the order that they are listed in the code, and the first match-

ing path is chosen.

Each of the concrete nodes and all predicate tests must be implemented by the pro-

grammer in a supported conventional programming language (currently C or nesC). The

23

Eon compiler generates a set of stub functions for each node that must be implemented by

the programmer.

4.1.2 Eon Extensions

While the parts of Eon drawn from Flux lets programmers define the sequence of op-

erations that follow from events, they lack any method to express runtime adaptations. In

this section, we describe how Eon extends Flux with constructs that describe what runtime

adjustments to make as well as the priority with which they should be applied. The Eon

application is then mapped to an adaptive runtime system, which continually adjusts the

application in order to balance the demands of fidelity and sustainability. We continue to

use the application shown in Figure 4.1 as an example.

4.1.2.1 Power states

Adaptation policies could be expressed as a set of utility functions describing the rela-

tive value of flows, and the rate of flows in an Eon program [13, 56]. Our own experience

in building adaptive applications as well as anecdotal evidence suggest that general utility

functions are difficult for programmers to use or understand.

In contrast to previous approaches, we have found that a simple partial ordering of flows

and rates is sufficiently expressive. While a utility function can express a greater number

of policies, such as non-monotonic functions, and are amenable to a great number of inter-

esting analytical results, their usefulness is questionable while severely complicating life

for the programmer.

In an Eon program, a programmer specifies an adaptation policy as a collection of

behavior adjustments organized in a state ordering. An adjustment is declared simply by

listing it in the state ordering, and its priority corresponds to the row in which it appears.

All adjustments on a given row are applied together.

Figure 4.3 shows how the sample application’s operating states are derived from the

state ordering. An implicit BASE state (S0) represents the program running without apply-

24

GPS timer

1hr

Beacon

Logging

On

GPS timer

1.5hr

GPS timer

10hr

...

Beacon

Logging

Off

GPS timer

10hr
BASE State

HiPower State

Figure 4.3. Sample State Order.

ing any adjustments. Subsequent states are defined recursively by applying an additional

level of adjustments to the previous state (i.e., Si = Si−1 + Li−1). Also, a higher operating

state is assumed to be more desirable and more energy-intensive than all lower states.

The state ordering of an Eon program defines which operating states can be chosen by

the runtime system as well as their relative priorities. In addition to declaring adjustments,

the system designer must also define what those adjustments are.

4.1.2.2 Adaptive Timers

One of the most common adjustments used to reduce energy consumption is to peri-

odically turn off energy-hungry components, such as radios [4, 68]. In the turtle tracking

application, the GPS receiver consumes two orders of magnitude more power than all other

components combined. This cost makes the frequency of GPS readings the most important

factor in the life of the device. Adaptively adjusting the duty cycle of a component or task

represents a trade-off between application fidelity and energy consumption.

25

Duty-cycle adaptation is implemented in Eon using a special type of event source node

called an adaptive timer. Adaptive timers differ from other sources in that they are not

concrete nodes and are not implemented by the programmer. Instead, the programmer

specifies a range of acceptable timer intervals. For example, the GPSTimer in the turtle

application can fire anywhere from every hour to once every 12 hours. The interval is then

set by the runtime system.

4.1.2.3 Energy-State Based Paths

Another common way to trade value for energy is to change the fidelity of data and the

availability of services. Lowering the quality of images, audio, or video reduces the energy

a device spends transmitting. Energy can be conserved further by making some services

unavailable. For example, a remote camera may store images locally for later querying or

only stream metadata, instead of streaming the full images [45].

Fidelity and availability adaptation is provided in Eon using energy-state based paths.

This concept is akin to the predicate types used for conditional flows except that instead of

choosing paths based on output types, paths are chosen based on the energy state set by the

runtime system. In the case of our turtle application, LogConnectionEvent is called when

HandleBeacon produces any type and is in a state labeled HiPower. If the node is low on

energy, it may enter the implicit BASE state and cease logging beacons from other nodes

to save energy. HandleBeacon does not take inputs of the BASE state type, so the flow

ends in an implicit error that has no side-effects. In this example, Eon lets the programmer

express preference for local operations over providing services to other nodes when energy

is low.

4.1.2.4 Implementing Concrete Nodes

Implementing concrete nodes with nodes that block on I/O is straightforward, such as

read() in a C/Linux system: the programmer merely adds procedures that run until the

26

I/O is finished and then return. If concurrency is a concern, Eon can use Flux’s features for

the automatic generation of multi-threaded code [12].

Implementing Eon nodes for the nesC/TinyOS environment is less straightforward due

to the prevailing use of split-phase, event-based semantics. Instead of a single blocking

function, a TinyOS concrete node is implemented as a simple nesC component that pro-

vides a single “call” command and an asynchronous “done” event that is signaled with the

node’s return values upon completion. This allows simple nodes that consist of a single

function as well as more complex nodes that perform split-phase TinyOS operations.

4.1.2.5 Discussion

One feature that we considered but rejected during the development of Eon was to

implement fine-tuned adjustments in node fidelity. For instance, like timers, we could have

provided an explicit adjustment in the fidelity of a node that performs an operation such as

video encoding. The runtime system would then have been able to adjust this knob to adapt

the fidelity of video encoding in a large number of steps.

However, our experience with adaptive systems has been that only gross levels of ad-

justment are used. Video is either high-fidelity, low-fidelity, or perhaps a level in between.

While Eon’s timers are finely adjustable, the semantics of timers and their resulting energy

cost are both simple to predict and effectively linear. For instance, firing a timer twice as

often will use approximately twice as much energy per unit time.

The energy consumed by a video codec would likely have a non-linear relationship

to its resolution. Tuning the fidelity would thus have a corresponding non-linear effect

on nodes downstream that transmit the video. Recall that one of our goals is to provide

a language that is conducive to well-performing runtime systems. Without an accurate

prediction as to what effect an adaptation will have, it is more difficult to select the correct

operating point. To find such non-linear, and often noisy, relationships takes a great number

27

of sample points, each of which may be consuming too much or too little energy while the

system runs.

Further, there are an unlimited number of power management optimizations that can

be made in sensor systems, from wireless duty-cycling, to link-layer power-control, and

CPU frequency scaling. Our standpoint has been that anything that can be automatically

inferred from the program itself in a general and reasonably efficient manner, should be.

Along these lines, we have considered a great number of features to add to the language,

but have generally favored simplicity over features instead of building a language that can

express every possible energy-management scheme. For instance, instead of providing

timers that synchronize to a common time reference for a Synchronized MAC (S-MAC)

duty-cycling [85], we use the low-power listen mode present in many modern sensor radios.

4.2 The Eon Runtime System

By using the flow descriptions in an Eon program, on-line measurements of the per-

task energy costs and workload, and predictions about the amount of incoming energy,

Eon’s runtime system adapts program execution according to the program’s policies. This

adaptation is completely automatic, and requires no offline profiling, and minimal online

measurements.

4.2.1 Design Goals

Two goals inform the design of the Eon runtime system. First, it should support a

broad array of low-power platforms, such as Motes [67] and Stargates [81], powered by

solar energy. Because microcontroller platforms have relatively small memory sizes, the

runtime system must be constrained to perform few measurements online.

Second, the runtime system should not require any explicit training, such as measuring

the system under simulated load in a lab. Not only is this process painful for programmers,

it is also inherently brittle. For example, training might require repeated measurement ev-

28

ery time the program is changed or deployed on a new platform with new peripherals and

is dependent on having good models of the expected workload. As long as in-situ measure-

ment is sufficiently accurate, and can be done with low-overhead, online measurement is

greatly preferable.

4.2.2 Energy Adaptation Algorithm

The runtime system executes an adaptation algorithm that chooses the ideal power state

for the system to use, based on its measurements of energy consumption and production.

The adaptation algorithm strives to provide the highest fidelity to the application while

avoiding two undesirable states: an empty battery and a full battery.

An empty battery prevents the application from executing even high priority flows. In

most devices, it also imposes a period of dead time for the system, during which the battery

must slowly charge up to a minimal level before the device can turn on again. When the

battery is full, any additional environmental energy that the system harvests is wasted and

cannot be stored for later use.

From Eon’s perspective, any state of the battery between these two states is effectively

equivalent: the goal of the system is to consume energy at a rate equal to the rate of en-

ergy production. The battery’s role is to act as a buffer, riding out periods of low energy

production and storing excess energy.

The runtime system periodically makes a decision about the ideal power state for the

system by searching the possible adaptations, such as timer frequencies and power states.

Eon favors smoothness of adaptation and searches for a single static policy that is likely to

be sustainable for a long period of time (horizon).

Eon can make large adjustments using the energy-state based paths, and smaller adjust-

ments using the adjustable timers. Eon initially assumes that the system runs at the highest

energy state with the minimum frequency for all of the timers. It then computes the amount

of consumed and produced energy over a short interval Ti. Taking into account the current

29

state of the battery, if this power state would empty the battery, the system lowers the en-

ergy state (for instance, Hi-Power to Lo-Power), and then repeats. Once it finds a state that

is sustainable over the short interval Ti, it looks further into the future to see if the rate is

truly sustainable, examining time horizons 2n · Ti for n = {1 . . . N} time intervals.

Once the system finds a sustainable energy state, it performs a binary search on the

timers using the same time horizons to discover the exact sustainable policy. This search

strategy ensures that the policy is sustainable both over the short and long term, without

requiring excessive compute time. More weight is given to the short term, as the run-

time system periodically reexamines the policy to adapt to changing workloads and energy

dynamics. The entire process runs in just 100 ms on a Mica2 mote for our full tracking

program with 31 flows and a horizon of half a year.

4.2.2.1 Energy Attribution and Consumption

For adaptation, the system must have an accurate model of its energy consumption, in-

cluding the energy cost and frequency of each independent execution path, or flow, through

the program. Each time an Eon flow completes, the runtime system updates an expo-

nentially weighted moving average (EWMA) of the flow’s energy cost. The system also

estimates the originating source’s firing frequency and the probability of each branch taken

by the flow. In the example in Figure 4.1, there are four possible paths through the program,

each with a different energy cost and frequency.

Measuring per-path energy consumption requires careful accounting and hardware sup-

port. One option is to use a Fuel-Gauge IC, like those included in many modern laptop,

mobile phone, and PDA batteries; two popular example include TI’s bq27000 and Maxim’s

DS2770. These chips measure the capacity of the battery and charge/discharge rates, in-

cluding corrections for temperature, battery-chemistry, and aging effects. A fuel-gauge

chip provides an averaged, coarse-grained view of the energy remaining in the battery and

30

the current rate of charge or discharge. While necessary, this information is not sufficient

to distinguish between energy consumption and charge, as both occur simultaneously.

The Eon runtime system requires both a fuel-gauge chip and fine-grain current mea-

surement to attribute energy to individual program flows. In our hardware platform, we

use an integrated current sensor, which separately measures the rate of consumption. This

hardware is accurate to within 0.6mA, sensitive enough to measure differences in current

consumption due to radio, flash, or peripheral use by individual flows on a variety of plat-

forms.

The runtime system samples the current once every second, while simultaneously track-

ing the start and end times of each node in the program graph. Based on the percentage of

time that nodes from a particular flow were running, the runtime system attributes energy

to the flow. The rest of the energy is attributed to the runtime system and to the idle energy

consumption of the platform.

Given the amount of energy consumed by the program and runtime system, Eon esti-

mates the energy production rate. Adding the energy consumption for a period of time to

the loss or gain in battery capacity yields the energy production over that same period.

4.2.2.2 Energy Source Model

In addition to knowing how much energy each path consumes, adaptation requires a

model of how much energy the system is going to receive in the future. While Eon is

not tied to any one energy production method, we concentrate on solar power, which is

particularly challenging. The amount of available solar energy is highly variable. It is also

unpredictable, since predicting sun intensity is, in essence, predicting the weather.

The model we use in our prototype is an adapted exponential weighted moving average

(EWMA) based prediction algorithm from Kansal, et al. [43, 44]. This model essentially

predicts that the energy production in the following days will be similar to recent days. Eon

measures the energy production over a day, and assigns this value asE(t). It then computes

31

the expected value of E(t+ 1) as αE(t) + (1− α)E(t− 1). This model masks the diurnal

cycles inherent to solar energy harvesting and is simple enough for use in small embedded

devices.

4.3 Implementation and Deployment

This section describes the details of the Eon software and its hardware support. In

addition, it describes the details of three Eon deployments: a turtle tracker, an automobile

tracker, and a remote imaging system. The designs for the hardware, as well as a release

of the application code, compiler, and runtime system, are all available from our website

(http://prisms.cs.umass.edu/˜sorber/eon).

4.3.1 Software

The software implementation of Eon includes a compiler and runtime system, as well

as a generator for a trace-based simulator.

4.3.1.1 Compiler

The Eon compiler is a three-pass compiler implemented in Java, using the JLex Lexer

and the CUP LALR parser generator. It is based on the original Flux compiler [12], ex-

tended with support for Eon’s energy management features. The first two stages of the

compiler build a graph representation of the program and then decorate each edge with

input and output types. The third stage links this intermediate code with the Eon adaptive

runtime system and user-supplied code that contains the program logic.

Eon can be ported to new languages and architectures with minimal effort. Our current

implementation has been ported to two different environments: an Intel/CrossBow Star-

gate [81] XScale Linux system, using nodes written in C, and an Atmel microcontroller-

based TinyOS system using nodes written in nesC [29]. In addition, we have ported Eon to

a number of hardware platforms, including the Mica2Dot, Mica2, MicaZ motes [67], the

32

TelosB mote [66], and the Shockfish Tinynode [16]. Finally, support for the new tosthreads

threading library for TinyOS has recently been added.

4.3.1.2 Runtime System

The Eon runtime system measures and adapts to energy usage and production. At the

start and end of every flow, the code generated by the compiler invokes a set of functions

that interface with the hardware, perform predictions, and calculate a running state. The

result then informs the rest of the runtime system which state the system will operate in.

The size of the TinyOS runtime is 4850 lines of code, occupying 18 kbytes of program

ROM. While running, the runtime system uses 900 bytes of RAM for an empty program,

plus approximately 30 bytes of RAM for each independent path in the program, depending

on the size of the arguments passed between nodes.

4.3.1.3 Trace-Based Simulator

The Eon compiler optionally generates a trace-based simulator. By feeding an energy

trace and traces for external inputs, an Eon programmer can test different energy predictors,

workloads, programs, and adaptation policies. During deployment, an Eon node collects

measurements of solar energy, consumed energy, battery state, estimated idle power draw,

estimated per-path energy costs, path probabilities, and source frequencies. All of this

information is then used as input to the simulator. Additionally, we have found that the

information recorded by the runtime system is extremely useful as an energy profiling tool.

Although not as accurate as an external measurement tool, it has been crucial in identifying

energy bottlenecks in our systems.

4.3.2 Hardware

Eon’s adaptation algorithms require hardware support. We have built a new charging

and energy management board that controls the solar charging of lithium ion batteries,

measures the capacity of the battery with a Maxim DS2770, and measures the current

33

Figure 4.4. The two implementations of the energy measurement and charging board with
a Mica2Dot and a TinyNode.

consumption using a Maxim DS2751. We have fabricated two versions of the board, one

that accepts a Mica2DOT mote as a drop-in module, and one that attaches to a Shockfish

Tinynode via a Molex connector. We adapted some parts of the hardware design from the

Heliomote project [49]. The same board can be used with the Stargate, by attaching the

board via a mote.

Figure 4.4 shows the deployment platforms for the Mica2DOT and TinyNode, shown

with battery and GPS. This board can handle a wide variety of solar cells, ranging from

a small, 25mA peak current cell up to a cell producing 2A. Additionally, Eon requires no

program or runtime changes when changing the size or number of solar cells, since it only

tracks the amount of energy production.

4.4 Deployment

In order to evaluate Eon, we have built several energy adaptive systems: a turtle tracking

node, an automobile tracking node, and a remote imaging system. The evaluation section

focuses on the automobile tracking system, and we describe all three systems here. We

have also constructed a solar-powered WiFi web server on the Stargate platform.

While these deployments are somewhat limited in their scale and duration, we have

gathered sufficient data to demonstrate Eon’s utility in performing energy adaptation. Per-

34

(a) Early Eon node deployed on a Snap-
ping Turtle.

(b) A more recent Eon node de-
ployed on a Gopher Tortoise.

(c) Camera

Figure 4.5. Photos of two of the test applications, a turtle tracking device, and a remote
camera.

haps more importantly, these deployments have driven the development of Eon, rather than

following as a consequence of it. The applications have informed which features to add to

the language, runtime system, and hardware support.

4.4.1 Turtle Tracking

As described previously in Section 3.1.1, much of the development of Eon is inspired

by wildlife tracking and specifically, turtle tracking. In order to meet these challenges, we

have designed and built turtle tracking devices and programs to run on both the CrossBow

Mica2DOT and Shockfish TinyNode platforms. The turtle node includes a SiRF Star III-

based GPS Receiver, an Ultralife UBC581730 250 mAhr battery, and one or two 5V solar

cells. The Mica2DOT node, used in our first deployments, was packaged in shrink-wrap

tubing with the ends sealed with a waterproof epoxy. The TinyNode-based device, designed

for use on Gopher Tortoises, uses an epoxy-sealed custom plastic enclosure.

The design of the node is primarily driven by form-factor. The node must weigh less

than 5% of the tortoise’s body weight—limiting each device to roughly 50 grams—and

fit without significantly increasing the height of the shell. Figure 4.5(b) shows the Eon

node mounted on a gopher tortoise and Figure 4.5(a) shows an early version deployed on a

Snapping Turtle.

35

Unfortunately, our initial deployment took place at the end of an unusually cool fall.

The turtles prepared for hibernation early and spent a large amount of their time immobile

and underwater, not emerging until the next summer. We thus collected relatively little data

from the turtles: five days of solar traces and a handful of GPS locations.

Despite this small amount of data, we learned new facts about turtle behavior that were

useful from a zoological perspective and that have led to improvements in our system. In

particular, we discovered that the turtles were underwater 98.5% of the time. Because GPS

does not work underwater, we added a water sensor to the node that lets the programmer

specify that no GPS readings should take place if the turtle is underwater. In addition, we

found that the turtles receive a great deal less energy while underwater, so little that even our

upper-bound for the GPS timer was not sufficient to let the node survive. The combination

of these two fixes should allow the node to survive long periods of time underwater.

4.4.2 Automobile Tracking

As a proxy for the turtles, we have also performed a second deployment using automo-

biles. We used the same hardware, adaptation policy, program, and runtime system, and

collected two weeks of data from five devices mounted on the roofs of cars. The weather

for that two weeks was highly variable, with several days of consecutive cloudy weather.

These traces can be extended by looping them, which gives us a good idea of how Eon

adapts to changing conditions. In addition, this automobile-based deployment has led to

bug fixes and other improvements to the runtime system.

While we plan to redeploy the turtle nodes in a large-scale experiment in the summer,

the evaluation we present here is based on data gathered from the automobile-based exper-

iment. The complete application, excluding Eon runtime code, is 7900 lines of code. The

complete system, including the Eon runtime, compiles to 42 Kbytes of program memory,

and runs in 3600 bytes of RAM.

36

4.4.3 Remote Camera

Finally, we have built a remote camera application that demonstrates Eon’s versatility.

This application was inspired by various remote image applications at James Reserve [58],

in SensEye [45], and at the Virginia Coast Reserve (VCR) [22]. Of note is the fact that VCR

researchers programmed their cameras to scale their frame rates to cope with fluctuations

of gathered solar power.

To ease their programming burden, we have constructed the video system using a

TinyNode [16], a CMUCam low-power camera [70], a 400-mW-peak solar panels, and a 1

Ah battery, shown in Figure 4.5(c). The Eon application trades off the competing concerns

of the frequency of image capture, and image streaming(high power), and image storage

(lower power). Using the TinyNode’s XE1205 radio, the images can be streamed from the

solar-powered node to a base-station up to 1 kilometer away.

Once the CMUCam was connected, building a fully adaptive application took a single

developer only three hours to build. No modifications were required to handle the larger

solar cells or the energy requirements for the new platform and camera.

4.5 Evaluation

Our primary goal in designing Eon was to provide a simple language for building ef-

ficient energy-adaptive embedded systems. In this section, we evaluate the Eon language

with respect to both usability and system performance.

4.5.1 User Study

To evaluate Eon’s usability, we conducted a user study. Nine programmers were re-

cruited for the study, the majority from a junior-level operating systems course and all

having at least 4 years of prior programming experience. None had any prior knowledge

of Eon and all were familiar with C. Each subject was initially asked to provide a self eval-

37

uation of past experience and programming expertise, which was used to divide them into

two balanced groups, one using Eon and the other using C.

Each test subject then completed the user study individually. Participants were first

given a 45-minute long tutorial covering the programming tools and computing environ-

ment, and an overview of energy-aware embedded systems. Following the tutorial, each

subject was asked to write two applications.

The first application was a simple sensor application which periodically samples a sen-

sor, stores the collected sensor readings, and answers simple network requests for past

readings. The second application was an extension of the first application to make it adap-

tive, with the goal of providing the best sampling rate that their device could sustain without

running out of energy. After completing these programming assignments, each participant

was asked to take a post-experiment survey, qualitatively evaluating their experience.

The students performed the study in a simulated environment that included APIs for

measuring energy spent using Flash memory, the radio, and for taking sensor readings.

Also, in order to provide a fair comparison, we provided the C group with the same solar

energy predictor used by the Eon runtime system. The build environment was instrumented

in order to collect a snapshot of each participant’s code with every successful compile.

After the study was complete, we tested each submission. The initial program was tested

for correctness to verify that it gathered sensor readings and answered queries correctly.

The adaptive code was evaluated in terms of how well it was able to adapt to the provided

solar trace.

Also, in order to remove transient behavior and focus on steady state performance, each

submission was run for three months of simulated time, and results were only collected for

the last month.

Figures 4.6(a) and 4.6(b) show the results of the user study for the first and second

applications, respectively. In Figure 4.6(a), the progress of each group is shown with re-

38

spect to time spent (in minutes). Progress is measured as the percentage of correctness tests

passed, with 100% meaning that all members of the group had passed all test cases.

One striking feature is the similarity in progression between experienced C program-

mers and first-time Eon programmers. Members of the Eon group commented that the

primary difficulties were learning Eon’s syntax and understanding how Eon sources and

flows are executed. Some commented that once these details were overcome, Eon pro-

vided a simple and intuitive programming style. We believe that the small difference be-

tween groups can be attributed to the Eon group’s initial unfamiliarity with the language.

We expect that experienced Eon programmers would be able to produce correct code for

non-adaptive applications at least as quickly as programmers using a conventional general

purpose language.

However, the results from the second application, shown in Figure 4.6(b), demonstrate

the clear advantages of using Eon when building energy-aware software. This figure shows

the performance of user submissions over time in terms of percent coverage. Every time

a sensor reading is taken, an arbitrary amount of time t before and after the reading is

considered to be “covered.” The figure shows the percentage of time that was covered

by at least one reading. For this experiment, we chose t such that the highest sustainable

sampling rate would provide 100% coverage. Choosing a rate that is either too aggressive

or too conservative results in reduced coverage. In this figure, we plot an individual line

for each study participant. We also plot the best solution so far to make the figure easier to

understand.

Unlike the results from the first stage, Figure 4.6(b) shows a substantial difference

between the two groups. All members of the Eon group achieved 90% coverage within

40 minutes, while the C group lagged behind both in programming time and coverage. The

Eon group’s solutions were also uniformly good; this result stems from the effectiveness

of Eon’s runtime system. Three of the five members of the C group eventually achieved

performance comparable to the Eon group, but took between 90 to 140 minutes to develop

39

0 20 40 60 80 100 120 140
0

20

40

60

80

100

Time (minutes)

P
e

rc
e

n
t

C
o

m
p

le
te

 (
G

ro
u

p
)

C Group

Eon Group

(a) Experienced C programmers compared with first-time Eon
users programming a simple sensor application. Aggregate group
progress is shown over time. Despite language differences, both
groups’ progression is surprisingly similar. Small differences are
likely due to the overhead of learning a new language.

0 50 100 150
0

20

40

60

80

100

TIme (minutes)

S
e

n
s

o
r

C
o

v
e

ra
g

e
 (

%
)

Eon Group

C Group

(b) Percent sensor coverage (best so far) is shown comparing C
and Eon programmers. By separating adaptation policy from ex-
ecution, Eon users were able to build high-performing adaptive
sensor applications significantly faster than those using C.

Figure 4.6. User study results

40

their solutions. Two of these solutions were inspired by TCP’s exponential back-off. The

other two C programmers’ best submissions achieved 60% and 12% coverage, respectively.

The longer programming times, high variance, and user comments all demonstrate the

difficulty of writing adaptive software in conventional programming languages, even on a

simplified sensor platform that avoids many common real-world complications.

4.5.2 Adaptation

One of the primary benefits of Eon is its ability to adapt the rate of flows in a pro-

gram based on its currently available and predicted energy supply. Here we compare Eon’s

performance against several other possible systems and across individual devices.

To provide a fair and realistic comparison, we use trace-driven simulations based on

data collected during the two-week automobile deployment. During this deployment, each

of the five nodes collected hourly measurements that we then fed into our trace-based Eon

simulator. To avoid measuring transient behavior based on the initial battery state and to

show long-term behavior, we loop the measured traces to extend our simulations from two

weeks to three months, and report only the results for the last month. Each test was run five

times, and the simulator generates the amount of energy used by the GPS drawn from the

distribution gathered from each trace.

In each test case, we change the GPS sampling rate according to five energy policies: a

conservative, static policy based on the minimum sustainable rate across all of the traces;

a similar, greedy, static policy based on the maximum sustainable rate; a best sustainable

rate taken for each device individually; Eon using the solar predictor algorithm (T = 24);

and Eon (Oracle) that uses a perfect weather predictor that knows the exact amount of

solar energy that can be harvested in the future. Note that the conservative policy is an

over-provisioning implementation that a system designer may try first: collect traces, find

the one that gave the least amount of energy, derive a static policy, and use that policy on

all of the devices.

41

The results presented in Figure 4.7 show the average rate of GPS readings. The error

bars represent the standard deviation of the rate within each trace averaged over the five

runs. This demonstrates the variability of the policy over the duration of each run.

The results in Figure 4.7 show that a conservative policy, unsurprisingly, only performs

well for device 5, from which the policy was derived. The rest of the devices pay a large

opportunity cost for not using a more aggressive policy. The Eon (oracle) policy, best

sustainable, and Eon provide similar average results. However, Eon shows more variance,

demonstrating that inaccuracies in prediction in energy harvesting leads to a larger range of

rates. It is important to note that neither the best sustainable policy, nor the oracular system

can be realized, as both require advance knowledge of future solar trends.

We initially found it surprising that the Eon predictor would do as well as the oracle.

However, a closer look reveals that given the size of the battery in the system and the

typical rate of consumption, a full battery will last for five days. This lifetime means that

the solar power prediction does not need to be extremely accurate day-to-day, as long as it

is accurate on average. In systems where the ratio of consumption to battery size is higher,

prediction algorithms have more impact. Lastly, the greedy system exhibits a high average

rate for most of the traces, but its variation is high. This variation is because the node often

ran out of energy, dropping the rate to zero for long periods of time.

Figure 4.8 shows a more detailed view of the results from the same experiment. The

stacked bars show the breakdown of how energy was spent by the different policies. The

percentage numbers at the top of the bars show the average amount of time during the trace

the device had a dead battery. The board overhead is the energy spent in the measurement

board, the idle is the energy spent by the mote while not executing a flow (e.g. the overhead

of the runtime system and the cost of an idling mote). The GPS energy was spent on taking

samples, unused energy was energy left in the battery, and wasted is any energy that was

collected, but could not be stored due to a full battery.

42

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Trace

A
v

g
.

S
a
m

p
li

n
g

 R
a
te

 (
R

e
a
d

in
g

s
/d

a
y
)

Conservative

Greedy

Best Static

Eon

Eon (Oracle)

Figure 4.7. The average number of daily GPS readings taken are shown for different
energy policies and energy traces. Despite large variations in energy supply, Eon is able to
accurately approximate the best sustainable energy policy.

This graph shows the chief shortcoming of the greedy policy: aggressive use of energy

leads to large periods of dead time. While sparse and bursty readings are generally unde-

sirable, there is a more serious downside: the inability to run higher-priority flows. As we

show in later experiments, when the program contains more than one flow, the dead time

caused by one flow’s overuse negates any prioritization the program may need.

4.5.3 Impact of Energy-State Based Paths

To examine the usefulness of energy-state based paths, we conducted a longer exper-

iment using the remote camera application. Rather than conduct a year-long deployment,

we used the solar cell to collect adequate solar traces for simulation, and then lengthened

those traces using solar intensity data from the US Climate Reference Network, National

Climate Data Center, and NOAA. By constructing a model that maps solar intensities to the

power produced by the solar cells, we were able to extend the trace backwards for years’

worth of data. Note that this process only works for the stationary camera. Long-term

43

5

10

15
E

n
e
rg

y
 (

k
J
)

Wasted Unused GPS Idle Board

0%

30%

45%

5%

65%

(C) Conservative (G) Greedy (B) Best Static (E) Eon (O) Eon(Oracle)

C G B E O C G B E O C G B E O C G B E O C G B E O

Figure 4.8. This figure shows the amount of each trace’s energy that is consumed by
different parts of the system. The percent dead time is also shown for traces that are not
sustainable, above the corresponding bar.

simulation of mobile nodes requires information about each node’s mobility as well as the

weather, to accurately determine its energy budget.

Using the energy profiles collected from a running camera system and generated by

our simulator, we compared the behavior of Eon against two systems, one that uses a fixed

rate of 7 frames per hour (Fph) and one that uses 2.4 Fph. We then determined when each

system had a dead battery, and thus could not respond to any queries for old images, and

when the Eon system switched into its querying-only mode. The resulting frame rates,

dead times, and querying-only times are shown in Figure 4.9. Note that the Eon system

experienced no dead time for the entire trace, so we only plot dead time for the two static

policies.

44

Jan Mar May July Sept Nov Jan Mar May

7 Fph Dead

2.4 Fph Dead

Eon (No Streaming)

0

5

10

15

20

25

F
ra

m
e
 R

a
te

 (
F

ra
m

e
s
/h

r)

Eon

7 Fph (Streaming)

2.4 Fph (95% uptime, Streaming)

Figure 4.9. Frame rates for a remote camera application are shown over a 16-month
trace, comparing Eon to two static policies. Periods of time when the Eon camera dis-
abled streaming as well as periods of dead time for the static policies are shown across the
bottom.

The results show that Eon can completely avoid dead battery times by adaptively switch-

ing into a query-only mode, while simultaneously lowering its frame rate. Note that it

would be trivial to adjust this policy in Eon, e.g., to prefer higher frame rates over stream-

ing. Without the ability to adapt, a fixed frame rate system may remain completely unavail-

able for months at a time. Eon is also able to scale its frame rate in tune with the seasons

and short periods of cloudy weather.

4.5.4 System Overhead

In this section, we discuss the energy and compute-time overhead incurred by using

Eon on our turtle/automobile monitoring node.

Since energy is the key focus of Eon, the energy overhead of the system must be kept

to a minimum. Here, we measure the energy costs of several operations performed by the

runtime system. We measure current draw using an Agilent 54621D oscilloscope, measur-

45

Operation Overhead Costs

Energy Time

Path Init 0.6µJ 0.3ms
Edge 1.4µJ 0.8ms
Path Cleanup 5.4µJ 2.1ms
GPS Reading 1–100J 20–400s
Evaluate State 0.5–2.0mJ 50–100ms

Table 4.1. Measurements of Eon overhead in comparison to GPS readings.

ing the voltage drop across a 1-Ohm sense resistor. We integrate the trace to determine the

energy cost of the operation. Figure 5.4 presents these energy measurements.

Periodically reevaluating the energy state, which presents the largest single energy cost,

varies widely depending on the structure of the application graph and the state of the sys-

tem. If, for example, the battery is low and little energy is expected, the algorithm will

quickly rule out higher power states. More complex applications will also take longer than

simple applications since they have more flows to consider.

As Table 4.1 shows, the turtle tracking application requires up to 2.0mJ in the worst case

to choose an energy state. However, since state evaluation happens only once per hour, this

cost is easily amortized, resulting in an increase of only 2µW in the average power of the

device. There is also a fixed overhead incurred every time a path is executed, which is equal

to (6.0 ∗ 1.4N)µ J where N is the number of edges in the given path. In comparison with

the cost of taking a GPS reading, this overhead is insignificant, since it is at least 6 orders

of magnitude smaller.

4.5.5 Measurement Accuracy

The runtime system’s ability to accurately estimate the cost of individual paths in the

program graph is vital to being able to make accurate adaptation decisions. We evaluate

this accuracy by comparing measured task costs with the system’s corresponding estimate

46

for tasks that consume different amounts of energy. In this experiment, we focus on small

tasks (e.g., transmit data, write to Flash, etc.) that consume a few mJ and large tasks (e.g.,

GPS readings) that incur a high energy cost.

For small tasks (<100 mJ) the course grained averaging of our energy measurement

board results in large errors in individual estimates (we observed up to 80%); however,

averaging six consecutive estimates consistently yields an estimate within 10% of the mea-

sured value. For larger tasks (1–10 J) the Eon runtime system estimates the per-task energy

cost to within 10% for individual task executions, and six consecutive estimates consis-

tently results the measured cost to within 0.5%. The Eon runtime system benefits from this

trend of increased accuracy for high-energy tasks. The penalty for mispredicting a small

task is also small, and as these tasks are performed more frequently the system’s cost es-

timate becomes more accurate. Mispredictions of large tasks, on the other hand, can have

significant consequences on system lifetime, and cost estimates must be more accurate.

Since large tasks are often performed infrequently, it is important to be able to provide

accurate estimates with a small number of executions.

4.5.6 Impact of Battery Capacity

Our final experiment examines the impact that battery capacity has on Eon’s ability

to adapt, and on the cost of prediction errors. This experiment is set up as described in

Section 4.5.2, except that we vary the size of the battery and the number of solar panels

used.

The results of this experiment, shown in Figure 4.10, demonstrate how prediction er-

rors are magnified as battery size decreases. While a 250mAhr battery is able to mitigate

prediction errors, those prediction errors translate into large amounts of dead time when

a 50mAhr battery is used. Applications that require a very small battery due to size and

weight restrictions should use either more accurate or consistently conservative energy pre-

dictors.

47

0 50 100 150 200 250
0

5

10

15

20

25

Battery Size (mAhr)

P
e
rc

e
n

t
D

e
a
d

ti
m

e

Eon: 1 Panel (80mW)

Eon(Oracle): 1 Panel (80mW)

Eon: 3 Panels (240mW)

Eon(Oracle): 3 Panels (240mW)

Figure 4.10. Device dead time is shown for different battery sizes for systems using one
and three solar panels. Performance using Eon’s EWMA predictor is compared with perfect
energy prediction (Oracle). The benefit of better energy prediction is most notable when
using a very small battery and the cost of prediction errors is greatest.

We note that an additional benefit of Eon’s automatically generated simulators is the

ability to use them to determine what size battery or solar panel to choose for a given

deployment.

4.6 Related Work

Eon derives from a large body of work on energy adaptation in operating systems, as

well as dataflow and coordination languages.

Languages/Programming Abstractions: To our knowledge, Eon is the first system

that specifically targets energy adaptation at the programming language level. Eon’s energy

adaptation features are built on a dataflow-based, coordination language [31, 60]. Eon

uses this dataflow abstraction to expose just enough structure to make building an adaptive

runtime system possible. However, in contrast to many dataflow languages, Eon’s goal is to

simplify writing energy-adaptive programs, rather than expressing concurrency or real-time

ordering constraints [7, 35].

48

Other languages and programming abstractions have been proposed in order to sim-

plify the programming of embedded sensors. SNACK [32] provides language constructs

that combine components written in NesC [29], in order to simplify and encourage code

reuse. The Flask language [57] has been developed concurrently with Eon [74], and both

languages share many properties: both are coordination languages that combine nesC mod-

ules together in an acyclic graph. However, unlike Eon, Flask does not provide support for

energy adaptation.

Another difference between Flask and Eon is that Flask is a macroprogramming system,

while Eon programs run on a single node. Macroprogramming languages and abstractions,

like Flask, Bundles [79], Kairos [34], and TML [64] provide a more centralized approach

to sensor network programming; however, these systems have ignored the challenges of

perpetual systems.

Energy Application Adaptation: There has been a wealth of research on building sys-

tems that adapt to current conditions, including energy. Odyssey provided the seminal work

in application-aware adaptation [65], and later work extended it to account for energy [27].

The ECOSystem project uses application adaptation to share energy fairly between applica-

tions, and governs that system’s consumption rate [87]. In each case, energy-aware adap-

tation trades fidelity for energy savings to target a particular device lifetime. Eon builds

on this concept by targeting perpetual operation, while expressing the adaptation policy as

part of the program. This provides a much tighter integration of resources, programming

language, and runtime system.

Since, Eon’s publication a number of other adaptive sensing systems have also been

built, which share many of its characteristics. Levels [47] was developed concurrently with

Eon and also uses the idea of defining abstract energy states (e.g., Levels) that are tied to

program adjustments. Instead of using a coordination language, like Eon, Levels provides

a set of annotations that can be applied to existing NesC code. Levels also ignores energy

harvesting, focusing on achieving predictable lifetimes rather than perpetual operation.

49

Another closely related system is Pixie [53], a sensor network operating/programming

system that, like Eon, uses a data-flow programming model. Pixie uses a currency-based

model (e.g., tickets), like ECOSystem [87], where tickets corresponding to resources (e.g.,

bandwidth, energy, etc.) are produced by resource allocators and consumed by application

tasks. Managing tickets manually can be cumbersome, so Pixie also provides resource bro-

kers that coordinate resource demands with available resources. Pixie and Eon have many

differences and similarities; however, the most fundamental difference is the user’s role.

Pixie focuses on making resources visible and maximizing programmer flexibility, while

Eon’s goal is to make energy management invisible and fully automatic. Pixie program-

mers can create elaborate energy management policies, while Eon programmers ignore the

energy management policy and focus on their application.

4.7 Discussion

In this chapter we have described Eon, a new language and runtime system for building

self-adapting perpetual systems. Designed to be both expressive and simple, Eon eases

the burden of building energy-adaptive applications. The Eon runtime system effectively

manages changing energy availability and demands, while hiding most of the system’s

complexity.

Eon solves some of the challenges that are fundamental to perpetual systems; however,

the system, as described, falls short in several ways. Specifically, Eon’s focus is centered on

balancing energy harvesting and consumption for a single device. In a network of perpetual

devices, effective energy management must also account for interactions between devices.

In the next chapter, we describe how Eon can be extended to address the needs of networks

of perpetual mobile devices.

50

CHAPTER 5

TULA: FAIR AND BALANCED DATA DISSEMINATION

By including explicit control flow and energy policy information, Eon greatly sim-

plifies the programming and deployment of individual energy-adaptive perpetual devices;

however, perpetual systems are rarely useful when operating alone. Most applications

that benefit from perpetual operation [20, 36, 37, 74, 88]—including mobile sensing and

tracking—also require communication to make collected data available to scientists and

other users for timely use.

Communication in networks of perpetual devices compounds the problems caused by

uncertain energy harvesting and consumption. Perpetual mobile networks are often de-

ployed without any prior knowledge of network topology or bandwidth constraints. Over

time, changes in social networks and other external factors cause these networks to evolve,

which can drastically affect both system performance and energy availability. As the net-

work evolves, some nodes may never have a direct wireless link to the Internet, and must

instead route data over uncertain mobile-to-mobile connections using disruption-tolerant

networking (DTN) techniques [5, 39, 75].

Early perpetual systems, like ZebraNet [88], focused on minimizing energy consump-

tion rather than energy awareness and adaptation. More recent systems either use local

energy adaptation techniques without considering data delivery [47, 53, 74] or use adap-

tation techniques for purely static networks [24]. However, adapting to both energy and

network variations is considerably more difficult. In particular, a node needs to adapt and

balance both its sensing and routing tasks. In a long-running system the goal is to gather as

much data from nodes as the limited resources of network bandwidth and energy permit.

51

Sensing more data than can be delivered by the network is not useful, while gathering less

underutilizes the system’s potential. Similarly, systems that depend on cooperative repli-

cating routing protocols [5, 75] must balance the energy devoted to sensing and routing

their own data with energy used to route data for other nodes.

In this chapter, we describe a system, Tula, that addresses this challenge for perpetual

mobile sensor networks. A Tula node uses a distributed algorithm to balance energy al-

location across three tasks: sensing, routing the node’s own data and the routing data for

other nodes. The Tula energy allocation ensures max-min fairness, which allows data col-

lection from all nodes including poorly connected nodes. The key insight behind Tula is

that sensing and routing are inherently dependent, and optimizing only one or the other in

an energy-constrained environment is futile.

Given the allocation for sensing and routing, Tula uses an adaptive sensing system to

collect data and a DTN routing algorithm to deliver the data. We formulate the Tula al-

location problem as a constraint optimization problem (COP). Each Tula node measures

energy consumption for sensing and communication and gathers data about the environ-

ment through node meetings, to locally solve the COP on an embedded device. Tula is

general, and automatically adapts across mobility patterns, from static to highly mobile

environments.

We evaluate Tula in the context of two example systems—TurtleNet and DieselNet—

that we discussed in Chapter 3. We use traces of mobility and energy harvesting from

TurtleNet and DieselNet, combined with an implementation of Tula on ShockFish Tiny-

Nodes [16].

Our evaluations over both TurtleNet and DieselNet show that Tula senses and delivers

data within 75% of an optimal, oracular system that perfectly replicates data and has fore-

knowledge of future energy harvesting. The protocol is fair in terms of delivery rates across

nodes, and it comes within 95% of the optimal in terms of the max-min fairness objective.

Tula not only works well for sparse mobile networks, but also for static mesh networks.

52

0.
0

0.
5

1.
0

1.
5

D
ai

ly
 E

ne
rg

y
(k

J/
da

y)

Nov Jan Mar May Jul

Tortoise
Hibernation

Figure 5.1. Daily solar energy is shown for a TurtleNet node before and after hibernation.

Our evaluations on a synthetically generated mesh network shows that Tula adapts well to

the static environment and senses and delivers data within 85% of the optimal rates. Fi-

nally, we show that Tula can be implemented on a small microcontroller with modest code,

memory, and processing requirements.

5.1 Challenges for Perpetual Networks

Devices that operate perpetually using harvested energy represent a new class of mobile

system that promises to enable a wide and largely unexplored range of potential applica-

tions. This vision includes significant advances for scientists studying mobility in nature. In

spite of decades-worth of study, the movements and behaviors of most animal species in the

wild are completely unknown. Current methods like trapping and manual radio telemetry

are labor intensive, yield few data points, and significantly increase the frequency of animal

interactions with humans. By using small in situ sensor devices to observe animal location,

movement, and environmental conditions, researchers will be able to collect more data at

higher temporal densities with minimal impact on behavior. This shift promises to answer

53

A
vg

. E
ne

rg
y

(k
J/

da
y)

0
2

4
6

8
10

Figure 5.2. The average daily energy harvested by each TurtleNet node during a 1-month
trace.

long-debated questions about habitat usage, population trends, and complex interactions

between different species, including humans.

To explore these potential benefits and inherent challenges of perpetual networks, we

have deployed TurtleNet as described in Section 3.1.1. Our deployment consists of 17

tracking devices attached to Gopher Tortoises (Gopherus polyphemus), shown in Figure 3.2.

Each device consists of a Shockfish TinyNode, a solar panel, a battery, multiple sensors,

and additional energy measurement hardware.

During the deployment, the devices record wireless connection opportunities with neigh-

boring nodes and periodic sensor readings, including temperature, GPS coordinates, battery

level, solar energy harvested, and energy consumption. Unlike traditional networks, these

nodes rarely have an end-to-end connection to one of the two deployed GPRS-enabled base

stations, and devices must opportunistically deliver collected data using mobile-to-mobile

routing [5, 75]. When two mobile nodes are within communication range, called a con-

nection opportunity, they exchange data. This data is stored and then forwarded during

54

●

●

●

●

●

●

●
●

●

●

●

●

●

0 50 100 150 200 250 300

0
20

00
60

00
10

00
0

Connection Opportunities (1 month)

A
vg

 E
ne

rg
y

(J
/d

ay
)

Figure 5.3. Harvested energy plotted against number of meetings for each node. Energy-
rich nodes are not necessarily better connected and vice versa.

subsequent connection opportunities until it is eventually delivered to the sink. The net-

work has been in operation since August 2008.

5.1.1 Challenges

On analyzing the data traces from our deployment, we uncovered a number of key

challenges. The primary difficulty in designing TurtleNet—and generally any untethered

mobile network—is the continuous variation of both energy harvesting and network con-

nectivity due to mobility. Figure 5.1 shows how a node’s daily harvested energy varied—

experiencing both day-to-day and seasonal changes. Note that within a 10-day period, daily

harvesting ranged from less than 0.1kJ to more than 1.7kJ. In order to support perpetual

operation, a device must adapt its behavior over time.

In addition to temporal variation, energy harvesting also varies considerably across the

network. Figure 5.2 shows the average daily energy harvested by all nodes in the network

over a 1-month period of time, sorted to show the energy distribution. The figure shows

that there is significant variation in energy harvesting across nodes. With diverse energy

55

budgets in the network, each node needs to balance its available energy between sensing

and delivering data.

Recall that nodes rely on other well-connected nodes to store and forward their data

to the destination. Unfortunately, there is very little correlation between how connected a

node is and the energy it gathers, as shown in Figure 5.3. The well-connected hubs that are

best positioned to route data may not have sufficient energy to support network demand.

Routing decisions in perpetual networks must depend on not only topology, but also the

available energy.

Finally, in TurtleNet—and most other mobile systems—connections between mobile

nodes often exhibit patterns due to social habitats as shown in Figure 5.4. The figure shows

that 40% of node meetings repeat more than 10 times a month. The meeting patterns are

not completely random and can be leveraged to combat the network’s uncertainty. In other

words, if two peers have a connection opportunity, we can expect that the peers will have

future connection opportunities.

5.1.2 Design Goals

In this chapter, we describe Tula, a system that addresses the above challenges by sup-

porting perpetual operation and ensuring fair and efficient data collection. The goal of

perpetual operation entails that energy spent sensing, storing, processing, and communi-

cating must be matched with harvested energy. In addition, data sensing rates must be

matched with that of delivery. For example, a node should not sense more data than can be

delivered. In addition, Tula must operate in environments with sparse network connectivity

and on platforms that are limited in energy and computational resources.

Finally, fairness is a critical function of Tula. Tula operates in networks with significant

variation in available energy and network connectivity between nodes. Maximizing net-

work throughput or minimizing delay, without enforcing fairness, will likely result in well

connected and energy-rich nodes collecting and delivering their own data at a much higher

56

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Pairwise Links (%)

M
ee

tin
gs

 (
1

M
on

th
)

Figure 5.4. CDF of the pair-wise meeting frequency during 1 month of TurtleNet opera-
tion. While some meetings occur too infrequently to be very useful, 50% of the node pairs
repeat at least 5 times.

rate, while starving nodes that are further away. Well-connected nodes may also have their

energy budgets depleted by high network demand.

Different models have been proposed for sharing resources among nodes and flows

within a network. For Tula we have adopted the goal of max-min fairness, which requires

that a nodes’ sending rate be improved only after all lower rates have already been maxi-

mized. This model is one of the most well-known network fairness models, and it fits well

with wildlife tracking applications, including TurtleNet. Without fairness, perpetual oper-

ation is still possible, but a poorly connected node may deliver very little data. Wildlife

tracking applications typically seek to characterize animal behavior and their interactions

with the environment by collecting as much data from as many nodes as possible. This em-

phasis on sensing “breadth” rather than “depth” can be expressed using max-min fairness.

Adapting Tula to other fairness models is left for future work.

57

Tula Rate Allocator

Hardware

Adaptive Sensing

Eon, PixieOS, Levels

DTN Routing

Rapid, Spray&Wait, etc

Rate
Allocation

Buffer

Rate
Allocation

Energy
Consumed

Energy
Harvested

Network
Estimates

Sensing
Estimates

Figure 5.5. The Tula architecture.

5.2 Tula Architecture

The Tula architecture, shown in Figure 5.5, consists of three main components: an

Adaptive Sensing System for collecting sensor data, a DTN routing algorithm for oppor-

tunistically delivering that data, and a Rate Allocator that coordinates both sensing and

routing activities by appropriately allocating resources.

Adaptive sensing systems adjust application sensing rates alone in response to changes

in a device’s energy budget. Existing systems, including Eon [74], PixieOS [53], and Lev-

els [47], estimate or measure the energy costs of various application tasks and automatically

adjust application behavior to match a device’s changing energy budget.

In sparse networks, DTN routing systems opportunistically route network packets from

source to destination using sporadic and uncertain device-to-device meetings. Many sys-

tems have been designed, including Rapid [5] and Spray and Wait [75], to effectively de-

liver data over intermittent links while responding to changing network conditions.

Unfortunately, these systems are not designed to work together. Existing adaptive sens-

ing systems consider only local energy constraints, ignoring the impact of sensed data on

58

the network. Similarly, DTN routing systems assume unlimited energy and consider only

bandwidth restrictions. Tula’s core function is to overcome this challenge by combining

the benefits of adaptive sensing and DTN routing into a single coordinated system.

Rather than build a complete system from scratch, Tula abstracts the sensing and the

routing systems and controls these systems using an allocator that balances energy for

sensing with that of data delivery. The Tula energy allocation is most easily understood

in terms of rate: the number of packets, or bytes, that can be generated by sensing and

delivered by routing, over some time period.

The allocator’s objective is to maximize the rate at which sensor data is collected and

delivered, while ensuring that the allocated rates are fair to all nodes. To this end, Tula

must appropriately adjust (i) the rate of sensing, (ii) the routing rate for the node’s own

data, and (iii) the maximum routing rate for each neighbor’s data. Given the sensing rate,

Tula leverages existing sensing mechanisms that adapt the local sensing task according to

available energy. Given a routing rate, Tula adapts existing DTN routing protocols to route

data within the given rate.

5.2.1 Adapting Sensing

Adaptive sensing systems change their sensing rates according to energy conditions.

Adapting the sensing rate is especially important for perpetual operation in sensor nodes

that have multiple sensors or have high variability in harvest energy. Eon [74], an adaptive

sensing system that we use in Tula, uses hardware support to measure energy consumption

and harvesting. Eon then combines the measurements with runtime information about the

application to estimate the energy cost of various program tasks. Finally, Eon uses this

information to determine how much energy is required to sense data at a given rate. This

relationship is communicated to the rate allocator, which uses the information to solve the

allocation problem (Section 5.3).

59

5.2.2 Adapting Routing

The Tula rate allocator only assigns the maximum rate at which a node can route data

for each of its neighbors. The actual routing decision involves other tasks including es-

timating routes, tracking acknowledgements, and adapting the route to changing network

connectivity. In Tula, we use the Rapid [5] DTN routing protocol and adapt it to an energy

constrained environment.

Rapid estimates a distance metric between each node and the sink, where the distance is

the expected delivery delay. Rapid then replicates data through multiple routes based on a

marginal utility heuristic. Rapid estimates network parameters including the expected delay

and bandwidth by averaging over a sliding window; it then communicates the estimates to

the allocator.

The routing rate assigned by the allocator is only an upper bound. The actual data that

is routed through the path depends on the quality of the route. For example, let nodesA and

B be peers and let A’s allocator assign a maximum rate at which it can route data for B.

Because of changes in the network (due to mobility, interference, etc.), B may send data

at a much lower rate through A; in turn A will reduce its rate allocation for B and balance

the sensing rates appropriately. In other words, the routing protocol adapts to changing

network conditions, that in turn affect the rate allocation. We discuss this mechanism in

more detail in Section 5.4.1.

5.3 Rate Allocation

We first describe the rate allocation algorithm by making two simplifying assumptions:

(i) A node routes packets through only one neighbor, and (ii) data is only forwarded, never

replicated. Later, we describe how these assumptions can be relaxed. The network, shown

in Figure 5.6, illustrates this simplified scenario. The allocation algorithm is described with

respect to the node, n, with upstream nodes u1, . . . uk routing data through n, and a single

downstream neighbor d, through which data is routed toward a sink or base station.

60

d

n

u1 u2 u3 uk

Figure 5.6. A simplified example to illustrate the Tula distributed allocation algorithm.
The algorithm is executed by node n, whose upstream neighbors are u1, u2, . . . uk

Each node determines its set of upstream and downstream neighbors based on the rout-

ing protocol’s distance estimate. In the Rapid routing protocol that we use, the distance is

the expected delivery delay. When two peers meet, the peer with a lower delivery delay

is the downstream neighbor, and the one with the higher delivery delay is the upstream

neighbor. Section 5.4.4, discusses the implications of relaxing the definition of upstream

and downstream neighbors.

Node n executes the Tula allocation algorithm in order to determine its own sensing

rate rn and the rate at which it can route data for its neighbors, r1, r2 . . . rk. The allocation

problem is formulated as a Constraint Optimization Problem (COP) with the objective of

finding a max-min fair rate allocation, based on a set of input variables that are either

estimated locally or exchanged between neighbors during contact opportunities.

Locally measured values, shown in Table 5.2, include the energy required to collect a

packet of sensor data (Es), to receive (Er) a data packet, and to deliver (Ed) that packet to

the sink. P is the total energy harvested by the node. All of these measurements can be

61

obtained by a node’s hardware while the device is deployed. In Tula, we use the low-level

energy profiling capabilities already provided by the Eon [74] runtime system.

The network variables, shown in Table 5.1, are exchanged either upstream or down-

stream through the network whenever nodes meet. The direction for each variable with

respect to n is shown in the table. Network variables are only exchanged with immediate

peers and are not flooded across the network. These variables are described along with the

COP formulation in the following paragraphs.

5.3.1 Objective function

The objective of the rate allocation is to achieve max-min fairness in the data collected

across the nodes. A rate allocation is max-min fair if increasing any rate, ri, requires

the reduction of a lesser rate, rj , rj ≤ ri. This is also referred to as a lexicographically

maximized rate assignment [24] (Equation 5.1).

Objective: Lexicographically maximized {r1, r2, . . . , rn)} (5.1)

5.3.2 Energy conservation constraint

Perpetual operation requires that a node’s harvested energy be sufficient for all sensing

and networking tasks. Equation 5.2 ensures that n can sense and deliver its own data at

a rate of rn and receive and deliver data at a rate of ri from each upstream neighbor ui

without exceeding its power budget, P . All variables are estimated locally using hardware

instrumentation.

k∑
i=1

ri(Er + Ed) + rn(Es + Ed) < P (5.2)

62

5.3.3 Downstream constraint

The total data that n can route is capped by its downstream neighbor d. In the same way

that n assigns a maximum routing rate to its upstream nodes, d likewise assigns a maximum

data rate to n. Equation 5.3 ensures that n will never accept or collect (by sensing) data at

a rate higher than the rate, O, at which it can deliver data. Node n receives the value for O

from d each time they meet.

rn +
k∑

i=1

ri < O (5.3)

5.3.4 Upstream constraint

The objective function and the first two constraints alone will result in all upstream

routing rates being assigned equal to the local sensing rate. This equal division of resources

is fair; however, the system will be underutilized if some upstream neighbors are unable—

due to energy or bandwidth limitations—to take advantage of the allocated rate. To avoid

this condition, each upstream node, ui provides node n with an additional value: Bi is the

maximum amount of data that an upstream node can send, given its energy limitations. An

upstream node ui can compute its value of Bi by solving the COP without the downstream

constraint (Equation 5.3)

ri ≤ Bi (∀ i ∈ [1, k]) (5.4)

The COP can be solved using a well-known progressive filling algorithm [8]. The

algorithm evenly adds rate to each upstream link. As rates reach their limits, they are

excluded from receiving additional rate, and the process continues until either all peers are

excluded or no residual energy is available. This algorithm is fast, easy to implement, and

amenable to use on low-power platforms, as we show in Section 5.5.

63

Fi (down) The fraction of node ui’s data that are
sent through n

Bi (down) The maximum rate at which ui can
forward data to n

Oj (up) The rate at which n can route packets
through its downstream neighbor, j

Table 5.1. List of inputs that are exchanged between n and its neighbors to solve the COP.
Variables marked (up) are exchanged from n’s upstream neighbors, and variables marked
(down) are exchanged with n’s downstream neighbors.

Es Energy required to sense a packets
worth of data

Ed Energy to deliver a packet

Er Energy required to receive a packet

P Power available for sensing and rout-
ing

Table 5.2. Variables that are estimated locally by n to solve the COP

5.4 Incorporating Routing

The simplified Tula rate allocation makes assumptions that do not hold in practice,

especially when using DTN routing to navigate a sparsely connected network. This section

describes the effect of removing these assumptions, resulting in the modified COP, shown

in Figure 5.7.

5.4.1 Routing through multiple nodes

DTN routing algorithms often rely on multiple downstream nodes to route packets.

When presented with multiple downstream options, as shown in Figure 5.8(a), the routing

algorithm on n determines which packets will be routed through d1 and which will go

through d2. These routing decisions are limited, however, by the routing rates allocated

by the downstream nodes. Therefore, the total data that n can route is now the sum of the

64

Objective

Lexicographically max.
{
r1
F1

,
r2
F2

, . . . ,
rn−1

Fn−1

, rn

}
(5.5)

Constraints
Energy conservation

k∑
i=1

ri(Er + Ed) + rn(Es + Ed) < P (5.6)

Downstream

rn +
k∑

i=1

ri ≤
m∑

j=1

Oj (5.7)

Upstream
ri ≤ Bi (∀i ∈ [1, k]) (5.8)

Figure 5.7. Energy allocation problem formulation solved by node n. The goal is to
estimate rn, the local sensing rate and ri, the rate at which n can route packets for each of
its neighbors ui

rates allocated by each downstream neighbor, d1, d2 . . . dm. We account for this limit in the

COP by replacing the maximum downstream rate, O, with the maximum downstream rates

allocated by m downstream neighbors, O1, O2 . . . Om. The new downstream constraint

incorporating these variables is shown in Equation 5.7.

This change also impacts downstream nodes, illustrated in Figure 5.8(b), where n re-

ceives only a fraction, f , of the packets routed by u1. The remaining fraction, 1 − f , of

the packets are routed through another node n′. Using the original COP, both n and n′

would allocate resources to u1 as though each were routing all of its data—clearly defeat-

ing Tula’s efforts at fairness. Node n avoids this by allocating rate to u1, proportionally to

f . To accomplish this, we introduce a variable, Fi, which represents the fraction of all data

routed by a node ui through n. Equation 5.5 shows the modified objective using Fi to al-

65

(c)

(a) (b)

u1
n

d1

(d)

f 1-f

Infrequent
meetings

v2v1

u1 u2

n

d1 d2

n

n n'

u1

Figure 5.8. Scenarios that complicate the simple Tula allocation algorithm

locate rates fairly to fractional network flows. A node receives Fi values from its upstream

neighbors, which keep track of these values by maintaining a limited routing history.

In addition to ensuring fairness, the Fi values also provide a mechanism by which an

upstream node’s routing protocol can express demand to a downstream node’s rate alloca-

tor. For example, if the routing protocol on u1 diverts packets from a less promising n to a

more promising n′, the fraction of data routed by u1 through n will decrease, signaling the

rate allocator at n to reduce its allocation. Alternatively, if u1 wants to route more packets

through n, it will communicate an increased F1 value to n. This signals n to increase its

allocation, so long as the increase does not violate the fairness model.

66

Another result of allowing multiple downstream routes is that allocation decisions at

node, n, can indirectly effect nodes that are not on n’s upstream or downstream path. Con-

sequently, solving the optimization problem optimally would, in the worst case, require

each node to have complete knowledge of the network. Obtaining this global knowledge is

costly in static, fully connected networks, and impossible in a sparse mobile network, like

TurtleNet. Fortunately, in practice, we have found that ignoring these indirect effects does

not noticeably degrade performance.

5.4.2 Replication

Network uncertainty can often be masked by replicating the same data over different

paths. Replication adds robustness to the network and has been shown to improve deliv-

ery rates in disruption-prone environments [5, 75]. Replicating data, if not accounted for,

will also unfairly skew rate allocations in much the same way as routing through multiple

downstream nodes.

Consider the scenario illustrated in Figure 5.8(a). If n sends all of its data to d and a

duplicate copy to d′, n might be tempted to send Fn = 1.0 to both d1 and d2, since each

downstream node routed all of its data. In this case, n receives twice its fair allocation.

Instead, a Tula node n incorporates the replication rate in its estimation of the fraction

Fn. To this end, n computes Fn as the fraction of its total network transmissions including

replicas. In the previous example, n sends Fn = 0.5 to both d1 and d2, assuming that both

paths are favored equally.

5.4.3 Transitive routing

In sparse mobile networks, a node can be several hops away from the sink. In the

TurtleNet testbed, for example, some devices were as much as 5 hops away from the base

station. In order to deliver data, these nodes must route data transitively as shown in Fig-

ure 5.8(c). In the example, nodes v1 and v2 route through u1, while nodes u1 and u2 route

through n. Assuming energy and connectivity constraints are equal, and n only considers

67

u1 and u2 when allocating resources, n will assign similar rates to u1 and u2, even though

u1 is routing 3 nodes’ data and u2 only routes for itself.

Accounting for transitivity requires no change to the COP. Rather the variable, Fi is

extended to include upstream traffic. Node u1 sends the total fraction of traffic that it routes

though n, including its own and all its upstream nodes. In the example, if v1 and v2 route

all their data through u1, and u1 in turn routes all its data through n, it will send F1 = 3

to n. The value Fi needs to only be communicated to the immediate downstream neighbor.

Nodes v1 and v2 communicate their respective values to u1, and u1 aggregates the values

with its fraction to estimate F1.

To sum up, the variable Fi represents the fraction of total packets a node sends—

including its own and others’ packets and accounting for replication—to its downstream

neighbor.

5.4.4 Routing through an upstream neighbor

Under most conditions, data packets are routed toward the sink through downstream

nodes; however, at times it makes sense to route data to a node that is farther from the

destination, as illustrated in Figure 5.8(d). In the example, nodes n and u1 meet each other

frequently, but each rarely meets a shared downstream node d. According to the routing

algorithm’s distance metric, n is slightly closer to d than u1. Therefore, n is downstream

from u1, and u1 will route its data through n. Since u1 is nearly as likely to meet d as

n, node n can significantly increase the probability of delivering data in a timely manner

by routing data through u1 as well. Unfortunately, this is not permitted by our current

definition of upstream and downstream nodes. We have observed this scenario often in

TurtleNet, and we expect it to occur in any network with social groups and non-uniform

mixing.

A solution to this problem is to relax our definition and allow nodes to be both upstream

and downstream peers of each other. This solution, however, suffers from the count-to-

68

infinity problem, where a node unknowingly becomes its own downstream peer. This

problem can be solved by exchanging link information for all upstream paths, however,

it significantly increases Tula’s complexity—requiring, in the worst case, that all nodes

maintain information about all other nodes in the network.

Therefore, we use a simpler heuristic in Tula, which has worked well in practice. We

allow a node to only replicate its own data to upstream peers when appropriate, but disal-

low forwarding other nodes’ data. This simple heuristic helps avoid the count-to-infinity

problem by ensuring that data is never routed back down the path from which it came.

5.5 Implementation

We have developed two implementations of Tula: a NesC [30] version that runs on a

microcontroller platform and a trace-based simulator for repeatable experimentation.

5.5.1 NesC implementation

The goal of the NesC implementation is two-fold. First, it demonstrates that Tula can

be implemented in the memory and processor constrained microcontroller platform. Sec-

ond, it allows us to measure the energy required for each component of Tula—sensing,

routing data, solving the COP and exchanging meta data for the routing algorithm. We

then instantiate the simulator with real energy measurements. We plan to deploy the full

implementation of Tula in our TurtleNet testbed.

The NesC implementation is a fully functioning implementation running on the Shock-

Fish TinyNode [16]. The implementation incorporates all of the design features, including

the energy/rate allocator, the Eon runtime platform and the Rapid DTN layer. We adapt

the Rapid implementation to run on a memory constrained platform. Rapid normally ex-

changes meta-data about the delay of each packet. Instead, we reduce the meta-data and

exchange only the per-node delay and meta-data about a short packet history. We refer to

this reduced version as RapidLite.

69

We implemented the allocator in 390 lines of NesC code, and RapidLite in 1172 lines

of NesC code. The Eon runtime computes the energy budget of a sensor node by keeping

track of the harvested energy and the energy spent for sensing and communication.

5.5.2 Trace-based simulator

Simulation based on real data collected in situ from deployed systems is the most prac-

tical method for conducting realistic, fair, and reproducible comparisons between different

approaches. Our simulator can take mobility and harvested energy traces from a variety of

sources, including traces from our TurtleNet deployment and from UMass DieselNet [10].

The simulator periodically solves the Tula COP and performs sensing and routing based

on the rates set by the COP. Connection opportunities are simulated according to the mobil-

ity traces. Nodes exchange sensed data and meta information during a connection opportu-

nity. Sensed data is routed based on the RapidLite algorithm. The simulator assigns energy

to nodes according to a harvested energy trace. A node accounts for energy consumption

due to processing, sensing, and communication using measurements obtained from our

implementation.

5.6 Evaluation

Tula adapts sensing and routing rates to provide max-min fairness in the network. We

compare the performance of Tula with three different kinds of approaches: (i) Optimal, An

optimal adaptive policy based on an oracle (ii) Static policies that set static sensing and

routing rates, and (iii) Semi-adaptive policies that either adapt their sensing rate or routing

rate, but not both. Our evaluation compares these policies in terms of network performance,

energy management, and fairness.

5.6.1 Methodology

We evaluate Tula and alternate policies using the trace-based simulator described in the

previous section. In the simulations, each node has 512kB of storage, a 250mAhr battery,

70

A
vg

. D
ea

dt
im

e
(%

)

0
5

10
15

20
25

A
vg

. W
as

te
d

E
ne

rg
y

(k
J/

da
y)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

A
vg

. D
el

iv
er

y
R

at
e

(p
kt

s/
da

y)

0
50

10
0

15
0

20
0

Conservative Median Mean Tula Optimal

Figure 5.9. Comparison of three static allocation policies, Tula and Optimal. The policies
are compared across three metrics: battery dead time, energy wasted since the battery was
full and could not charge, and average delivery rate. Tula avoids dead time and wasted
energy successfully, and delivers within 92% of the oracle-based optimal policy.

Sensor Sense/Send ratio

GPS(Max) 2.0×104

GPS(Avg) 5.0×103

GPS(Min) 5.0×103

Accel. (ADXL330) 6.5×10−3

Mag.(HMC1053) 7.2×10−1

Table 5.3. Energy to sense vs. send for common sensors, and the XE1205 low-power radio

and the Tula allocator is run every 2 hours. To evaluate alternate allocation policies, we

replace the Tula COP with an allocator that enforces a static, semi-adaptive or optimal

allocation policy.

Simulated nodes can be configured to use a variety of sensors. Table 5.3 shows the ratio

of sensing and sending cost of three different sensors: GPS, Accelerometer, and Magne-

tometer.

71

5 50 500 5000

0
2

4
6

8
12

Sense/Send ratio

A
vg

. D
ea

dt
im

e
(%

)

5 50 500 5000

0
20

0
40

0
60

0

Sense/Send ratio

A
vg

. W
as

te
d

E
ne

rg
y

(J
/d

ay
)

5 50 500 5000

0
20

00
60

00

Sense/Send ratio

A
vg

. D
el

iv
er

y
R

at
e

(p
kt

s/
da

y)

Adaptive Sensing Adaptive Routing Tula Optimal

Figure 5.10. Comparison of two semi-adaptive allocation polices, Tula and Optimal. The
comparison is performed for different sensor applications with varying sensing to routing
ratio.

5.6.1.1 Trace collection

We conduct the trace-based simulations using three traces: TurtleNet, DieselNet and a

synthetic mesh trace. The TurtleNet traces include 45 days of data from 17 tracking de-

vices deployed on Gopher tortoises. The data contains measured solar energy, connection

opportunities, and the bandwidth available during a connection opportunity. The Diesel-

Net traces are publicly available traces from the UMass DieselNet vehicular network [10]

collected from 20 mobile nodes for 55 days in 2008.

The DieselNet bus traces do not contain energy harvesting information, however, we

combine historical solar energy traces [2] with the DieselNet bus schedules to estimate the

energy harvested at each bus over time. Note that this approach is reasonable only because

buses are either parked in the garage (i.e., no energy harvested) or driving on open roads

with a clear view of the sky.

Finally, in order to assess the applicability of Tula to fixed networks, we also simulate

a synthetic mesh network configuration of 16 nodes arranged in a 4x4 grid topology. We

randomly assign energy traces from our TurtleNet data to these mesh nodes.

72

5.6.1.2 Optimal rate allocation using an oracle

In order to determine the optimal max-min fair rate assignment, we formulate each

experimental scenario as a linear program, which can be solved using a general purpose

LP solver. Our LP formulation extends the approach used by Fan et al. [24] and we have

added support for temporal changes in network connectivity, rate adaptation, and storage

limitations, by breaking up the linear program into discrete time segments.

The solver has complete knowledge of future energy harvesting and connectivity for

each time segment. The solution from the LP formulation is the maximum max-min fair

rate assignment that does not sacrifice node lifetimes or data deliveries. Achieving this

rate, in practice, is not feasible since it requires global knowledge of the entire network;

however, it provides a useful reference by which to measure system performance.

5.6.2 Network Performance

While Tula adaptively allocates energy for both sensing and routing, there is a wide

range of alternative approaches that could be employed. In this section, we compare the

performance of Tula with two classes of allocation policies: Static and Semi-adaptive.

5.6.2.1 Static rate allocation policies

One challenge in designing a static allocation policy is determining what sensing rate

should be assigned to the nodes. Due to variation in energy harvesting, setting one sens-

ing rate across all nodes will result in some nodes dying and other nodes having surplus

energy. To conduct a fair comparison, we examine a range of behaviors. First, using the

oracle-based optimal allocator, we determine the optimal rate allocation for each node. In

a real deployment scenario, rate assignments would have to be made based on the system

designer’s best guess.

We examine the performance of three static rates: conservative, a rate that is sustainable

by 90% of the nodes in the network; the median rate, sustainable by 50% of the nodes; and

73

the mean rate, which can be achieved by only 25% of the nodes. For this experiment, nodes

are configured to use the GPS sensor.

The results of this comparison are shown in Figure 5.9. We compare the performance

with respect to three metrics: aggregate dead time, total wasted energy, and delivery rate.

The aggregate dead time is the total time that nodes in the network have no energy. The total

wasted energy is the energy that could not be stored due to limited battery size, even when

solar energy was available for harvesting. Dead time is typically a result of over-utilizing

energy, while wasted energy is a result of under-utilizing the available energy.

Using the conservative rate, nodes are dead only 3% of the time, however, on average

nearly 500J of energy—enough to collect nearly 200 sensor readings—are wasted daily

per node. The mean rate wastes much less energy, but on average nodes are dead for 25%

of the time. The median rate provides an unsatisfying tradeoff between the two extremes,

resulting in mediocre performance across all three metrics.

The results show that in a network with wide variations in energy availability and con-

nectivity, a static scheme will perform poorly, regardless of the rate that is assigned. In

contrast, by adapting per-node sensing rates, Tula is able to completely avoid dead time

and wasted energy, resulting in 11% more data collected than using the mean rate, and

within 92% of the optimal result.

5.6.2.2 Semi-adaptive rate allocation policies

Next, we make a similar comparison with two alternate adaptive policies—a policy that

adapts only the routing rate or only the sensing rates.

In the adaptive sensing policy, routing decisions are made without any energy restric-

tions. However, the node adapts its sensing rates according to the remaining energy. In

contrast, in the adaptive routing policy, sensing rates are fixed, and routing decisions are

made adaptively using the energy that remains after sensing. The adaptive routing policy

requires a fixed sensing rate, and we set the rate to the conservative rate described previ-

74

ously. Recall that the conservative rate is a rate sustainable by 90% of the nodes. Setting

the static rate to other values results in similar or worse trade-offs.

Unlike the static allocation, the performance of partially adaptive rate allocation de-

pends on the sensor. For example, if nodes only obtain accelerometer readings, the sensing

cost is low enough that adapting the sensing rate does not provide benefits. Alternatively,

if the sensor application obtains GPS readings, adapting the sensing rate is important to

ensure that a node does not exhaust its battery. Accordingly, we compare the performance

of the different allocation policies for a range of sensors with varying energy requirements

(as shown in Table 5.3).

Figure 5.10, illustrates the chief shortcoming of these partially adaptive approaches—

their ability to adapt to changes is limited by the consumption of the static tasks. As the

energy for sensing increases (left of the graph), the dead time when using adaptive routing

policy increases from 0 to 12%. On the other hand, when the energy for sensing is low,

more packets are sensed and routed. As a result, the average dead time of the adaptive

sensing policy increases to 10%.

Both the adaptive sensing and adaptive routing policy waste between 200 J to 600 J

daily depending on the policy and the sensor. In contrast, Tula optimizes both sensing and

routing and the policy incurs no dead time and no wasted energy. In terms of delivery rate,

Tula collects on average 30-50% more data than both the semi-adaptive techniques.

5.6.2.3 Network performance over DieselNet and Mesh

Figure 5.11 shows the delivery rates achieved by Tula for three different network config-

urations. Tula achieves a delivery rate of within 75% of the Optimal policy over TurtleNet

and DieselNet, even without future knowledge of the harvest energy or node meeting sched-

ules.

On a static mesh network, Tula is able to sense and deliver data within 85% of the

Optimal policy for a range of sensors, showing that Tula can adapt well to different topolo-

75

5 10 50 500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensor/Send Ratio

D
el

iv
er

y
R

at
e

(%
 o

f O
pt

im
al

) ●

●

●

●

●

● Tula−TurtleNet
Tula−Mesh
Tula−DieselNet

Figure 5.11. Delivery rate of Tula normalized to the optimal delivery rate over three net-
works configurations: TurtleNet, a static 4x4 grid mesh network, and the DieselNet vehic-
ular traces.

gies. More importantly, in the absence of mobility, the rate set by the Tula allocation policy

converges close to the optimal rate.

5.6.3 Fairness

The objective of the Tula allocation policy is to set rates such that data is sensed and

delivered to the sink at a max-min fair rate. In this section, we evaluate the fairness of

Tula using two metrics. First, we compare the per-node delivery rate of Tula with Optimal.

Recall that the optimal oracle-based rate allocator is also designed to set max-min fair rates.

Figures 5.12, 5.13 and 5.14 show the per-node delivery rate of Tula compared to

optimal for the three network configurations: TurtleNet, DieselNet and Mesh, respectively.

For all three networks, the per-node delivery rate of Tula is close to the optimal per-node

76

A
vg

. S
en

si
ng

 R
at

e
(r

ea
di

ng
s/

da
y)

0
10

0
30

0
50

0
70

0

Optimal
Tula

Figure 5.12. TurtleNet
traces: Average per-node de-
livery rate

A
vg

. S
en

si
ng

 R
at

e
(r

ea
di

ng
s/

da
y)

0
10

0
30

0
50

0
70

0

Optimal
Tula

Figure 5.13. DieselNet
traces: Average per-node de-
livery rate

A
vg

. S
en

si
ng

 R
at

e
(r

ea
di

ng
s/

da
y)

0
50

10
0

15
0

20
0

25
0

Optimal
Tula

Figure 5.14. Mesh: Average
per-node delivery rate

rate. For example, in TurtleNet, nearly all of the nodes achieve a delivery rate within 75%

of the optimal. Similar performance is seen for both Mesh and DieselNet.

5.6.4 Overhead

Finally, we quantify the overhead of Tula using measurements from our TinyNode-

based implementation. Current draw is measured using a NI-PCI 6251 DAQ, measuring

the voltage drop across a low-tolerance current-sense resistor. Simultaneously measuring

the voltage across the device’s battery allows us to compute the energy consumption. The

measurements are shown in Table 5.4.

Apart from the core sensing and networking tasks, energy is incurred when periodically

solving the Tula COP and computing the device’s energy budget. However, both tasks only

consume roughly as much energy as transmitting 2-3 packets over the device’s radio. In

addition to energy costs, our implementation of Tula requires 1.5kB of RAM and 22kB of

additional program space in addition to the space requirements of the Eon runtime system.

These size requirements are easily met by nearly all microcontroller-based platforms that

are currently in use.

77

Tula Energy/Time Overhead
Operation Energy Time

Solve COP 0.9− 2.3mJ 0.5− 1.35s
Compute Energy Budget 1.4− 1.8mJ 0.8− 1.0ms

Memory Overhead

RAM overhead 1.5kB
Additional code size 22kB

Table 5.4. Measurements of Tula overhead.

5.7 Related Work

Tula builds on a large body of previous work in several fields: challenged networking,

rate allocation and fairness, mobile sensor networks, and adaptation. In many ways this

synthesis is too large to cover here, so we provide the most relevant work.

5.7.1 Mobile sensor networks

Most sensor network papers in the literature are static and connected; however, some

previous mobile sensor deployments have shared many of the same goals as Tula. Ze-

braNet [88], for example, initially explored the use of in-situ sensing devices for wildlife

tracking. These first devices were large (>0.5kg) and masked energy variations with large

batteries and solar panels—too large for most animals to carry; however, they set the stage

for future mobile sensing systems, like Tula.

Of course, mobile sensor systems are not limited to wildlife tracking. The CarTel [38]

and Pothole Patrol [20] projects used mobile sensors in vehicles to identify traffic conges-

tion and to provide cities with valuable road-quality information. Like most vehicle-based

networks, these devices receive power from the vehicles. Several projects have also used

mobile phones as sensing platforms [19, 42, 54, 80]. While some systems make efforts to

conserve energy, all rely heavily on the user to manage the phone’s energy supply.

78

5.7.2 Low power sensor networks

Energy scarcity is a first class design concern for wireless sensor networks. Low-power

hardware platforms with energy harvesting support [41, 49, 74] as well as algorithms for

estimating and predicting energy harvesting and consumption [17, 44, 74] are crucial com-

ponents of all perpetual systems. Additionally, a variety of energy-aware networking tech-

niques have been proposed for use with low-power sensors, including energy-aware clus-

tering [86], aggregation, and traffic shaping to extend device lifetimes [71]. However, pre-

vious research on energy aware sensor networks has focused on static network topologies

that improve node lifetime, but do not focus on perpetual operation.

5.7.3 Challenged networks

A wealth of previous research has focused on building disruption tolerant networks with

sparse connectivity. Research in this area has provided a range of protocols [5, 39, 50, 75],

which opportunistically forward and replicate packets to mobile peers. Most DTN solutions

have targeted vehicular [11] and personal device networks [37]. Whether tapping into

a vehicle’s battery or relying on user-facilitated recharges, previous solutions assume a

steady and unlimited energy supply, and neglect the challenge of energy scarcity which is

central to any untethered system.

5.7.4 Fair network rate allocation

A variety of fairness policies have been proposed [8, 46], along with many techniques

for enforcing those policies in wireless networks [28,78,91]. Of these approaches, the most

closely related work provides both centralized and distributed algorithms for enforcing

max-min fairness in networks that have rechargeable sensors [24,51]. However, the authors

assume that the routes in the network are static, and that the energy profile of a node is

known in advance. Tula enforces max-min fairness in networks with unpredictable network

connectivity and dynamically changing energy constraints.

79

Another closely related are the Peloton [82] and IDEA [3], which have similar goals

and have been developed concurrently with Tula. Both are efforts to extend Pixie [53] to

support for network-wide cooperation, just as Tula extends Eon. Despite their similarities,

IDEA and Tula have important differences, that parallel the differences between Pixie [53]

and Eon [74]. In IDEA, nodes exchange information about battery fullness, charging char-

acteristics, and system energy load, along with utility functions that describe the value

of system states. Like Pixie, this reflects IDEA’s focus on maximizing resource visibility

and a designers possibilities. In contrast, Tula focuses on making the complications of in-

network cooperation invisible and automatic. Tula also automatically balances inherently

dependent sensing and routing tasks—a dependence which is not addressed by IDEA.

Finally, myriad of techniques aim at improving performance and enabling new ap-

plications by providing additional coordination across traditionally independent network

layers [15, 77], when legacy abstractions fail to meet the needs of emerging systems and

environments. Tula is also a cross-layer approach providing a tight link between the appli-

cation and network in order to address the combined challenges of mobility, heterogeneity

and perpetual operation.

5.8 Discussion

In this chapter, we have described Tula, a system which balances sensing with packet

delivery for energy harvesting mobile sensor networks. Tula represents a first step in man-

aging the combined resources of a network of constrained nodes, balancing sensing and

communication, while maintaining a cooperative system for delivering data. Our evalua-

tion of Tula, using mobility and energy traces from our TurtleNet deployment, shows that

Tula collects and delivers data within 75% of an optimal oracular policy. In addition, we

have shown that Tula successfully enforces a max-min fairness policy and is suitable for

use on low power sensing platforms.

80

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter describes our conclusions about both Eon and Tula, as well as the limita-

tions of our work and planned future directions.

6.1 Conclusion

Perpetual systems promise to transform our understanding of the natural world and to

extend the benefits of computing and sensing technologies into challenging environments,

remote locations, and at an unprecedented scale. Unfortunately, their many deployment

challenges (e.g., uncertainty and variation) make building and tuning perpetual systems

difficult for experts and impossible for less technical users.

This dissertation describes techniques that overcome this tension allowing system de-

signers to build systems that operate perpetually and deliver data efficiently and fairly,

without sacrificing simplicity. This is accomplished in two ways: first we use Eon, the

first energy-aware programming language, which allows programmers to simply express

application specific energy policies and then delegate the complexities of energy-aware

adaptation to the underlying system; and second, we use Tula to balance data collection

with data delivery and ensure that each device has fair access to network resources.

We have shown that Eon can reduce program development time by up to 4X, and that

the Eon runtime system’s simple adaptation algorithms are able to effectively adjust pro-

gram behavior, extend device lifetime, and avoid wasting energy—performing on par with

a hypothetical oracle-based system using perfect energy prediction. In addition to our

81

quantitative results, in our own experience using Eon, we have found the language to be

expressive, simple, and flexible.

Tula brings together the work of two separate areas of research—adaptive sensing and

disruption-tolerant networking—allowing the inherently dependent activities of data gath-

ering or production and data delivery to be coordinated automatically. We have also shown

that Tula successfully ensures that all nodes have fair access to network resources, assign-

ing rates across the network within 75% of the optimal max-min fair rate allocation.

6.2 Future Work

While our work lays the groundwork for building perpetual mobile systems, there are

many directions in which this research could be extended.

Other Network Models: We have, so far, focused on mobile tracking systems, which

collect data over time and forward that data to a collection point or base station. This model

for sensing and routing is common and straightforward; however, there are other models

that are used by sensor network applications, including query-based collection [55], and

in-network aggregation [23].

Incorporating these alternative models in Tula, requires the system to estimate the effect

that aggregation and querying have on network load. In the case of querying, network

load and the flexibility with which Tula can adapt would also depend on the nature of the

query itself. Supporting aggregation would require the system to estimate the amount of

compression achieved by aggregation at each hop in the network.

Prioritized Network Flows: Sensor network applications may also collect data from mul-

tiple different types of sensors, and some data may have higher priority than others. A

sensor network monitoring a volcano [83], for example, may want to report dangerous

events immediately, while those that are merely scientifically interesting can be collected

after the danger passes.

82

In general, data prioritization is complementary to this work. Eon already assigns prior-

ity to program flows based on the programmer’s annotations, and these assignments could

naturally translate into network priorities. Accounting for packet priorities in Tula would

naturally complicate the optimization problem, but the extension is likely to be straightfor-

ward.

In this dissertation we have chosen to focus on the fundamental challenges that face

perpetual systems. In order to maintain this focus, these features, extensions, and models,

while important, are left as future work—being too intricate to cover in a single dissertation.

6.3 The Final Word

We argue that as the scale and complexity of mobile sensing systems increases, suc-

cessful systems will be adaptive and self managing—capable of long deployments in a

wide range of environments and adverse conditions. These perpetual systems will only

see widespread use when they are simple to program, optimize, and understand, while

leveraging proven techniques for estimating, predicting, and efficiently sharing network

and energy resources. Our work demonstrates that these goals are within reach for today’s

energy constrained microcontroller-based platforms, and provides the research community

with the techniques and tools necessary to achieve them.

83

BIBLIOGRAPHY

[1] http://prisms.cs.umass.edu/dome.

[2] http://weather.cs.umass.edu/.

[3] IDEA: integrated distributed energy awareness for wireless sensor networks. In Pro-
ceedings of the 8th Annual International Conference on Mobile Systems, Applications
and Services (MobiSys ’10) (San Francisco, CA, USA, June 2010).

[4] Anand, M., Nightingale, E. B., and Flinn, J. Self-tuning wireless network power
management. In Proceedings of the 9th ACM International Conference on Mobile
Computing and Networking (MobiCom’03) (San Diego, CA, September 2003).

[5] Balasubramanian, Aruna, Levine, Brian Neil, and Venkataramani, Arun. DTN Rout-
ing as a Resource Allocation Problem. In Proc. ACM Sigcomm (August 2007).

[6] Balasubramanian, Aruna, Mahajan, Ratul, Venkataramani, Arun, Levine, Brian, and
Zahorjan, John. Interactive WiFi Connectivity for Moving Vehicles. In ACM SIG-
COMM (August 2008).

[7] Berry, G., and Gonthier, G. The ESTEREL synchronous programming language: de-
sign, semantics, implementation. Science of Computer Programming 19, 2 (Novem-
ber 1992), 87–152.

[8] Boudec, Jean-Yves. Rate adaptation, congestion control and fairness: A tutorial,
2000.

[9] Burgess, John, Bissias, George, Corner, Mark D., and Levine, Brian Neil. Surviv-
ing Attacks on Disruption-Tolerant Networks without Authentication. In Proc. ACM
Mobihoc (Montreal, Quebec, Canada, September 2007).

[10] Burgess, John, Gallagher, Brian, Jensen, David, and Levine, Brian Neil. MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks. In IEEE INFOCOM (April
2006).

[11] Burgess, John, Gallagher, Brian, Jensen, David, and Levine, Brian Neil. MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks. In Proc. IEEE INFOCOM
(April 2006).

[12] Burns, Brendan, Grimaldi, Kevin, Kostadinov, Alexander, Berger, Emery D., and
Corner, Mark D. Flux: A language for programming high-performance servers. In
Proc. USENIX Annual Technical Conference (May 2006).

84

[13] Chen, Wei-Peng, and Sha, Lui. An energy-aware data-centric generic utility based
approach in wireless sensor networks. In Proceedings of the third international sym-
posium on Information processing in sensor networks (IPSN) (April 2004), pp. 215 –
224.

[14] Chinn, G., Desai, S., DiStefano, Eric, Ravichandran, K., and Thakkar, S. Mobile PC
platforms enabled with Intel Centrino mobile technology. Intel Technology Journal
7, 2 (May 2003).

[15] Conti, M., Maselli, G., Turi, G., and Giordano, S. Cross-layering in mobile ad hoc
network design. Computer 37, 2 (Feb 2004), 48–51.

[16] Dubois-Ferriere, Henri, Meier, Roger, Fabre, Laurent, and Metrailler, Pierre. TinyN-
ode: A comprehensive platform for wireless sensor network applications. In Pro-
ceedings of the fifth international conference on Information processing in sensor
networks (Poster) (Nashville, TN, USA, April 2006), pp. 358–365.

[17] Dunkels, Adam, Osterlind, Fredrik, Tsiftes, Nicolas, and He, Zhitao. Software-based
on-line energy estimation for sensor nodes. In EmNets ’07: Proceedings of the
4th workshop on Embedded networked sensors (New York, NY, USA, 2007), ACM,
pp. 28–32.

[18] Dutta, Prabal, Feldmeier, Mark, Paradiso, Joseph, and Culler, David. Energy metering
for free: Augmenting switching regulators for real-time monitoring. In IPSN ’08:
Proceedings of the 7th international conference on Information processing in sensor
networks (Washington, DC, USA, 2008), IEEE Computer Society, pp. 283–294.

[19] Eagle, Nathan, and (Sandy) Pentland, Alex. Reality mining: sensing complex social
systems. Personal Ubiquitous Computing 10, 4 (2006), 255–268.

[20] Eriksson, Jakob, Girod, Lewis, Hull, Bret, Newton, Ryan, Madden, Samuel, and Bal-
akrishnan, Hari. The pothole patrol: using a mobile sensor network for road sur-
face monitoring. In MobiSys ’08: Proceeding of the 6th international conference
on Mobile systems, applications, and services (New York, NY, USA, 2008), ACM,
pp. 29–39.

[21] Ernst, C. H., Lovich, J. E., and Barbour, R. W. Turtles of the United States and
Canada. Smithsonian Institute Press, 1994.

[22] et. al., John Porter. Wireless sensor networks for ecology. BioScience 55, 7 (July
2005).

[23] Fan, Kai-Wei, Liu, Sha, and Sinha, Prasun. Structure-free data aggregation in sensor
networks. IEEE Transactions on Mobile Computing 6, 8 (2007), 929–942.

[24] Fan, Kai-Wei, Zheng, Zizhan, and Sinha, Prasun. Steady and fair rate allocation for
rechargeable sensors in perpetual sensor networks. In SenSys ’08: Proceedings of
the 6th ACM conference on Embedded network sensor systems (New York, NY, USA,
2008), ACM, pp. 239–252.

85

[25] Fioravanti-Score, A., Mitchell, Sarah V., and Williamson, J. Michael. Use of Satel-
lite Telemetry Technology to Enhance Research and Education in the Protection of
Loggerhead Sea Turtles. In 19th Annual Symposium on Sea Turtle Biology and Con-
servation (1999).

[26] Flinn, J., and Satyanarayanan, M. Powerscope: A tool for profiling the energy usage
of mobile applications. In Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications (New Orleans, LA, February 1999).

[27] Flinn, J., and Satyanarayanan, M. Managing battery lifetime with energy-aware adap-
tation. ACM Transactions on Computer Systems (TOCS) 22, 2 (May 2004).

[28] Gambiroza, Violeta, Sadeghi, Bahareh, and Knightly, Edward W. End-to-end per-
formance and fairness in multihop wireless backhaul networks. In MobiCom ’04:
Proceedings of the 10th annual international conference on Mobile computing and
networking (New York, NY, USA, 2004), ACM, pp. 287–301.

[29] Gay, D., Levis, P., Behren, R. V., Welsh, M., Brewer, E., and Culler, D. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
Programming Language Design and Implementation (PLDI) (June 2003).

[30] Gay, David, Levis, Philip, von Behren, Robert, Welsh, Matt, Brewer, Eric, and Culler,
David. The nesc language: A holistic approach to networked embedded systems.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (New York, NY, USA, 2003), ACM, pp. 1–11.

[31] Gelernter, David, and Carriero, Nicholas. Coordination languages and their signifi-
cance. Commun. ACM 35, 2 (1992), 96.

[32] Greenstein, Ben, Kohler, Eddie, and Estrin, Deborah. A sensor network application
construction kit (snack). In SenSys ’04: Proceedings of the 2nd international con-
ference on Embedded networked sensor systems (New York, NY, USA, 2004), ACM
Press, pp. 69–80.

[33] Gu, Yu, Zhu, Ting, and He, Tian. ESC: Energy Synchronized Communication in
Sustainable Sensor Networks. In Proceedings of the 17th International Conference
on Network Protocols (ICNP ’09) (October 2009).

[34] Gummadi, Ramakrishna, Kothari, Nupur, Govindan, Ramesh, and Millstein, Todd.
Kairos: a macro-programming system for wireless sensor networks. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems principles (New
York, NY, USA, 2005), ACM, pp. 1–2.

[35] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE 79, 9 (September 1991),
1305–1320.

86

[36] Hartung, C., Holbrook, S., Han, R., and Seielstad, C. olbrook, r. han, c. seielstad,
“firewxnet: A multi-tiered portable wireless system for monitoring weather condi-
tions in wildland fire environments. In Fourth International Conference on Mobile
Systems, Applications and Services (MobiSys) (2006), pp. 28–41.

[37] Hui, Pan, Chaintreau, Augustin, Scott, James, Gass, Richard, Crowcroft, Jon, and
Diot, Christophe. Pocket Switched Networks and Human Mobility in Conference
Environments. In Proc. ACM Workshop on Delay-Tolerant Networking (Aug. 2005),
pp. 244–251.

[38] Hull, Bret, Bychkovsky, Vladimir, Zhang, Yang, Chen, Kevin, Goraczko, Michel,
Miu, Allen, Shih, Eugene, Balakrishnan, Hari, and Madden, Samuel. CarTel: A Dis-
tributed Mobile Sensor Computing System. In ACM SenSys (October 2006), pp. 125–
138.

[39] Jain, S., Fall, K., and Patra, R. Routing in a Delay Tolerant Network. In Proc. ACM
SIGCOMM (August 2004), pp. 145–158.

[40] Jiang, Xiaofan, Dutta, Prabal, Culler, David, and Stoica, Ion. Micro power meter for
energy monitoring of wireless sensor networks at scale. In IPSN ’07: Proceedings of
the 6th international conference on Information processing in sensor networks (New
York, NY, USA, 2007), ACM, pp. 186–195.

[41] Jiang, Xiaofan, Polastre, Joseph, and Culler, David E. Perpetual environmentally
powered sensor networks. In IPSN (2005), pp. 463–468.

[42] Kansal, Aman, Goraczko, Michel, and Zhao, Feng. Building a sensor network of mo-
bile phones. In IPSN ’07: Proceedings of the 6th international conference on Informa-
tion processing in sensor networks (New York, NY, USA, 2007), ACM, pp. 547–548.

[43] Kansal, Aman, Hsu, Jason, Srivastava, Mani B, and Raghunathan, Vijay. Harvesting
aware power management for sensor networks. In 43rd Design Automation Confer-
ence (DAC) (July 2006).

[44] Kansal, Aman, Hsu, Jason, Zahedi, Sadaf, and Srivastava, Mani B. Power manage-
ment in energy harvesting sensor networks. ACM Transactions on Embedded Com-
puting Systems (May 2006).

[45] Kulkarni, P., Ganesan, D., and Shenoy, P. Senseye: A multi-tier camera sensor net-
work. In ACM Multimedia (2005).

[46] Kushner, H.J., and Whiting, P.A. Convergence of proportional-fair sharing algorithms
under general conditions. Wireless Communications, IEEE Transactions on 3, 4 (July
2004), 1250–1259.

[47] Lachenmann, Andreas, Marrón, Pedro José, Minder, Daniel, and Rothermel, Kurt.
Meeting lifetime goals with energy levels. In Proc. of the 5th ACM Conference on
Embedded Networked Sensor Systems (2007), pp. 131–144.

87

[48] Landsiedel, O., Wehrle, K., and Gotz, S. Accurate prediction of power consumption
in sensor networks. In EmNets ’05: Proceedings of the 2nd IEEE workshop on Em-
bedded Networked Sensors (Washington, DC, USA, 2005), IEEE Computer Society,
pp. 37–44.

[49] Lin, Kris, Hsu, Jason, Zahedi, Sadaf, Lee, David C, Friedman, Jonathan, Kansal,
Aman, Raghunathan, Vijay, and Srivastava, Mani B. Heliomote: Enabling long-lived
sensor networks through solar energy harvesting. In Proceedings of ACM Sensys
(November 2005).

[50] Lindgren, A., Doria, A., and Scheln, O. Probabilistic Routing in Intermittently Con-
nected Networks. In Proc. Workshop on Service Assurance with Partial and Intermit-
tent Resources (August 2004).

[51] Liu, Ren-Shiou, Sinha, Prasun, and Koksal, Can Emre. Joint energy management and
resource allocation in rechargeable sensor networks. In Proceedings of IEEE Infocom
(2010).

[52] Lorch, J., and Smith, A. J. Energy consumption of apple macintosh computers. IEEE
Micro 18, 6 (November/December 1998).

[53] Lorincz, Konrad, Chen, Bor-rong, Waterman, Jason, Werner-Allen, Geoff, and Welsh,
Matt. Resource aware programming in the pixie os. In SenSys ’08: Proceedings of
the 6th ACM conference on Embedded network sensor systems (New York, NY, USA,
2008), ACM, pp. 211–224.

[54] Lu, Hong, Pan, Wei, Lane, Nicholas D., Choudhury, Tanzeem, and Campbell, An-
drew T. Soundsense: scalable sound sensing for people-centric applications on mobile
phones. In MobiSys ’09: Proceedings of the 7th international conference on Mobile
systems, applications, and services (New York, NY, USA, 2009), ACM, pp. 165–178.

[55] Madden, Samuel R., Franklin, Michael J., Hellerstein, Joseph M., and Hong, Wei.
Tinydb: an acquisitional query processing system for sensor networks. ACM Trans.
Database Syst. 30, 1 (2005), 122–173.

[56] Mainland, Geoff, Parkes, David C., and Welsh, Matt. Decentralized, adaptive re-
source allocation for sensor networks. In Proceedings of the 2nd USENIX/ACM Sym-
posium on Networked Systems Design and Implementation (NSDI 2005) (May 2005).

[57] Mainland, Geoffrey, Welsh, Matt, and Morrisett, Greg. Flask: A language for data-
driven sensor network programs. Tech. Rep. TR-13-06, Harvard University, Division
of Engineering and Applied Sciences, May 2006.

[58] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J. Wireless
sensor networks for habitat monitoring. In Workshop on Wireless Sensor Networks
and Applications (Atlanta, GA, September 2002).

88

[59] Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A., and Lang,
J. H. Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 9, 1 (February 2001), 64–76.

[60] Morrison, J. Paul. Flow-Based Programming: A new approach to application devel-
opment. Van Nostrand Reinhold, 1994.

[61] Nellis, David W., and Small, Vonnie. Mongoose predation on sea turtle eggs and
nests. Biotropica 15, 2 (1983), 159–160.

[62] Nemmaluri, Aditya, Corner, Mark D., and Shenoy, Prashant. Sherlock: Automatically
locating objects for humans. In Proceedings of Mobisys (Breckenridge, CO, June
2008).

[63] Neugebauer, Rolf, and McAuley, Derek. Energy is just another resource: Energy
accounting and energy pricing in the nemesis os. In Proceedings of the 8th IEEE
Workshop on Hot Topics in Operating Systems (HotOS-VIII) (Schloss Elmau, Ger-
many, May 2001).

[64] Newton, Ryan, Arvind, and Welsh, Matt. Building up to macroprogramming: an
intermediate language for sensor networks. In IPSN ’05: Proceedings of the 4th
international symposium on Information processing in sensor networks (Piscataway,
NJ, USA, 2005), IEEE Press, p. 6.

[65] Noble, B., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., and Walker,
K. Agile application-aware adaptation for mobility. In Proceedings of the 16th ACM
Symposium on Operating System Principles (St. Malo, France, October 1997).

[66] Polastre, J., Szewczyk, R., and Culler, D. Telos: Enabling ultra-low power wireless
research. In Proc. IPSN/SPOTS (April 2005).

[67] Polastre, J., Szewczyk, R., Sharp, C., , and Culler, D. The mote revolution: Low
power wireless sensor networks. In Proceedings of the 16th Symposium on High
Performance Chips (HotChips) (August 2004).

[68] Polastre, Joseph, Hill, Jason, and Culler, David E. Versatile low power media access
for wireless sensor networks. In SenSys (2004), pp. 95–107.

[69] Priya, Shashank, Chen, Chih-Ta, Fye, Darren, and Zahnd, Jeff. Piezoelectric wind-
mill: A novel solution to remote sensing. Japanese Journal of Applied Physics 44, 3
(2005), 104–107.

[70] Rowe, Anthony, Rosenberg, Charles, and Nourbakhsh, Illah. A low cost embedded
color vision system. In Proceedings of Intelligent Robots and System (EPFL Switzer-
land s, September 2002), pp. 208–213.

[71] Schurgers, C., and Srivastava, M.B. Energy efficient routing in wireless sensor
networks. Military Communications Conference, 2001. MILCOM 2001. Communi-
cations for Network-Centric Operations: Creating the Information Force. IEEE 1
(2001), 357–361 vol.1.

89

[72] Shah, Rahul C., and Rabaey, Jan M. Energy aware routing for low energy ad hoc
sensor networks, 2002.

[73] Shnayder, Victor, Hempstead, Mark, Chen, Bor-Rong, and Welsh, Matt. Power-
tossim: Efficient power simulation for tinyos applications. In ACM Conference on
Embedded Networked Sensor Systems (SenSys) (2004).

[74] Sorber, Jacob, Kostadinov, Alexander, Garber, Matthew, Brennan, Matthew, Corner,
Mark D., and Berger, Emery D. Eon: A Language and Runtime System for Perpetual
Systems. In Proc. ACM SenSys (Sydney, Australia, November 2007).

[75] Spyropoulos, Thrasyvoulos, Psounis, Konstantinos, and Raghavendra, Cauligi. Spray
and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Net-
works. In Proc. ACM Workshop on Delay-Tolerant Networking (Aug. 2005), pp. 252–
259.

[76] Spyropoulos, Thrasyvoulos, Psounis, Konstantinos, and Raghavendra, Cauligi S.
Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile
Networks. In Proc. ACM WDTN (Aug. 2005), pp. 252–259.

[77] Srivastava, V., and Motani, M. Cross-layer design: a survey and the road ahead.
Communications Magazine, IEEE 43, 12 (Dec. 2005), 112–119.

[78] Tassiulas, L., and Sarkar, S. Maxmin fair scheduling in wireless networks. INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE 2 (2002), 763–772 vol.2.

[79] Vicaire, Pascal A., Xie, Zhiheng, Hoque, Enamul, and Stankovic, John A. Physical-
net: A generic framework for managing and programming across pervasive comput-
ing networks. Real-Time and Embedded Technology and Applications Symposium,
IEEE 0 (2010), 269–278.

[80] Wang, Yi, Lin, Jialiu, Annavaram, Murali, Jacobson, Quinn A., Hong, Jason, Krish-
namachari, Bhaskar, and Sadeh, Norman. A framework of energy efficient mobile
sensing for automatic user state recognition. In MobiSys ’09: Proceedings of the 7th
international conference on Mobile systems, applications, and services (New York,
NY, USA, 2009), ACM, pp. 179–192.

[81] Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., and Light, J. The Personal
Server - Changing the way we think about ubiquitous computing. In Proceedings of
Ubicomp 2002: 4th International Conference on Ubiquitous Computing (Goteborg,
Sweden, September 2002).

[82] Waterman, Jason, Challen, Geoffrey Werner, and Welsh, Matt. Peloton: Coordinated
resource management for sensor networks. In Proceedings of the 12th Workshop on
Hot Topics in Operating Systems (HotOS ’09) (May 2009).

90

[83] Werner-Allen, Geoff, Lorincz, Konrad, Johnson, Jeff, Lees, Jonathan, and Welsh,
Matt. Fidelity and yield in a volcano monitoring sensor network. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI
2006) (Seattle, WA, November 2006).

[84] Xiao, Shuo, Sivaraman, Vijay, and Burdett, Alison. Adapting radio transmit power in
wireless body area sensor networks. In BodyNets ’08: Proceedings of the ICST 3rd
international conference on Body area networks (ICST, Brussels, Belgium, Belgium,
2008), ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), pp. 1–8.

[85] Ye, Wei, Heidemann, John, and Estrin, Deborah. An energy-efficient mac protocol
for wireless sensor networks. In 21st International Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM) (New York, NY, USA,
June 2002), pp. 1567–1576.

[86] Younis, O., and Fahmy, S. HEED: A hybrid, energy-efficient, distributed clustering
approach for ad-hoc sensor networks. IEEE Transactions on Mobile Computing 4, 4
(October 2004).

[87] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. ECOSystem: Managing energy
as a first class operating system resource. In Proceedings of the Tenth international
conference on architectural support for programming languages and operating sys-
tems (San Jose, CA, October 2002).

[88] Zhang, Pei, Sadler, Christopher M., Lyon, Stephen A., and Martonosi, Margaret.
Hardware design experiences in zebranet. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems (New York, NY,
USA, 2004), ACM, pp. 227–238.

[89] Zhang, Xiaolan, Kurose, Jim, Levine, Brian Neil, Towsley, Don, and Zhang, Hong-
gang. Study of a Bus-Based Disruption Tolerant Network: Mobility Modeling and
Impact on Routing. In Proc. ACM Mobicom (September 2007).

[90] Zhao, Wenrui, Chen, Yang, Ammar, Mostafa, Corner, Mark D., Levine, Brian Neil,
and Zegura, Ellen. Capacity Enhancement using Throwboxes in DTNs. In Proc. IEEE
Intl Conf on Mobile Ad hoc and Sensor Systems (MASS) (Oct 2006), pp. 31–40.

[91] Zhu, Junhua, Hung, Ka-Lok, and Bensaou, Brahim. Tradeoff between network life-
time and fair rate allocation in wireless sensor networks with multi-path routing. In
MSWiM ’06: Proceedings of the 9th ACM international symposium on Modeling
analysis and simulation of wireless and mobile systems (New York, NY, USA, 2006),
ACM, pp. 301–308.

91

