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ABSTRACT

AUTOMATED NEGOTIATION FOR COMPLEX
MULTI-AGENT RESOURCE ALLOCATION

SEPTEMBER 2010

BO AN

B.Sc., CHONGQING UNIVERSITY

M.Sc., CHONGQING UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser

The problem of constructing and analyzing systems of intelligent, autonomous

agents is becoming more and more important. These agents may include people,

physical robots, virtual humans, software programs acting on behalf of human be-

ings, or sensors. In a large class of multi-agent scenarios, agents may have different

capabilities, preferences, objectives, and constraints. Therefore, efficient allocation of

resources among multiple agents is often difficult to achieve. Automated negotiation

(bargaining) is the most widely used approach for multi-agent resource allocation

and it has received increasing attention in the recent years. However, information
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uncertainty, existence of multiple contracting partners and competitors, agents’ in-

centive to maximize individual utilities, and market dynamics make it difficult to

calculate agents’ rational equilibrium negotiation strategies and develop successful

negotiation agents behaving well in practice. To this end, this thesis is concerned

with analyzing agents’ rational behavior and developing negotiation strategies for a

range of complex negotiation contexts.

First, we consider the problem of finding agents’ rational strategies in bargaining

with incomplete information. We focus on the principal alternating-offers finite hori-

zon bargaining protocol with one-sided uncertainty regarding agents’ reserve prices.

We provide an algorithm based on the combination of game theoretic analysis and

search techniques which finds agents’ equilibrium in pure strategies when they ex-

ist. Our approach is sound, complete and, in principle, can be applied to other

uncertainty settings. Simulation results show that there is at least one pure strat-

egy sequential equilibrium in 99.7% of various scenarios. In addition, agents with

equilibrium strategies achieved higher utilities than agents with heuristic strategies.

Next, we extend the alternating-offers protocol to handle concurrent negotiations

in which each agent has multiple trading opportunities and faces market competition.

We provide an algorithm based on backward induction to compute the subgame

perfect equilibrium of concurrent negotiation. We observe that agents’ bargaining

power are affected by the proposing ordering and market competition and for a large

subset of the space of the parameters, agents’ equilibrium strategies depend on the

values of a small number of parameters.We also extend our algorithm to find a pure
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strategy sequential equilibrium in concurrent negotiations where there is one-sided

uncertainty regarding the reserve price of one agent.

Third, we present the design and implementation of agents that concurrently

negotiate with other entities for acquiring multiple resources. Negotiation agents

are designed to adjust 1) the number of tentative agreements and 2) the amount of

concession they are willing to make in response to changing market conditions and

negotiation situations. In our approach, agents utilize a time-dependent negotiation

strategy in which the reserve price of each resource is dynamically determined by 1)

the likelihood that negotiation will not be successfully completed, 2) the expected

agreement price of the resource, and 3) the expected number of final agreements.

The negotiation deadline of each resource is determined by its relative scarcity. Since

agents are permitted to decommit from agreements, a buyer may make more than

one tentative agreement for each resource and the maximum number of tentative

agreements is constrained by the market situation. Experimental results show that

our negotiation strategy achieved significantly higher utilities than simpler strategies.

Finally, we consider the problem of allocating networked resources in dynamic

environment, such as cloud computing platforms, where providers strategically price

resources to maximize their utility. While numerous auction-based approaches have

been proposed in the literature, our work explores an alternative approach where

providers and consumers negotiate resource leasing contracts. We propose a dis-

tributed negotiation mechanism where agents negotiate over both a contract price

and a decommitment penalty, which allows agents to decommit from contracts at a

cost. We compare our approach experimentally, using representative scenarios and

x



workloads, to both combinatorial auctions and the fixed-price model, and show that

the negotiation model achieves a higher social welfare.

xi



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Collaborating, Autonomous Stream Processing Systems
(CLASP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Global Environment for Network Innovations (GENI) . . . . . . . . . . 6

1.3 Automated Negotiation for Complex Resource Allocation
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Negotiation with Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 One-to-Many and Many-to-Many Negotiation . . . . . . . . . . . . . . . . 15
1.3.3 Multi-Resource Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 Negotiation with Decommitment for Dynamic Resource

Allocation in Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xii



1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2. LITERATURE REVIEW ON AUTOMATED
NEGOTIATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Negotiation as a Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Bargaining Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Alternating-offers protocol and its extensions . . . . . . . . . . . . . . . . . 31

2.2 Equilibrium strategies in Strategic Bargaining Game . . . . . . . . . . . . . . . . 33
2.3 Designing Negotiation Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Auction Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3. NEGOTIATION WITH UNCERTAIN RESERVE PRICES . . . . . . . 49

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Bargaining with Complete Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 One-sided Uncertainty about Reserve Prices . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Introducing Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Existing Solutions in Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 The Algorithm for Finding All Sequential Equilibria . . . . . . . . . . . . . . . . . 63

3.4.1 High Level Idea of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Computation Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.4 Off the Equilibrium Path Optimal Strategies . . . . . . . . . . . . . . . . . 71

3.5 The Buyer’s Equilibrium Offer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1 Pooling Choice Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.2 Separating Choice Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 The Seller’s Equilibrium Offer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Equilibrium Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8 The Value of Equilibrium Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



3.8.1 Heuristic Based Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.8.2 Different Strategy Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.8.3 Performance Measures and Results . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.8.4 The Value of Choosing Equilibrium strategies . . . . . . . . . . . . . . . 101
3.8.5 Comparison of Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.9 Applications of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.9.1 Bilateral Negotiation with Uncertain Discount Factor . . . . . . . . 106
3.9.2 Bilateral Multi-issue Negotiation with Uncertain Weights . . . . . 110

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4. EXTENDING ALTERNATING-OFFERS BARGAINING IN
ONE-TO-MANY AND MANY-TO-MANY SETTINGS . . . . . . .117

4.1 One-to-Many Alternating-Offers Negotiation . . . . . . . . . . . . . . . . . . . . . . 118

4.1.1 Negotiation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.1.2 Agents’ Equilibrium Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.3 Equilibrium Outcome Computation and Uncertain

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 Many-to-Many Alternating-Offers Negotiation . . . . . . . . . . . . . . . . . . . . . 130

4.2.1 Negotiation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2.2 Agents’ Equilibrium Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.3 Considerations on Settings with Uncertain Information . . . . . . . 138

4.3 Uncertainty about Reserve Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.1 Introducing Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.2 Off the Equilibrium Path Optimal Strategies . . . . . . . . . . . . . . . . 141
4.3.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.4 The Buyer’s Equilibrium Offer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.4.1 Pooling Choice Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.4.2 Separating Choice Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.3.5 The Seller’s Equilibrium Offer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xiv



4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5. STRATEGIC AGENTS FOR MULTI-RESOURCE
NEGOTIATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2 Negotiation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 The Negotiation Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2.3 The Negotiation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.2.4 The Negotiation Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Heuristics based Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.3.1 An overview of negotiation strategies . . . . . . . . . . . . . . . . . . . . . . 168
5.3.2 Different deadlines for different resources . . . . . . . . . . . . . . . . . . . 171
5.3.3 Generating proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.4 Maximum number of final agreements . . . . . . . . . . . . . . . . . . . . . . 182

5.4 Empirical evaluation and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.4.1 The methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.4.1.1 Agent design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.4.1.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.4.1.3 Performance measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.4.2.1 Observation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.4.2.2 Observation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.4.2.3 Observation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.4.2.4 Observation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.4.2.5 Observation 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.4.2.6 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.4.3 Analysis of properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

xv



5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6. NEGOTIATION WITH DECOMMITMENT FOR DYNAMIC
RESOURCE ALLOCATION IN CLOUD COMPUTING . . . . . .216

6.1 Negotiation Over Decommitment Penalty . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.1.1 Leveled-commitment contracting . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.1.1.1 Contracting game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.1.1.2 Decommiting game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.1.2 Optimal contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.1.3 Efficiency of Negotiating Over Penalty in Two-player

Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.2 Resource Allocation in GENI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.3 The Negotiation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.3.1 The Resource Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.3.2 Negotiation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.4 Buyers’ Negotiation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5 Sellers’ Negotiation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.6 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.6.1 Different Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.6.2 Experimental Settings and Measures . . . . . . . . . . . . . . . . . . . . . . . 249
6.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.6.3.1 Performance of the negotiation mechanism . . . . . . . . . 253
6.6.3.2 Evaluating agents’ negotiation strategies . . . . . . . . . . . 258
6.6.3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7. CONCLUSIONS AND FUTURE RESEARCH . . . . . . . . . . . . . . . . . . .261

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

xvi



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

xvii



LIST OF TABLES

Table Page

3.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Average number of sequential equilibria and percentage of games
with sequential equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Average computation time (in seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Symbols used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.4 Experimental results for 106 runs (performance measures are defined
in Table 5.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.1 Symbols used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

xviii



LIST OF FIGURES

Figure Page

1.1 Execution of a distributed job consisting 3 subjobs [27]. Owner Site
3 executes one subjob, and dispatches two subjobs to Site 1 and
2 for execution. Site 4 monitors Sites 1 and 2. . . . . . . . . . . . . . . . . . . . . 6

1.2 Resource sharing with one consumer and one provider [1] . . . . . . . . . . . . . 7

1.3 Resource sharing with multiple consumers and multiple providers . . . . . 10

3.1 Backward induction construction with RPb = 100, RPs = 0,
ι(0) = s, δb = 0.75, δs = 0.8, Tb = 10, Ts = 11; at each time point
t the optimal offer x∗(t) is marked; the dashed lines are isoutility
curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Failure of the approach in [51, 52] with T = 5, ι(0) = s, RPs = 10,
RP1 = 90, RP2 = 70, ω0

b1
= 0.8, ω0

b2
= 0.2, δs = 0.7, and

δb = 0.8; agents’ offers in complete information settings were also
showed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 A high level illustration of our approach (ι(t) = s and |∆0| > 1) . . . . . . . 64

3.4 The buyer’s different rates of concession . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Buyer’s average utility while using different strategies . . . . . . . . . . . . . . . 99

3.6 Buyer’s average utility and the negotiation deadline . . . . . . . . . . . . . . . . 100

3.7 Buyer’s average utility and agents’ discount factors . . . . . . . . . . . . . . . . . 101

3.8 Seller’s average utility while using different strategies . . . . . . . . . . . . . . . 102

xix



3.9 Seller’s average utility and agents’ discount factors . . . . . . . . . . . . . . . . . 103

3.10 Social welfare for different strategy combinations . . . . . . . . . . . . . . . . . . . 105

3.11 Social welfare and agents’ discount factors . . . . . . . . . . . . . . . . . . . . . . . . 106

3.12 Social welfare and the negotiation deadline . . . . . . . . . . . . . . . . . . . . . . . . 107

3.13 Failure of the approach in [52, 51] with T = 5, ι(0) = s,
RP1

s = RP2
s = 0, RP1

b = RP2
b = 90, δs = 0.5, δb = 0.8,

ws = 〈0.9, 0.1〉, {wb1 = 〈0.4, 0.6〉, wb2 = 〈0.9, 0.1〉}, ωb1 = 0.9,
and ωb2 = 0.1; agents’ offers in complete information settings
were also showed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1 Backward induction construction with RPb = 1, RPs1 = 0,
RPs2 = 0.2, δb = 0.8, δs1 = 0.7, δs2 = 0.8, Tb = 10, Ts1 = 11,
Ts2 = 7; at each time point t the optimal offer x∗a(t) that ι(t) can
make is marked; the dashed lines are sellers’ optimal offer if there
is only one seller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Backward induction construction. At each time t the optimal offer
x∗B(t) or x

∗
S(t) is marked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1 Buyer a’s multi-resource negotiation problem . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Prediction accuracy of HBAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.3 Deadline and expected utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.4 Deadline and success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.5 Number of resources and expected utility . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.6 Number of resources and success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.7 Supply/demand ratio and expected utility . . . . . . . . . . . . . . . . . . . . . . . . 205

5.8 Supply/demand ratio and success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xx



6.1 Efficiency comparison in two-player game (1) . . . . . . . . . . . . . . . . . . . . . . 226

6.2 Efficiency comparison in two-player game (2) . . . . . . . . . . . . . . . . . . . . . . 227

6.3 Finite state machine for the negotiation protocol . . . . . . . . . . . . . . . . . . . . . . 232

6.4 Social welfare and resource competition . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

6.5 Success rate and resource competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.6 Social welfare and number of resource to acquire . . . . . . . . . . . . . . . . . . . 251

6.7 Success rate and number of resource to acquire . . . . . . . . . . . . . . . . . . . . 252

6.8 Social welfare and the flexibility of starting a task . . . . . . . . . . . . . . . . . . 254

6.9 Success rate and the flexibility of starting a task . . . . . . . . . . . . . . . . . . . 255

6.10 Social welfare and negotiation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.11 Success rate and negotiation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

xxi



CHAPTER 1

INTRODUCTION

1.1 Introduction

The problem of resource allocation is ubiquitous in many diverse research fields

such as economics, operations research, and computer science, and is relevant to

a wide range of applications, e.g., electronic commerce, supply chain, sensor net-

works, web/grid service composition, workflow, and enterprise integration. In sys-

tems involving multiple autonomous agents, it is often necessary to decide how scarce

resources should be allocated. The allocation of resources within a system of au-

tonomous agents is a challenging and exciting area of research at the interface of

computer science and economics. There are (at least) two different lines of work, de-

pending on how decisions about allocations are made. In centralized approaches like

combinatorial auctions [26, 42], agents simply report their preferences and wait for

the final allocation to be made by the auctioneer or some other central entity. How-

ever, it is often impractical to adopt a centralized approach for resource allocation

problems due to various constraints, e.g., computational overhead, communication

constraints, privacy, and real-time requirements. In distributed approaches, alloca-

tions evolve in an asynchronous way, by means of local negotiations among agents.
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Negotiation has been treated as a key approach for resource allocation problems

and has been applied to e-commerce, manufacturing planning, sensor networks, cloud

computing, and distributed vehicle routing [10, 75, 119]. Automated negotiation is

an important research area bridging together economics, game theory, and artificial

intelligence. It has received prominent attention in recent years [70] and its impor-

tance is widely acknowledged since intelligent agents that negotiate with each other

on behalf of human users are expected to lead to more efficient negotiations [120].

A very common class of negotiation is bargaining.1 It refers to a situation in which

individual agents have the possibility of concluding a mutually beneficial agreement

which could not be imposed without all individuals’ approval. In intelligent agent

systems like electronic markets, agents negotiate with each other through some form

of negotiation protocol and negotiation capabilities for software agents are a central

concern. Specifically, agents need to employ certain strategies to make negotiation

decisions on behalf of the parties they represent with the aim of maximizing bene-

fit for their users. One open question about automated negotiation is determining

which strategy to employ, which is a complex decision making task because of the

inherent uncertainty and dynamics of the situation.

In this thesis, we will be concerned with agents’ negotiation strategies in dynamic

and complex negotiation environments in which 1) agents have conflicting objectives

and preferences; 2) agents need to acquire a set of resources; 3) agents have incom-

plete information about others; and 4) agents have multiple trading partners and

1Unless a specific distinction is drawn, we use the terms negotiation and bargaining interchange-
ably.
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trading competitors. The complex negotiation problem has not been studied deeply

in the field. Our approaches will include both theoretic analysis and heuristic im-

plementation. From a theoretical perspective, we analyze agents’ rational strategies

in bargaining games that more closely mirror the issues in complex negotiation than

have previously been studied. Game theoretic analysis provides insights and the-

oretical foundations for developing negotiation agents. For more realistic complex

dynamic bargaining games involving multiple agents, it is impractical to compute

agents’ rational strategies and we design heuristics based negotiation strategies by

considering agents’ constraints, contracting opportunities and market competition.2

As part of this work, we will also focus on the use of decommitment penalties to

handle the uncertainty present in dynamic and complex bargaining environments.

1.2 Motivating Examples

The focus of this thesis is developing new techniques for complex agent-mediated

negotiation problems in which agents have different goals, preferences, constraints,

and knowledge about others. To motivate the research from a practical perspective,

this section describes two examples of application domains where the approaches

developed in this thesis are needed.

2Informally, a rational agent is an agent which has clear preferences, models uncertainty via
expected values, and always chooses to perform the action that results in the optimal outcome for
itself from among all feasible actions.
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1.2.1 Collaborating, Autonomous Stream Processing Systems (CLASP)

Collaborating, Autonomous Stream Processing Systems (CLASP) [27] is a mid-

dleware for cooperating data stream processing sites, which has been designed and

prototyped in the context of System S project [69] within IBM Research to enable

sophisticated stream processing. There are multiple sites running the System S soft-

ware, each with their own administration and goals. Each site may only have limited

processing capabilities, so cooperation among these sites can frequently be of mutual

benefit and such cooperation enables such sites to increase the scale, breadth, depth,

and reliability of analysis beyond that available within a single site [5].

In System S, a job is an execution unit that accomplishes certain work through

stream analysis. A job takes the form of a processing graph, consisting of resources,

i.e., data sources and processing elements (PEs), which are interconnected in a certain

manner. These resources might be located at multiple different sites. Due to the

potentially large numbers of data sources and PEs needed in complex jobs, and

the existence of functionally equivalent processing graphs, it is infeasible for human

users to manually construct and identify the best alternative graph. System S has a

planning component that can construct processing graphs automatically from high-

level descriptions of desired results [108].

Figure 1.1 illustrates an example of a distributed job execution [27]. Site 3 is

responsible for executing a job, which can be decomposed to three subjobs, each of

which contains a normal job (for data processing) and multiple tunneling PE jobs

(for data transportation). The Remote Execution Coordinator (REC) of owner site

3 executes the third subjob and dispatches two other subjobs to Sites 1 and 2 for
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execution. Site 4 monitors the execution status of Sites 1 and 2. The REC at the

owner site maintains a subjob table about which subjobs are running at which other

site. The table is used for recovery of subjobs on failed sites. The REC executing a

subjob first parses its Job Description Language (JDL) to identify one normal job,

and multiple tunneling PE jobs. One thread is launched to handle each of them. The

thread customizes the JDL, such as assigning a host for each PE. Then it deploys

the job through its local Job Management. For a source PE job, the REC needs to

contact the local Tunneling Manager responsible for assigning the network address

and port on which the source PE will be listening for incoming connections. It

deploys the source PE job and reports the assigned network location to the REC at

the owner site. For a sink PE job, the REC needs to query the REC of the owner

site for the network location of the corresponding source PE. Then it configures and

deploys the sink PE job.

Many resources needed in plans are accessed exclusively. In order for a site to

reserve a limited resource from another site, it must establish an agreement with

the other site, specifying the price of sharing the resource. Consider that a site

receives a job. After planning [108], the site finds that using only its local resources,

it cannot satisfy all resource requirements of the plan. Then, the site negotiates with

other sites to acquire resources needed using its negotiation management component

[5]. For each resource, there can be multiple providers and the site negotiates with

different resource providers to construct agreements for these resources. The plan

can be executed if and only if all resource requirements are satisfied. Therefore, while

making a proposal to a trading partner for one resource, the site needs to consider the
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Figure 1.1. Execution of a distributed job consisting 3 subjobs [27]. Owner Site 3
executes one subjob, and dispatches two subjobs to Site 1 and 2 for execution. Site
4 monitors Sites 1 and 2.

dynamically changing negotiation environments (e.g., the number of sites requiring

the same resource) and the negotiation situation of other negotiations for the same

resource and for other resources. It also has to consider the total price it will need to

pay for all the resources needed to complete the job. Chapter 5 presents the design

of negotiation strategies for a multi-resource allocation problem abstracted from this

example.

1.2.2 Global Environment for Network Innovations (GENI)

Cloud computing platforms enable consumers to programmatically rent multiple

types of Internet-accessible computing resources. In many cases, these platforms use

recent advances in virtualization to make the resources appear to the consumer as raw

hardware components, such as machines, storage block devices, sensors, or network
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Figure 1.2. Resource sharing with one consumer and one provider [1]

links. For example, Amazon currently operates both the Elastic Compute Cloud

(EC2) and the Elastic Block Store (EBS), where consumers programmatically rent

virtual machines and block devices, respectively. As another example, the Global

Environment for Network Innovations (GENI) project [2] is a recent NSF initiative

that uses a similar paradigm but incorporates a wider range of hardware components,

including not only machines and block devices, but also sensors, mobile devices,

and the network links connecting them, from a wider range of providers, including

universities and industry research labs.

GENI aims to provide a flexible and programmable shared experimental infras-

tructure for the investigation of future internet protocols and software. As explained

in the GENI System Overview [1], one core concept for the suite of GENI infras-
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tructure is Resource Sharing. That is, multiple researchers can simultaneously share

the infrastructure and each experiment runs within its own, isolated slice created

end-to-end across the experiment’s GENI resources. Furthermore, GENI experi-

ments will be an interconnected set of reserved resources on platforms in diverse

locations. Researchers will remotely discover, reserve, configure, program, debug,

operate, manage, and teardown distributed systems established across parts of the

GENI suite.

To illustrate the GENI’s basic concepts regarding resource sharing, we show an

example with a researcher who wishes to use GENI to perform an experiment [1]. A

GENI Clearinghouse can be treated as a resource provider which can provide a wide

range of resources. Most GENI resource components are not treated as isolated units.

Instead they are parts of aggregates, which are collections of resources managed as

a coherent whole. GENI contain many different kinds of aggregates. For example,

the Clearinghouse in Figure 1.2 controls three aggregates: a computing cluster, a

backbone network, and a metropolitan wireless network.

One core concept of GENI is virtualization in the sense that multiple researchers

can simultaneously share the infrastructure. If the clearinghouse agrees to provide re-

sources for the researcher, it will create a slice for the researcher. A slice is an empty

container into which experiments can be instantiated and to which researchers and

resources may be bound. The slice in Figure 1.2 extends across three aggregates: a

computer cluster, a backbone network, and a metro wireless network. The resources

within this slice are linked together to form a coherent virtual network in which

an experiment can run. By virtualization, this slice will be isolated from other re-
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searchers’ slices so that experiments running within the slice will behave consistently

no matter what other researchers are doing within their own GENI slices. Once

the slice is created, the researcher can download code into her slice, debugs, collects

measurements, and iterates.

Generally there are multiple consumers acquiring resources and multiple clear-

inghouses which can provide resources (see Figure 1.3). Each clearinghouse may be

operated by a private company, other US government agency, or indeed a separate

nation. For a consumer’s resource requirement, there could be multiple clearing-

houses which can satisfy the consumer’s resource requirement separately. In this

situation, the consumer has the opportunity to choose the clearinghouse with the

lowest cost. It is also possible that a consumer’s resource requirement cannot be sat-

isfied by any single clearinghouse. In this situation, the consumer needs to acquire

resources from multiple clearinghouses which may need to coordinate with each other

to satisfy the consumer’s resource requirements. After the consumer makes agree-

ments with clearinghouses regarding resource sharing, a slice will be created over

multiple clearinghouses.

Each consumer achieves some utility once its resource requirement is satisfied. A

clearinghouse suffers a cost while providing resources. Given the existence of many

resource consumers, the resources provided in the market is “limited”. Therefore,

the problem of allocating resources is an important issue. Since resource consumers

and providers are always trying to maximize their own utilities, it is necessary to

introduce some market mechanism to regulate the behaviors of resource consumers

and providers: clearinghouses charge consumers and in turn consumers pay clear-
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Figure 1.3. Resource sharing with multiple consumers and multiple providers

inghouses. Automated negotiation can be used for agents to make agreements on

resource sharing. Chapter 6 discusses a distributed negotiation mechanism for the

dynamic resource allocation problem in GENI.

The negotiation problem in the above two examples has the following features:

• Each agent has a negotiation deadline. A resource consumer’s negotiation

deadline is the time by which its job has to be executed. The presence of

deadline indicates that an agent may need to make larger concessions when its

deadline is approaching.

• All agents (including all resource consumers and resource providers) are self-

ish. That is, during negotiation, each agent chooses its negotiation strategy

maximizing its (expected) utility. While agents are not cooperative, an agent

often has no optimal strategy and we use the notion of an equilibrium strategy
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to define rational behavior of players, which jointly decide the outcome of the

bargaining game. A strategy equilibrium is a profile of players’ strategies so

that no player could benefit by unilaterally deviating from its strategy in the

profile, given that other players follow their strategies in the profile.

• Each agent has incomplete information about others. In a stream processing

system, a site has incomplete information about other sites’ cost of providing

resources. Similarly, a resource provider does not know the exact reserve price

of a site (the highest price the site is willing to pay) which desires its resource.

Furthermore, resource supply and requirement in a stream processing system

change dynamically.

• There could be multiple resource providers for a resource. To acquire a resource,

a resource consumer can negotiate concurrently with all resource providers and

make an agreement with the lowest price provider.

• A resource consumer also faces market competition from other resource con-

sumers, which indicates that a negotiation agent needs to take the market

situation into account to decide what is a necessary price to pay.

• An agent may need to acquire a set of resources and it gains nothing if it

fails to get all the resources. Therefore, while making a proposal to a trading

partner for one resource, the site needs to consider the dynamically changing

negotiation environments (e.g., the number of sites requiring the same resource)

and the negotiation situation of other negotiations for the same resource and

for other resources, i.e., it is limited in what it can pay for the needed resources.
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• In part of this work, we treat decommitment as a feature of negotiation prob-

lems. Since agents can choose to decommit from agreements, an agent may

need to make more than one agreement for each resource. However, the buyer

needs to pay much more by making more agreements. Thus, it is important to

decide how many agreements to make. In some situations, it is also important

to negotiate over both price and decommitment penalty.

The two examples demonstrate many of the issues that will the focus of the thesis:

negotiation where there is uncertainty about agents’ types, negotiation involving

multiple buyers and sellers, and negotiation where the buyer needs to acquire multiple

resources.

1.3 Automated Negotiation for Complex Resource Alloca-

tion Problems

In designing automated negotiation agents for complex resource allocation prob-

lems we consider in this thesis, and in many others besides, there are a number of

open problems and common issues that need to be dealt with. In addition, it is

possible to identify a range of concepts and approaches that form a solid foundation

for tackling complex resource allocation problems. This thesis addresses important

issues regarding automated negotiation for complex resource allocation problems.

Specifically, this thesis investigates the following three questions:

• What are agents’ equilibrium strategies in bilateral negotiation with uncertain

reserve prices?
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• How to compute agents’ equilibrium strategies in concurrent one-to-many and

many-to-many negotiation?

• When an agent needs to acquire multiple resources in a marketplace and it is al-

lowed to decommit from an existing contract, how to make proposing decisions

and decommiting decisions to achieve a high utility?

• How to develop an efficient negotiation model for resource allocation problems

in dynamic markets such as cloud computing?

1.3.1 Negotiation with Uncertainty

The problem of finding agents’ rational strategies in bargaining with incomplete

information is well known to be challenging and there is no generally applicable algo-

rithm [61]. We focus on finding agents’ rational strategies in incomplete information

bilateral bargaining. We consider the most common bargaining protocol, i.e., the

Rubinstein’s alternating-offers [111], which has been widely used in the bargaining

theory literature, e.g., [61, 112, 117]. We analyze the situation with one-sided un-

certain reserve prices and where agents have deadlines. This problem is customarily

modeled as a Bayesian extensive-form game with infinite number of strategies as the

price is a continuous value. The appropriate solution concept for such a class of game

is sequential equilibrium [79], specifying a pair: a system of beliefs that prescribes

how agents’ beliefs must be updated during the game and strategies that prescribe

how agents should act. In a sequential equilibrium there is a sort of circularity be-

tween the belief system and strategies: strategies must be sequentially rational given

the belief system and belief system must be consistent with respect to strategies.
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The first area of focus is on the development of a novel algorithm to find a pure

strategy sequential equilibrium in bilateral bargaining with multi-type uncertainty

(Chapter 3). Our algorithm combines together game theoretic analysis with state

space search techniques and it is sound and complete. Our approach is based on the

following two observations: 1) with pure strategies, the buyer’s possible choice rules

regarding whether different buyer types behave in the same way or in different ways

at a decision making point are finite, and 2) with pure strategies, the seller’s possible

beliefs regarding whether different buyer types will accept or reject its offer are

finite. We employ a backward approach to find sequential equilibria in the context of

a forward search process: to compute agents’ equilibrium strategy at a continuation

game with certain belief, we search forward to find agents’ equilibria strategies in

its continuation game with different beliefs and consider agents’ all possible choice

rules as well as belief update rules. At the same time, we derive theoretically the

agents’ optimal strategies by applying a Bayesian extension of backward induction

and check equilibrium existence conditions.

In addition to developing the algorithm for computing all the sequential equilibria,

we also empirically evaluate the performance of equilibrium strategies against some

representative heuristic based strategies in the literature (e.g., [12, 48, 78, 124, 127]).

Empirical results show that agents with equilibrium strategies achieved higher util-

ities than agents with heuristic based strategies. Furthermore, when both agents

adopt the equilibrium strategies, they achieved the highest social welfare than that

in all other strategy combinations.
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1.3.2 One-to-Many and Many-to-Many Negotiation

In the bargaining theory literature, most work focuses on bilateral bargaining. A

variety of negotiation aspects like information and outside options have been studied.

One-to-many and many-to-many negotiations are also very important and widely

exist in many application domains. For one-to-many negotiation, an auction is widely

used and, for many-to-many negotiation, market mechanisms like matching or two-

sided auction seem more intuitively appropriate. Even if an agent interacts with

many agents, a common assumption in the literature is that an agent can pursue

only one negotiation at a time. The result is that an agent may terminate a current

negotiation in disagreement, in spite of possible gains from trade in order to pursue

a more attractive outside alternative. Therefore, the presumption that an agent

can pursue only one negotiation at a time appears to be restrictive. While there

has been much experimental work (e.g., [97, 125]) on one-to-many and many-to-

many negotiations in which an agent concurrently negotiates with multiple agents in

discrete time, there is no game theoretic analysis of agents’ strategic interactions in

concurrent one-to-many and many-to-many negotiations.

The difference between negotiation and market mechanisms (e.g., auctions) is

blurred with the arrival of the Internet and electronic commerce [72]. Negotiation

has been treated as a key component of e-commerce and has been applied to e-

commerce, manufacturing planning, and distributed vehicle routing. While an auc-

tion is the most widely implemented and discussed market mechanism, only recently

the complex, multidimensional, and combinatorial auctions have gained the interest

of researchers and foremost practitioners. Negotiations have been somewhat ne-
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glected as a possible market mechanism. The proliferation and acceptance of web

and Internet technologies made the replacement of some negotiated transactions with

auctions not only possible but also efficient. However, negotiation-based mechanisms

still remain the preferred choice when the good and service attributes are ill-defined

and there are criteria other than price (e.g., reputation, trust, relation and future

contracts) [64]. In addition, no third party like an auctioneer is needed in bargain-

ing. Strategic agents may prefer bargaining as they can exploit other agents by using

learning, collusion, and other bargaining techniques. In this work, we compared the

efficiency of our model with some other mechanisms like auctions.

The second focus of this work is on analyzing agents’ strategic behavior in one-to-

many and many-to-many negotiations in which agents are negotiating with multiple

trading partners and, at the same time, are facing competition from trading com-

petitors (Chapter 4). The subgame perfect equilibrium for complete information

setting is presented and equilibrium properties, such us uniqueness, are discussed.

We analyze the reduction of computation in one-to-many settings and many-to-many

settings. We also consider uncertainty about the reserve price of an agent while the

reserve prices of other agents are common knowledge. We extend our approach for bi-

lateral bargaining to search for sequential equilibrium when each agent is negotiating

with multiple agents.

A central research topic in bargaining theory is understanding bargaining power,

which is related to the relative abilities of agents in a situation to exert influence

over each other. In bilateral bargaining, each agent’s bargaining power is affected by

its reserve price, patience attitude, deadline, etc. When many buyers and sellers are
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involved in negotiation, it is important to investigate how the market competition will

affect agents’ equilibrium bargaining strategies. With a large number of buyers and

sellers, a single agent is unlikely to have much influence on the market equilibrium.

Our analysis shows that both bargaining order and market competition affect agents’

bargaining power. We show how an agent’s bargaining power increases with the

number of trading partners (agents of a different type) and decreases with the number

of trading competitors.

1.3.3 Multi-Resource Negotiation

In electronic commerce markets where selfish agents behave individually, agents

often have to acquire multiple resources in order to accomplish a high level task with

each resource acquisition requiring negotiations with multiple resource providers.

For example, in the CLASP [27], a site may need a set of resources to execute a job.

Therefore, agents may need to engage in multiple negotiations. If the multiple nego-

tiations are not all successful, consumers gain nothing. Such scenarios widely exist

in practical applications. For example, a complex task may need several robots to

work together and the absence of any of these robots results in the failure of the task.

This is a simple form of multi-linked negotiation where the resources are independent

but are interrelated. Resources are independent in the sense that there is no depen-

dence between different resources, i.e., using one resource doesn’t constrain how the

other resources are used. However, from the perspective of the overall negotiation,

resources are dependent as an agent’s utility from the overall negotiation depends

on obtaining overall agreements on all the resources. The negotiation problem we

consider has the following three features:
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1. When acquiring multiple resources, a consumer agent only knows the reserve

price available for the entire set of resources, i.e., the highest price the agent

can pay for all the resources, rather than the reserve price of each separate

resource. In practice, given a plan and its resource requirements, an agent

can easily decide the reserve price for all the resources in that plan based on

the overall worth of the task. However, it is difficult (even impossible) for a

resource consumer to understand how to set the reserve price for each separate

resource. In fact, we show experimentally that it is undesirable to set a fixed

reserve price for an individual resource prior to beginning negotiations.

2. Agents can decommit from tentative agreements at the cost of paying a penalty.

Decommitment allows agents to profitably accommodate new tasks arriving

or new negotiation events. If these events make some existing contracts less

profitable or infeasible for an agent, that agent can decommit from those con-

tracts [121].

3. Negotiation agents are assumed to have incomplete information about other

agents, for example, a buyer agent knows the distribution of the reserve price

of a seller agent and the number of trading competitors. However, an agent’s

negotiation status (the set of proposals it has received) and negotiation strategy

are its private information. For strategic reasons, a negotiation agent won’t

disclose such information during negotiation. During negotiation, negotiation

agents can quit negotiation at any time, even without notifying their trading

partners. When a buyer acquires multiple resources, it concurrently negotiates

with sellers to reach agreements for all the resources.
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Because resource providers and consumers may have different goals, preferences,

interests, and policies, the problem of negotiating an optimal allocation of resources

within a group of agents has been found to be intractable both in computation [45]

and communication [47]. The multi-resource negotiation is even more complex due

to decommitment. The multi-resource negotiation problem is different from multi-

attribute negotiation in which negotiations are bilateral [49, 80, 82]. Sim and Shi

[130] proposed a coordination strategy for multi-resource negotiation where an agent

can negotiate with multiple agents as in this work. Each buyer in [130] knows the

reserve price of each resource in advance and the buyer just needs to decide the

concession strategy for each one-to-many negotiation for one resource. In contrast,

each buyer in this work is assumed to only know the value of its high level task,

i.e., the reserve price of all resources required for the high level task. Furthermore,

a buyer in [130] only makes one tentative agreement but in this work, a buyer may

make more than one tentative agreement. Nguyen and Jennings [97, 98] provide and

evaluate a commitment model for concurrent negotiation. However, the maximum

number of tentative agreements is determined prior to negotiation. In our work, the

maximum number of tentative agreements is determined by market situation and

will change dynamically during negotiation. In addition, our work studies a multi-

resource negotiation problem, rather than single resource negotiation as in [97, 98].

Furthermore, Nguyen and Jennings [97, 98] make very restrictive assumptions about

agents’ available information.

An agent’s bargaining position in each round is determined by many factors such

as market competition, negotiation deadlines, current agreement set, trading part-
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ners’ proposals, and market dynamics. During each round of negotiation, an agent

has to make decisions on how to proceed with each negotiation thread and there are

many possible choices for each decision based on a variety of factors. Thus, it is dif-

ficult to construct an integrated framework in which all these factors are optimized

concurrently. Rather than explicitly model those inter-dependent factors and then

determining each agent’s best decisions by an intractable combined optimization,

the third area of focus (Chapter 5) tries to connect those inter-dependent factors

indirectly and develops a set of heuristics to approximate agents’ decision making

during negotiation. The distinguishing feature of negotiation agents is that they are

designed with the flexibility to adjust 1) the number of tentative agreements for each

resource and 2) the amount of concession by reacting to i) changing market condi-

tions, and ii) the current negotiation status of all concurrently negotiating threads.

In our approach, agents utilize a time-dependent negotiation strategy in which the

reserve price of each resource is dynamically determined by 1) the likelihood that

negotiation will not be successful (conflict probability), 2) the expected agreement

price of the resource, and 3) the expected number of final agreements given the set of

tentative agreements made so far. The negotiation deadline of each resource is de-

termined by its scarcity. A buyer agent can make more than one tentative agreement

for each resource and the maximum number of tentative agreements is constrained

by the market situation in order to avoid the agent’s making agreements more than

necessary.

To evaluate the performance of negotiation agents, a simulation testbed con-

sisting of a virtual e-Marketplace, a society of trading agents and a controller was
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implemented. Given that there is no existing negotiation agents dealing with our

multi-resource negotiation problem, for comparison reason, we implemented three

other types of buyers based on existing techniques for single resource negotiation

and negotiation with decommitment. In the experiments, agents were subjected to

different market densities, market types, deadlines, number of resources to acquire

or sell, and supply/demand ratio of each resource. We use a number of performance

measures including expected utility, success rate. Extensive stochastic simulations

were carried out for all the combinations of market density, market type and other

agents’ characterizations. Experimental results show that the designed negotiation

strategy achieved much better performance than other strategies.

1.3.4 Negotiation with Decommitment for Dynamic Resource Allocation

in Cloud Computing

Cloud computing platforms enable consumers to programmatically rent multiple

types of Internet-accessible computing resources. In many cases, these platforms use

recent advances in virtualization to make the resources appear to the consumer as

raw hardware components, such as machines, storage block devices, sensors, or net-

work links. There are many reasons why market-oriented mechanisms are attractive

for regulating resource supply and demand for these platforms. Amazon’s goal is to

make a profit by renting their resources to consumers for more than it costs to pur-

chase and operate them. While GENI is initially operated as a non-profit platform,

it allocates resources from multiple providers that dynamically donate and withdraw

them, which makes centralized allocation difficult as the number of providers scales.

Additionally, market-oriented allocation mechanisms are attractive since they en-
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courage providers to contribute resources to GENI in exchange for (real or virtual)

currency that increases their access. Recent work has explored a variety of both sys-

tem [55, 68] and market [19, 83] structures for resource allocation in market-oriented

cloud computing platforms.

In this work, we focus on a general resource allocation problem that matches the

characteristics of cloud computing platforms and their consumers. Namely, multiple

self-interested agents supply or consume multiple types of resources, where 1) con-

sumers dynamically enter and leave the market, 2) consumers have some bounded

flexibility over when they require resources, and 3) a single provider cannot satisfy

consumers’ resource requirements. The first two characteristics are evident in cur-

rent cloud platforms that are available to the general public, which use them to

execute tasks that may or may not have hard deadlines. The motivation for 3) is

natural for an infrastructure like GENI that allocates networked resources from mul-

tiple providers, and is also becoming more prevalent for profit-making enterprises

like Amazon as competitors, such as RackSpace Cloud, become more prominent.

Given these characteristics, we consider the design of a market structure that al-

locates resources to their most efficient use. A straightforward approach would have

all consumers submit both their resource requirements and bids to a single super

agent that runs an auction, such as the well-known VCG auction [42], to allocate

resources. Since VCG is not necessarily strategy-proof in dynamic settings, this ap-

proach does not necessarily result in the most efficient usage [101]. While efficient

online mechanisms have been proposed for dynamic environments, they only work

in constrained settings and often rely on strong assumptions about agents’ knowl-
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edge [101]. Further, finding an auctioneer that selfish agents will trust and comply

with is difficult. Alternatively, each consumer could run the VCG auction separately,

but a provider may not truthfully report its information due to the existence of other

auctions.

In this work, we present a negotiation mechanism in which agents make contracts

for resource leases, which bind a set of resources from a provider to a consumer for a

fixed time interval. To accommodate the highly dynamic nature of cloud computing

platforms, we introduce a negotiation mechanism where an agent is able to decom-

mit from a contract by paying a penalty to the other contract party. Thus, an agent

may find it advantageous to decommit from existing contracts. Rather than setting

decommitment penalties exogenously, we consider the role of negotiation in deciding

decommitment penalties, where agents concurrently negotiate over both the contract

price and the amount of decommitment penalty. We propose negotiating simultane-

ously over contract prices and decommitment penalties since it is difficult for system

designers to decide the optimal contract prices and decommitment penalties that

maximize the social welfare in dynamic environments involving multiple agents. We

show that allowing decommitment improves the efficiency of the resource allocation

mechanism.

Negotiation with uncertainty is both the most challenging problem in the negotia-

tion literature [61], and is key to successful application of negotiation to real problems

such as cloud computing. The literature provides a limited number of closed form

results with narrow uncertainty settings using bilateral bargaining that considers

only one type of uncertainty, such as a negotiation deadline [61] or reserve price [6].
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In contrast, we consider negotiation between multiple agents in dynamic environ-

ments where there are multiple types of uncertainty that increases the difficulty of

computing agents’ rational equilibrium strategies. As a result, we bound agents’ ra-

tionality and design negotiation strategies for them following the negotiation decision

functions paradigm [11, 48]. Our negotiation problem is complex due to market dy-

namics, uncertainty, multiple contracting opportunities, resource competition, and

decommitment. As a result, constructing an integrated framework for each agent

that optimizes these factors concurrently is difficult. Rather than explicitly model

these inter-dependent factors and determine each agent’s best decisions through an

intractable combined optimization, we connect these inter-dependent factors indi-

rectly and develop a set of heuristics to approximate agents’ decision-making dur-

ing negotiation. The distinguishing characteristic of our negotiation agents is their

flexibility to adjust their decisions, such as making offers, by reacting to changing

negotiation status, while also considering the time constraints, resource competition,

and resource cost.

We evaluate our negotiation mechanism on a simulation testbed against two well-

known mechanisms—combinatorial auctions and Amazon’s fixed-price model. Ex-

perimental results show that our negotiation mechanism achieves a higher social

welfare than either mechanism in a wide range of scenarios. Further, we show that

setting penalties through negotiation achieves a higher social welfare than exogenous

mechanisms for setting penalties.
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1.4 Main Contributions

The work described in this thesis makes a number of important contributions to

the state of the art in the area of agent mediated negotiation by looking at more

complex bargaining problems from both theoretical and heuristic perspectives. The

contributions of this work can be summarized as follows:

• We present a novel algorithm to find a pure strategy sequential equilibrium

in bilateral bargaining with multi-type uncertainty [6]. Our algorithm goes

beyond existing algorithms dealing with complete information settings. Our

approach is not specific to an application and it can be applied to other un-

certainty settings, e.g., bilateral bargaining with uncertain discount factors,

multi-issue negotiation with uncertain weight functions [51], and sequential

auction (potentially over multiple goods).

• We extend the alternating-offers protocol to handle multiple trading opportu-

nities and market competition [7]. We provide an algorithm based on backward

induction to compute the subgame perfect equilibrium of concurrent one-to-

many negotiation and many-to-many negotiation. There is no existing work on

analyzing agents’ equilibrium strategies in concurrent negotiation in markets.

• We present the design, implementation, and experimental evaluation of nego-

tiation agents that negotiate for multiple resources where agents don’t know

the reserve price of each resource and are allowed to decommit from existing

agreements [11, 12]. Existing work only considers single resource negotiation

and often make unrealistic assumptions about agents’ knowledge.
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• We propose a distributed negotiation mechanism for the problem of allocat-

ing networked resources in dynamic environment, such as cloud computing

platforms. In our approach, providers and consumers automatically negotiate

resource leasing contracts as well as decommitment penalties. Experimental

results show the advantage of the negotiation model over different combina-

torial auction mechanisms and Amazon’s fixed price model. This is the first

work that shows the importance of negotiation over decommitment penalties.

1.5 Thesis Organization

The rest of this thesis is structured in the following manner: In Chapter 2, we

discuss related research on automated negotiation, including both theoretic work

and empirical work. Subsequently, in Chapter 3, we present an algorithm for finding

agents’ equilibrium in pure strategies in bargaining with one-side uncertainty about

agents’ reserve prices. Next, in Chapter 4, we analyze agents’ equilibrium strate-

gies in one-to-many and many-to-many negotiations. After that, in Chapter 5 and

Chapter 6, we consider more practical multi-agent resource allocation problems. In

Chapter 5, we present the design and implementation of agents that concurrently ne-

gotiate with other entities for acquiring multiple resources as the negotiation problem

in Section 1.2.1. In Chapter 6, we discuss the distributed negotiation mechanism for

the problem of allocating networked resources in cloud computing platforms such as

the GENI platform in Section 1.2.2. We finally summarize the contributions in this

thesis and outline future directions In Chapter 7.
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CHAPTER 2

LITERATURE REVIEW ON AUTOMATED
NEGOTIATION

Automated negotiation is an important research area bridging together eco-

nomics, game theory, and artificial intelligence. Bargaining (or negotiation) refers to

a situation in which individual agents have the possibility of concluding a mutually

beneficial agreement which could not be imposed without all individuals’ approval. A

bargaining theory is an exploration of the relation between the outcome of bargaining

and the characteristics of the situation. Cooperative bargaining theory (axiomatic

approach) initiated by Nash [95] is concerned with the outcome of bargaining given

the list of properties (e.g., stability, fairness) the outcomes are required to satisfy.

In the non-cooperative bargaining theory (strategic approach), the outcome is an

equilibrium of an explicit model of the bargaining process. The strategic bargaining

has received more attention following Rubinstein’s path-breaking work [111]. In this

chapter we provide an extensive literature review on the research of non-cooperative

negotiation in the fields of economics and artificial intelligence.1 The research in the

economics community mainly focuses on computing agents’ equilibrium strategies

and the research in the AI part contributes to the development of software agents

1An interested reader can refer to [70, 77, 107] for further discussions.
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which negotiate on behalf of their users in realistic environments in which it is often

impossible to compute agents’ equilibrium strategies. We also discuss some market

mechanisms for resource allocation problems.

2.1 Negotiation as a Mechanism

Automated negotiation research can be considered to deal with three broad top-

ics: negotiation protocols, negotiation objects and strategies. According to [70], a

negotiation protocol is a set of rules that govern the interaction which cover the

permissible types of participants (e.g., the negotiators and any relevant third par-

ties), the negotiation states (e.g., accepting bids, negotiation closed), the events that

cause negotiation states to change (e.g., no more bidders, bid accepted) and the valid

actions of the participants in particular states (e.g., which messages can be sent by

whom, to whom, at what stage). This section discusses a variety of negotiation pro-

tocols and we start with the formal bargaining mechanism design in the mechanism

design literature.

2.1.1 Bargaining Mechanism Design

Bargaining mechanism design generally focuses on bilateral monopoly, in which a

buyer and a seller are bargaining over the price of an object (e.g., a good). Myerson-

Satterthwaite theorem [94] is one of the most remarkable negative results in eco-

nomics. Informally, Myerson-Satterthwaite theorem says that there is no efficient

way for two parties to trade a good when they each have secret and probabilistically

varying valuations for it, without the risk of forcing one party to trade at a loss.
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Myerson and Satterthwaite analyze bargaining as a static direct revelation game in

which each player reports its type to a third party, and the third party chooses

whether the object is transferred, and how much the buyer must pay. Chatterjee

and Samuelson [36] analyze a strategic game in which both players make offers si-

multaneously, and the trade occurs at a price between the two offers if the seller’s

offer is less than the buyer’s offer. This game is closely related to the direct reve-

lation game since it is static. Moreover, it can be shown that for a particular class

of examples, the simultaneous-offers game implements the direct revelation game in

which the outcome functions are chosen to maximize the players’ ex ante utility.

It is unrealistic to use a bargaining mechanism that forces agents to walk away

from known positive gains from a potential trade since such mechanisms violate

a broad interpretation of sequential rationality [40]. Cramton [40] examined the

bargaining problem as a sequential direct revelation game, focusing on both the

role of incomplete information and sequential aspects of bargaining. The difference

between the static direct revelation game in [94] and the sequential direct revelation

game in [40] is that in the sequential game, the outcome functions not only determine

the probability and terms of trade, but also dictate when trade is to take place. In

the static game trade may occur only at time zero whereas in the sequential game

trade may occur at different times depending on the players’ reports of their private

information. Analyzing sequential bargaining mechanisms enable one to infer what

the players’ learning process is over time and to study what bargaining outcomes are

possible when the bargainers are unable to make binding agreements.
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Efficient bargaining mechanisms strongly depend on the bargaining settings char-

acterized by agents’ preferences and knowledge. Athey and Segal [16] consider the

problem of allocating a good between two players in each period of an infinite-

horizon game. The players’ valuations in each period are private information, and

the valuations change over time following a first-order Markov process. They analyze

conditions under which there exists an efficient, Bayesian incentive-compatible, in-

dividually rational, budget-balanced mechanism, when the mechanism designer has

commitment power.2

Mechanism design is a powerful theory for studying incentive problems in bar-

gaining. We are able to characterize the set of attainable outcomes and determine

optimal or efficient trading mechanisms. However, mechanism design has a number

of weaknesses [18]. First, the mechanisms may depend on the traders’ beliefs and

utility functions, which are assumed to be common knowledge. In addition, it is

difficult to find a “satisfactory” bargaining mechanisms [94]. In practice, bargain-

ers use simple negotiation protocols (e.g., the most widely used alternating-offers

protocol [111]) that do not depend on agents’ beliefs or utility functions. Given a

negotiation protocol, the focus is then on analyzing agents’ equilibrium strategies

in the strategic bargaining game. An important distinction between direct revela-

tion games and strategic games is that the direct revelation game does not explicitly

model the process of bargaining. The sequence of offers and replies that eventually

2A mechanism is Bayesian incentive-compatible if telling truth is a Bayesian-Nash equilibrium
of the game induced by the mechanism. A mechanism is individually rational if an agent can
always achieve as much expected utility from participation as without participation. A mechanism
is budget-balanced if there are no net transfers out of the system or into the system.
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leads to an outcome is not studied in the direct revelation game as it is in strategic

games.

2.1.2 Alternating-offers protocol and its extensions

The most widely used bargaining protocol in strategic bargaining games is the

alternating-offers protocol, which was was pioneered by Stahl [132] and Rubin-

stein [111] in a setting with complete information. The alternating-offers game

represents a very general bargaining rule: at any time, a bargainer may make a

new offer or accept the most recent offer of its opponent. The alternating-offers pro-

tocol captures the most important features of bargaining: bargaining consists of a

sequence of offers and decisions to accept or reject these offers. The alternating-offers

protocol has been widely used in the bargaining theory literature, e.g., [61, 112, 117],

just to name a few.

The original alternating-offers protocol is designed for the simple discrete time

bilateral single-issue negotiation and the allowed actions include offer and accept .

The alternating-offers protocol has been extended in a variety of ways to handle

more complex negotiation situations, e.g., deadline, one-to-many negotiation, and

decommitment. In realistic applications, agents often face deadlines and the action

quit allows an agent to quit a negotiation before its deadline approaches. In addition

to bilateral negotiation, one-to-many and many-to-many negotiations are also very

important and widely exist in many application domains like e-commerce as well as in

human society [5, 97, 98]. In automated negotiation systems for self-interested agents,

contracts have traditionally been binding and do not allow agents to efficiently deal

with future events in the environment. Sandholm and Lesser [121] proposed leveled-
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commitment contracts which allow an agent to be freed from an existing contract at

the cost of simply paying a penalty to the other contract party. A self-interested agent

will be reluctant to decommit because the other contract party might decommit, in

which case the former agent gets freed from the contract, does not incur a penalty,

and collects a penalty from the other party. Despite such strategic decommiting,

leveled-commitment increases the expected payoffs of all contract parties and can

enable deals that are impossible under full commitment [121]. Negotiation with

decommitment has been applied in a variety of applications [5, 97, 98].

The contract net protocol (CNP) [131] is a simple negotiation protocol for dis-

tributed problem-solving based on the notion of call for bids on markets. The original

CNP protocol is for cooperative problem solving and it has a number of limitations.

For example, in the original CNP model, a contractor can only respond to bids se-

quentially. However, in a multi-agent system, several managers may concurrently call

for bids and it is important to give each contractor the opportunity to concurrently

negotiate with multiple managers and optimize its utility. In addition, there is no

counter-proposing in the CNP model. The original CNP protocol has been extended

in different applications. In the work on TRACONET [115, 118], a formal model

based on marginal cost calculation was proposed for bounded rational self-interested

agents to make announcing, bidding and awarding decisions. In early CNP imple-

mentations, tasks were negotiated one at a time, which is insufficient. Sandholm [113]

analyzed task reallocation where individually rational agents contract tasks among

themselves based on marginal costs and propose different contract types to facilitate

negotiation. Aknine et al. [4] proposed an extended version of CNP to support con-
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current negotiation processed for the task contractor service provider. Later, Dang

and Huhns [43] extended the model to allow counter-proposing.

We consider both bilateral negotiation and concurrent negotiation. We use the

most widely used alternating-offers protocol to study bilateral bargaining. To acco-

madate one-to-many negotiation, we extend the alternating-offers protocol by intro-

ducing another action confirm to avoid agents’ non-reasonable behaviors as in the

ADEPT (Advanced Decision Environment for Process Tasks) multi-agent architec-

ture [71]. If one seller s accepts an offer from a buyer b, buyer b needs to confirm

the acceptance to reach an agreement. Notice that, in absence of the action confirm,

if buyer b makes offers to multiple sellers and all these accept, buyer b must buy

multiple items. In presence of the action confirm, buyer b is in the position to choose

only one contract.

2.2 Equilibrium strategies in Strategic Bargaining Game

Strategic bargaining theory uses the notion of an equilibrium strategy to define

rational behavior of bargaining agents, which jointly decide the outcome of a bar-

gaining game. A strategy equilibrium is a profile of players’ strategies so that no

player could benefit by unilaterally deviating from its strategy in the profile, given

that other players follow their strategies in the profile.

A game is with complete information if the preference information of a player

is known to all other players, otherwise it is a game with incomplete information.

When both agents have complete information about each other, the appropriate

solution concepts are Nash equilibria for one-shot bargaining games and subgame
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perfect equilibria (SPE) for multi-stage bargaining games. The strategies chosen by

all players are said to be in Nash equilibrium if no player has anything to gain by

changing only his or her own strategy unilaterally. A subgame perfect equilibrium

refines the Nash equilibria in dynamic games. A strategy profile is a subgame perfect

equilibrium if it represents a Nash equilibrium of every subgame of the original game.

Rubinstein [111] studies the alternating-offers game with infinite horizon. It describes

two-person bargaining as an extensive game with perfect information in which the

players alternate offers. A key assumption is that the players are impatient. The

main result gives conditions under which the game has a unique subgame perfect

equilibrium and characterizes this equilibrium.

For a dynamic bargaining game with incomplete information, the appropriate

solution concept for such a class of game is sequential equilibrium [58], specifying a

pair: a system of beliefs that prescribes how agents’ beliefs must be updated during

the game and strategies that prescribe how agents should act. A belief gives, for

each information set of the game belonging to the player, a probability distribution

on the nodes in the information set. In a sequential equilibrium there is a sort of

circularity between the belief system and strategies: strategies must be sequentially

rational given the belief system and belief system must be consistent with respect

to strategies. The study of bargaining with uncertain information is well known to

be a challenging problem due to this circularity and there is no generally applicable

algorithm for such problem in the literature. Operations research inspired algorithms

such as Miltersen-Sorensen [92] work only on games with finite number of strategies,

and therefore cannot be applied to bargaining in which each agent’s strategy space
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is generally continuous. Enumeration based methods were used in [104] to compute

Nash equilibria. They enumerate the agents’ strategy supports. This approach

cannot be applied in bargaining problems since the number of strategies of each

agent is infinite. Several attempts to extend the backward induction method [58]

have been tried, but they work for very restrictive cases. This is because in the

computation of the equilibrium they break down the circularity between strategies

and the belief system. For example, Fatima et al. [51, 52] present an algorithm

to produce equilibrium strategies in multi-issue bargaining with uncertain reserve

prices. By exploiting backward induction, their algorithm searches agents’ strategy

space from the deadline to the beginning of negotiation with the initial beliefs. Once

the optimal strategies at the beginning of negotiation have been found, the system of

beliefs are designed to be consistent with them. However, the optimization in their

approach is myopic since it did not take into account its information effects. As a

result, the strategies found by their approach are not guaranteed to be sequentially

rational given the designed system of beliefs [61]. We will discuss this further in

Chapter 3.

The microeconomic literature provides a number of closed form results with very

narrow uncertainty settings, e.g., uncertainty regarding deadlines, reserve prices, and

discounting factors. Rubinstein [112] considered bilateral infinite horizon bargaining

with uncertainty over two possible discount factors. Sandholm and Vulkan [117] con-

sider a continues time bilateral bargaining with uncertainty deadlines and show that

the only sequential equilibrium outcome is one where the agents wait until the first

deadline, at which point that agent concedes everything to the other. In other words,
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bargaining game is a “waiting” game. Gatti et al. [61] provided an algorithm to com-

pute agents’ equilibrium strategies in bilateral bargaining with one-sided uncertain

deadlines. In bargaining models with incomplete information, there could be multi-

ple sequential equilibria (e.g., [112]) and most of these equilibria are supported by

optimistic conjectures by the uninformed player. Bikhchandani [23] discussed how to

eliminate some equilibria by placing restrictions on beliefs off equilibrium paths. The

only known result about bargaining with uncertain reserve prices is due to Chatterjee

and Samuelson [34, 35] where they studied bilateral infinite horizon bargaining with

two-type uncertainty over the reservation values. The absence of agents’ deadlines

makes these two results nonapplicable to the situation we study. In this work, we

present a novel algorithm to compute sequential equilibrium strategies for bilateral

finite horizon bargaining with uncertain reserve prices. Our approach can be applied

to many other bargaining settings, like the multi-issue negotiation considered in [51].

Another challenging problem in bargaining theory is multi-issue negotiation,

which is more complex and challenging than a single-issue negotiation (an interested

reader can refer to [81] for a more detailed review). With multiple issues, agents need

to decide the negotiation procedure and agreement implementation. There usually

exist different types of negotiation procedures [51] like package (simultaneous) deal,

separate negotiation, and sequential negotiation. Package deal means two agents ne-

gotiate a complete package on all issues simultaneously. Separate negotiation means

agents negotiate each issue separately (independently & simultaneously). For se-

quential negotiation in which two agents negotiate issue by issue sequentially, agents

need to decide a negotiation agenda (order of negotiation issues) [50]. There are
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generally two ways to decide the negotiation agenda: endogenous, i.e., allow the

bargainers to decide which issue they will negotiate next during the process of ne-

gotiation, and exogenous agendas, i.e., fix the agenda exogenously as part of the

negotiation procedure. For agreement implementation, there can be two types: se-

quential and simultaneous. Sequential implementation means the agreement on each

issue is implemented once it is reached, while simultaneous implementation is that

agreements are implemented together when all issues are settled.

There are two important questions regarding multi-issue negotiation. The first

question is determining the best procedure in terms of efficiency and the optimal

procedures in different settings are different. Busch and Horstmann [30] show that

if agents are heterogeneous, agents might have conflicting favors on the procedures.

Lang and Rosenthal [84] argue that the package deal is better if agents’ payoff func-

tions are concave. When there is a risk of breakdown due to agents’ deadline, it is

found that in a noncooperative bargaining model with alternating offers and time

preferences, the timing of issues (the agenda) matters and simultaneous bargaining

over “packages” should be a prevailing phenomenon [67]. Fatima et al. [51] study

different procedures for bilateral multi-issue negotiation and show that the package

deal is the optimal procedure. For incomplete information multi-issue negotiation, it

is necessary to consider the signaling factor. Bac and Raff [20] study a case with two

simultaneous and identical pies where agents can either choose sequential negotia-

tion with sequential implementation or simultaneous negotiation with simultaneous

implementation. They show that as long as there is incomplete information about

bargaining strength, players may engage in issue-by-issue negotiations even if 1) the
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issues are perfect substitutes and players are only concerned with maximizing their

gains from settling the complete set of issues, and 2) there are no transaction costs

involved in negotiating a complete package. Busch and Horstmann [31] show that

issue-by-issue bargaining arises endogenously as part of a separating equilibrium in

which agenda choice is used to signal bargaining strength.

The other important question regarding multi-issue negotiation is selecting the

negotiation agenda while using the issue-by-issue approach. Flamini [54] shows

that there is a Pareto superior agenda among the issue-by-issue procedures. Fer-

shtman [53] defines two different agendas with simultaneous implementation and

shows that 1) when agents have identical preferences, the highest payoff under the

big pie first agenda is higher than that under the small pie first agenda and 2) when

agents have conflicting preferences, they prefer the first issue negotiated to be least

important to themselves but most import to the opponent. In and Serrano [66] show

that restricting agendas yields multiplicity of equilibrium outcomes because it creates

strong forms of non-concave payoff frontiers. Busch and Horstmann [29] explore how

bargaining conflicts and procedures interact to determine players’ bargaining costs

in multi-issue bargaining settings. They show that when bargaining frictions take

the form of discounting and agreements are implemented as they are reached, issue-

by-issue negotiation can generate bargaining costs different from those that occur if

all issues are bargained simultaneously.

While the bargaining theory literature mainly focuses on bilateral bargaining,

it also considers an agent’s other contracting opportunities in terms of “outside

options”. That is, a negotiating agent can exit the current negotiation and negotiates
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with another trading partner. The outside option strategic factor has been explored

in different ways. While Shaked and Sutton [123] look at fixed exogenous outside

options in complete information settings, Fudenberg et al. [59] consider incomplete

information bargaining with outside opportunities. Muthoo [93] studies a model of

the situation in which two players are bargaining face-to-face over the partition of

a unit size cake and, moreover, one of the players can choose to temporarily leave

the negotiating table to search for an outside option. A main conclusion is that the

equilibrium outcome does not depend on whether a bargainer is allowed (within the

game form) to choose to return to the negotiating table to resume bargaining after

having searched for some finite time. There are also some work (e.g., [33, 60]) on

modeling outside option as a sequential search process, where an agent can choose

to search for other offers and return to bargaining at any time. The search policy

and bargaining strategies are related due to the search cost.

2.3 Designing Negotiation Agents

Research on negotiation in the economics field considers relatively simple bargain-

ing scenarios, e.g., there are only two agents, each agent has knowledge about other

agents’ preference and goals. However, in realistic applications, agents often have

high level tasks with complex structures in dynamic uncertain environments and it is

often impossible to compute agents’ equilibrium strategies. In addition, game theo-

retic analysis often makes strong assumptions about agents’ knowledge, which limits

the practical applicability of game theoretic results. Furthermore, game theoretic

solutions in which agents are assumed to be fully rational cannot be applied to real-
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istic negotiation problems as, in practice, it’s not reasonable to assume agents’ full

rationality. In contrast, agents adopting AI approaches often have bounded rational-

ity and make “satisfying” decisions based on heuristics. Research in economics and

AI have different methodologies and concerns and their contributions complement

each other. Research in economics provides insights and theoretical foundations for

designing good heuristics, and heuristic approaches provide approximate solutions

for realistic negotiations problems.

Negotiation strategy : Heuristic search has been widely used by bounded rational

agents to find approximate solutions. To build more flexible and sophisticated ne-

gotiation agents, Faratin et al. [48, 71] devised a negotiation model that defines a

range of Negotiation Decision Functions (NDFs) for generating (counter-)proposals

based on time, resource, and behaviors of negotiators. In the time-dependent tactics,

an agent submits offers that change monotonically from the minimum (best) to the

maximum (worst) of the deal that she can agree on, and the rate of change depends

on time. There are different time-dependent tactics depending on the changing rate

of offers. The pressure of deadline has been widely studied. For example, Kraus et al.

[78] proposed a strategic model in which the passage of time was taken into account.

It has been shown that if agents use sequential equilibrium strategies, negotiation

will end rapidly. The resource-dependent tactics are similar to the time-dependent

ones in which time is the sole considered resource. The resource-dependent tactics

are modeled in the same way as the time-dependent ones by using the same functions.

The difference is that the resource-dependent tactics either, 1) have dynamic value of

the maximum available resource, or 2) make the changing rate function depend on an
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estimation of the amount of a particular resource. The behavior-dependent tactics

compute the next offer based on the previous attitude of the negotiation opponent.

These tactics are especially important in cooperative problem solving negotiation

settings, or integrative negotiations, by allowing agents to consider the other agents’

behavior. Sim et al. [124, 127] consider other factors, such as competition, trading al-

ternatives, and differences of negotiators, and propose market-driven agents (MDAs)

which can make minimally sufficient concessions. A game theoretical analysis of this

approach [125] shows that the strategies of MDAs are in sequential equilibrium and

market equilibrium for some specific bilateral and multilateral negotiations. Like

MDAs, our negotiation agents for multi-resource negotiation make negotiation deci-

sions taking into account market dynamics and negotiation status of all negotiation

threads for all resources.

Multi-issue negotiation: There are two different definitions of a negotiation issue

in the literature. In papers like [49, 80, 82], an issue is an attribute (e.g., price,

quality, delivery time) of a resource. In this case, multi-issue negotiation is bilat-

eral. An issue can also be treated as a resource as in [51, 128, 130] and in this

case, a buyer can negotiate with multiple sellers for each resource. If a seller has

multiple resources, such multi-resource negotiation could be bilateral and each re-

source can be treated as an attribute. Multi-issue negotiation is more complex and

challenging than single-issue negotiation as the solution space is multi-dimensional

and it’s often difficult to reach a Pareto-efficient solution [81]. Almost all the work

on multi-issue negotiation focuses on bilateral negotiation and a variety of learning

and searching methods are used, e.g., case-based reasoning [133], similarity criteria
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based search [49], decentralized search [80, 82]. Klein et al. [73] propose a simulated

annealing based approach appropriate for negotiating such complex contracts that

achieves near-optimal social welfare for negotiations with binary issue dependencies.

Different from related work on bilateral multi-issue negotiation, this work studies

multi-resource negotiation where resources are provided by multiple agents and thus

an agent is negotiating with multiple trading partners.

One-to-many and many-to-many negotiation: In many situations, an agent has

an opportunity to make an agreement with more than one trading partners. An

agent may also face the competition from agents of the same type, e.g., a buyer

in negotiation faces competition from other buyers. Even if an agent interacts with

many agents, an agent can pursue only one negotiation at a time in some models. An

agent has to terminate a current negotiation in disagreement first, and then pursue a

more attractive outside alternative. This kind of model is called bilateral negotiation

with outside options [87, 100]. However, the presumption that an agent can pursue

only one negotiation at a time appears to be restrictive. In one-to-many negotiation

[13, 14, 28, 96, 97, 98, 106, 128, 130], an agent can concurrently negotiate with

multiple trading partners and an agent’s proposal to one trading partner is affected

by the status of its negotiation with other trading partners. In this work, each agent

concurrently negotiates with multiple trading partners for multiple resources and an

agent’s proposals to each trading partner depends on the negotiation with all the

trading partners.

Concurrent negotiations : Sim et al. [128, 130] proposed a coordination strategy

for multi-resource negotiation where an agent can negotiate with multiple agents as
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in this work. Each buyer in [128, 130] knows the reserve price of each resource in

advance and the buyer just needs to decide the concession strategy for each one-to-

many negotiation for one resource. However, it is noted since [128, 130] focused on

designing a concurrent mechanism for Grid resource co-allocation, the mechanism

did not assume that consumer agents know the number of competing consumers.

In contrast, each buyer in this work is assumed to only know the value of its high

level task, i.e., the reserve price of all resources required for the high level task.

We propose a set of heuristics for dynamically determining the reserve price of each

resource based on the status of all negotiations. Furthermore, a buyer in [128, 130]

only makes one tentative agreement but in this work, a buyer may make more than

one tentative agreement.

Organizational negotiation: Zhang et al. have studied a number of sophisticated

negotiation problems in organizational contexts [137, 138]. Automated negotiation

becomes increasingly complex and difficult as 1) agents are large-grained and com-

plex with multiple goals and tasks, 2) agents often have more negotiation tasks and

organizational relationships among heterogeneous agents become more complex, 3)

negotiation process is tightly interleaved with agents’ negotiation, scheduling and

planning processes. Zhang et al. [137, 138] focus more on the coordination (a good

“fit”) of multiple negotiation tasks in organization context and they do not address

agents’ bargaining strategy in complex negotiation environments. In contrast, our

work investigates how agents make concessions in dynamic negotiation environments

where agents have multiple resources to negotiate. Zhang et al. [137] also considered

multi-linked negotiation problems in which an agent needs to negotiate with multiple
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other agents about different subjects, and the negotiation over one subject has influ-

ence on negotiations over other subjects. They present a heuristic search algorithm

for finding a near-optimal ordering of negotiation issues and their parameters.

Leveled commitment contracts : Sandholm et al. propose leveled-commitment

contracts [121] in which the level of commitment is set by decommiting penalties.

However, they only study the two-player game and they didn’t investigate agents’

bargaining strategies with decommitment from agreements. In addition, the problem

setting in [121] is far from the real-world settings since they make strong assumptions

about agents’ knowledge such as outside options in the future. In the negotiation

management system for CLASP [5], resource consumers can decommit from agree-

ments made before at the cost of paying a penalty. However, the focus in their

work is only on the scheduling problem. This work in contrast focuses on agents’

negotiation strategies given that agents can decommit from agreements. Nguyen

and Jennings [97, 98] provide and evaluate a commitment model for concurrent ne-

gotiation. However, the maximum number of tentative agreements is determined

prior to negotiation. In our work, the maximum number of tentative agreements is

determined by the current market situation and will change dynamically during ne-

gotiation. In addition, our work studies a multi-resource negotiation problem, rather

than single resource negotiation as in [97, 98]. Furthermore, Nguyen and Jennings

[97, 98] make very restrictive assumptions about agents’ available information, e.g.,

each agent is assumed to have knowledge about 1) other agents’ negotiation strate-

gies, 2) its negotiation success rate when it adopts certain strategy, and 3) its payoff
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when it adopts certain strategy. In this work, we assume that each agent has no

knowledge about negotiation outcomes.

Learning in negotiation: A negotiating agent may have limited knowledge about

others. Thus it is important for an agent to have the ability to update its beliefs

based on its interactions with others. A variety of learning techniques have been

used for building negotiation agents. Genetic algorithms (GAs) have been widely

applied to automated negotiation. In general, GAs are used to enhance automated

negotiation in two ways: 1) GAs were used as a decision making component at every

round, e.g., [85], and 2) GAs were used to learn the best strategies, e.g., [13, 91].

Zeng and Sycara [136] present a sequential negotiation model and address multi-agent

learning issues by explicitly modeling beliefs about the negotiation environment and

the participating agents under a probabilistic framework using a Bayesian learning

representation and updating mechanisms. Coehoorn and Jennings [37] showed that

the preferences of a negotiation opponent in bilateral multi-issue negotiations can be

effectively learnt by using kernel density estimation.

Mediation based negotiation: Another approach to resolve negotiation agents’

conflicts is mediation. Ehtamo et al. [46] present a mediation-based negotiation

framework for making trade-offs between cooperative negotiation agents. Klein et

al. [73] presents a mediator based approach to negotiate complex contracts based on

a random searching method. The mediator in this model makes proposals to both

agents. There are two types of negotiators: hill-climber and simulated annealer. Lai

et al. [80] consider self-interested agents and propose a non-biased mediator who ap-

plies query learning to maintain near Pareto-efficiency without heavy computation.
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The major limitation of mediation based negotiation is that it ignores agents’ strate-

gic behavior of selfish negotiation agents. For instance, an agent may not truthfully

report its information to the mediator in order to manipulate the mediation.

2.4 Auction Mechanism

Another class of widely used resource allocation mechanisms is the auction in

which agents bid for the best resources. There are many possible auction designs

depending on issues such as the efficiency of a given auction design, optimal and

equilibrium bidding strategies, and revenue comparison. There are traditionally four

types of auction that are used for single item allocation: 1) First-price sealed-bid

auctions in which bidders simultaneously submit their bids in a sealed envelope.

The individual with the highest bid wins and pays its bidding price. 2) Second-

price sealed-bid auctions (or Vickrey auctions [134]) which is similar to first-price

sealed-bid auctions except that the winner pays a price equal to the exact amount

of the second highest bid. 3) English auctions in which the price is steadily raised

by the auctioneer with bidders dropping out once the price becomes too high. This

continues until there remains only one bidder who wins the auction at the current

price. 4) Dutch auctions in which the auctioneer begins with a high asking price

which is lowered until some participant is willing to accept the price. The winning

participant pays the last announced price.

A combinatorial auction is an auction in which participants can place bids on

combinations of discrete items, or “packages,” rather than just individual items or

continuous quantities (see the recent book [42] for more information about combi-
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natorial auctions). Combinatorial auctions have been widely used in many applica-

tions such as sourcing in Internet commerce [114]. Combinatorial auctions present

challenges compared to traditional auctions. In combinatorial auction schemes, a

centralized controlling agent (the “auctioneer”) assumes responsibility for determin-

ing which agents receive which resources based on the bids submitted by individual

agents. However, the problem of deciding successful bids, i.e., winner determination

problem, is NP-hard [110], meaning that a polynomial-time algorithm to find the

optimal allocation is unlikely ever to be found. In addition, the auctioneer may

face significant computational overload due to a large number of bids with complex

structures.

Our negotiation approach for multi-agent resource allocation is of a distributed

nature. In general, the allocation procedure used to find a suitable allocation of

resources could be either distributed or centralized, e.g., combinatorial auctions. One

of the most important arguments against centralized approaches is that it may be

difficult to find an agent that could assume the role of an “auctioneer”. For instance,

selfish resource providers may not trust the auctioneer and are not willing to comply

with the decisions made by the auctioneer. In distributed approaches like automated

negotiation, on the other hand, allocations emerge as the result of a sequence of

distributed negotiations and each selfish agent acts on behalf of itself. The distributed

model seems more natural in cases where resources belong to different selfish agents

and finding optimal allocations may be (computationally) infeasible.

In dynamic resource allocation problems such as cloud computing, agents need

to reason about future events while making decisions. For such dynamic resource
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allocation problem, strategy-proof mechanisms such as the well-known VCG auction

is not necessarily strategy-proof and do not necessarily result in the most efficient

usage [101]. While efficient online mechanisms have been proposed for dynamic en-

vironments, they only work in constrained settings and often rely on strong assump-

tions about agents’ knowledge (see [21, 101] for a survey). Against this background,

we use distributed negotiation for dynamic resource allocation and compare it with

some representative existing auction mechanisms.

2.5 Summary

In this chapter, we presented a brief overview of agent mediated negotiation

as well as some market mechanisms. We first introduce the work on bargaining

mechanism design and strategic bargaining games in economics. Then we discussed

the related work on designing negotiation agents in AI. We also compared our work

in this thesis and the state of the art. Analyzing agents’ rational strategies for

incomplete information bargaining and building agents for complex multi-resource

negotiation are important for negotiation based resource allocation problems, but the

literature does not provide satisfactory solutions. The focus of this thesis is on both

challenging problems in bargaining theory and development of negotiation agents for

practical complex resource allocation problems.
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CHAPTER 3

NEGOTIATION WITH UNCERTAIN RESERVE PRICES

This chapter presents the algorithm for computing sequential equilibrium in pure

strategies for bilateral bargaining with one-sided uncertainty regarding agents’ re-

serve prices. There is no existing approach to solve the problem formally in the

literature. Our approach is general in that it can be applied to other dynamic games

with continuous strategy space.

3.1 Background

While there are many negotiation settings in electronic commerce transactions,

the most common one (also the simplest one) is bilateral negotiation with a single

negotiation issue. For instance, consider a scenario in which a buyer and a seller

negotiate on the price of a good. In such a bargaining scenario, the two agents have

different preferences over agreements. Thus agents need to make concessions toward

a mutually acceptable agreement through a series of offers and counter offers. The

negotiation fails if the two agents fail to make an agreement. There are many real-

world negotiation examples such as the negotiation between a service provider and

a customer over the price and the quality for providing a service.
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In a bargaining game, an agent’s strategy can be either pure or mixed. A pure

strategy deterministically prescribes one action at any decision node of the game. In

contrast, a mixed strategy is an assignment of a probability to each pure strategy.

The concept of mixed strategies is very useful for games having no pure strategy

equilibrium. However, the concept of mixed strategies has been criticized for being

“intuitively problematic” since randomization lacks behavioral support [17]. When

mixed strategies are considered, the number of sequential equilibria of the game

usually increases and coordination problems of choosing a equilibrium strategy profile

has not been fully addressed. Due to these reasons, we focus on pure strategies

equilibrium. Fortunately, simulation results show that there is at least one pure

strategy sequential equilibrium in 99.7% of various bilateral bargaining scenarios we

will look at in our experiments. Additionally, experimentally we found that as the

number of uncertain types and deadlines increase, all cases had at least one sequential

equilibrium.

One major motivation of the study of negotiation theory is designing successful

negotiation agents in practical applications. However, it is often impossible to com-

pute agents’ rational strategies for more realistic complex negotiation games where

there are many agents and a large number of uncertainties. While we study a rela-

tively simple negotiation problem in this chapter, our analysis can give us guidelines

for designing negotiation agents for practical negotiation problems. In addition, as

will be discussed at the end of this chapter, there may be ways to extend the solu-

tion approaches presented in this chapter to compute agents’ equilibrium strategies

in more complex negotiation games.
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The rest of this chapter is organized as follows. We start with complete infor-

mation negotiation in Section 3.2. Section 3.3 discusses the difficulty caused by

introducing uncertainty. Section 3.4 introduces our algorithm. Section 3.5 shows

how to compute the buyer’s equilibrium offer and Section 3.6 shows how to compute

the seller’s equilibrium offer. Section 3.7 analyzes equilibrium existence. Section 3.8

compared agents’ utilities while using different strategies. Section 3.9 discusses two

potential applications of our approach. Section 3.10 concludes this chapter and out-

lines future research directions.

3.2 Bargaining with Complete Information

This section describes the discrete time bargaining between a buyer b and a seller

s. The seller wants to sell a single indivisible good to the buyer with a price. All

the agents enter the market at time 0. An alternating-offers bargaining protocol

is utilized. Formally, the buyer b and the seller s can act at times t ∈ N. The

player function ι : N → {b, s} returns the agent that acts at time t and is such that

ι(t) 6= ι(t+1), i.e., a pair of agents bargain by making offers in alternate fashion. This

chapter focuses on single-issue negotiation but this model can be easily extended to

handle multi-issue negotiation [61].

Possible actions σt
ι(t) of agent ι(t) at any time point t > 0 are:

1. offer [x], where x ∈ R is the proposed price for the good;

2. exit , which indicates that negotiation fails;

3. accept , which indicates that b and s have reached an agreement.
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At time point t = 0 the only allowed actions are 1) and 2). If σt
ι(t) = accept

the bargaining stops and the outcome is o = (x, t), where x is the value such that

σt−1
ι(t−1) = offer [x]. This is to say that the agents agree on the value x at time point

t. If σt
ι(t) = exit the bargaining stops and the outcome is FAIL. Otherwise the

bargaining continues to the next time point.

Each agent a ∈ {b, s} has a utility function Ua : (R × N) ∪ FAIL → R, which

represents its gain over the possible bargaining outcomes. Each utility function Ua

depends on a’s reserve price RPa ∈ R
+, temporal discount factor δa ∈ (0, 1),1 and

deadline Ta ∈ N, Ta > 0. If the bargaining outcome is o = (x, t), then the utility

function Ua is defined as:

Ua(x, t) =































(RPa − x) · (δa)t if t ≤ Ta and a is a buyer

(x− RPa) · (δa)t if t ≤ Ta and a is a seller

ǫ < 0 otherwise

If the outcome is FAIL, Ua(FAIL) = 0. Notice that the assignment of a strictly

negative value to Ua after a’s deadline allows one to capture the essence of the

deadline: an agent, after its deadline, strictly prefers to exit the negotiation rather

than to reach any agreement. Therefore, the bargaining model we consider is a finite

horizon game. Finally, we assume the feasibility of the problem, i.e., RPb ≥ RPs.

With complete information the appropriate solution concept for the game is the

subgame perfect equilibrium in which agents’ strategies are in equilibrium in every

1A discount factor is used to model bargaining cost, which is a common assumption in the
bargaining literature [111, 112, 51, 61].
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possible subgame [58]. Note that there is no deadline constraint in the negotiation

protocol, which indicates that agents are allowed to offer and counteroffer also after

their deadlines have expired. However, the deadline constraint is in both agents’ util-

ity functions such that no rational agent will continue negotiation after its deadline.

Therefore, the bargaining game is a finite horizon game and the subgame perfect

equilibrium can be found employing the backward induction method.

Initially, it is determined that the game rationally stops at time point T =

min(Tb, Ts). The equilibrium outcome of every subgame starting from t ≥ T is

FAIL, since at least one agent will exit from bargaining. Therefore, at t = T agent

ι(T ) would accept any offer x which gives it a utility not worse than FAIL, namely,

any offer x such that Uι(T )(x, T ) ≥ 0. From t = T − 1 back to t = 0 it is possible

to find the optimal offer agent ι(t) can make at t, if it makes an offer, and the offers

that it would accept. x∗(t) denotes the optimal offer of agent ι(t) at t. x∗(t) is the

offer such that, if t < T − 1, agent ι(t + 1) is indifferent at t + 1 between accepting

it and rejecting it to make its optimal offer x∗(t+1) and, if t = T − 1, agent ι(t+1)

is indifferent at t + 1 between accepting it and exiting. Formally, x∗(t) is such that

Uι(t+1)(x
∗(t)), t) = Uι(t+1)(x

∗(t + 1), t+1) if t < T − 1 and Uι(t+1)(x
∗(t), t) = 0 if

t = T − 1. The offers agent ι(t) would accept at t are all those offers that give it a

utility no worse than the utility given by offering x∗(t). The equilibrium strategy of

any subgame starting from 0 ≤ t < T prescribes that agent ι(t) offers x∗(t) at t and

agent ι(t + 1) accepts it at t+ 1.

Backward propagation is used to provide a recursive formula for x∗(t): given

value x and agent a, we call backward propagation of value x for agent a the value
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y such that Ua(y, t− 1) = Ua(x, t); we employ the arrow notation x←a for backward

propagations. Formally, x←b = RPb− (RPb−x) · δb and x←s = RPs+(x−RPs) · δs.

If a value x is backward propagated n times for agent a, we write x←n[a], e.g.,

x←2[a] = (x←a)←a. If a value is backward propagated for more than one agent,

we list them left to right in the subscript, e.g., x←b2[s] = ((x←b)←s)←s. The values

of x∗(t) can be calculated recursively from t = T − 1 back to t = 0 as follows:

x∗(t) =















RPι(t+1) if t = T − 1

(x∗(t+ 1))←ι(t+1) if t < T − 1

It can be observed that x←b ≥ x as x←b − x = RPb − (RPb − x) · δb − x =

(1 − δb)(RPb − x) ≥ 0, and x←s ≤ x as x←s − x = RPs + (x − RPs) · δs − x =

(δs − 1)(x− RPs) ≤ 0.

Figure 3.1 shows an example of backward induction construction with parameters

RPb = 100, RPs = 0, ι(0) = s, δb = 0.75, δs = 0.8, Tb = 10, and Ts = 11. The

backward induction process starts from time T = min{Tb, Ts} = 10. At time 10, the

seller is willing to accept any offer which is no less than its reserve price and thus the

optimal offer at time t = 9 is x∗(9) = RPs = 0. The optimal offer of the seller at time

t = 8 is x∗(8) = (RPs)←b = RPb − (RPb −RPs) · δb = 25. Analogously, the optimal

offer of the buyer at time t = 7 is x∗(7) = (x∗(8))←s = RPs+(x∗(8)−RPs) · δs = 20.

Following this procedure, we can get agents’ optimal offers from time t = 6 to the

initial time point t = 0.

Finally, agents’ equilibrium strategies can be defined on the basis of x∗(t) as

follows:
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Figure 3.1. Backward induction construction with RPb = 100, RPs = 0, ι(0) = s,
δb = 0.75, δs = 0.8, Tb = 10, Ts = 11; at each time point t the optimal offer x∗(t) is
marked; the dashed lines are isoutility curves.

σ∗b(t) =















































































t = 0 offer [x∗(0)]

0 < t < T















if σs(t− 1) = offer [x] with x ≤ (x∗(t))←b accept

otherwise offer [x∗(t)]

T ≤ t ≤ Tb















if σs(t− 1) = offer [x] with x ≤ RPb accept

otherwise exit

Tb < t exit
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σ∗s(t) =















































































t = 0 offer [x∗(0)]

0 < t < T















if σb(t− 1) = offer [x] with x ≥ (x∗(t))←s accept

otherwise offer [x∗(t)]

T ≤ t ≤ Ts















if σb(t− 1) = offer [x] with x ≥ RPs accept

otherwise exit

Ts < t exit

We can see that the above strategies constitute a unique subgame perfect equi-

librium of bargaining with complete information. The equilibrium can be found in

time linear to the maximum deadline of the two agents. At the equilibrium, the two

agents reach an agreement at time t = 1 and the agreement price is x∗(0).

3.3 One-sided Uncertainty about Reserve Prices

In this section, we first loosen the complete information bargaining model in the

previous section by introducing one-sided uncertainty regarding the buyer’s reserve

price. We then review the existing approaches in the literature.

3.3.1 Introducing Uncertainty

With uncertain information, the appropriate solution concept for an extensive-

form game is sequential equilibrium [58]. A sequential equilibrium is a pair a = 〈µ, σ〉

(also called an assessment) where µ is a belief system that specifies how agents’

beliefs evolve during the game and σ specifies agents’ strategies. At an equilibrium

µ must be consistent with respect to σ and σ must be sequentially rational given
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µ. Informally, the rationality requirement says that after every possible sequence of

actions, an agent’s strategy must maximize its expected utility given its beliefs and

its opponent’s equilibrium strategy. An assessment a is consistent (in the sense of

Kreps and Wilson [79]) if there exists a sequence of totally mixed strategy profiles

(with associated sensible beliefs updated according to Bayes’ rule) that converges to

the equilibrium profile.

We assume the one-sided uncertainty regarding the type of the buyer b (the case

of having uncertainty with the type of the seller s can be analyzed analogously). The

buyer b can be of finitely many types {b1, . . . ,bn} in which buyer type bi has an

associated reserve price RPi. The initial belief of s on b is µ(0) = 〈∆0
b, P

0
b〉 where

∆0
b = {b1, . . . ,bn} and P 0

b = {ω0
b1
, . . . , ω0

bn
} such that

∑

i ω
0
bi

= 1. ω0
bi

is the priori

probability that b is of type bi. The belief of s on the type of b at time t is µ(t). The

probability assigned by s to b = bi at time t is denoted ωt
bi
. Given an assessment

a = 〈µ, σ〉, there are multiple possible bargaining outcomes: outcome obi
if b = bi.

We denote bargaining outcome as o = 〈ob1, . . . , obn
〉.

Seller s’s belief of the type of buyer b will evolve based on its observed actions

and the buyer’s equilibrium strategies. On the equilibrium path, s’s belief at any

time t is µ(t) = 〈∆t
b, P

t
b〉. As is customary in economic studies [112], we consider

only stationary systems of beliefs, i.e., if s believes a b’s type with zero probability

at time point t, it will continue to believe such a type with zero probability at any

time point t′ > t. We can therefore specify µ(t) by specifying ∆t
b. Moreover, given

that µ(t) = ∆t
b and we only consider pure strategies, the probability that b is of

type bi ∈ ∆t
b is ωbi

(∆t
b) =

ω0
bi∑

bj∈∆t
b

ω0
bj

.
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We need to also specify the belief system off the equilibrium path, i.e., when an

agent takes an action that is not optimal. We use the optimistic conjectures [112].2

That is, when buyer b acts off the equilibrium strategy, agent s will believe that

agent b is of its “weakest” type, i.e., the type against which the seller would gain

the most. This choice is made to assure the existence of the equilibrium for the

largest subset of the space of the parameters [61]. In our case, the weakest type is

the buyer type with the highest reserve price (see Section 3.4.4 for the proof). That

is, if µ(t− 1) = ∆t−1
b and b acts off the equilibrium strategy at time t− 1, it follows

that ∆t
b = bh(∆

t−1
b ) where bh(∆

t−1
b ) is the buyer type with the highest reserve price

in buyer types ∆t−1
b .

3.3.2 Existing Solutions in Literature

Computation agents’ equilibrium strategies of an extensive-form game with im-

perfect information is well known to be hard and classic game theory does not pro-

vide any general approaches to find sequential equilibria. While there has been long

standing literature in solving bargaining games with uncertainty since Rubinstein’s

path-breaking work [112], there is no existing approach that can be applied to solve

the bargaining problem studied in this chapter. An interested reader can find a more

detailed survey on bargaining with uncertainty in [18].

Computer science researchers have proposed a number of algorithms for comput-

ing Nash equilibria (e.g., [62, 63, 74]) or sequential equilibria (e.g., [92]). However,

2While this chapter assumes optimistic conjectures, our approach can be used for any belief
update rules for agents’ actions off the equilibrium path.
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these algorithms are not applicable in solving bargaining games since they only con-

sider finite strategy space rather than continuous strategy space (i.e., price) consid-

ered in this chapter. Due to the same reason, enumeration based methods (e.g., [104])

cannot be applied to our bargaining problem as well.

The microeconomic literature provides a number of results for some specific bar-

gaining problems with uncertainty. For instance, Rubinstein [112] considered bilat-

eral infinite horizon bargaining with uncertainty over two possible discount factors.

With the unrealistic infinite horizon assumption, Rubinstein found a number of closed

form results such as how the discount factors will affect the equilibrium outcome.

Sandholm and Vulkan [117] analyze agents’ strategic behavior in a slight variation

of the war-of-attrition game where the surplus can be divided. They consider a fi-

nite horizon alternating-offer bilateral bargaining game where agents have uncertain

deadlines, time is continuous, and there are not discount factors. In contrast, Gatti

et al. [61] relaxed the infinite horizon deadlines and provided an algorithm to com-

pute agents’ equilibrium strategies in bilateral bargaining with one-sided uncertain

deadlines. They proved that agent types would adopt the same strategy at any time

point before their deadlines, which may not be true in our case with uncertain re-

serve prices. Therefore, their approach cannot be applied to our case. Cramton [39]

considered a special infinite horizon bargaining protocol in which only the seller can

make offers and the buyer can only accept or reject the seller’s offer. Chatterjee and

Samuelson [34, 35] studied bilateral infinite horizon bargaining with two-type uncer-

tainty over the reservation values. The absence of agents’ deadlines makes these two

results nonapplicable to the situation we study in the chapter. An et al. [6] only
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considered two-type uncertainty about reserve prices and their approach cannot be

directly extended to handle multiple types. The presence of multi-type uncertainty

increases the computational complexity of the procedure to find equilibrium strate-

gies and requires more stringent equilibrium existence conditions.

The only known general approach that be potentially applied to our bargaining

problem is the backward induction approach by Fatima et al. [51, 52]. They studied

the alternating-offers protocol with multiple negotiation issues and uncertainty over

the weights of the issues. They proposed an algorithm based on backward induction

to compute sequential equilibria. Note that as in this chapter, Fatima et al. [51, 52]

also focus on pure strategy equilibria. Basically, their algorithm searches in the space

of the strategies exploiting the backward induction from the last possible deadline to

t = 0 with agents’ initial beliefs, and, once the optimal strategies at time point t = 0

have been found, the system of beliefs is designed to be consistent with them. It

has been shown in [61] through a counter example that unfortunately an equilibrium

return by their algorithm is not necessary a sequential equilibrium in pure strategies

for bilateral bargaining with uncertain deadlines.

We show a simple example where the algorithm in [52, 51] fails in the bargain-

ing problem studied in this chapter (see Figure 3.2 for agents’ equilibrium offers

computed by their algorithm and agents’ equilibrium offers in complete information

settings). Consider the following scenario: T = 5, ι(0) = s, RPs = 10, RP1 = 90,

RP2 = 70, ω0
b1

= 0.8, ω0
b2

= 0.2, δs = 0.7, and δb = 0.8. Let x∗bi
(t) be any

agent optimal offer at time t when buyer b is of type bi in the complete infor-

mation setting. Let xf (t) be any agent optimal offer at time t computed by the
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Figure 3.2. Failure of the approach in [51, 52] with T = 5, ι(0) = s, RPs = 10,
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= 0.8, ω0

b2
= 0.2, δs = 0.7, and δb = 0.8; agents’ offers in

complete information settings were also showed.

algorithm in [52, 51]. Agents’ equilibrium offers are computed with the initial be-

lief. At time t = 4, seller s can offer either x∗b1
(4) = RP1 = 90 which gives the

seller a utility of 0.8 · (90 − 10) · 0.75 = 10.75648 or x∗b2
(4) = RP2 = 70 which

give the seller a utility of (70 − 10) · 0.75 = 10.0842. Therefore, the seller’s opti-

mal offer at time t = 4 is xf (4) = 90 and the equivalent price is 74. Then both

buyer types’ optimal offer at time t = 3 is xf (3) = (74)←s = 54.8. At time

t = 2, seller s can offer either (54.8)←b1 = 61.84 or (54.8)←b2 = 57.84. Accord-
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ing to [52, 51], offering price 57.84 will be accepted by both buyer types and thus

the seller can gain a utility of (57.84 − 10) · 0.73 = 16.40912. In contrast, offering

price 61.84 will only be accepted by buyer type b1 and t2he seller’s equilibrium offer

at time t = 4 will be accepted. Thus, offering price 61.84 will the seller a utility

of 0.8 · (61.84 − 10) · 0.73 + 0.2 · (74 − 10) · 0.75 = 16.376192. Thus the optimal

offer of the seller at time t = 2 is xf (2) = 57.84. Then both buyer types’ optimal

offer at time t = 1 is xf(1) = (57.84)←s = 43.488. The seller at time t = 0 can

offer either (43.488)←b1 = 52.7904 or (43.488)←b2 = 48.7904 and its optimal offer is

xf (0) = 52.7904 which will only be accepted by buyer type b1. According to [52, 51],

buyer type b1 will accept the offer 52.7904 at time t = 0 since the optimal offer

52.7904 is b1’s backward propagated value of its 43.488 at time t = 1. Accordingly,

the seller will update its belief as follows: if its optimal offer 52.7904 is rejected, it

will update its belief to {b2}.

However, the above strategy profile is not in sequential equilibrium since buyer

b1 has an incentive to reject the seller’s equilibrium offer at time t = 1 (also see Fig-

ure 3.2). If buyer type b1 rejects the offer 52.7904 at time t = 1 and makes a counter

offer 41.92, the seller will accept it since 41.92 is buyer’s equilibrium offer when the

buyer is of type b2. By doing so, buyer b1 gains a utility of (90−41.92)·0.82 = 30.7712

which is higher than its utility (90 − 52.7904) · 0.8 = 29.76768 when it accepts the

seller’s equilibrium offer 52.7904. As pointed out in [61], the reason behind the failure

of [52, 51] in producing equilibrium strategies for some settings of parameters is that

in each step of backward induction they limit the search to the space of the strate-

gies, but they do not verify the existence of a consistent system of beliefs such that
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the found strategy is sequentially rational. In other words, they break the circularity

of strategies and belief systems. In the above example, they decide the acceptance

price of buyer type b1 with the initial belief and ignore the effect of the seller’s belief

update rule. As a result, once their algorithm has produced the agents’ strategies

at t = 0 and has designed the system of beliefs consistent with them, the strategies

may not be sequentially rational given the designed system of beliefs.

3.4 The Algorithm for Finding All Sequential Equilibria

This section first introduces the high level idea of our approach. Following that we

analyze some observations that can be used to drastically reduce the required com-

putation based on our basic approach. Finally we introduce the algorithm for finding

all sequential equilibria of a bilateral bargaining game with one-sided uncertainty.

3.4.1 High Level Idea of the Approach

Our approach follows the spirit of backward induction: To compute agent a’s

equilibrium offer with belief ∆b at time t < T − 1, agent a takes into account all

the sequential equilibria in the continuation game with different beliefs starting from

time t + 1. A continuation game is composed of an information set for one agent

(buyer or seller) and all of its successor nodes from the original bilateral bargaining

game. Note that there is no subgame for the bargaining game with uncertainty.

There are continuation games starting from time points 0, 1, . . . . Let Γ(t) be the

continuation game continuation game starting from time t. In the continuation game

Γ(t), agent ι(t) makes its offer at time t first. Let Γ(t,∆b) be the continuation game
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Figure 3.3. A high level illustration of our approach (ι(t) = s and |∆0| > 1)

Γ(t) with seller s’s initial belief ∆b. The problem of finding sequential equilibria for

a bargaining problem is finding all sequential equilibria for the continuation game

Γ(0,∆0
b).

The definition of a sequential equilibrium requires that after observing buyer b’s

counter offer at time t, seller s must update its belief about b’s type using a belief

update rule. The counter offer of buyer b at time t indicates buyer b’s following

actions: 1) seller s’s last offer is rejected by the buyer b if t > 0, and 2) buyer b

makes a new offer at time t. Seller s will update its belief given all the actions of

buyer b. Therefore, there are two types of belief update rules: 1) reject update rules
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applied when buyer b rejects seller s’s offer and offer update rules applied when

buyer b makes a new offer. Assume seller s’s belief before proposing its offer x is ∆b,

the reject update rule is of the following form: If x is rejected, s’s belief about the

type of buyer b is ∆′b ⊆ ∆b. Similarly, the offer update rule has the following form:

If buyer b offers x, seller s’s belief about the type of b is ∆′b ⊆ ∆b where ∆b is s’s

belief before applying the offer update rule. After receiving buyer b’s offer at time

t = 0, s will only apply the offer update rule. In any other situation (i.e., buyer b

first rejects s’s offer and then makes a new offer), seller s will apply the reject update

rule first and then apply the offer update rule.3

While the seller is making an offer at time t given the sequential equilibria for

the continuation game Γ(t+1) with different beliefs, the seller will consider different

reject update rules and compute its equilibrium offer for each rule. With pure strate-

gies, the seller’s reject update rules are finite. The other situation is deciding the

buyer’s equilibrium offer at time t given the sequential equilibria for the continuation

game Γ(t+1) with different beliefs, the buyer will consider different choice rules re-

garding whether different buyer types behave in the same way or behave in different

ways. With pure strategies, buyer types’ choice rules are finite. For each choice

rule, we compute each buyer type’s optimal offer and its corresponding offer update

rule. While computing agents’ equilibrium strategies, we also construct equilibrium

existence conditions and check whether those conditions are satisfied.

3This belief update process is obvious when an agent is required to send a rejection message
before making a counter offer [51]. For the sake of simplicity, a rejecting agent does not need to
send a rejection message in our protocol.
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Roughly, the idea of our approach is the following (see Figure 3.3). To com-

pute agents’ equilibrium offers at a continuation game, we first compute sequential

equilibria in its continuation game with different beliefs. Then we compute agents’

equilibrium offers together with agents’ belief update rules. There are two cases.

While computing the seller’s equilibrium strategy, we enumerate all possible reject

update rules (e.g., reject update rules 1 and 2 in Figure 3.3) and for each reject

update rule, we first compute the seller’s optimal strategy in the corresponding con-

tinuation game. For example, for the reject update rule 1 in Figure 3.3, we first solve

the continuation game Γ(t+1,∆1) where ∆1 ⊆ ∆0 is the seller’s updated belief if the

seller’s offer is rejected. While computing the buyer’s equilibrium strategy, we con-

sider all choice rules and compute different buyer types’ optimal offer for each choice

rule. For instance, for the choice rule 3, we need to first solve the continuation game

Γ(t+2,∆3). There are two processes involved in computing all sequential equilibria:

a forward search process to determine the set of continuation games to solve and a

backward induction process to compute agents’ equilibrium strategies based on all

sequential equilibria of continuation games. Furthermore, we introduce some equi-

librium existence conditions: if they are satisfied, there is a sequential equilibrium

in the continuation game.

Take the bargaining problem in Figure 3.2 as an example. Our objective is

to compute all sequential equilibria for the continuation game Γ(0, {b1,b2}). Since

ι(0) = s, we need to consider different reject update rules. Consider the reject update

rule that the seller is making an offer x that will only be accepted by buyer type b1,

i.e., if the buyer rejects offer x, the seller will update its belief to {b2}. To compute
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the optimal offer x at time t = 0, we first compute all sequential equilibria for the

continuation game Γ(1, {b2}) starting from time t = 1. For another reject update

rule that the seller is making an offer x that will be rejected by both buyer types, we

need to first compute sequential equilibria for the continuation game Γ(1, {b1,b2})

with the original belief. To compute sequential equilibria for the continuation game

Γ(1, {b1,b2}), we need to consider buyer types’ different choice rules. Consider the

choice rule that buyer type b1 makes an acceptable offer but buyer type b2 makes an

offer that will be rejected. For this choice rule, we need to first compute sequential

equilibria for continuation games Γ(2, {b1}) and Γ(2, {b2}) starting from time t = 2.

In the same way, we can recursively try different choice rules and reject update rules

to compute all sequential equilibria of the bargaining game.

3.4.2 Computation Reduction

This section provides some theoretical results which drastically reduce the com-

putation complexity. In an equilibrium, it is possible that the seller will make an offer

that will be rejected by all the buyer types. Without loss of generality, we assume

̟ be seller’s offer that will be rejected by all buyer types. Assume that the seller’s

belief is ∆b. A reject update rule specifies the seller’s updated belief ∆′b ⊆ ∆b if

the seller’s offer is rejected. Therefore, the number of reject update rules are finite

since the number of belief set ∆′b ⊆ ∆b is no more than 2|∆b|. However, there is no

sequential equilibrium for most of the reject update rules.
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Theorem 1. If there is a reject update rule with updated belief ∆′b ⊆ ∆b such that

RPi < RPj for buyer type bi ∈ ∆b \∆′b and buyer type bj ∈ ∆′b, agents’ strategies

are not sequentially rational.

Proof. This result can be proved by contradiction. If there is a sequential equilibrium

with this reject update rule in which s’s equilibrium offer at time t is x, the following

two conditions are satisfied: 1) bi has no incentive to behave as bj , i.e., Ubi
(x, t+1) ≥

Ubi
(et+1

bj
|∆′b, t + 2) where et+1

bj
|∆′b is bj’s equivalent offer (will be defined later) in

the continuation game starting from t + 1 with belief ∆′b; 2) bj has no incentive to

behave as bi, i.e., Ubj
(et+1

bj
|∆′b, t + 2) ≥ Ubj

(x, t + 1). Condition 1) suggests that

x ≤ (et+1
bj

|∆′b)←bi
and condition 2) indicates that x ≥ (et+1

bj
|∆′b)←bj

. Therefore,

equilibrium existence conditions requires that (et+1
bj

|∆′b)←bj
≤ (et+1

bj
|∆′b)←bi

, which

cannot be true since RPi < RPj .

Due to Theorem 1, we only need to consider reject update rules in which buyer

types with higher reserve prices accept the seller’s equilibrium offer while buyer types

with lower reserve prices reject the seller’s equilibrium offer. Assume that the seller’s

belief at a time point is ∆b. The total number of reject update rules we need to

consider is at most |∆b| rather than 2|∆b|. For each reject update rule at time t, we

need to first compute the sequential equilibrium for the continuation game Γ(t + 1)

with the corresponding reasonable updated belief if the seller’s offer is rejected, i.e.,

∆′b. Accordingly, we need to compute sequential equilibria for the continuation game

with at most |∆b| different reasonable beliefs.

In addition to the above rejected update rules in which according to the equilib-

rium strategy at least one buyer type will reject the seller’s offer, we also need to
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consider the case that according to the equilibrium strategy, the seller’s offer will be

accepted by all buyer types. If the offer is rejected (i.e., the buyer is acting off the

equilibrium path), the seller will update its belief to the buyer type with the highest

reserve price according to the optimistic conjectures. We call this reject update rule

as null reject update rule.

The other situation is deciding the buyer’s equilibrium offer at time t. We use

the term “choice rule” to characterize buyer types’ strategies regarding whether they

behave in the same way at a specific decision making point. With pure strategies,

buyer types’ choice rules are finite. Consider that the belief of s on the type of b

at time t is µ(t) = ∆b where |∆b| > 1 (note that if |∆b| = 1, the bargaining from

time t becomes the trivial complete information bargaining) and ι(t) = b. Let the

equilibrium offer of buyer type bi ∈ ∆b be xbi
(t). After receiving b’s offer, s will

update its belief and decide whether to accept the offer from b. Without loss of

generality, we assume that xbi
(t) = −1 if bi’s equilibrium offer will be rejected by

seller s at time t + 1. There are two situations: 1) All buyer types make the same

offer. In this case, a pooling choice rule is chosen by different buyer types. 2) Buyer

types make different offers. That is, a separating choice rule is used by different

buyer types.

It is easy to see that there are two pooling choice rules depending on whether the

seller will accept the offer at time t + 1 in equilibrium: 1) accepting pooling choice

rule in which all buyer types make the same acceptable offer to seller s; 2) rejecting

pooling choice rule in which all buyer types make the same rejectable offer (i.e., −1)

to seller s. While the buyer adopts the separating choice rule, some buyer types’
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equilibrium offers are acceptable to the seller and the number of separating choice

rules is drastically reduced due to the following theorem.

Theorem 2. There is no equilibrium assessment in pure strategies if buyer types

make different acceptable offers at t.

Proof. We can easily prove this by contradiction. Assume that there is a sequential

equilibrium for a belief system in which at time t such that ι(t) = b, buyer bi makes

an acceptable offer x to s and buyer types bj makes an acceptable offer y to s such

that x 6= y. If x > y, buyer bi has an incentive to behave like buyer bj by offering

price y. The other direction is analogous.

Therefore, we only need to consider the following separating choice rules: buyer

types ∆a
b make an acceptable offer to s at time t but buyer types ∆r

b = ∆b\∆a
b make

an offer (i.e., −1) that will be rejected by s at time t. Due to Theorem 6 (will be

detailed later), we only need to consider partitions ∆a
b ∪∆r

b = ∆b such that for any

buyer type bi ∈ ∆a
b and any bj ∈ ∆r

b, RPi > RPj . Thus, the number of separating

choice rules is |∆b| − 1. For each choice rule at time t, we need to first compute the

sequential equilibria for the continuation game Γ(t+1) with corresponding reasonable

beliefs, i.e., ∆a
b and ∆s

b. Accordingly, we need to compute sequential equilibria for

the continuation game with at most 2(|∆b| − 1) different reasonable beliefs.

3.4.3 The Algorithm

Algorithm 1 and Algorithm 2 outline the main steps for computing agents’ equi-

librium strategies in a continuation game based on the sequential equilibria in its

continuation game with different beliefs. To compute a buyer agent’s equilibrium
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Algorithm 1: Compute equilibrium strategies for a continuation game Γ(t,∆b)
such that ι(t) = b, |∆b| > 1, and t < T − 1

Let SE(∆b, t) = ∅ be the set of sequential equilibria for the continuation game with
belief ∆b at t;
for each choice rule do

for each equilibrium strategy combination of the continuation game with
reasonable beliefs starting from time t+ 1 do

Compute buyer types’ equilibrium offers and construct offer update rules
(Section 3.5);
if equilibrium existence conditions are satisfied then

add agents’ equilibrium strategies from time t to SE(∆b, t);
end

end

end

return SE(∆b, t);

offer, the buyer considers different choice rules and for each choice rule, we need to

consider all the sequential equilibria of the continuation game with reasonable be-

liefs since there may be multiple sequential equilibria for the continuation game with

a specific belief. Different buyer types’ equilibrium strategies are derived using a

Bayesian extension of backward induction (see Section 3.5). To compute the seller’s

equilibrium offer at a time point, we consider all the reject update rules and for each

reject update rule, we compute the sequential equilibria of the continuation game

with the belief corresponding to the reject update rule. We compute the seller’s

equilibrium offer for each sequential equilibrium corresponding to a reject update

rule and check equilibrium existence conditions (see Section 3.6).

3.4.4 Off the Equilibrium Path Optimal Strategies

Before analyzing equilibrium strategies, we provide the optimal strategies in the

situations seller s believes the buyer of one single type. There are two cases: 1) Seller
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Algorithm 2: Compute equilibrium strategies for a continuation game Γ(t,∆b)
such that ι(t) = s, |∆b| > 1, and t < T − 1

Let SE(∆b, t) = ∅ be the set of sequential equilibria for the continuation game with
belief ∆b at t;
for each reject update rule do

for each sequential equilibrium of the continuation game with the belief
corresponding to the reject update rule do

Compute the seller s’s optimal offer and buyer types ∆b’s acceptance
decision at time t+ 1 (Section 3.6);
if equilibrium existence conditions are satisfied then

add agents’ equilibrium strategies from time t to SE(∆b, t);
end

end

end

return SE(∆b, t);

s has the right belief about the type of the buyer b. In this case, agents’ equilibrium

strategies are the equilibrium strategies of the corresponding complete information

bargaining discussed in Section 3.2. Let x∗bi
(t) be any agent optimal offer at time t

when b is of type bi in this case. 2) Seller s has the wrong belief about the type of

the buyer b, i.e., bi is believed to be bj .

Lemma 3. x∗bi
(t) ≥ x∗bj

(t) if RPi > RPj.

Proof. Case 1 (ι(T ) = s). It follows that x∗bi
(T − 1) = x∗bj

(T − 1) = RPs. Then

x∗bi
(T − 2) = RPi(1− δb)+ δbx

∗
bi
(T − 1) > x∗bj

(T − 2) = RPj(1− δb)+ δbx
∗
bi
(T − 1).

Similarly, we have x∗bi
(T − 3) = RPs(1 − δs) + δsx

∗
bi
(T − 2) and x∗bj

(T − 3) =

RPs(1− δs) + δsx
∗
bj
(T − 2). Thus we have x∗bi

(T − 3) > x∗bj
(T − 3). Recursively, we

have x∗bi
(t) > x∗bj

(t) for t < T − 3.

Case 2 (ι(T ) = b). It follows that x∗bi
(T − 1) = RPi > x∗bj

(T − 1) = RPj .

Then at time time T − 2, we have x∗bi
(T − 2) = RPs(1 − δs) + δsx

∗
bi
(T − 1) and
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x∗bj
(T −2) = RPs(1−δs)+δsx

∗
bj
(T −1). Thus, x∗bi

(T −2) > x∗bj
(T −2). Recursively,

we have x∗bi
(t) > x∗bj

(t) for t < T − 2.

We can see that bi is weaker than bj in terms of its offering price at each time

point in complete information bargaining. Similarly, we can get RPi−x∗bi
(t) ≥ RPj−

x∗bj
(t). RPi − x∗bi

(0) is the gain (utility) of bi in complete information bargaining

and RPj − x∗bj
(0) is the gain (utility) of bj in complete information bargaining.

Lemma 4. x∗bi
(t) ≤ (x∗bi

(t+ 1))←bi
and x∗bj

(t) ≤ (x∗bj
(t+ 1))←bj

.

Proof. We can get this result by following the same procedure in the proof of

Lemma 3. This result indicates that the buyer will accept sellers’ lowest equilibrium

price in complete information bargaining, i.e., agents will reach a final agreement at

time t− 2 in the complete information bargaining case.

Agents’ equilibrium strategies when seller s has the wrong belief about the type

of the buyer b are specified in the following theorem.

Theorem 5. If seller s has the wrong belief about the type of b, its optimal strategies

are those in complete information bargaining. Assume that RPi > RPj. The optimal

strategies σ∗bi
(t)|{bj} of buyer bi when it is believed to be bj are:

σ∗bi
(t)|{bj} =















accept y if y ≤ (x∗bj
(t))←bi

offer x∗bj
(t) otherwise

The optimal strategies σ∗bj
(t)|{bi} of the buyer bj when it is believed to be bi are:

• If ι(T ) = b, accept y if y ≤ min{(x∗bi
(t))←bj

,RPj}. Otherwise, offer min{x∗bi
(t),RPj}.
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• If ι(T ) = s, accept y if y ≤ min{(x∗bi
(t))←bj

, (RPj)←(T−t)[bj ]. Otherwise, offer

min{x∗bi
(t), (RPs)←(T−1−t)[bj ]}.

Proof. Case 1 (bi is believed to be bj). If the seller offers x∗bj
(t − 1), buyer bi’s

optimal strategy is to accept it as the minimum price that the seller would accept

at time t+ 1, i.e., x∗bj
(t), gives bi a utility lesser than x∗bj

(t− 1) since (x∗bj
(t))←bi

>

(x∗bj
(t))←bj

= x∗bj
(t− 1). If the seller acts off the equilibrium path and offers a price

y lower than x∗bj
(t − 1), the optimal strategy of bi is obviously to accept y. If the

seller offers a price y greater than x∗bj
(t− 1), the optimal strategy of bi is to accept

y only if y ≤ (x∗bj
(t)←bi

, otherwise bi’s optimal strategy is to reject y and to offer

x∗bj
(t). Note that x∗bi

(t) ≤ RPi and x
∗
bj
(t) ≤ RPi.

Case 2 (bj is believed to be bi). This case is more complicated as seller’s optimal

offer x∗bi
(t−1) on its equilibrium path is not acceptable to bj as when bj offers x

∗
bi
(t)

at time t, (x∗bi
(t))←bj

< (x∗bi
(t))←bi

= x∗bi
(t−1). In addition, bj may not offer x∗bi

(t)

if it is advantageous to wait for the agreement at time T . There are two situations:

1) ι(T ) = b. In this case, s will propose RPi at time T−1, which is not acceptable to

buyer bj as RPi is higher than bj’s reserve price. Therefore, bj’s optimal offer at time

t is min{x∗bi
(t),RPj}. Note that x∗bj

(t) is always not acceptable to s. 2) ι(T ) = s.

In this case, bj will propose RPs at time T − 1, which will be accepted by seller s at

time T . Therefore, bj ’s optimal offer at time t is min{x∗bi
(t), (RPs)←(T−1−t)[bj ]}.

3.5 The Buyer’s Equilibrium Offer

This section focuses on computing the buyer’s equilibrium offer at a continuation

game Γ(t,∆b) such that ι(t) = b. If t = T , it is the buyer agent’s dominant strategy
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to accept any offer which is not worse than its reserve price. At time t = T − 1, dif-

ferent buyer types’ optimal offer is RPs since seller s will accept the offer at time T .

If |∆b| = 1, agents’ equilibrium strategies are the equilibrium strategies of the corre-

sponding complete information bargaining discussed in Section 3.2. When |∆b| > 1

at time t < T − 1, buyer types have multiple choice rules and we need to consider

the equilibrium strategies for each choice rule. There could be multiple equilibrium

strategies for a choice rule since there could be multiple sequential equilibria for the

continuation game with a reasonable belief starting from time t + 1. In the rest of

this section, we show how to compute different buyer types’ equilibrium strategies

given agents’ equilibrium strategies of the continuation game with different beliefs

and construct agents’ belief systems.

Before we proceed, we introduce the concept of equivalent offer. In complete

information bargaining, seller s’s optimal offer x∗(t) at time t is the value to be

propagated backward at time point t− 1. That is, if b offers (x∗(t))←s at time t− 1,

s will accept it at time t. With incomplete information, this property no longer holds

since s will accept an offer if and only if the utility of accepting the offer is not less

than the expected utility of making its optimal offer at time t. Given the equilibrium

assessment 〈µ, σ∗〉, the equilibrium expected utility of seller s’s offer x at time t,

denoted as EUs(x, t), is the expected utility of the seller’s offering x if 1) the seller’s

belief at time t is µ(t) and 2) agents act according to the equilibrium strategies

σ∗ from time t on. The equivalent offer of s’s offering x, denoted as ets|µ(t), is a

value satisfying Us(e
t
s|µ(t), t + 1) = EUs(x, t). e

t
s|µ(t) is the value to be propagated

backward at time point t− 1.
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Similarly, the equivalent offer of buyer bi’s offering x at time t, denoted as

etbi
|µ(t), is a value satisfying Ubi

(etbi
|µ(t), t+1) = Ubi

(EBO(bi, x, t)) where EBO(bi, x, t)

is the equilibrium bargaining outcome of bi if it offers x at time t. In addition, let

EBO(bi, ℘) denote the equilibrium bargaining outcome of bi if agents follow the

strategies specified by a sequential equilibrium ℘. Given a bargaining outcome oc,

buyer bi’s equivalent offer at time t is given by function ρ(bi, t, oc) which satisfies

Ubi
(ρ(bi, t, oc), t+ 1) = Ubi

(oc).

3.5.1 Pooling Choice Rule

Here we consider agents’ equilibrium strategies when b employs a pooling choice

rule at a continuation game Γ(t,∆b). Since all buyer types will behave in the same

way, seller s will not change its belief after observing the buyer’s equilibrium offer.

Thus, we need to consider all sequential equilibria SE(∆b, t+1) of the continuation

game with belief ∆b at time t + 1. If SE(∆b, t + 1) = ∅, there is no sequential

equilibrium for this choice rule. Otherwise, for each sequential equilibrium ℘ ∈

SE(∆b, t + 1), we compute buyer types’ optimal offer and check the satisfaction of

equilibrium existence conditions.

First we consider the accepting pooling choice rule. Let et+1
s |∆b be s’s equiva-

lent offer at time t + 1 given the belief ∆b in the sequential equilibrium ℘. At time

t+1, the equilibrium strategy of s is that s will accept any offer y if y ≥ (et+1
s |∆b)←s.

Therefore, the equilibrium offer of buyer bi ∈ ∆b at time t is (et+1
s |∆b)←s.

4 The corre-

4We assume that buyer types are “cooperatively selfish” in the sense that when they are making
the same acceptable offer, the will choose the lowest acceptable price.
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sponding offer update rule is the following: µ(t+1) = ∆b if σb(t) = offer (et+1
s |∆b)←s;

µ(t+ 1) = {bh(∆b)}, otherwise.

If buyer bi ∈ ∆b deviates from offering (et+1
s |∆b)←s, it will be believed to be

of type bh(∆b). Following Theorem 5, when a buyer bi is believed to be of type

bh(∆b) which has a reserve price no less than RPi, bi’s optimal offer at time t is

x∗bi
(t)|{bh(∆b)}. Thus, the condition of equilibrium existence needed to be checked

is etbi
|∆b ≤ x∗bi

(t)|{bh(∆b)} for all bi ∈ ∆b. If the equilibrium existence conditions

are satisfied, there is a sequential equilibrium with buyer types’ offer (et+1
s |∆b)←s

and ℘ as the sequential equilibrium for the continuation game from time t+ 1. The

sequential equilibrium will be added to SE(∆b, t). Buyer bi’s equilibrium bargaining

outcome in this equilibrium is EBO(bi, (e
t+1
s |∆b)←s, t) = ((et+1

s |∆b)←s, t + 1) since

(et+1
s |∆b)←s is acceptable to the seller. Thus buyer bi’s equivalent offer is e

t
bi
|∆b =

(et+1
s |∆b)←s.

Then we consider the rejecting pooling choice rule. By definition, all buyer types

∆b will make an offer (i.e., −1) that will be rejected by the seller. Buyer bi’s

equilibrium bargaining outcome is the bargaining outcome in the sequential equi-

librium ℘, i.e., EBO(bi,−1, t) = EBO(bi, ℘). Thus buyer bi’s equivalent offer is

etbi
|∆b = ρ(bi, t, EBO(bi, ℘)). We can also derive etbi

|∆b in the following way. If

according to the sequential equilibrium ℘, seller s’s equilibrium offer xt+1|∆b at time

t+1 is ̟, buyer bi’s equivalent offer at time t is then etbi
|∆b = (et+2

bi
|∆b)←2[bi] where

et+2
bi

|∆b is bi’s equivalent offer at time t + 2. If xt+1|∆b 6= ̟, buyer bi’s equivalent

offer at time t is 1) etbi
|∆b = (xt+1|∆b)←bi

if according to the sequential equilibrium

℘, s’s equilibrium offering price xt+1|∆b at time t+1 will be accepted by buyer type
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bi; or 2) e
t
bi
|∆b = (et+2

bi
|∆

′

b)←2[bi] if according to the sequential equilibrium ℘, buyer

type bi will reject s’s equilibrium offering price xt+1|∆b at time t + 1 where ∆
′

b is

the set of buyer types that will reject s’s offer at time t+1. The corresponding offer

update rule is the following: µ(t+1) = ∆b if σb(t) = offer −1; µ(t+1) = {bh(∆b)},

otherwise. If buyer b deviates from offering −1 at time t, it will be treated as buyer

type bh(∆b) and the equilibrium existence condition is etbi
|∆b ≤ x∗bi

(t)|{bh(∆b)}

for all bi ∈ ∆b.

3.5.2 Separating Choice Rule

Then we consider agents’ equilibrium strategies at a continuation game Γ(t,∆b)

when buyer b employs the separating choice rule where buyer types ∆a
b make an

acceptable offer while buyer types ∆r
b make a rejectable offer −1. For this choice

rule, the reasonable beliefs of its continuation game are ∆a
b and ∆r

b. If one of the

continuation games has no sequential equilibrium, there is no sequential equilibrium

for this choice rule. We show how to compute agents’ equilibrium strategies at time

t given a sequential equilibrium ℘a ∈ SE(∆a
b, t + 1) and a sequential equilibrium

℘r ∈ SE(∆r
b, t+ 1).

Let et+1
s |∆a

b be s’s equivalent offer at time t+1 in the equilibrium ℘a. Let et+1
s |∆r

b

(xt+1|∆r
b, respectively) be s’s equivalent offer (equilibrium offer, respectively) at time

t+1 in the equilibrium ℘r. Similar to the pooling acceptance choice rule, the optimal

offer of buyer types ∆a
b at time t is (et+1

s |∆a
b)←s. Accordingly, buyer bi ∈ ∆a

b’s

equivalent offer is etbi
|∆b = (et+1

s |∆a
b)←s since its equilibrium bargaining outcome is

((et+1
s |∆a

b)←s, t + 1). By convention, the equilibrium offer of buyer type bj ∈ ∆r
b at

time t is −1. Buyer bj ’s equilibrium bargaining outcome is the bargaining outcome
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EBO(bj, ℘
r) in the sequential equilibrium ℘r. Thus buyer bj ∈ ∆r

b’s equivalent offer

is etbj
|∆b = ρ(bj , t, EBO(bj, ℘

r)). We can also compute etbj
|∆b by considering the

following two situations:

• If xt+1|∆r
b 6= ̟, buyer bj ∈ ∆r

b’s equivalent offer at time t is 1) etbj
|∆b =

(xt+1|∆r
b)←bj

if according to the sequential equilibrium ℘r, s’s equilibrium of-

fering price xt+1|∆r
b at time t + 1 will be accepted by buyer type bj ; or 2)

etbj
|∆b = (et+2

bj
|∆r′

b )←2[bj ] if according to the sequential equilibrium ℘r, buyer

type bj will reject s’s equilibrium offering price xt+1|∆r
b at time t + 1 where

∆r′

b ⊆ ∆r
b is the set of buyer types that will reject s’s offer at time t+ 1.

• If xt+1|∆r
b = ̟, buyer bj ∈ ∆r

b’s equivalent offer at time t is then etbj
|∆b =

(et+2
bj

|∆r
b)←2[bj ] where e

t+2
bj

|∆r
b is bj ’s equivalent offer at time t + 2.

Seller s will update its belief to ∆a
b when it receives an offer (et+1

s |∆a
b)←s. If it

receives an offer −1, it will update its belief to ∆r
b. Otherwise, it will update its

belief to bh(∆b). The existence of such an equilibrium depends on the following

conditions:

• Any buyer type bi ∈ ∆a
b has no incentive to behave as any buyer type bj ∈

∆r
b. If bi pretends to be bj , it will offer −1 at time t and its equilibrium

bargaining outcome will be EBO(bj,−1, t) = EBO(bj, ℘
r). Therefore, this

condition requires that Ubi
(EBO(bi, (e

t+1
s |∆a

b)←s, t)) ≥ Ubi
(EBO(bj, ℘

r)) or

equivalently, (et+1
s |∆a

b)←s ≤ ρ(bi, t, EBO(bj, ℘
r)).

• Any buyer type bj ∈ ∆r
b must have no incentive to behave as bi ∈ ∆a

b. If bj be-

haves as bi, it will offer (e
t+1
s |∆a

b)←s at time t and the offer will be accepted. bj
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will not choose to behave as bi if Ubj
(EBO(bj, ℘

r) ≥ Ubj
(EBO(bj, (e

t+1
s |∆a

b)←s, t)))

or equivalently, ρ(bj , t, EBO(bj, ℘
r)) ≤ (et+1

s |∆a
b)←s.

• No buyer type has an incentive to offer a price different from the above two equi-

librium offers. If a buyer type bi ∈ ∆b offers a price different from (et+1
s |∆a

b)←s

and −1, it will be treated as buyer type bh(∆b) and its optimal offer at time t is

then x∗bi
(t)|{bh(∆b)}. Buyer type bi will not choose to act off the equilibrium

path if etbi
|∆b ≤ x∗bi

(t)|{bh(∆b)}.

If all the three conditions are satisfied, buyer types’ optimal offers, the belief

update rule, and the sequential equilibria ℘a and ℘r for the continuation game start-

ing from time t + 1 consists of a sequential equilibrium for the continuation game

Γ(t,∆b). The following theorem suggests that we only need to consider at most |∆b|

different choice rules.

Theorem 6. Assume that b behaves in different ways at a continuation game with

belief set ∆b where ∆b = ∆a
b ∪∆r

b at time t. If there is a buyer type bi ∈ ∆a
b and

a buyer bj ∈ ∆r
b such that RPi < RPj, there is no sequential equilibrium for this

choice rule.

Proof. This result can be proved by contradiction. If there is a sequential equilibrium,

the following two conditions are satisfied: 1) Buyer type bi has no incentive to

behave as bj , i.e., (e
t+1
s |∆a

b)←s ≤ ρ(bi, t, EBO(bj, ℘
r)); and 2) Buyer type bj has

no incentive to behave as bi, i.e., ρ(bj , t, EBO(bj, ℘
r)) ≤ (et+1

s |∆a
b)←s. Therefore,

equilibrium existence requires that ρ(bj , t, EBO(bj, ℘
r)) ≤ ρ(bi, t, EBO(bj, ℘

r)).

80



Assume that EBO(bj, ℘
r) = (x, t′) where T ≥ t′ > t. From the definition of

equivalent offers, we have
(

RPj−ρ(bj , t, EBO(bj, ℘
r))

)

·δt+1
b = (RPj−x) ·δt

′

b , which

can be rewritten as ρ(bj , t, EBO(bj, ℘
r)) = RPj − (RPj − x) · δt

′−t−1
b . Similarly,

we have ρ(bi, t, EBO(bj, ℘
r)) = RPi − (RPi − x) · δt

′−t−1
b . Since RPi < RPj, it

follows that ρ(bi, t, EBO(bj, ℘
r)) < ρ(bj , t, EBO(bj, ℘

r)) which contradicts with

equilibrium existence conditions.

This result drastically reduces the number of separating choice rules we need to

consider. Consider an belief set ∆b at time t < T − 1 such that |∆b| > 1 and

ι(t) = b. The total number of partitions satisfying the condition ∆a
b ∪ ∆r

b = ∆b is

2|∆b|− 2. Given Theorem 6, we just need to consider partitions ∆a
b ∪∆r

b = ∆b such

that for any buyer type bi ∈ ∆a
b and any bj ∈ ∆r

b, RPi > RPj . Then for each belief

set ∆b, the total number of separating choice rules is |∆b| − 1.

3.6 The Seller’s Equilibrium Offer

This section discusses how to compute the seller’s equilibrium offer at a continu-

ation game Γ(t,∆b) such that ι(t) = s. If t = T , it is the seller’s dominant strategy

to accept any offer which is not worse than its reserve price. At time t = T − 1,

seller s has multiple choices, each for one buyer type in ∆b. The optimal offer

of seller s for buyer type bi ∈ ∆b is RPi, which gives seller s an expected utility

EUs(RPi, T − 1) =
∑

bj∈∆b,RPj≥RPi
ωbj

(∆b)Us(RPi, T ) since RPi is only acceptable

to a buyer type with a reserve price no less than RPi. The optimal offer of s at time

T − 1 is y = argmaxy∈{RPi|bi∈∆b}EUs(y, T − 1) and its equivalent offer is eT−1s |∆b

such that Us(e
T−1
s |∆b, T ) = EUs(y, T−1). If |∆b| = 1, agents’ equilibrium strategies
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are the equilibrium strategies of the corresponding complete information bargaining

discussed in Section 3.2.

Our idea of computing the seller’s equilibrium offer given a belief ∆b (|∆b| > 1)

at time t < T − 1 is the following. We consider all possible reject update rules

and for each reject update rule, we compute all the sequential equilibria for the

continuation game with beliefs corresponding to the reject update rule. Then for

each sequential equilibrium for a reject update rule, we compute the seller’s optimal

offer and check the equilibrium existence conditions. Theorem 1 suggests that we

only need to consider reject update rules in which buyer types with higher reserve

prices accept the seller’s equilibrium offer while buyer types with lower reserve prices

reject the seller’s equilibrium offer. Thus we only need to consider a restricted set of

beliefs for the continuation game.

We consider a reject update rule in which buyer types ∆′b will reject the seller’s

offer and buyer types ∆b − ∆′b will accept the seller’s offer such that such that

RPi > RPj for any bi ∈ ∆b −∆′b and bj ∈ ∆′b. We first compute all the sequential

equilibria SE(∆′b, t+1) for the continuation game with belief ∆′b starting from time

t+1. If there is no sequential equilibrium for the continuation game Γ(t+1,∆′b), there

is no sequential equilibrium for this reject update rule. Otherwise, for each sequential

equilibrium ℘ ∈ SE(∆′b, t+1), we check whether there exists a price x such that the

price, the reject update rule, and the sequential equilibrium ℘ constitute a sequential

equilibrium for the continuation game Γ(t,∆b).

A price x, a reject update rule, and a sequential equilibrium ℘ constitute a se-

quential equilibrium if and only if the following three conditions are satisfied (assume
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that bi ∈ ∆b −∆′b and bj ∈ ∆′b where buyer types ∆′b will reject the seller’s offer

x):

1. bi is willing to accept the offer x and does not want to behave as bj . That is,

for any bi ∈ ∆b − ∆′b and bj ∈ ∆′b, Ubi
(x, t + 1) ≥ Ubi

(EBO(bj, ℘)) where

EBO(bj, ℘) is the bi’s equilibrium bargaining outcome when it behaves as bj .

This condition can be reformulated as x ≤ minbi∈∆b−∆
′
b
,bj∈∆′

b
ρ(bi, t, EBO(bj, ℘)),

which provides an upper bound for seller’s offering price x. Intuitively, if the

offering price x is too high (e.g., higher than RPi), bi can not accept the offering

price.

2. bj will reject the offer x. That is, each buyer type bj ∈ ∆′b has no incentive

to behave as bi, i.e., Ubj
(x, t + 1) < Ubj

(EBO(bj, ℘)). This condition can be

rewritten as x > maxbj∈∆′
b
ρ(bj , t, EBO(bj, ℘)), which provides a lower bound

for the offering price x. Intuitively, if the offering price x is very low (e.g., close

to 0), bj will choose to accept the favorite offer.

3. Seller s has no incentive to choose a price other than x given the reject update

rule and the sequential equilibrium ℘ of the continuation game Γ(t+ 1,∆′b);

The third condition requires that the price x is seller’s optimal offer given the

reject update rule and the sequential equilibrium ℘ for the continuation game. Any

buyer type can either accept the seller’s offer x or reject it and receive a bargaining

outcome in the sequential equilibrium ℘ for the continuation game. Formally, buyer

type bj ∈ ∆′b will accept a price x if and only if x ≤ ρ(bj , t, EBO(bj, ℘)). Buyer type

bi ∈ ∆b −∆′b will accept a price x if and only if x ≤ minbj∈∆′
b
ρ(bi, t, EBO(bj, ℘)).
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We can define the acceptance price φ(bi,∆
′
b, ℘) of each buyer type bi ∈ ∆b given

the sequential equilibrium ℘ as follows:

φ(bi,∆
′
b, ℘) =















ρ(bi, t, EBO(bi, ℘) if bi ∈ ∆′b

minbj∈∆′
b
ρ(bi, t, EBO(bj, ℘)) otherwise

Seller s’s expected utility of making an offer x given the sequential equilibrium ℘

is defined as

EUs(x, t) =
∑

bi∈∆b

ωbi
(∆b)EUs(x, t,bi)

where EUs(x, t,bi) is seller s’s utility if the buyer is of type bi, which is defined as































Us(x, t+ 1) if x ≤ φ(bi,∆
′
b, ℘)

Us(EBO(bi, ℘)) if x > φ(bi,∆
′
b, ℘) and bi ∈ ∆′b

Us(minbj∈∆′
b
ρ(bi, t, EBO(bj, ℘)), t+ 1) otherwise

It is easy to see that the optimal offer the seller should be either one buyer type’s

acceptance price or a price that will be rejected by all buyer types (i.e., ̟). If the

seller’s optimal offer x satisfies the first two equilibrium existence conditions, there

is a sequential equilibrium in which the seller offers price x and buyer types ∆′b will

reject the offer with the sequential equilibrium ℘. If such a x value does not exist,

there is no sequential equilibrium given this reject update rule and the continuation

game equilibrium ℘.
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In addition to the above reject update rules under which at least one buyer

type will choose to reject the offer, the seller can also make an offer such that it

is all buyer types’ equilibrium strategies to accept the offer. It is easy to see that

the highest offer that will be accepted by all buyer types in equilibrium is x =

minbi∈∆b
(x∗bi

(t+ 1)|bh(∆b))←bi
since if a seller offers a price larger than x, at least

one buyer type has an incentive to deviate from accepting the offer. If the buyer

rejects x, the seller will update its belief to bh(∆b). The acceptance price of buyer

type bi for this reject update rule is thus (x
∗
bi
(t+1)|bh(∆b))←bi

. If the optimal offer

of the seller in this case is not acceptable to all the buyer types (i.e., the optimal

offer is not minbi∈∆b
(x∗bi

(t + 1)|bh(∆b))←bi
), there is no sequential equilibrium for

this null reject update rule. Otherwise, there is a sequential equilibrium in which the

seller will make an offer which will be accepted by all buyer types.

3.7 Equilibrium Existence

The algorithm for producing equilibrium strategies is a backward induction pro-

cess, which starts from the continuation game with the initial belief at time t = 0.

Here we show an example of equilibrium calculation for the bargaining game with

the following parameters: T = 3, ι(0) = s, RPs = 10, RP1 = 100, RP2 = 60,

RP3 = 50, ω0
b1

= 0.25, ω0
b2

= 0.5, ω0
b3

= 0.25, δs = 0.8, and δb = 0.6. Before we start

the backward induction process, we compute agents’ equilibrium offers in complete

information setting using the approach in Section 3.2 since we may use these equi-

librium offers to construct agents’ equilibrium strategies for the bargaining game. If

buyer is of type b1, we have x∗b1
(2) = 100, x∗b1

(1) = 82, and x∗b1
(0) = 89.2. If buyer
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is of type b2, we have x∗b2
(2) = 60, x∗b2

(1) = 50.0, and x∗b2
(0) = 54.0. If buyer is of

type b3, we have x∗b3
(2) = 50, x∗b3

(1) = 42.0, and x∗b3
(0) = 45.2.

Now we try our algorithm to compute all the sequential equilibria. Since ι(0) = s,

seller s will consider different reject update rules at time t = 0. Therefore, we

need to first compute all the sequential equilibria for the continuation game with

reasonable beliefs {b1,b2,b3}, {b2,b3}, and {b3} at time t = 1. We show how

to compute sequential equilibria for the continuation game with belief {b1,b2,b3}

at time t = 1. At time t = 1, b can apply different choice rules and we need

to first compute all the sequential equilibria for the continuation game with beliefs

{b1,b2,b3}, {b1}, {b2,b3}, {b1,b2}, and {b3} at time t = 2. For the continuation

game with belief {b1,b2,b3} at time t = 2, s can offer RP3 = 50, RP2 = 60, or

RP1 = 100: If it offers 50, its expected utility is (50− 10)0.83 = 20.48; If it offers 60,

its expected utility is 0.75(60−10)0.83 = 19.20; If it offers 100, its expected utility is

0.25(100− 10)0.83 = 11.52. Thus, the optimal offer of s at time t = 3 is 50 and the

equivalent price is e2s|{b1,b2,b3} = 50.0. When the belief is {b2,b3}, the optimal

offer of s at time t = 3 is 50 and the equivalent price is e2s|{b2,b3} = 50.0. When the

belief is {b1,b2}, the optimal offer of s at time t = 3 is 60 and the equivalent price is

e2s|{b1,b2} = 60.0. For the pooling accepting choice rule at time t = 1, the optimal

offer of all buyer types is (e2s|{b1,b2,b3})←s = (50)←s = 42 and no buyer has an

incentive to deviate from it: if any buyer type chooses a different offer, it will be

treated as buyer type b1 and its utility in the later negotiation is 0. For the pooling

rejecting choice rule at time t = 1, all buyer types will offer −1 and no buyer has an

incentive to deviate from it. For example, buyer b2’s equivalent offer of offering −1
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is e1b2
|{b1,b2,b3} = (e2s|{b1,b2,b3})←b2 = (50)←b2 = 54. If buyer b2 deviates from

offering −1, it will be believed to be b1 and its optimal offer at time t = 1 is then

x∗b2
(1)|{b1} = 60, which is higher than e1b2

|{b1,b2,b3}. For the separating choice

rule in which b1 makes an acceptable offer while the other two buyer types offer −1,

there is only one sequential equilibrium for the continuation game with beliefs {b1}

and {b2,b3}. Thus, the optimal offer of b1 is x1b1
|{b1} = x∗b1

(1) = 82. However,

b1 has an incentive to behave as b2 or b3 since in the sequential equilibrium for

the continuation game with beliefs {b2,b3}, s will make an offer 50 at time t = 2

which can bring b1 a higher utility because (50)←b1 = 70 < 82. Therefore, there is

no sequential equilibrium for this choice rule. However we can show that there is

a sequential equilibrium for the separating choice rule in which b1 and b2 make an

acceptable offer and their optimal offer is (e2s|{b1,b2})←s = (60)←s = 50. There are

totally 3 sequential equilibria for the continuation game with belief {b1,b2,b3} at

time t = 1.

In the same way, we can compute the two sequential equilibria for the continuation

game with belief {b2,b3} at time t = 1. One equilibrium is for the pooling accepting

choice rule in which both buyer types offer 42. In this case, both buyer types will

accept the offer in equilibrium. The other is for the separating choice rule in which

buyer b2 offers 50 but buyer b3 offers −1. In this case, b2’s offer will be accepted at

time t = 2. b3’s offer will be rejected and the seller will offer 50 after updating its

belief to {b3}.

Now we consider the seller’s equilibrium offers with the initial belief at time t = 0.

Seller s can apply the following different reject update rules:
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1. If the buyer rejects the seller s’s offer, seller s will not change its belief, i.e., seller

s is offering ̟ by convention. Under this reject update rule, any buyer type’s

acceptance price depends on the negotiation outcome in the continuation game

Γ(1, {b1,b2,b3}), which has three sequential equilibria. In the first sequential

equilibrium where all buyer types adopt the pooling accepting choice rule at

time t = 1, all buyer types will offer 42 and the seller will accept it at time t = 2.

If seller s offers ̟, its utility is (42− 10)0.82 = 20.48. Buyer types’ acceptance

prices are (42)←b1 = 65.2 for b1, (42)←b2 = 49.2 for b2, (42)←b3 = 45.2 for b3.

If seller s offers 65.2, buyer type b1 will accept it but buyer types b2 and b32 will

reject it and follow the first sequential equilibrium. Thus, seller s’s expected

utility while offering 65.2 is 0.25∗(65.2−10)∗0.8+0.75∗(42−10)0.82 = 26.40.

In the same way, we can find that the seller achieves an expected utility of 28.64

while offering 49.2 and achieves an expected utility of 28.16 while offering 45.2.

Thus, the seller’s optimal offer is 49.2. However, buyer types b1 and b2 will

accept the offer, which is in conflict with the reject update rule in which all

buyer types will reject the offer. Therefore, there is no sequential equilibrium

for the first sequential equilibrium for the continuation game Γ(1, {b1,b2,b3}).

In the same way, we can see that there is no sequential equilibrium for the other

two sequential equilibria for the continuation game Γ(1, {b1,b2,b3}).

2. If the buyer rejects the seller s’s offer, seller s updates its belief to {b3}), i.e.,

seller s is making an offer acceptable to b1,b2. There is only one sequential

equilibrium for the continuation game Γ(1, {b3}) in which buyer type b3 offers

x∗b3
(1) = 42.0. It is easy to see that seller s gets a utility of (42−10)0.82 = 20.48

88



if it offers ̟ at time 0. Buyer types’ acceptance prices are (42)←b1 = 65.2 for

b1, (42)←b2 = 49.2 for b2, (42)←b3 = 45.2 for b3. Seller s’s optimal offer for

this reject update rule is 49.2. We can easily see that no buyer type has an

incentive to deviate: 1) By rejecting the offer 49.2, buyer type b1 can gain

a utility of (100 − 42)0.62 = 20.88, which is lower than the utility (100 −

49.2)0.6 = 30.48 when it accepts the offer. 2) Buyer type b2 gains a utility of

(60 − 49.2)0.6 = 6.48 by accepting the offer 49.2, which is not lower than its

utility (60− 42)0.62 = 6.48 when it rejects the offer. 3) Buyer type b3 gains a

utility of (50− 49.2)0.6 = 0.48 by accepting the offer 49.2, which is lower than

its utility (50− 42)0.62 = 2.88 when it rejects the offer.

3. If the buyer rejects the seller s’s offer, seller s updates its belief to {b2,b3}),

i.e., seller s is making an offer only acceptable to b1. There are two sequential

equilibria for the continuation game Γ(1, {b2,b3}). For the sequential equilib-

rium in which both buyer types offer an acceptable price 42, the seller’s optimal

offer is 49.2 such that b1 will accept it and b2 and b3 will reject it. However,

we could not find an offer which satisfies all equilibrium existence conditions

given the other sequential equilibrium for the continuation game Γ(1, {b2,b3}).

4. Finally, the seller can make an offer that will be accepted by all buyer types,

i.e., seller s updates its belief to {b1}) if buyer rejects the seller s’s offer. The

acceptance prices for buyer types b1, b2, and b3 are 89.2, 60.0, and 50.0,

respectively. Seller s’s optimal offer for this reject update rule is 89.2. Buyer

types b2 and b3 will reject the seller’s optimal offer, which is in conflicting with
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the reject update rule. Therefore, there is no sequential equilibrium for this

reject update rule.

Therefore, there are two sequential equilibria for the bargaining game. In the

first equilibrium, seller s will offer 49.2 at time t = 0. If the buyer is of type b1 or

b2, it will accept the offer and they make an agreement at time t = 1. If the buyer

is of type b3, it will reject the offer and make a counter offer 42.0 at time t = 1.

When seller s receives offer 42.0, it will update its belief to {b3}) and it will accept

the offer at time t = 2. In the second equilibrium, seller s will also offer 49.2 at time

t = 0. If the buyer is of type b1, it will accept the offer and they make an agreement

at time t = 1. If the buyer is of type b2 or b3, it will reject the offer and make a

counter offer 42.0 at time t = 1. When seller s receives offer 42.0, it will update its

belief to {b2,b3}) and it will accept the offer at time t = 2.

The following theorem states that the proposed approach is sound and is com-

plete.

Theorem 7. Our algorithm can generate all pure strategy sequential equilibria.

Proof. Our algorithm is complete since at any decision making point, we consider 1)

all sequential equilibria of the continuation game with different beliefs, 2) all choice

rules when it’s the buyer’s turn to make an offer, and 3) all possible reject update

rules if it’s the seller’s turn to make an offer.

If all equilibrium existence conditions are satisfied, agents’ strategies and belief

systems generated by our algorithm constitutes of a sequential equilibrium. The se-

quential rationality is easily seen from the backward construction: agents’ strategies
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at time t is optimal in the continuation game starting from time t. Consistency can

be proved by the assessment sequence an = (µn, σn) where σn is the fully mixed

strategy profile such that for the seller and buyer type bh(∆
0
b) there is probability

1 − 1/n of performing the action prescribed by the equilibrium strategy profile and

the remaining probability 1/n is uniformly distributed among the other allowed ac-

tions, while for any other buyer type bi ∈ ∆0
b−bh(∆

0
b), there is probability 1−1/nT

of performing the action prescribed by the equilibrium strategy profile and the re-

maining probability 1/nT is uniformly distributed among the other allowed actions,

and µn is the system of beliefs obtained applying Bayes rule starting from the same

priori probability distribution P 0
b. As n → ∞, the above mixed strategy profile

converges to the equilibrium strategy profile. In addition, the beliefs generated by

the mixed strategy profile converges to the priori probability distribution. Thus, the

assessment is consistent.

Since we focus on pure strategy equilibrium, there may be no sequential equi-

librium for some bargaining games. The non-existence problem of the equilibrium

in pure strategies is critical since it may affect the applicability of alternating-offers

protocol in realistic settings. Here we show one example which has no sequential

equilibrium. The bargaining game with the following parameters: T = 2, ι(0) = b,

RPs = 10, RP1 = 100, RP2 = 40, ω0
b1

= 0.6, ω0
b2

= 0.4, δs = 0.9, and δb = 0.8. First

consider that the buyer is applying the pooling accepting choice rule at time 0. With

the initial belief, the seller will get a utility of 0.6(100−10)0.92 = 43.74 if it offer RP1

at time t = 1 and will get a utility of (40−10)0.92 = 24.3 if it offer RP2 at time t = 1.

Therefore, the optimal offer of the seller with the initial belief at t = 1 is offering 100.
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Table 3.1. Simulation parameters

Parameters Value range

Deadline (T ) [2, 14]

Number of buyer types (|∆0
b|) [2, 9]

Reserve price of buyer (RPi) [40, 100]

Reserve price of seller (RPs) [5, 20]

Discounting factors (δs, δb) [0.5, 1]

Accordingly, the optimal offer of all buyer types is (100)←s = 58.6. Obviously, buyer

b2 will deviate from it since the offering price 58.6 is higher than its reserve price

40. Consider the pooling rejecting choice rule in which all buyer types offer −1 and

buyer b1’s equivalent offer is (100)←b1 = 100. In this case, buyer b1 has an incentive

to offer x∗b1
(0) = 91 which will be accepted by the seller since it will update its belief

to {b1} after receiving the offer other than 100. The final choice rule for the buyer

is the separating choice rule in which buyer b1 offers x
∗
b1
(0) = 91 and buyer b2 offers

−1. However, buyer b1 has an incentive to offer −1 since at time t = 1 the seller

will offer RP2 = 40, which is better since (40)←b1 = 52 < x∗b1
(0) = 91. Therefore,

there is no sequential equilibrium for this bargaining game.

To evaluate the percentage of games with at least one pure strategy sequential

equilibrium, we performed a series of experiments in a variety of test environments

and the parameters are given in Table 6.2. In the experiments, the negotiation

deadline is randomly selected from [2, 14], the number of buyer types is randomly

selected from [2, 9] and the initial probability of each buyer type is set randomly. The

reserve price of each buyer type is randomly selected from [40, 100] and the reserve
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Table 3.2. Average number of sequential equilibria and percentage of games with
sequential equilibria

T |∆0
b
| = 2 |∆0

b
| = 3 |∆0

b
| = 4 |∆0

b
| = 5 |∆0

b
| = 6 |∆0

b
| = 7 |∆0

b
| = 8 |∆0

b
| = 9

2 1.64 (95.1%) 1.72 (95.4%) 1.78 (96.5%) 1.81 (96.4%) 1.84 (964%) 1.87 (97.3%) 1.89 (97.9%) 1.90 (97.8%)

3 1.99 (100%) 2.07 (100%) 2.17 (100%) 2.24 (100%) 2.30 (100%) 2.37 (100%) 2.39 (100%) 2.48 (99.9%)

4 2.37 (99.9%) 2.83 (100%) 3.23 (100%) 3.58 (100%) 3.87 (100%) 4.24 (100%) 4.38 (100%) 4.58 (100%)

5 2.49 (100%) 3.11 (100%) 3.67 (100%) 4.18 (100%) 4.70 (100%) 5.15 (100%) 5.53 (100%) 5.93 (100%)

6 2.87 (99.8%) 3.79 (100%) 4.69 (100%) 5.52 (100%) 6.34 (100%) 6.97 (100%) 7.66 (100%) 8.46 (100%)

7 3.06 (100%) 4.24 (100%) 5.25 (100%) 6.21 (100%) 7.16 (100%) 8.12 (100%) 9.16 (100%) 9.99 (100%)

8 3.54 (99.9%) 5.18 (100%) 6.59 (100%) 8.04 (100%) 9.67 (100%) 10.99 (100%) 12.55 (100%) 13.66 (100%)

9 3.82 (100%) 5.85 (100%) 7.38 (100%) 8.89 (100%) 10.62 (100%) 11.91 (100%) 13.95 (100%) 16.61 (100%)

10 4.55 (100%) 7.21 (100%) 9.92 (100%) 12.60 (100%) 15.48 (100%) 18.49 (100%) 20.71 (100%) 22.58 (100%)

11 5.04 (100%) 8.17 (100%) 11.11 (100%) 13.48 (100%) 17.22 (100%) 19.83 (100%) 25.15 (100%) 28.86 (100%)

12 6.36 (99.9%) 10.22 (100%) 16.54 (100%) 21.28 (100%) 27.57 (100%) 36.55 (100%) 38.05 (100%) 54.30 (100%)

13 6.89 (100%) 12.42 (100%) 16.79 (100%) 21.34 (100%) 28.57 (100%) 43.98 (100%) 48.35 (100%) 70.04 (100%)

14 8.90 (100%) 16.88 (100%) 26.10 (100%) 44.12 (100%) 70.63 (100%) 103.28 (100%) 125.86 (100%) 155.49 (100%)

price of the seller is randomly selected from [5, 20]. Therefore, the reserve price of

each buyer is always higher than the reserve price of the seller and the two agents

have a negotiation space. Agents’ discounting factors model how agents’ utilities

decrease with time. When discounting factors are smaller than 0.5, agents’ utilities

drastically decrease with time. In order to make our setting more realistic, agents’

discounting factors are randomly selected from [0.5, 1). The agent making the first

offer is randomly determined. The above setting represents a wide range of scenarios.

Experimental results show that there is at least one sequential equilibrium in

∼ 99.7% of the bargaining games. Table 3.2 shows the average number of sequential

equilibria (including both games with sequential equilibria and without sequential

equilibria) and percentage of games with sequential equilibria in negotiation games

with different deadlines and number of buyer types. For each combination of dead-

lines and number of buyer types, we randomly generated over 10000 scenarios and
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computed the average values. We can see that the average number of sequential

equilibria or the percentage of games with sequential equilibria increases with the

increase of deadlines. Similarly, the average number of sequential equilibria slightly

increase with the number of buyer types, which corresponds to our intuitions. It

can be observed from Table 3.2 that when the deadline is longer than 2 and the

number of buyer types is more than 3, all scenarios have at least one sequential

equilibrium. With more buyer types, there are more choice rules and reject update

rules and potentially, there will be more sequential equilibria. However, more buyer

types introduce more stringent equilibrium existence conditions since an equilibrium

requires that each buyer type has an incentive to choose a different strategy.

Our approach can find all sequential equilibria for each bargaining game. Based

on the computation reduction techniques, we just need to find sequential equilibria

for at most |∆0
b| continuation games Γ(t,∆b) at time t where ∆b ⊆ ∆0

b. Let Ψ(t,∆b)

be the maximum number of sequential equilibria for the continuation game Γ(t,∆b).

If t = T − 1, it follows that Ψ(t,∆b) = 1. Otherwise, we have the following: 1) If

ι(t) = b, Ψ(t,∆b) = O(|∆b|Ψ(t+ 1,∆b)
2) since buyer types can try different choice

rules and for each choice rule, we need to consider all the equilibrium combinations of

at most two continuation games. 2) If ι(t) = s, Ψ(t,∆b) < O(|∆b|(Ψ(t+ 1,∆b)
|∆b|)

since we need to consider |∆b|+1 reject update rules and for each reject update rule,

we need to consider all the sequential equilibria for the corresponding continuation

game. We can see that the number of sequential equilibria may exponentially increase

with the number |∆0
b| of buyer types and the deadline T and our algorithm has a

high computational complexity. In our backward induction approach, the equilibrium
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calculation for a continuation game with certain belief may be conducted multiple

times. To avoid the repetition of equilibrium calculation in our approach, one can

store known equilibrium strategies for each continuation game with certain belief. If

there is no calculation repetition, the computational complexity of our approach is

not higher than any other complete algorithm.

We experimentally evaluated the running time to our algorithm using the setting

specified in Table 6.2. All experiments run on a PC with a 2.16 Ghz Intel Pentium

Dual processor and 2 GB of memory. Experimental results show that the algorithm’s

running time increases with the deadlines and the number of buyer types. Table 3.3

shows the average time of computing all the sequential equilibria in a bargaining

game. The average running time is only about 12 seconds when the minimum dead-

line of the two agents is 14 and the number of buyer types is 9. We can find that

the computation time increases drastically with the increase of both the negotiation

deadline and the number of buyer types.

3.8 The Value of Equilibrium Strategies

This chapter provides a solution to compute pure strategy equilibria in bilateral

bargaining games with one-sided uncertainty. Given that the chapter deals with a

known negotiation setting, it would be very interesting to see how the pure strategy

sequential equilibrium solution would fare against heuristic based strategies. An

agent’s equilibrium strategy is optimal given the other agent’s equilibrium strategy.

Therefore, if one agent adopts the equilibrium strategy, the other agent cannot gain

a higher utility by switching to any other strategy (e.g., heuristic based strategies).
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Table 3.3. Average computation time (in seconds)

T |∆0
b
| = 2 |∆0

b
| = 3 |∆0

b
| = 4 |∆0

b
| = 5 |∆0

b
| = 6 |∆0

b
| = 7 |∆0

b
| = 8 |∆0

b
| = 9

2 0.01 0.01 0.02 0.04 0.05 0.08 0.11 0.14

3 0.02 0.05 0.11 0.21 0.37 0.60 0.95 1.38

4 0.03 0.10 0.26 0.53 1.02 1.77 2.93 4.64

5 0.05 0.17 0.45 0.97 1.90 3.39 5.78 9.35

6 0.07 0.24 0.66 1.47 2.99 5.42 9.43 15.50

7 0.08 0.33 0.90 2.07 4.22 7.85 13.82 23.09

8 0.10 0.41 1.18 2.71 5.66 10.73 19.00 31.89

9 0.12 0.51 1.46 3.45 7.27 13.78 24.90 42.61

10 0.15 0.60 1.80 4.32 9.14 17.82 32.56 54.40

11 0.17 0.73 2.16 5.24 11.39 22.33 41.32 70.60

12 0.20 0.86 2.63 6.46 14.39 28.12 51.27 92.55

13 0.23 1.02 3.09 7.75 17.28 36.79 69.48 119.52

14 0.26 1.19 3.73 10.14 23.70 50.38 95.47 176.75

Even though, it is still interesting to investigate how close the performance is when an

agent uses different strategies, e.g., equilibrium strategy and a variety of heuristics.

Furthermore, it would also be interesting to compare the social welfare (the total

utility of all agents) when agents adopt different strategies.

3.8.1 Heuristic Based Strategies

While there have been a variety of heuristic based strategies in the literature,

the most widely used strategy is the time dependent strategy (e.g., [12, 48, 78, 124,

127]). In a time dependent strategy, an agent makes concessions in response to the

remaining negotiation time. Formally, an agent’s offer at time t is given by:

IPa + (RPa − IPa)(
t

T − 1
)ε
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Figure 3.4. The buyer’s different rates of concession

where RPa is agent a’s reserve price, T is the minimum of two agents’ deadline, and

IPa is agent a’s optimal (or initial) price. An agent’s optimal price is the agent’s

favorable price. In our bilateral bargaining game, an agent’s optimal price is the

reserve price of the other negotiation agent.

With infinitely many values of ε, there are infinitely many possible strategies in

making concessions with respect to the remaining time. However, they can be classi-

fied into: 1) Linear : ε = 1, 2) Conciliatory : 0 < ε < 1, and 3) Conservative: ε > 1.

ε reflects an agent’s mental state about its eagerness for finishing the negotiation

earlier [48, 78]. Figure 3.4 shows the buyer’s different rates of concession.
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3.8.2 Different Strategy Combination

In this section, we measure the value of equilibrium strategies against different

time dependent strategies. For the experiment, we choose three representative de-

pendent strategies (see Figure 3.4): 1) ε = 1: a liner concession making strategy; 2)

ε = 0.25: a conciliatory concession making strategy; and 3) ε = 4: a conservative

concession making strategy. When the seller is adopting a time dependent strategy,

it will use the buyer’s expected reserve price
∑

1≤i≤n ω
0
bi
RPi as its optimal price.

Specifically, we consider the following 16 strategy combinations:

1. Both agents adopt the equilibrium strategies computed by using our algorithm.

This strategy combination is called EQ∼EQ.

2. The seller adopts the equilibrium strategy together with its belief system, but

the buyer takes a time dependent strategy. There are totally 3 strategy com-

binations 0.25∼EQ, 1∼EQ, and 4∼EQ, where 0.25∼EQ indicates that the

buyer is using a conciliatory time dependent strategy (i.e., ε = 0.25) but the

seller is adopting the equilibrium strategy.

3. The buyer adopts the equilibrium strategy but the seller takes a time depen-

dent strategy. In this case, the seller will not update its belief since it uses the

time dependent strategy. However, the buyer will assume that the seller will

update its belief using the belief system of its equilibrium strategy. EQ∼0.25,

EQ∼1, and EQ∼4, where EQ∼0.25 indicates that the buyer is adopting the

equilibrium strategy but the seller is using a conciliatory time dependent strat-

egy.
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Figure 3.5. Buyer’s average utility while using different strategies

4. Both agents adopt the time dependent strategy. Therefore, there are 9 combi-

nations: 0.25∼0.25, 0.25∼1, 0.25∼4, 1∼0.25, 1∼1, 1∼4, 4∼0.25, 4∼1, and

4∼4 where 1∼4 indicates that the buyer is adopting a time dependent strategy

ε = 1 and the seller is adopting a time dependent strategy ε = 4.

3.8.3 Performance Measures and Results

We performed a series of experiments in a variety of test environments using the

parameters from Table 6.2. Over 106 bargaining games were randomly generated

that each had at least one sequential equilibrium. For each sequential equilibrium

of a bargaining game, we tried different strategy combinations and for each strategy

combination, we computed the equilibrium bargaining outcome for each buyer type.
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Figure 3.6. Buyer’s average utility and the negotiation deadline

Based on the equilibrium bargaining outcome for each buyer type, we also computed

the average utility of all buyer types and the seller. Given the average utilities of

both the buyer and the seller in each sequential equilibrium for a bargaining game, we

can compute the average utilities of both the buyer and the seller in the bargaining

game. The main performance measure is the average utility of the buyer or the seller

in each strategy combination. Another important performance measure is the social

welfare (i.e, the total utility of the buyer and the seller) in each strategy combination.

Extensive stochastic simulations were carried out for all the combinations of vari-

ables in Table 6.2. For each combination, we randomly generated over 10000 exper-

iments and tried all the strategy combinations and generated average performance

measures. Even though extensive stochastic simulations were carried out for all the
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Figure 3.7. Buyer’s average utility and agents’ discount factors

situations to compare the performance of different heuristic strategies and equilib-

rium strategies, due to space limitations, we only present the representative results

in the rest of this section. For most results, we did not report the confidence inter-

vals in our discussions since we found that the confidence interval for each average

value was very tight around the value (e.g., the confidence intervals in Figure 3.5,

Figure 3.8, and Figure 3.10).

3.8.4 The Value of Choosing Equilibrium strategies

The first question we investigated is what is an agent’s advantage of choosing an

equilibrium strategy over heuristic strategies given that the other agent is adopting

the equilibrium strategy. Figure 3.5 shows the buyer’s average utility (as well as
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Figure 3.8. Seller’s average utility while using different strategies

the 99% confidence interval) while using different strategies given that the seller is

always using the equilibrium strategy. We can see that the equilibrium strategy (i.e.,

the EQ∼EQ strategy combination) achieved a much higher utility than the other

three heuristic strategies, i.e., strategy combinations 0.25∼EQ, 1∼EQ, and 4∼EQ.

Furthermore, the utility of using a conciliatory strategy (e.g., ε = 0.25) is higher

than that of using a conservative strategy (e.g., ε = 4). This result is mainly due

to the existence of discount factor since an earlier agreement (even with the same

price) can bring the buyer a higher utility.

Figure 3.6 shows how the negotiation deadline affects the buyer’s utility when the

seller is using the equilibrium strategy. It can be observed that when both agents

adopt the equilibrium strategy, the negotiation deadline almost has no influence on
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Figure 3.9. Seller’s average utility and agents’ discount factors

the buyer’s utility, which is similar to the strategy combination 0.25∼EQ where

the buyer adopts a conciliatory concession making approach. However, when the

buyer is adopting the linear or conservative strategy, its utility decreases with the

increase of deadline. This result corresponds to the intuition that, when an agent

uses a conservative (or linear) strategy, it will make an agreement later than using a

conciliatory strategy. Correspondingly, it will gain a lower utility due the existence

of the discount factor.

In addition to negotiation deadlines, agents’ discount factors also affect the

buyer’s utility. Figure 3.7 shows how the buyer’s utility changes with the sum

δ = δb + δs of both agents’ discount factors. Since δa is in the range of [0.5, 1),

it follows that δ ∈ [1, 2). It can be seen from Figure 3.7 that for different strategy
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combinations, the buyer’s utility increases with the increase of δ. Intuitively, with a

higher discount factor, the buyer gains a higher utility even for the same negotiation

negotiation result.

The other situation is that the buyer is adopting the equilibrium strategy but the

seller is using the equilibrium strategy or different heuristic strategies. Figure 3.8

shows the seller’s average utility while using different strategies given that the buyer is

always using the equilibrium strategy. It is easy to see that the equilibrium strategy

(i.e., the EQ∼EQ strategy combination) achieved a much higher utility than the

other three heuristic strategies, i.e., strategy combinations EQ∼0.25, EQ∼1, and

EQ∼4. Similar to the results in Figure 3.5, the utility of using a conciliatory strategy

is higher than that of using a conservative strategy. Figure 3.7 shows how the seller’s

utility changes with the sum δ = δb + δs of both agents’ discount factors. We can

see that for different strategy combinations, the seller’s utility increases with the

increase of δ, which is again similar to the results in Figure 3.9.

3.8.5 Comparison of Social Welfare

We also compared the social welfare of different strategy combinations. From

Figure 3.10 we can see that the social welfare of the strategy combination EQ∼EQ

is much higher than that of all other strategy combinations, which corresponds to

the results that agents achieved higher utilities while adopting equilibrium strate-

gies. We can also see that the social welfare increases when agents’ strategies are

more conciliatory. When agents adopt conciliatory strategies, they will make large

concessions at the beginning and it is more likely that they can make an agreement

earlier, which results in higher social welfare.
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Figure 3.10. Social welfare for different strategy combinations

Figure 3.11 shows that the social welfare of each strategy combination increases

with the increase of the sum of both agents’ discount factors, which corresponds to

the results in Figure 3.7 and Figure 3.9. The main reason is that an agent’s utility of

a negotiation outcome may increase with its discount factor. Note that even when the

sum of discount factor is close to 2, the strategy combination EQ∼EQ still achieved

a higher social welfare than other strategy combinations.

From Figure 3.12, we can see that the negotiation deadline has almost no effect

on the social welfare when both agents adopt the equilibrium strategies. However, if

one agent is using a heuristic strategy, the social welfare decreases with the deadline,

which is mainly due to the delay of agreement making time. Especially, when agents’
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Figure 3.11. Social welfare and agents’ discount factors

strategies are more conservative, the advantage of the strategy combination EQ∼EQ

increases with the increase of negotiation deadline.

3.9 Applications of the Approach

Our approach can be used to compute pure strategy sequential equilibria in other

games with continuous strategy space. This section briefly discusses two potential

application of our proposed approach.

3.9.1 Bilateral Negotiation with Uncertain Discount Factor

This chapter considers one-sided uncertainty regarding reserve prices and we as-

sume complete knowledge about agents’ discount factors. In other cases, one agent
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Figure 3.12. Social welfare and the negotiation deadline

may have incomplete information about the other agent’s discount factors. For ex-

ample, we can assume that the buyer b can be of finitely many types {b1, . . . ,bn} in

which buyer bi has a discount factor δ
i
b. The initial belief of s on b is µ(0) = 〈∆0

b, P
0
b〉

where ∆0
b = {b1, . . . ,bn} and P 0

b = {ω0
b1
, . . . , ω0

bn
} such that

∑

i ω
0
bi

= 1. ω0
bi

is the

priori probability that b is of type bi. Let x
∗
bi
(t) be any agent optimal offer at time

t when b is of type bi in this case. It follows that x∗bi
(t) ≤ x∗bj

(t) if δib > δjb.

Lemma 8. x∗bi
(t) ≤ x∗bj

(t) if δib > δjb.

Proof. Case 1 (ι(T ) = s). It follows that x∗bi
(T − 1) = x∗bj

(T − 1) = RPs. Then

x∗bi
(T−2) = RPb−δib(RPb−x∗bi

(T−1)) < x∗bj
(T−2) = RPb−δ

j
b(RPb−x∗bi

(T−1)).

Similarly, we have x∗bi
(T − 3) = RPs(1 − δs) + δsx

∗
bi
(T − 2) and x∗bj

(T − 3) =
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RPs(1− δs) + δsx
∗
bj
(T − 2). Thus we have x∗bi

(T − 3) < x∗bj
(T − 3). Recursively, we

have x∗bi
(t) < x∗bj

(t) for t < T − 3.

Case 2 (ι(T ) = b). It follows that x∗bi
(T − 1) = x∗bj

(T − 1) = RPb. Then at time

time T − 2, we have x∗bi
(T − 2) = RPs(1 − δs) + δsx

∗
bi
(T − 1) = x∗bj

(T − 2). Thus,

x∗bi
(T − 2) > x∗bj

(T − 2). As in case 1, we have x∗bi
(t) < x∗bj

(t) for t < T − 2.

In this setting, it is easy to see that the weakest type is the buyer type with the

lowest discount factor. Accordingly, it the buyer acts off the equilibrium path, the

seller will update its belief to the buyer type with the lowest discount factor following

the optimistic conjecture.

One can directly apply our approach to solve the bargaining game with uncertain

discount factors. For the bargaining game with uncertain reserve prices, we use two

techniques to reduce the number of choice rules and reject update rules that need to

be considered. Fortunately, we can still only need to a small number of choice rules

and reject update rules for the bargaining game with uncertain discount factors.

First we consider the reject update rule such that the seller will update its belief

to ∆′b ⊆ ∆b if the seller’s offer is rejected by the buyer where ∆b is the seller’s belief

while making the offer.

Theorem 9. If there is a reject update rule with updated belief ∆′b ⊆ ∆b such that

δib > δjb for bi ∈ ∆b \ ∆′b and bj ∈ ∆′b, agents’ strategies are not sequentially

rational.

Proof. The result can be proved by contradiction. Assume that there is a sequential

equilibrium with this reject update rule. Similar to Theorem 1, equilibrium existence
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conditions requires that (et+1
bj

|∆′b)←bj
≤ (et+1

bj
|∆′b)←bi

where et+1
bj

|∆′b is bj ’s equiva-

lent offer in the continuation game starting from t+1 with belief ∆′b. Since δ
i
b > δjb,

it follows that (et+1
bj

|∆′b)←bj
> (et+1

bj
|∆′b)←bi

. There is a contradiction.

Accordingly, we just need to consider no more than |∆b| reject update rules

without sacrificing completeness of our approach. Similarly, we just need to consider

a small number of choice rules due to the following theorem.

Theorem 10. Assume that b behaves in different ways at a continuation game with

belief set ∆b where ∆b = ∆a
b ∪∆r

b at time t. If there is a buyer type bi ∈ ∆a
b and

a buyer bj ∈ ∆r
b such that δib > δjb, there is no sequential equilibrium for this choice

rule.

Proof. Similar to Theorem 6, this result can be proved by contradiction. If there is

a sequential equilibrium, the following two conditions are satisfied: 1) Buyer type

bi has no incentive to behave as bj, i.e., (e
t+1
s |∆a

b)←s ≤ ρ(bi, t, EBO(bj, ℘
r)); and

2) Buyer type bj has no incentive to behave as bi, i.e., ρ(bj , t, EBO(bj, ℘
r)) ≤

(et+1
s |∆a

b)←s. Therefore, equilibrium existence requires that ρ(bj , t, EBO(bj, ℘
r)) ≤

ρ(bi, t, EBO(bj, ℘
r)).

Assume that EBO(bj, ℘
r) = (x, t′) where T ≥ t′ > t. From the definition of

equivalent offers, we have
(

RPb − ρ(bj , t, EBO(bj, ℘
r))

)

· (δjb)
t+1 = (RPb − x) · δt

′

b ,

which can be rewritten as ρ(bj , t, EBO(bj, ℘
r)) = RPb − (RPb − x) · (δjb)

t′−t−1.

Similarly, we have ρ(bi, t, EBO(bj, ℘
r)) = RPb−(RPb−x)·(δib)

t′−t−1. Since δib > δjb,

it follows that ρ(bi, t, EBO(bj, ℘
r)) < ρ(bj , t, EBO(bj, ℘

r)) which contradicts with

equilibrium existence conditions.
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In summary, our approach can be directly applied to solve the bargaining game

with one-sided uncertain discount factor and we can use the similar techniques to

reduce computational cost.

3.9.2 Bilateral Multi-issue Negotiation with Uncertain Weights

Another potential application of our approach is bilateral multi-issue negotiation,

which is more complex and challenging than a single-issue negotiation since agents

need to make tradeoffs between multiple issues. The problem of bargaining efficiently

over multiple issues with complete information has been addressed in [50, 51, 52].

Agents’ equilibrium strategies can be easily computed by extending the backward

induction method in Section 3.2. Specifically, the acting agent ι(t) at time t chooses

its best offer (consisting of values for each negotiation issue) that is acceptable to the

other agent. In presence of incomplete information, it is common to compute agents’

sequential equilibrium strategies. There are different sources of uncertainty. For

uncertainty about agents’ reserve prices, discount factors or negotiation deadlines,

the calculation of sequential equilibria in a multi-issue negotiation game is the same

as that in a single issue negotiation game. The only new source of uncertainty

introduced by having multiple issues is the uncertainty regarding the weights of

different issues.

In multi-issue negotiation, two agents are negotiating over multiple issues 1, . . . , l.

For each issue i, let RPi
a be agent a’s reserve price for the issue. A negotiation

outcome can be represented as o = 〈o1, . . . , ol〉. An agent a’s utility of a negotiation

outcome o is defined as Ua(o) =
∑

1≤i≤l w
i
aUa(oi) where Ua(oi) is a’s utility given

the negotiation outcome oi for issue i, which is the same as the utility function in
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Figure 3.13. Failure of the approach in [52, 51] with T = 5, ι(0) = s, RP1
s =

RP2
s = 0, RP1

b = RP2
b = 90, δs = 0.5, δb = 0.8, ws = 〈0.9, 0.1〉, {wb1 = 〈0.4, 0.6〉,

wb2 = 〈0.9, 0.1〉}, ωb1 = 0.9, and ωb2 = 0.1; agents’ offers in complete information
settings were also showed.

single issue negotiation (see Section 3.2). In the cumulative utility function, wi
a is

agent a’s weight for issue i. Let wa = 〈w1
a, . . . , w

l
a〉 be agent a’s weight vector. We

consider the one-sided uncertainty about the buyer’s weights of the issues and all

other parameters are complete information. There are n possible weight vectors

{wb1, . . . , wbn
} for the buyer and the probability of the buyer being the type wbi

is

ωbi
. The probability distribution is common knowledge.

Fatima et al. [51, 52] present an algorithm to produce equilibrium strategies

in multi-issue bargaining with uncertain weights but the strategies found by their
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algorithm are not necessarily sequentially rational given the designed system of beliefs

as we discussed previously.5 Here we show a simple example (see Figure 3.13) where

buyer b and seller s are negotiating over two issues 1 and 2 with the following

parameters: T = 5, ι(0) = s, RP1
s = RP2

s = 0, RP1
b = RP2

b = 90, δs = 0.5,

δb = 0.8, ws = 〈0.9, 0.1〉. There are 2 possible weight vectors {wb1 = 〈0.4, 0.6〉, wb2 =

〈0.9, 0.1〉} for the buyer and the probability of the buyer being the type wb1 and

wb2 are ωb1 = 0.9 and ωb2 = 0.1, respectively. At time t = 4, seller s will offer

buyer’s reserve prices for both issues 〈90, 90〉, which gives the seller a utility of

0.9 · (90 − 0) · 0.55 + 0.1 · (90 − 0) · 0.55 = 2.8125. At time t = 3, both buyer types’

optimal offer that is acceptable to the seller is 〈50, 0〉. At time t = 2, seller’s optimal

offer that is acceptable to buyer type b1 is 〈85, 0〉 which can give seller an expected

utility of 8.8875. Seller’s optimal offer that is acceptable to buyer type b2 is 〈50, 90〉

which can give seller an expected utility of 3.20625. Therefore, seller’s optimal offer

at time t = 2 is 〈85, 0〉. In the same way, we can compute that both both buyer

types’ optimal offer at time t = 1 is 〈39.5, 0〉. Similarly, we can compute that seller’s

optimal offer at time t = 0 is 〈76.6, 0〉, which is only acceptable to the buyer type

b1. That is, if the buyer rejects the offer, the seller will update is belief to {b2}.

However, buyer type b1 has an incentive to reject the offer and to make buyer type b2

complete information offer 〈30, 0〉 which can give b1 a higher utility than accepting

seller’s offer 〈76.6, 0〉.

5The multi-issue negotiation model here is slightly different from the multi-issue negotiation
model in [51, 52] where two negotiation agents are splitting pies and the size of each pie shrinks
over time due to the discount factors. In contrast, the utility of each agent shrinks over time. Our
formulation of multi-issue negotiation has been widely used, e.g., [65, 50], just to name a few.
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We can apply our approach to solve the multi-issue bargaining game with uncer-

tain issue weights in Figure 3.13. At time t = 0, we need to try different reject update

rules and for each reject update rule, we first compute the sequential equilibria for

its continuation game starting from time t = 1. To compute all the sequential equi-

libria for a continuation game starting from time t = 1, we need to consider different

choice rules. While computing agents’ equilibrium offers, one important optimization

problem is computing one buyer type’s (or a seller’s) optimal offer which can give

the seller (or a buyer type) certain utility. For instance, seller’s expected utility is

y > 0 and buyer type bj with weights wbj
= 〈w1

bj
, . . . , wl

bj
〉 is finding a package offer

x = 〈x1, . . . , xl〉 at time t to maximize its utility. The optimization problem can be

formulated as

maximise
∑

1≤i≤l

wi
bj

· (RPi
b − xi) · (δb)

t+1

such that
∑

1≤i≤l

wi
s · (x

i − RPi
s) · (δs)

t+1 ≥ y

RPi
b ≤ xi ≤ RPi

b for 1 ≤ i ≤ l

As implied in [51, 52], the optimal solution can be generated using a greedy approach

by considering wi
s/w

i
bj

for 1 ≤ i ≤ l where wi
bj
/wi

s is the utility that bj needs to

give up in order increase s’s utility by (δb)
t+1/(δs)

t+1. Thus, bj begins by making

concessions to seller s on the issue with the lowest wi
bj
/wi

s value. Accordingly, the

complexity of solving the optimization problem is polynomial.
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The weakness of different buyer types at any continuation game can be computed

by solving the bargaining game with complete information about weights of negoti-

ation issues. Recall that that the weakest type gives the seller the highest utility in

the complete information bargaining setting. Rather than only considering a small

set of reject update rules and choice rules, here we may need to consider all reject

update rules and choice rules since the two computation reduction techniques are

not necessarily valid here. However, this only increases the number of computations

and does not affect the applicability of our approach. One sequential equilibrium

for the multi-issue bargaining game in Figure 3.13 is that at time t = 0, seller s

makes an offer 〈69, 0〉 that is only acceptable to buyer type b1. It follows that 1)

offer 〈69, 0〉 is the seller’s optimal offer for this reject update rule; 2) buyer type b1

gains a utility of 49.92 and it has no incentive to reject the offer; and 3) by rejecting

the offer, buyer type b2 will gain a utility of 40.32, which is higher than the utility

22.32 by accepting the offer 〈69, 0〉.

3.10 Summary

Studying rational agents’ strategic behavior is currently one of the most inter-

esting issue in the field of automated negotiation. However, the bargaining the-

ory literature lacks of general solutions for bargaining game with the presence of

deadlines and incomplete information. In this chapter we go beyond state of the

art by providing an algorithm that can find all sequential equilibria in incomplete

information bargaining games with deadline constraints. Specifically, this chapter

analyzes agents’ rational strategic behavior in alternating-offers bilateral bargaining
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with deadline constraints and one-sided uncertainty on reserve prices. Our approach

computes sequential equilibrium employing a Bayesian extension of backward induc-

tion. To guarantee the completeness of our approach, we enumerate all choice rules

and belief reject update rules. To guarantee the soundness of our approach, we con-

struct equilibrium existence conditions along the backward induction process. Our

approach can also be applied to other uncertainty settings, e.g., bilateral multi-issue

negotiation with uncertain weight functions [51, 52], and bilateral bargaining with

uncertain discount factors. We also compared the performance of the equilibrium

strategies and representative heuristic based strategies. Empirical results show that

agents with equilibrium strategies achieved higher utilities than agents with heuristic

based strategies. Furthermore, when both agents adopt the equilibrium strategies,

the agents achieved much higher social welfare than that in all other strategy com-

binations.

Our study shows that there exists at least one sequential equilibrium in more

than 99.7% of scenarios we have tried in which there are deadline constraints and in-

complete information. There are two future research directions for this equilibrium

nonexistence problem. On one hand, we can develop algorithm for finding mixed

equilibrium strategies for bargaining scenarios in which there is no pure strategy

equilibrium. On the other hand, we can slightly modify the alternating-offers pro-

tocol that would allow the existence of the equilibrium in pure strategies, e.g., the

introduction of agents’ strategic delay option [41].

While this chapter only considers one-sided uncertainty, we think our approach

can be extended to handle two-sided uncertainty. Assume that the buyer is also
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uncertain about the seller’s reserve price. When it is the buyer’s turn to make an

offer, rather than considering whether a buyer type’s offer will be accepted be the

seller, we need to consider the set of seller types that will accept the buyer’s offer.

That is, we need to combine choice rules and reject update rules. Similar to the

buyer types, all seller types need to not only consider different reject update rules

but also different choice rules. In addition to two-sided uncertainty regarding reserve

prices, our algorithm can also handle two-sided uncertainty about discount factors.

One major motivation of the study of bargaining theory is designing successful

bargaining agents in practical markets where there are more uncertainty and more

agents. Although constraints, complexity, and uncertainty make it impractical to

develop optimal negotiation strategies, our analysis can still give us some insights

into the bargaining problems. Consider that a buyer is acquiring multiple resources in

a dynamic market with multiple sellers. We can first use our approach to generate the

strategy for each single seller and then use heuristics to combine the set of strategies

for all sellers to generate the overall negotiation strategy. The next chapter will look

at concurrent negotiation between multiple buyers and sellers.
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CHAPTER 4

EXTENDING ALTERNATING-OFFERS BARGAINING

IN ONE-TO-MANY AND MANY-TO-MANY SETTINGS

The focus of this chapter is on analyzing agents’ strategic behavior in one-to-

many and many-to-many negotiations in which agents are negotiating with multiple

trading partners and, at the same time, are facing competition from trading competi-

tors. The subgame perfect equilibrium for complete information setting is presented

and equilibrium properties, such us uniqueness, are discussed. We also analyze the

reduction of computation to find sequential equilibria in one-to-many settings and

many-to-many settings. Furthermore, we provide an algorithm to compute the se-

quential equilibrium in the incomplete information setting where there is uncertainty

regarding the reserve price of an agent. This latter work will build on techniques

developed in the previous chapter. The main goal of this chapter is to begin to

understand which factors are affecting agents’ bargaining position relative to others

when each agent is negotiating with multiple trading partners simultaneously. This

chapter is the first work to provide a game theoretical analysis of agents’ strategic

interactions in concurrent negotiations.
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4.1 One-to-Many Alternating-Offers Negotiation

4.1.1 Negotiation Mechanism

In this section, we extend the alternating-offers protocol to capture the situation

wherein there is one buyer agent b and a set S = {s1, . . . , sn} of n seller agents such

that: 1) the items sold by the sellers are the same, 2) all the sellers have exactly one

item to sell, and 3) the buyer is interested in buying exactly one item.

Our mechanism extends the alternating-offers protocol allowing the buyer to carry

on more simultaneous negotiations, each one with a different seller. As in [97, 125],

a buyer synchronously negotiates with multiple sellers in discrete time. We use the

term “negotiation thread” for the single bargaining between b and a seller si and we

denote it by ℑb,si . Furthermore, we denote by ι(ℑb,si , t) the agent that acts at t in

the negotiation thread ℑb,si. We assume that if ι(ℑb,si , t) = b then ι(ℑb,sj , t) = b

for all j. That is, b simultaneously acts in all the negotiation threads. Therefore, if

b is proposing at time t, ι(t) = b. Otherwise, ι(t) = S.

We modify the alternating-offers mechanism by introducing an action confirm

to avoid agents’ non-reasonable behaviors. In the following we show an example

of non-reasonable behavior in absence of such action. The sellers’ action space is

A = {offer[x], accept, exit, confirm}, whereas the buyer’s action space is the Carte-

sian product ×n
i=1A. Legal actions for the buyer are all the pure strategies σb =

〈σb,s1 , . . . , σb,sn〉 such that: if σsi(t−1) 6= accept, then σb,si(t) ∈ {offer[x], accept, exit}

except when t = 0, accept is not available, otherwise σb,si(t) ∈ {confirm, exit}. Le-

gal actions for the sellers are defined analogously: if σb,si(t − 1) 6= accept, then

σsi(t) ∈ {offer[x], accept, exit} except when t = 0, accept is not available, otherwise
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σsi(t) ∈ {confirm, exit}. The action confirm is allowed only after making the action

accept .

The outcome of a single negotiation thread ℑb,si is NoAgreement if either b or

si made exit , whereas it is an agreement (x, t) if σι(ℑb,si
,t)(t) = confirm, where x is

such that σι(ℑb,si
,t−2)(t−2) = offer [x]. Notice that, in absence of the action confirm,

if b makes offers to multiple sellers and all these accept, b must buy multiple items.

In presence of the action confirm, b is in the position to choose only one contract.

Summarily, in our mechanism the following process is needed for implementing an

agreement: one agent proposes a price, the other agent accepts the offer, then the first

agent confirms the contract made by the second agent. Without loss of generality,

we assume that each seller’s deadline is no less than 2, i.e., Tsi ≥ 2.

The utility functions of the seller agents are exactly those defined in the previous

section. However, we need to refine the utility function of b. This is because b

can potentially buy more items, but is interested in only one item. We redefine

b’s utility as follows. If b has reached more than one agreement, let (xfirst, tfirst)

be the agreement such that, for any other agreement (xj , tj), (1) tfirst ≤ tj and (2)

xfirst ≤ xj if tfirst = tj . Let ifirst be the seller involved in the agreement (xfirst, tfirst).

Agent b’s utility is defined over the set of agreements it reached:

Ub({(xi, ti)}) =

{

(RPb − xfirst) · δ
tfirst
b −

∑

j 6=ifirst
xj if tfirst ≤ Tb

−ǫ otherwise

That is, b receives a positive utility from the first agreement, whereas all the

other agreements reduce b’s utility. This will induce a rational buyer to reach at

most one agreement.
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4.1.2 Agents’ Equilibrium Strategies

Let S=t be the set of sellers whose deadline is t, i.e., S=t = {si|Tsi = t}. Let

St be the set of sellers which have no shorter deadline than t, i.e., St = {si|Tsi ≥

t} = ∪t′≥tS=t′ . Without loss of generality, we assume that the sellers St are ranked

according to their reserve prices. We denote by Si
t (Si

=t) the seller with the ith

lowest reserve price in St (S=t). Let x∗b,si(t) be b’s optimal offer to si at time t if

ι(ℑb,si , t) = b and x∗si,b(t) be si’s optimal offer to agent b at time t if ι(ℑb,si, t) = si.

The negotiation deadline for the negotiation thread between b and si is Tb,si =

min(Tb, Tsi). After Tb,si , at least one agent will have no interest in reaching agree-

ments. Obviously, the negotiation deadline for b is T = maxsi∈S{Tb,si}. We state

the following lemma that allows us to reduce the complexity of the problem.

Lemma 11. It is b’s weakly dominant strategy to make the same offer to all the

sellers in St+2 at each time t.

Proof. At t we consider only St+2 since all the other sellers will not be interested in

reaching agreements at t + 2 and later. Consider the time point t wherein ι(t) = b.

On the equilibrium path, at t agent b will expect to reach exactly one agreement,

say (x∗b(t+2), t+2), with a specific seller, say s∗. Obviously, s∗ is the seller that will

accept the lowest offer. If b makes offers higher than x∗b(t) to the other sellers, then

these sellers will not accept such offers and therefore b cannot improve its utility.

Analogously, if b makes offers lower than x∗b(t) to the other sellers, it cannot improve

its utility.
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According to Lemma 11 we can assume, without loss of generality, that x∗b,si(t) =

x∗b,sj (t) for all si, sj. For simplicity, we denote such offer by x∗b(t). We state the

following theorem.

Theorem 12. In the one-to-many negotiation, the sequences of equilibrium offers

x∗b and x∗si are:

x∗b(t) =







RPS1t+2
t = T − 2 or t = TS1t+2

− 2

min{(x∗
S1t+2

(t+ 1))←S1t+2
,RPS2t+2

} t < T − 2 and t 6= TS1t+2
− 2

,

x∗si(t) =

{

max{RPsi ,RPS2T
} t = T − 2

max{RPsi ,min{RPS2t+2
, (x∗b(t+ 1))←b}} t < T − 2

.

Agent’s equilibrium strategies are similar to those discussed in bilateral negotiation

in Chapter 3, but σb,si prescribes that:

• b accepts the offer x made by si at t if: x ≤ (x∗b(t))←b and x is the lowest

received offer. If more than one seller has offered x, than b accepts the offer

made by the seller with the lowest reserve price;

• b confirms an accept of si at t if: σb(t − 2) = offer [x] with x ≤ (x∗b(t))←2[b]

and, among all the sellers that have accepted σb(t − 2), si is the one with the

lowest reserve price;

and σb,si prescribes that:

• si confirms the accept of b at t if: σsi(t−2) = offer [x] with x ≥ max{(x∗si(t))←2[si],

RPsi}.
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Proof. First compute agents’ optimal offers using backward induction. Let x∗S(t) =

minsi∈St+2 x
∗
si
(t) be S’s highest optimal offer at t. It follows that x∗si(t) = max{RPsi ,

x∗S(t)}. At time point T , the game for the buyer b rationally stops. The equilibrium

outcome of every subgame starting from t ≥ T is NoAgreement. Therefore, at t = T

agent ιℑb,si
(T ) would only confirm the best agreement proposed by agent ιℑb,si

(T−1).

At time t = T − 1, ιℑb,si
(T − 1) will accept the best offer by agent ιℑb,si

(T − 2), if

ιℑb,si
(T − 1) can get a utility not worse than NoAgreement by accepting the best

offer. Note that at time T − 1 and T , no agent will propose a price as it takes at

least three time points to implement a final contract.

Assume that ιℑb,si
(t) = b. If t = T − 2 or t = TS1t+2

− 2, b’s optimal price is

RPS1t+2
and seller S1

t+2 will accept it as its deadline is approaching. At t < T − 2,

minsi∈St+3

(

(x∗si(t+ 1))←si

)

is surely acceptable to some sellers in St+3. We also need

to consider sellers St+2−St+3 with deadline t+2, who are willing to accept any offer

which is no less than their reserve prices. Therefore, b’s optimal offer at time t is

x∗b(t)=min{ min
si∈St+3

(

(x∗si(t+ 1))←si

)

, min
si∈St+2−St+3

RPsi} (4.1)

It is easy to see that x∗
S1t+3

(t + 1) ≤ x∗
S2t+3

(t+ 1) = RP∗S2t+3
(t + 1). It follows that

minsi∈St+3

(

(x∗si(t+ 1))←si) = (x∗
S1t+3

(t+ 1))←S1t+3
. As t 6= TS1

t+2
−2, equation (4.1) can

be rewritten as min{(x∗
S1
t+2

(t+ 1))←S1t+2
,RPS2t+2

}. Therefore, x∗b(t) = min{(x∗
S1t+2

(t+

1))←S1t+2
,RPS2t+2

} if t < T − 2 and t 6= TS1t+2
− 2.

Assume that ιℑb,si
(t) = si. At time t = T − 2, the acceptable offer to buyer b

is RPS2
T
as all sellers in S2

T compete with each other to get a contract. Thus, si’s

optimal offer is max{RPsi,RPS2T }. At time t < T − 2, the acceptable offer to buyer
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b is (x∗b(t + 1))←b. However, si needs to consider the competition among sellers

then si’s winning price should be no higher than RPS2t+2
. Then si’s optimal offer is

max{RPsi,min{RPS2t+2
, (x∗b(t+ 1))←b}}.

Finally, agents’ optimal actions can be easily defined on the basis of x∗b(t) and

x∗si(t). When an agent decides to make an offer, it always proposes it optimal offer

(x∗b(t) or x∗si(t)). Buyer b will accept an offer σsi(t − 1) if σsi(t − 1) ≤ (x∗b(t))←b

and σsi(t− 1) is no higher than other sellers’ offers at time t− 1. It is possible that

several sellers propose a same acceptable offer. The tie can be broken by choosing

the lowest offer from the seller with the lowest reserve price (note that we assume

that sellers have different reserve prices). If at time t − 1, seller si agrees with b’s

offer σb,si(t− 2), b will confirm the agreement if σb,si(t− 2) ≤ σb,sj (t− 2) if sj also

agrees with b’s offer at time t− 1. Again, there could be more than one agreement

with the same lowest price. To make sure that b only makes one final agreement,

b confirms the agreement from the seller with the lowest reserve price. The optimal

actions of all the sellers can be defined analogously. For simplicity, we consider just

agents’ strategies on the equilibrium path.

The computational complexity of the backward induction is O(nT ) as the back-

ward induction will go through all the time points and at each time point, each agent

has at most three possible optimal actions. The equilibrium agreement is reached at

t = 2 between b and S1
2 and it is (x∗b(0), 2) if ι(0) = b and (x∗

S12
(0), 2) otherwise. It

can be easily observed that RPS12 ≤ x∗b(0), x
∗
S12
(0) ≤ RPS22 . The result about agree-

ment price is intuitive in the following sense: obviously, the agreement price cannot

be lower than each seller’s reserve price. But it also cannot be higher than the second
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lowest price as, if so, there is at least another seller who is willing to sell for less and

make an agreement with the buyer. Therefore, market competition guarantees that

the buyer can make an agreement by paying no more than RPS22 . The lower bound

of agreement is due to the proposing ordering and agents’ deadlines. For example, if

T = 2 and the buyer proposes at time t = 0, the buyer will propose RPS12 and the

agent S1
2 will accept the offer at time t = 1. We can see that the market competition

plays an important role in affecting negotiation results. The buyer can make an

agreement with price at most RPS22 . With more sellers, the buyer can get better (at

least not worse) negotiation result.

Let us remark an observation. Consider the situation wherein ι(0) = S and

x∗
S12

= RPS22 . Although both S1
2 and S2

2 have the same equilibrium offer, i.e., RPS22 ,

the equilibrium strategy of b prescribes that b must accept only the offer made by

S1
2 . In the case b accepts the offer by S2

2 or randomizes over accepting those offers,

S1
2 ’s optimal action at t = 0 does not exist, being limε→0(S2

2 − ε) with ε 6= 0. We can

state the following theorem which is a direct consequence of the above observation

and of the equilibrium uniqueness in bilateral alternating-offers.

Theorem 13. Agents’ strategies on the equilibrium path are unique except when

RPS12 = RPsi for more than one i.

Notice that, when the reserve price of more sellers is equal to RPS12 , all these

sellers will offer their reserve price and b can accept any single offer among these.

However, it can be easily observed that all the equilibria are equivalent in terms of

agents’ payoffs, b receiving the same utility in all the equilibria. As we assume that

agents have different reserve prices, the equilibrium is unique.
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Figure 4.1. Backward induction construction with RPb = 1, RPs1 = 0, RPs2 = 0.2,
δb = 0.8, δs1 = 0.7, δs2 = 0.8, Tb = 10, Ts1 = 11, Ts2 = 7; at each time point t the
optimal offer x∗a(t) that ι(t) can make is marked; the dashed lines are sellers’ optimal
offer if there is only one seller.

Figure 4.1 shows an example of backward induction construction with RPb = 1,

RPs1 = 0, RPs2 = 0.2, δb = 0.8, δs1 = 0.7, δs2 = 0.8, Tb = 10, Ts1 = 11, Ts2 = 7.

We report in the figure for any time point t the optimal offer x∗a(t) that ι(t) can

make; the dashed lines are sellers’ optimal offers if there is only one seller. The

time point from which we can apply the backward induction method is T = 10

at which b will confirm the agreement made at t = 9. At t = 9 agent s1 will
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accept any offer equal to or higher than its reserve price RPs1 = 0. The optimal

offer x∗b(8) of b at t = 8 is thus RPs1 = 0. s1’s optimal offer x∗s1(7) at t = 7 is

(x∗b(8))←b = RPb − (RPb − x∗b(8))δb = 0.2. b’s optimal offer at time t = 6 is then

x∗b(6) = (x∗s1(7))←s1 = 0.14. At time t = 5, another seller s2 can make an offer (note

that t = 5 is the last time s2 can make an offer as it needs another two rounds to

accept and confirm an agreement). s1 and s2 will compete with each other and their

optimal offers aren’t (x∗b(6))←b = 0.312 as one seller has an incentive to choose a

lower price if the other seller choose (x∗b(6))←b = 0.312. The equilibrium optimal

price for the two sellers is x∗s1(5) = x∗s2(5) = RPS2t=5+2
= RPs2 = 0.2. The process

continues to the initial time point t = 0 where b’s optimal offer is x∗b(0) = 0.14.

There are some other mechanisms which can be used to implement contracts

between buyer b and sellers S. Here we compare our model with the following

mechanisms:

• Bilateral bargaining without outside option: Rubinstein’s bilateral bargaining

does not offer any mechanism to capture competition between sellers. In order

to compare outcomes from bilateral bargaining with respect to outcomes from

our mechanism, suppose that b is able to choose the seller with which to nego-

tiate. In our mechanism the buyer b gains as in bilateral bargaining without

outside option when the sequence of optimal offers x∗(t) in the bilateral nego-

tiation between b and S1
2 is such that x∗i (t) ≤ RPS22 , otherwise the buyer b

gains more in our mechanism.

• Bilateral bargaining with outside option: In our mechanism the buyer gains

no less than in bilateral bargaining with outside option in which an agent can
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leave the bilateral negotiation it is currently carrying on and negotiate with a

different opponent [24]. We report an example. Consider the situation where

there are two sellers with the same reservation price RPs and any deadline

no smaller than 2. In bilateral bargaining with outside option the agreement

price is strictly larger than RPs, instead in our protocol the agreement price is

exactly RPs.

• VCG auction: Since VCG auction does not take into account any temporal

issues (no deadline and no discount factor), we limit our comparison to the

agreement price. In VCG mechanism the agreement price is exactly RPS22 ,

whereas in our bargaining model the buyer’s agreement price falls between

[RPS12 ,RPS22 ]. That is, the buyer achieved higher utility within our model

which is also efficient.

4.1.3 Equilibrium Outcome Computation and Uncertain Information

We initially focus on the computation of the equilibrium outcome with complete

information. Although agents’ equilibrium strategies depend on the values of the

parameters of all the agents, for a large subset of the space of the parameters the

equilibrium outcome depends on the values of a narrow number of parameters. We

have the following theorem.

Theorem 14. When 1) TS22 > 2 if ι(0) = b and 2) (RPs)←S12b ≥ RPs for any seller

s ∈ S, the equilibrium outcome depends only on the parameters of b (i.e., RPb,

δb, Tb), S1
2 (i.e., RPS12 , δS12 , TS12 ), and on the reserve price RPS22 of S2

2 . In these

situations the equilibrium outcome can be produced as follows:

127



1. finding the sequence of the optimal offers (say y(t)) under the assumption that

S1
2 is the unique seller, and

2. assigning x∗b(0) = min{y(0), (RPS22 )←S12} if ι(0) = b and assigning x∗
S12
(0) =

min{y(0),RPS22} if ι(0) = S.

Proof. Case 1 (ι(min{TS12 , Tb}) = b). Let t′ + 2 = min{TS12 , Tb}. It’s easy to see

that x∗b(t
′) = RPS12 = y(t′). Then we have x∗S(t

′ − 1) = min{(RPS12 )←b,RPS2
t′+1

} =

min{y(t′ − 1),RPS2
t′+1

}.1 At time t′ − 2, we have x∗b(t
′ − 2) = min{(RPS12 )←bS12

,

(RPS2
t′+1

)←S12 ,RPS1=t′
} = min{y(t′−2), (RPS2

t′+1
)←S12 ,RPS1=t′

}. At time t′−3, we have

x∗S(t
′−3) = min{(y(t′−2))←b, (RPS2

t′+1
)←S12b, (RPS1=t′

)←b,RPS2
t′−1

}. It’s obvious that

(RPS1
=t′

)←b ≥ (RPS1
=t′

) ≥ RPS2
t′−1

. In addition, as we assume that (RPs)←S12b ≥ RPs,

it follows that (RPS2
t′+1

)←S12b ≥ RPS2
t′+1

≥ RPS2
t′−1

. Then we have x∗S(t
′ − 3) =

min{y(t′ − 3),RPS2
t′−1

}. Following this procedure, we have 1) if ι(0) = S, x∗
S12
(0) =

min{y(0),RPS22}; 2) if ι(0) = b, x∗b(0) = min{y(0), (RPS22 )←S12} as (RPS23 )←S12 =

(RPS22 )←S12 ≤ (RPS22 ) ≤ RPS32 ≤ RPS1=2
given that TS22 > 2.

Case 2 (ι(min{TS12 , Tb}) = S). Let t′ + 2 = min{TS12 , Tb}. At time t′, there are two

situations: 1) |St′+2| < 2, which implies that x∗S(t
′) = RPb = y(t′); 2) Otherwise,

x∗S(t
′) = RPS2

t′+2
. Therefore, x∗S(t

′) = min{y(t′),RPS2
t′+2

}. At time t′ − 1, it follows

that x∗b(t
′−1) = min{y(t′−1), (RPS2

t′+2
)←S12 ,RPS1=t′+1

}. Then at time t′−2, we have

x∗S(t
′ − 2) = min{y(t′ − 2), (RPS2

t′+2
)←S12b, (RPS1=t′+1

)←b,RPS1
=t′
,RPS2

t′
}. It easy to

see that RPS1
=t′

≥ RPS2
t′
. It’s obvious that (RPS1

=t′+1
)←b ≥ (RPS1

=t′+1
) ≥ RPS2

t′
. As

we assume that (RPs)←S12b ≥ RPs, it follows that (RPS2
t′+2

)←S12b ≥ RPS2
t′+2

≥ RPS2
t′
.

1For convenience, RPS2

t′+1

= ∞ if |St′+1| < 2.
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Then we have x∗S(t
′−2) = min{y(t′−2),RPS2

t′
}. Following this procedure, we have 1)

if ι(0) = S, x∗
S12
(0) = min{y(0),RPS22}; 2) if ι(0) = b, x∗b(0) = min{y(0), (RPS22 )←S12}

given that TS22 > 2.

This is to say that the equilibrium outcome does not depend on the values of δS22 ,

TS22 , and on the parameters of all the other sellers. This is of paramount importance

since complex settings with a high degree of uncertainty can be easily solved when

1) TS22 > 2 if ι(0) = b and 2) (RPs)←S12b ≥ RPs for any seller s ∈ S. Indeed,

the above algorithm produces the equilibrium outcome even when δSi2 with i > 1,

TSi2 with i > 1, and RPSi2 with i > 2 are uncertain. We can write the condition

(RPS22 )←S12b ≥ RPS22 as

(RPb − RPS12 ) ≥ (RPS22 − RPS12 )
1− δbδS12
1− δb

.

It can be easily observed that, in common real-world settings where RPb≫RPS22 and

δS12 is close to 1, the above condition is satisfied.

Now, we focus on the uncertainty over b’s and S1
2 ’s parameters. The values of

these parameters affect the equilibrium outcome and therefore in presence of un-

certainty over them we need to compute agents’ equilibrium strategies to derive

the equilibrium outcome. Currently, the literature provides algorithms to compute

agents’ equilibrium strategies only in bilateral settings without outside option with

one-sided uncertainty over deadlines [61]. We recall that, since the number of avail-

able actions is infinite, no algorithms such as Lemke-Howson [135] can be employed

to compute a sequential equilibrium.
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When RPS22 ≤ (RPS22 )←S12b, the algorithm presented in [61] can be easily extended

to capture uncertainty in one-to-many bargaining. More precisely, we have that:

• when Tb is uncertain, whereas TS12 is certain, then agents’ equilibrium strategies

can be produced by employing the algorithm presented in [61] where the buyer

is b and the seller is S1
2 and upper bounding the optimal offers to RPS22 if

ι(0) = b and to (RPS22 )←S12 if ι(t) = S;

• when TS12 is uncertain, whereas Tb is certain, then agents’ equilibrium strategies

can be computed.

Settings with a higher degree of uncertainty, such as when both Tb and TS12 are

uncertain, need further exploration.

The results discussed above show that the analytical complexity of one-to-many

bargaining is drastically less complicated than that of bilateral bargaining with out-

side option. This allows one to drastically reduce the search space and makes the

computation easy. Therefore, one-to-many bargaining seems more appropriate for

real-world settings when computational issues should be considered.

4.2 Many-to-Many Alternating-Offers Negotiation

4.2.1 Negotiation Mechanism

In this section, we propose a bargaining model for many-to-many negotiation

where m buyer agents B = {b1, . . . ,bm} negotiate n seller agents S = {s1, . . . , sn}.

In this case, both buyers and sellers face competition and multiple contracting op-
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portunities. Again, we assume that the items sold by the sellers or bought by buyers

are equal, and each agent has only one item to buy or sell.

In the many-to-many negotiation case, each agent concurrently negotiates with

many trading partners. Agent bj’s concurrent negotiation includes at most n threads

ℑbj ,S = {ℑbj ,si|si ∈ S}, where ℑbj ,si represents the negotiation thread between bj

and seller si. We still assume that, at each time, either the buyers propose to all the

sellers (ι(t) = B) or the sellers propose to all the buyers (ι(t) = S). Similarly, let

B=t be the set of buyers than t, i.e., B=t = {bj|Tbj
= t}. Let Bt be the set of buyers

whose deadlines are not shorter deadline than t and Bi
t (B

i
=t) is the buyer with the

ith highest reserve price in Bt (B=t).

We still use action confirm to avoid one agent’s making more than one final

agreement. Buyers and sellers’ action space and agents’ legal actions at each time

are the same as that in one-to-many negotiation. The utility functions of the buyer

agents are exactly those defined in the previous section. However, we need to refine

the utility function of si as it can potentially sell more items, but it has only one

item to sell. We redefine si’s utility as follows. If si has reached more than one final

agreement, it gets a utility of −∞. Otherwise, it’s utility is the same as that in

bilateral negotiation. Therefore, si will make at most one final agreement.

4.2.2 Agents’ Equilibrium Strategies

The negotiation deadline for the negotiation between agent bj and seller si

is Tbj ,si = min(Tbj
, Tsi). The negotiation deadline for the agent bj is Tbj ,S =

maxsi∈S Tbj ,si. Let x∗bj ,si
(t) be bj’s optimal offer to agent si at t if ι(t) = B and

x∗si,bj
(t) be si’s optimal offer to agent bj at time t if ι(t) = S.
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Lemma 15. It is each agent’s dominant strategy to propose the same price to all the

trading partners at each time t.

Proof. The proof is the same as the proof of Lemma 11.

Then we use x∗bj
(t) for short to represent bj ’s optimal offer at t if ι(t) = B and

use x∗si(t) to represent si’s optimal offer at time t if ι(t) = S.

Lemma 16. In equilibrium, agents of the same type should have the same equilibrium

winning price (a price acceptable to agents of the different type).

Proof. Let’s prove this by contradiction. Assume two buyers have different winning

prices at some time t, i.e., the lowest price acceptable to any seller. Then the seller

who is willing to accept the lower winning price should change to accept the higher

winning price. Therefore, the two winning prices are not in equilibrium.

We state the following theorem.

Theorem 17. In the many-to-many negotiation, the sequences of optimal offers

in equilibrium are: Buyer bj’s optimal offer at time t ≤ Tbj
− 2 is x∗bj

(t) =

min(RPbj
, x∗B(t)). Seller si’s optimal offer at t ≤ Tsi − 2 is x∗si(t) = max(RPsi ,

x∗S(t)).

x∗B(t) is given by: 1) At t = T −2, x∗B(t) = RP
S
|Bt+2|

t+2

if |Bt+2| ≤ |St+2|; otherwise,

x∗B(t) = RP
B
|St+2|+1

t+2

. 2) At t < T−2, x∗B(t) = max
{

RP
B
|St+2|+1

t+2

,
{

{(x∗si(t+ 1))←si|si ∈

St+3} ∪ {RPsi |si ∈ St+2 − St+3}
}

|St+2|

}

if |St+2| < |Bt+2|. Otherwise, x∗B(t) =
{

{(x∗si(t+ 1))←si|si ∈ St+3} ∪ {RPsi|si ∈ St+2 −St+3}
}

|Bt+2|
. In the above equations,

Yi (Y i) denotes the ith smallest (largest) value in the value set Y.
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x∗S(t) is given by: 1) At t = T − 2, x∗S(t) = RP
B
|St+2|

T

if |ST | ≤ |BT |, x
∗
S(t) =

RP
S
|Bt+2|+1

t+2

if |St+2| > |Bt+2|. 2) At t < T − 2, x∗S(t) =
{

{(x∗bj
(t + 1))←bj

|bj ∈ Bt+3}

∪ {RPbj
|bj ∈ B=t+2}

}|St+2| if |St+2| ≤ |Bt+2|. Otherwise, x∗S(t) = min
{

RP
S
|Bt+2|+1

t+2

,
{

{(x∗bj
(t+ 1))←bj

|bj ∈ Bt+3} ∪ {RPbj
|bj ∈ B=t+2}

}|Bt+2|}.

Based on x∗bj
(t) and x∗si(t), we can get agents’ optimal actions in the same way

as that in Theorem 12 except that an agent needs to use the following rule while

accepting offers or confirming accepts: a buyer bj accepts the offer x made by si

at t if: x ≤ (x∗bj
(t))←bj

and x is the lowest received offer. If more than one seller

has offered x and buyer bj has the qth highest reserve price in Bt+2, bj accepts the

offer made by the seller with the qth lowest reserve price in sellers St+2.
2 Similarly,

if buyer bj intends to confirm an agreement with price x and multiple sellers have

made the same agreement, bj will confirm the agreement made by the seller with the

qth lowest reserve price in sellers St+2. To save space, the details of sellers’ optimal

actions are omitted here.

Proof. Given Lemma 15 and Lemma 16, we just need to find out the agents’ equilib-

rium winning price at each time point. Let x∗B(t) (x
∗
S(t)) be B’s lowest (S’s highest)

offer which is acceptable to S (B) at time t if ι(t) = B (ι(t) = S). It follows that

x∗B(t) = maxbj∈Bt+2 x
∗
bj
(t), x∗S(t) = minsi∈St+2 x

∗
si
(t).

Following the idea of backward induction, at T = maxbj∈B Tbj ,S , the game for

all agents rationally stops. The equilibrium outcome of every subgame starting from

2Note that in equilibrium, when a buyer bj with qth highest reserve price is accepting an offer
with price x, the number of sellers proposing x at t − 1 should be no less than q. The proof is
omitted as it can be easily derived from the process of calculating agents’ optimal prices.
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t ≥ T is NoAgreement. Therefore, at t = T , agents ι(T ) would only confirm the best

agreement proposed by agents ι(T−1). At time t = T−1, agents ι(T−1) will accept

the best offer by agents ι(T − 2) if the best offer is no worse than NoAgreement by

accepting the best offer. At time T − 1 and T , no agent will propose a price as it

takes at least three time points to implement a final contract.

At time t = T − 2, agents ι(t) will strive to make the best offer. There are two

situations: ι(t) = B or ι(t) = S. First consider the case ι(t) = B and there are two

cases: Case 1 (|BT | ≤ |ST |): In this case, the supply is no less than demand and

buyers have more bargaining power as compared with sellers. It is easy to see that

each buyer’s optimal price is RP
S
|BT |

T

as, by doing so, |BT | sellers will agree to sell their

good and each buyer can get a good. If one buyer pays less than RP
S
|BT |

T

, the sellers

will choose another buyers paying RP
S
|BT |

T

. It doesn’t make sense that a rational

agent will pay more than RP
S
|BT |

T

. If each buyer pays a price less than RP
S
|BT |

T

, each

buyer will face a risk of losing an agreement as the number of sellers who are willing to

accept the price is less than the number of buyers. Case 2 (|BT | > |ST |): In this case,

the supply is less than demand and buyers need to compete with each other to get

agreements. It is easy to say that each buyer’s optimal price is RP
B
|ST |+1

T

. In the same

way, we can get the optimal offer of buyers ST at time T − 2: x∗S(T − 2) = RP
B
|ST |

T

if |ST | ≤ |BT |, x∗S(T − 2) = RP
S
|BT |+1

T

if |ST | > |BT |.

Then we move to the calculation for computing x∗B(t) and x
∗
S(t) given x

∗
B(t + 1)

and x∗S(t + 1). First consider the situation that ι(t) = B. There are two situa-

tions depending on whether there are agents with deadline t + 2. If there is no

agent with deadline t + 2, (x∗si(t+ 1))←si is surely acceptable to seller si at time
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t. Here we consider two cases: 1) |St+3| ≥ |Bt+3|. It is easy to see that, the

price minsi∈St+3

(

(x∗si(t + 1))←si

)

is surely acceptable to sellers in St+3 whose optimal

price is x∗S(t + 1) at time t + 1. However, we also need to consider the competi-

tion among buyers. Therefore, x∗B(t) = {(x∗si(t+ 1))←si|si ∈ St+3}|Bt+3| where Yi

(Y i) is the ith smallest (largest) value in the value set Y . 2) |St+3| < |Bt+3|. As

(x∗si(t+ 1))←si ≤ x∗si(t+ 1), x∗B(t) should be no less than RP
B
|St+3|+1

t+3

. Therefore, it

follows that x∗B(t) = max
{

RP
B
|St+3|+1

t+3

, {(x∗si(t + 1))←si|si ∈ St+3}|St+3|

}

.

Now we move to the general case that there are some buyers or sellers with

deadline t + 2. For a buyer with deadline t + 2, it is willing to propose its reserve

price. For a seller with deadline t+2, it is willing to accept an offer of its reserve price.

Assume that there are only some sellers with deadline t+2. We consider three cases:

1) |St+3| ≥ |Bt+3|, which implies that |St+2| > |Bt+2|. It is easy to see that, x∗B(t) =
{

{(x∗si(t+ 1))←si|si ∈ St+3} ∪ {RPsi|si ∈ St+2 − St+3}
}

|Bt+2|
. 2) |St+3| < |Bt+3|

and |St+2| < |Bt+2|. In this case, x∗B(t) = max
{

RP
B
|St+2|+1

t+2

,
{

{(x∗si(t+ 1))←si|si ∈

St+3} ∪ {RPsi|si ∈ St+2 − St+3}
}

|St+2|

}

. 3) |St+3| < |Bt+3| and |St+2| ≥ |Bt+2|. In

this case, x∗B(t) =
{

{(x∗si(t+ 1))←si|si ∈ St+3} ∪ {RPsi |si ∈ St+2 − St+3}
}

|Bt+2|
.

We can easily extend the above analysis to more general cases where there are

both buyers and sellers with deadline t+2. We can get B’s optimal price at time t <

T−2 as follows: 1) if |St+2| < |Bt+2|, x∗B(t) = max
{

RP
B
|St+2|+1

t+2

,
{

{(x∗si(t+ 1))←si|si ∈

St+3} ∪ {RPsi |si ∈ St+2 − St+3}
}

|St+2|

}

; 2) otherwise, x∗B(t) =
{

{(x∗si(t+ 1))←si|si ∈

St+3} ∪ {RPsi|si ∈ St+2 − St+3}
}

|Bt+2|
.

In the same way, we can get S’s optimal price at time t < T − 2 as follows: 1)

if |St+2| ≤ |Bt+2|, x∗S(t) =
{

{x∗bj
(t+ 1)←bj

|bj ∈ Bt+3} ∪ {RPbj
|bj ∈ B=t+2}

}|St+2|;
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2) otherwise, x∗S(t) = min
{

RP
S
|Bt+2|+1

t+2

,
{

{(x∗bj
(t+ 1))←bj

|bj ∈ Bt+3} ∪ {RPbj
|bj ∈

B=t+2}
}|Bt+2|}

.

The computational complexity of the backward induction is O((n+m)T ) as the

backward induction will go through all the time points and at each time point, each

agent has at most n+m possible optimal actions. It is easy to see that the bargaining

agreement in the many-to-many negotiation is
(

x∗B(0), 2
)

if ι(0) = B and is
(

x∗S(0), 2
)

if ι(0) = S. In addition, when the number of buyers is not equal to the number of

sellers, the market competition affects the equilibrium price in the following way:

if the number of buyers is less than the number of sellers, the buyers have larger

bargaining power which increases with the number of sellers and decreases with the

number of buyers. In contrast, if the number of buyers is larger than the number of

sellers, the buyers have less bargaining power. The proposing order also affects the

equilibrium price.

Figure 4.2 shows an example of backward induction construction in many-to-

many negotiation. The setting in Figure 4.2 is the same as that in Figure 4.1 except

that there is another buyer b′ with parameters RPb′ = 0.9, δb′ = 0.7, and Tb′ = 6.

We report in the figure for any time t the optimal offer x∗B(t) or x∗S(t). At time

t = 4, b′ can make an offer to compete with buyer b. Thus we have x∗B(4) =

{(x∗s1(5))←s1, (x
∗
s2
(5))←s2}2 = {0.14, 0.2}2 = 0.2. The process continues to the initial

time point t = 0 where x∗B(0) = 0.40992.

While there is two-sided competition in the market, market mechanisms like

double auction can be used for resource allocation. The double auction is one of

the most common exchange institutions where both sellers and buyers submit bids
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Figure 4.2. Backward induction construction. At each time t the optimal offer
x∗B(t) or x

∗
S(t) is marked.

which are then ranked highest to lowest to generate demand and supply profiles.

Double auctions permit multiple buyers and sellers to bid to exchange a designated

commodity. Some double auction mechanisms (e.g., BBDA [56]) have been applied

to trading in markets. A market mechanism is efficient if the goods are transferred

to agents that value them most.

Theorem 18. The many-to-many negotiation is efficient.

Proof. This result is straightforward. Assume there are sellers si and sj such that

RPsi > RPsj . It is impossible that seller si makes an agreement but seller sj fails as
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seller sj can make an offer lower than RPsi and thus gains a contract with positive

revenue.

In a market consisting of two sets of agents, matching algorithms can also be

used to solve agents’ conflicts of resource requirements. Then we require a matching

to be stable, i.e., it left no pair of agents on opposite sides of the market who were

not matched to each other but would both prefer to be. Many-to-many negotiation

allows one to avoid studying matching mechanisms since each agent is implicitly

matched with all its trading partners.

4.2.3 Considerations on Settings with Uncertain Information

In this section we provide some considerations on the preliminary analysis of

many-to-many bargaining with uncertainty over agents’ parameters. The result dis-

cussed in Section 4.1.3 can be treated as a special case for many-to-many bargaining.

With more buyers, the agreement price will increase due to the increasing compe-

tition between buyers. For the bargaining between buyers B and sellers S, it can

be found from Theorem 17 that the agreement price depends on the reserve price

of at least min{|B|, |S|} buyers and min{|B|, |S|} sellers. Although the many-to-

many bargaining setting is intrinsically very complicated, the problem of finding the

equilibrium outcome can be drastically simplified in some special cases.

Theorem 19. In the following many-to-many bargaining scenarios in which |B| <

|S|, the negotiation outcome only depends on the parameters of B and at most |B|+1

sellers:
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1. The sellers having a reserve price no higher than the RP
S
|B|+1
2

have the same

deadline T ′ such that ι(T ′) = S.

2. At each time t, the seller set St+2 includes all the sellers with a reserve price

no higher than RP
S
|Bt+2|+1

2

.

Proof. Case 1 : At time T ′ − 2, the value of x∗S(T
′ − 2) should be no higher than

RP
S
|B|+1
2

and is independent of the reserve prices of sellers having a reserve price

higher than RP
S
|B|+1
2

. At time t = T ′ − 3, the value of x∗B(t) will also be no higher

than RP
S
|B|+1
2

. Recursively, we can find that the value of x∗B(t) at time t < T ′−3 will

be no higher than RP
S
|B|+1
2

and is independent of the reserve prices of sellers having

a reserve price higher than RP
S
|B|+1
2

.

Case 2 : We can prove the result in the same way as in the proof of Case 1.

Thus, the negotiation outcome only depends on a small number of parameters in

some special cases. The complexity of solving complete information bargaining and

incomplete information bargaining can be reduced.

4.3 Uncertainty about Reserve Prices

In this section we analyze agents’ rational strategies in concurrent negotiation

with incomplete information. More specifically, we focus on the situation that one

buyer b is negotiating with a number of sellers S and there is uncertainty about the

buyer’s reserve price. We extend our algorithm for bilateral bargaining to handle

concurrent negotiation.
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4.3.1 Introducing Uncertainty

We assume the one-sided uncertainty regarding the type of the buyer b (the case

of having uncertainty with the type of a seller s ∈ S can be analyzed analogously).

The buyer b can be of finitely many types {b1, . . . ,bn} in which buyer bi has a reserve

price RPi. The initial belief of s on b is µ(0) = 〈∆0
b, P

0
b〉 where ∆0

b = {b1, . . . ,bn}

and P 0
b = {ω0

b1
, . . . , ω0

bn
} such that

∑

i ω
0
bi

= 1. ω0
bi

is the priori probability that

b is of type bi. During bargaining, seller s’s belief will evolve using the Bayes rule.

The belief of s on the type of b at time t is µ(t). It’s easy to see that in incomplete

information bargaining, it’s still a weekly dominant strategy for the buyer b to make

the same offer to all the sellers. Therefore, different sellers’ beliefs about the type

of buyer b will always be the same at any time t. The belief of s on the type of b

at time t is µ(t). The probability assigned by s to b = bi at time t is denoted ωt
bi
.

Given an assessment a = 〈µ, σ〉, there are multiple possible bargaining outcomes:

outcome obi
if b = bi. We denote bargaining outcome as o = 〈ob1, . . . , obn

〉.

With pure strategies, buyer types’ possible behaviors regarding whether they

behave in the same way on the equilibrium path at each decision making node are

finite. We use the term “choice rule” to characterize buyer types’ strategies regarding

whether they behave in the same way at a specific decision making point. Easily,

at a decision making node bi and bj can make the same offer (in this case, choice

rules are said pooling) or can make different offers (in this case, choice rules are said

separating). On the basis of this consideration, we can make some assumptions over

the belief system without loosing generality. On the equilibrium path µ(t) = 〈∆t
b, P

t
b〉

of s on b at any time t is one the following. After a time point t where buyer types’
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choice rule is pooling, µ(t + 1) = µ(t), i.e., ∆t+1
b = ∆t

b and P t+1
b = P t

b. As is

customary in economic studies [112], we consider only stationary systems of beliefs,

i.e., if a seller s believes a b’s type with zero probability at time point t , then it

will continue to believe such a type with zero probability at any time point t′ > t.

We need also specify the belief system off the equilibrium path, i.e., when an agent

makes an action that is not optimal. We use the optimistic conjectures [112]. That

is, when b acts off the equilibrium strategy, agent s will believe that agent b is of its

“weakest” type, i.e., the type against which each seller would gain the most. In our

case, the weakest type is the buyer type with the highest reserve price (we prove it

in the following section). We can therefore specify µ(t) by specifying ∆t
b. That is, if

µ(t− 1) = ∆t−1
b and b acts off the equilibrium strategy at time t− 1, it follows that

∆t
b = bh(∆

t−1
b ) where bh(∆

t−1
b ) is the buyer type with the highest reserve price in

buyer types ∆t−1
b .

4.3.2 Off the Equilibrium Path Optimal Strategies

Before analyzing equilibrium strategies when the buyer can be of many types,

we provide the optimal strategies in the situations s believes the buyer of one single

type. There are two cases: 1) Seller s has the right belief about the type of the

buyer b. In this case, agents’ equilibrium strategies are the equilibrium strategies

of the corresponding complete information bargaining discussed in Section 4.1. Let

xcbi
(t) be agents’ optimal offer at time t when b is of type bi in this case. That

is, if ι(t) = b, xcbi
(t) is b’s optimal offer x∗b(t) at time t in complete information

bargaining when it is of type bi. 2) Seller s has the wrong belief about the type of

the buyer b, i.e., bi is believed to be bj and bj is believed to be bi.
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Lemma 20. xcbi
(t) ≥ xcbj

(t) if RPi > RPj.

Proof. We can proof the results from the proof of Theorem 12:

Case 1 (ι(T ) = s). It follows that xcbi
(T −2) = xcbj

(T −2) = RPS2
T
. Then we have

xcbi
(T − 3) = min{(xcbi

(T − 2))←S1
T−1

,RPS2
T−1

} = min{(xcbj
(T − 2))←S1

T−1
,RPS2

T−1
} =

xcbj
(T − 3). At time t = T − 4, we have xcbi

(t) = min{RPS2t+2
, (xcbi

(t + 1))←b} =

min{RPS2t+2
,RPi(1−δb)+δbxcbi

(t+1)} ≥ min{RPS2t+2
,RPi(1−δb)+δbxcbj

(t+1)} =

xcbj
(t). Recursively, we have xcbi

(t) ≥ xcbj
(t) for t < T − 4.

Case 2 (ι(T ) = b). It follows that xcbi
(T −2) = RPS1

T
= xcbj

(T −2). Then at time

T − 3, we have xcbi
(T − 3) = min{RPS2

T−1
, (xcbi

(T − 2))←b} = min{RPS2
T−1

,RPi(1 −

δb) + δbx
c
bi
(T − 2)} ≥ min{RPS2

T−1
,RPi(1 − δb) + δbx

c
bj
(T − 2)} = xcbj

(T − 3).

Recursively, we have xcbi
(t) ≥ xcbj

(t) for t < T − 3.

We can see that bi is weaker than bj in terms of its offering price at each time

point in complete information bargaining. Furthermore, we can get RPi − xcbi
(t) ≥

RPj − xcbj
(t) following the same procedure in the proof of Lemma 20. RPi − xcbi

(0)

is the gain (utility) of bi in complete information bargaining and RPj −xcbj
(0) is the

gain (utility) of bj in complete information bargaining.

Lemma 21. If RPi > RPj, it follows that xcbi
(t) ≤ (xcbi

(t + 1))←bi
and xcbj

(t) ≤

(xcbj
(t + 1))←bj

.

Proof. We can get this result by following the same procedure in the proof of

Lemma 20. This result indicates that the buyer will accept sellers’ lowest equilibrium

price in complete information bargaining, i.e., agents will reach a final agreement at

time t− 2 in complete information bargaining.
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Agents’ optimal strategies when any seller s has the wrong belief about the type

of the buyer b are shown in the following theorem:

Theorem 22. If seller s has the wrong belief about the type of b, the optimal strate-

gies of any seller s are those in complete information bargaining. The optimal strate-

gies σ∗bi
(t)|{bj} of buyer bi when it’s believed to be bj are:

σ∗bi
(t)|{bj} =

{

accept y if y ≤ (xcbj
(t))←bi

offer xcbj
(t) otherwise

The optimal strategies σ∗bj
(t)|{bi} of the buyer bj when it’s believed to be bi are:

σ∗bj
(t)|{bi} =

{

accept y if y ≤ min{(xcbi
(t))←bj

,RPj}

offer min{xcbi
(t),RPj} otherwise

Proof. Case 1 (bi is believed to be bj). If sellers’ lowest offer at time t − 2 is

xcbj
(t− 1), buyer bi’s optimal strategy is to accept it as the minimum price that the

seller would accept at time t+ 1, i.e., xcbj
(t), gives bi a utility lesser than xcbj

(t− 1)

since (xcbj
(t))←bi

> (xcbj
(t))←bj

≥ xcbj
(t − 1). If the seller acts off the equilibrium

path and offers a price y lower than xcbj
(t−1), the optimal strategy of bi is obviously

to accept y. If the seller offers a price y higher than xcbj
(t− 1), the optimal strategy

of bi is to accept y only if y ≤ (xcbj
(t))←bi

, otherwise bi’s optimal strategy is to

reject y and to offer xcbj
(t). Note that xcbi

(t) ≤ RPi and x
c
bj
(t) ≤ RPi.

Case 2 (bj is believed to be bi). This case is more complicated as sellers’ lowest

offer xcbi
(t−1) at time t on its equilibrium path may be not acceptable to bj as when

bj offers x
c
bi
(t) at time t, it follows that (xcbi

(t))←bj
< (xcbi

(t))←bi
and (xcbi

(t))←bi
≥

xcbi
(t − 1) (Lemma 21). In addition, bj may not offer xcbi

(t) if xcbi
(t) is higher than
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RPj . Therefore, bj ’s optimal offer at time t is min{xcbi
(t),RPj}. Thus, bj will accept

an offer y at time t such that y ≤ min{(xcbi
(t))←bj

,RPj}.

4.3.3 Our Approach

While having multiple buyers increases the complexity of computing sequential

equilibria, we can extend our approach for bilateral bargaining with uncertainty

in Chapter 3 to handle one-to-many bargaining with uncertainty. When it is the

buyer’s turn to make an offer, we consider different choice rules. Note that the

number of choice rules does not depend on the number of sellers since when buyer

types are making an acceptable offer, they only need to consider the offer that is

acceptable to the seller with the lowest reserve price due to the market competition

between different sellers. When it is the seller’s turn to make an offer, we consider

different reject update rules. Due to competition between different sellers, we only

need to consider the reject update rule of the seller with the lowest reserve price.

However, when we compute the optimal offer for the seller or a buyer type, market

competition should be taken into account. In what follows we briefly discuss how to

compute agents’ equilibrium offers while using the algorithm presented in Chapter 3.

4.3.4 The Buyer’s Equilibrium Offer

Now we consider the buyer’s equilibrium offer at a continuation game Γ(t,∆b)

such that ι(t) = b. If t = T − 1, it is the buyer agent’s dominant strategy to

accept any offer which is not worse than its reserve price. At time t = T − 2,

different buyer types’ optimal offer is RPS1
T
since seller S1

T will accept the offer at

time T − 1. If |∆b| = 1, agents’ equilibrium strategies are the equilibrium strategies
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of the corresponding complete information bargaining. When |∆b| > 1 at time

t < T − 2, buyer types have multiple choice rules and we need to consider the

equilibrium strategies for each choice rule.

4.3.4.1 Pooling Choice Rule

When b employs a pooling choice rule at a continuation game Γ(t,∆b), seller

s will not change its belief after observing the buyer’s equilibrium offer since all

buyer types will behave in the same way. Thus, we need to consider all sequential

equilibria SE(∆b, t + 1) of the continuation game with belief ∆b at time t + 1. If

SE(∆b, t+1) = ∅, there is no sequential equilibrium for this choice rule. Otherwise,

for each sequential equilibrium ℘ ∈ SE(∆b, t+1), we compute buyer types’ optimal

offer and check the satisfaction of equilibrium existence conditions.

First we consider the accepting pooling choice rule. Let et+1
S1t+3

|∆b be S1
t+3’s equiv-

alent offer at time t + 1 given the belief ∆b in the sequential equilibrium ℘. At

time t + 1, the equilibrium strategy of S1
t+3 is that S1

t+3 will accept any offer y if

y ≥ (et+1
S1t+3

|∆b)←S1t+3
. Note that if TS1t+2

= t + 2, seller S1
t+2 is willing to accept any

offer which is no worse than its reserve price. Therefore, the equilibrium offer of

buyer bi ∈ ∆b at time t is

x∗bi
(t)|∆b =































RPS1t+2
TS1t+2

= t+ 2

min{(et+1
S1t+3

|∆b)←S1t+3
,RPS2t+2

} TS1t+2
6= t+ 2 and |St+2| > 1

(et+1
S1t+3

|∆b)←S1t+3
TS1t+2

6= t+ 2 and |St+2| = 1
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The corresponding offer update rule is the following: µ(t + 1) = ∆b if σb(t) =

offer x∗bi
(t)|∆b; µ(t + 1) = {bh(∆b)}, otherwise. If buyer bi ∈ ∆b deviates from

offering x∗bi
(t)|∆b, it will be believed to be of type bh(∆b). Following Theorem 22,

when a buyer bi is believed to be of type bh(∆b) which has a reserve price no less

than RPi, bi’s optimal offer at time t is x∗bi
(t)|{bh(∆b)}. Thus, the condition of

equilibrium existence needed to be checked is x∗bi
(t)|∆b ≤ x∗bi

(t)|{bh(∆b)} for all

bi ∈ ∆b. If the equilibrium existence conditions are satisfied, there is a sequential

equilibrium with buyer types’ offer x∗bi
(t)|∆b and ℘ as the sequential equilibrium for

the continuation game from time t + 1. Buyer bi’s equilibrium bargaining outcome

in this equilibrium is EBO(bi, x
∗
bi
(t)|∆b, t) = (x∗bi

(t)|∆b, t + 1) since x∗bi
(t)|∆b is

acceptable to the seller. Thus buyer bi’s equivalent offer is e
t
bi
|∆b = x∗bi

(t)|∆b.

Next we consider the rejecting pooling choice rule where all buyer types ∆b

will make an offer (i.e., −1) that will be rejected by the seller. Buyer bi’s equi-

librium bargaining outcome is the bargaining outcome in the sequential equilib-

rium ℘, i.e., EBO(bi,−1, t) = EBO(bi, ℘). Thus buyer bi’s equivalent offer is

etbi
|∆b = ρ(bi, t, EBO(bi, ℘)) where function ρ(bi, t, EBO(bi, ℘)) which satisfies

Ubi
(ρ(bi, t, EBO(bi, ℘)), t+ 1) = Ubi

(EBO(bi, ℘)). The corresponding offer update

rule is the following: µ(t + 1) = ∆b if σb(t) = offer − 1; µ(t + 1) = {bh(∆b)},

otherwise. If buyer b deviates from offering −1 at time t, it will be treated as buyer

type bh(∆b) and the equilibrium existence condition is etbi
|∆b ≤ x∗bi

(t)|{bh(∆b)}

for all bi ∈ ∆b.
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4.3.4.2 Separating Choice Rule

Now we consider agents’ equilibrium strategies at a continuation game Γ(t,∆b)

when buyer b employs the separating choice rule where buyer types ∆a
b make an

acceptable offer while buyer types ∆r
b make a rejectable offer −1. For this choice

rule, the reasonable beliefs of its continuation game are ∆a
b and ∆r

b. If one of the

continuation games has no sequential equilibrium, there is no sequential equilibrium

for this choice rule. In what follows we show how to compute agents’ equilibrium

strategies at time t given a sequential equilibrium ℘a ∈ SE(∆a
b, t+1) and a sequential

equilibrium ℘r ∈ SE(∆r
b, t+ 1).

Let et+1
S1t+3

|∆a
b be s’s equivalent offer at time t+1 in the equilibrium ℘a. Let et+1

S1t+3
|∆r

b

(xt+1|∆r
b, respectively) be S1

t+3’s equivalent offer (equilibrium offer, respectively) at

time t+ 1 in the equilibrium ℘r. By convention, the equilibrium offer of buyer type

bj ∈ ∆r
b at time t is −1. Buyer bj ’s equilibrium bargaining outcome is the bargaining

outcome EBO(bj , ℘
r) in the sequential equilibrium ℘r. Thus buyer bj ∈ ∆r

b’s

equivalent offer is etbj
|∆b = ρ(bj , t, EBO(bj, ℘

r)). Similar to the pooling acceptance

choice rule, the optimal offer of buyer types ∆a
b at time t is as follows

x∗bi
(t)|∆b =































RPS1t+2
TS1t+2

= t+ 2

min{(et+1
S1t+3

|∆a
b)←S1t+3

,RPS2t+2
} TS1t+2

6= t+ 2 and |St+2| > 1

(et+1
S1t+3

|∆a
b)←S1t+3

TS1t+2
6= t+ 2 and |St+2| = 1

Accordingly, buyer bi ∈ ∆a
b’s equivalent offer is etbi

|∆b = x∗bi
(t)|∆b since its

equilibrium bargaining outcome is (x∗bi
(t)|∆b, t+1). Seller s will update its belief to
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∆a
b when it receives an offer x∗bi

(t)|∆b. If it receives an offer −1, it will update its

belief to ∆r
b. Otherwise, it will update its belief to bh(∆b). The existence of such

an equilibrium depends on the following conditions:

• Any buyer type bi ∈ ∆a
b has no incentive to behave as any buyer type bj ∈ ∆r

b.

If bi pretends to be bj, it will offer −1 at time t and its equilibrium bargaining

outcome will be EBO(bj,−1, t) = EBO(bj, ℘
r). Therefore, this condition

requires that Ubi
(EBO(bi, x

∗
bi
(t)|∆b, t)) ≥ Ubi

(EBO(bj, ℘
r)) or equivalently,

x∗bi
(t)|∆b ≤ ρ(bi, t, EBO(bj, ℘

r)).

• Any buyer type bj ∈ ∆r
b must have no incentive to behave as bi ∈ ∆a

b. If bj be-

haves as bi, it will offer x
∗
bi
(t)|∆b at time t and the offer will be accepted. bj will

not choose to behave as bi if Ubj
(EBO(bj, ℘

r) ≥ Ubj
(EBO(bj, x

∗
bi
(t)|∆b, t)))

or equivalently, ρ(bj , t, EBO(bj, ℘
r)) ≤ x∗bi

(t)|∆b.

• No buyer type has an incentive to offer a price different from the above two equi-

librium offers. If a buyer type bi ∈ ∆b offers a price different from x∗bi
(t)|∆b

and −1, it will be treated as buyer type bh(∆b) and its optimal offer at time t is

then x∗bi
(t)|{bh(∆b)}. Buyer type bi will not choose to act off the equilibrium

path if etbi
|∆b ≤ x∗bi

(t)|{bh(∆b)}.

If all the three conditions are satisfied, buyer types’ optimal offers, the belief update

rule, and the sequential equilibria ℘a and ℘r for the continuation game starting from

time t + 1 consists of a sequential equilibrium for the continuation game Γ(t,∆b).
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4.3.5 The Seller’s Equilibrium Offer

Now we show how to compute the seller’s equilibrium offer at a continuation game

Γ(t,∆b) such that ι(t) = S. If t = T−1, it is the seller’s dominant strategy to accept

any offer which is not worse than its reserve price. At time t = T − 2, there are two

cases. If |St+2| = 1, seller S1
t+2 has multiple choices, each for one buyer type in ∆b.

The optimal offer of seller S1
t+2 for buyer type bi ∈ ∆b is RPi, which gives seller S1

t+2

an expected utility EUS1t+2
(RPi, t + 2) =

∑

bj∈∆b,RPj≥RPi
ωbj

(∆b)US1t+2
(RPi, t + 2)

since RPi is only acceptable to a buyer type with a reserve price no less than RPi.

The optimal offer of S1
t+2 at time t = T − 2 is y = argmaxy∈{RPi|bi∈∆b}EUS1t+2

(y, t)

and its equivalent offer is et
S1t+2

|∆b such that US1t+2
(et
S1t+2

|∆b, t + 2) = EUS1t+2
(y, t).

If |St+2| > 1, seller S1
t+2’s optimal offer at time t is RPS2t+2

due to the competition

between sellers. Thus, the equivalent price of the optimal offer of agent S1
t+2 in

this case is RPS2t+2
. If |∆b| = 1, agents’ equilibrium strategies are the equilibrium

strategies of the corresponding complete information bargaining.

Now we show how to compute the seller S1
t+2’s equilibrium offer given a belief ∆b

(|∆b| > 1) at time t < T − 2. We consider a reject update rule in which buyer types

∆′b will reject the seller S1
t+2’s offer and buyer types ∆b −∆′b will accept the seller

S1
t+2’s offer such that such that RPi > RPj for any bi ∈ ∆b − ∆′b and bj ∈ ∆′b.

We first compute all the sequential equilibria SE(∆′b, t + 1) for the continuation

game with belief ∆′b starting from time t + 1. If there is no sequential equilibrium

for the continuation game Γ(t + 1,∆′b), there is no sequential equilibrium for this

reject update rule. Otherwise, for each sequential equilibrium ℘ ∈ SE(∆′b, t+1), we

check whether there exists a price x such that the price, the reject update rule, and
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the sequential equilibrium ℘ constitute a sequential equilibrium for the continuation

game Γ(t,∆b). Such a price x exists if and only if the following three conditions are

satisfied:

1. bi is willing to accept the offer x and does not want to behave as bj . That is,

for any bi ∈ ∆b − ∆′b and bj ∈ ∆′b, Ubi
(x, t + 2) ≥ Ubi

(EBO(bj, ℘)) where

EBO(bj, ℘) is the bi’s equilibrium bargaining outcome when it behaves as bj .

This condition can be reformulated as x ≤ minbi∈∆b−∆
′
b
,bj∈∆′

b
ρ(bi, t, EBO(bj, ℘)),

which provides an upper bound for seller’s offering price x.

2. bj will reject the offer x. That is, each buyer type bj ∈ ∆′b has no incentive

to behave as bi, i.e., Ubj
(x, t + 2) < Ubj

(EBO(bj, ℘)). This condition can be

rewritten as x > maxbj∈∆′
b
ρ(bj , t, EBO(bj, ℘)), which provides a lower bound

for the offering price x.

3. Seller s has no incentive to choose a price other than x given the reject update

rule and the sequential equilibrium ℘ of the continuation game Γ(t+ 1,∆′b);

The third equilibrium existence condition requires that the price x is seller S1
t+2’s

optimal offer given the reject update rule and the sequential equilibrium ℘ for the

continuation game. Any buyer type can either accept the seller S1
t+2’s offer x or

reject it and receive a bargaining outcome in the sequential equilibrium ℘ for the

continuation game. Formally, buyer type bj ∈ ∆′b will accept a price x if and only if

x ≤ ρ(bj , t, EBO(bj, ℘)). Buyer type bi ∈ ∆b−∆′b will accept a price x if and only if

x ≤ minbj∈∆′
b
ρ(bi, t, EBO(bj, ℘)). We can define the acceptance price φ(bi,∆

′
b, ℘)

of each buyer type bi ∈ ∆b as follows:
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φ(bi,∆
′
b, ℘) = min{φ′(bi,∆

′
b, ℘),RPS2t+2

}

where φ′(bi,∆
′
b, ℘) is the acceptance price of each buyer type bi ∈ ∆b given the

sequential equilibrium ℘:

φ′(bi,∆
′
b, ℘) =















ρ(bi, t, EBO(bi, ℘) if bi ∈ ∆′b

minbj∈∆′
b
ρ(bi, t, EBO(bj, ℘)) otherwise

Seller S1
t+2’s expected utility of making an offer x given the sequential equilibrium

℘ is defined as

EUs(x, t) =
∑

bi∈∆b

ωbi
(∆b)EUs(x, t,bi)

where EUs(x, t,bi) is seller S1
t+2’s utility if the buyer is of type bi, which is defined

as































Us(x, t + 1) if x ≤ φ(bi,∆
′
b, ℘)

Us(EBO(bi, ℘)) if x > φ(bi,∆
′
b, ℘) and bi ∈ ∆′b

Us(minbj∈∆′
b
ρ(bi, t, EBO(bj, ℘)), t+ 1) otherwise

It is easy to see that the optimal offer the seller S1
t+2 should be either one buyer

type’s acceptance price or a price that will be rejected by all buyer types (i.e., ̟). If

the seller S1
t+2’s optimal offer x satisfies the first two equilibrium existence conditions,

there is a sequential equilibrium in which the seller S1
t+2 offers price x and buyer
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types ∆′b will reject the offer with the sequential equilibrium ℘. Otherwise there is

no sequential equilibrium given this reject update rule and the continuation game

equilibrium ℘.

In addition to the above reject update rules under which at least one buyer

type will choose to reject the offer, the seller S1
t+2 can also make an offer such that

it is all buyer types’ equilibrium strategies to accept the offer. It is easy to see

that the highest offer that will be accepted by all buyer types in equilibrium is

x = min{RPS2t+2
,minbi∈∆b

(x∗bi
(t+1)|bh(∆b))←bi

} since if a seller offers a price larger

than x, at least one buyer type has an incentive to deviate from accepting the offer. If

the buyer rejects x, the seller will update its belief to bh(∆b). The acceptance price of

buyer type bi for this reject update rule is thus (x
∗
bi
(t+1)|bh(∆b))←bi

. If the optimal

offer of the seller in this case is not acceptable to all the buyer types (i.e., the optimal

offer is not minbi∈∆b
(x∗bi

(t + 1)|bh(∆b))←bi
), there is no sequential equilibrium for

this null reject update rule. Otherwise, there is a sequential equilibrium in which the

seller will make an offer which will be accepted by all buyer types.

4.4 Summary

This chapter analyzes agents’ strategic behavior in concurrent one-to-many ne-

gotiation and many-to-many negotiation when agents follow the alternating-offers

protocol. The analysis can provide insights and suggestions for designing negoti-

ation agents in practical electronic marketplaces in which agents are involved in

many-to-many negotiations. The contributions of this chapter can be summarized

as follows:
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• We extend the alternating-offers protocol to handle multiple trading opportu-

nities and market competition. We provide an algorithm based on backward

induction to compute the subgame perfect equilibrium of concurrent one-to-

many negotiation and many-to-many negotiation. We observe that agents’

bargaining power are affected by the proposing ordering and market competi-

tion.

• For the complete information setting, we show that the computational com-

plexity when there are many buyers and many sellers in our protocol lineally

increases with the number of buyers and sellers. We find that for a large subset

of the space of the parameters, agents’ equilibrium strategies depend on the

values of a narrow number of parameters. The computation of the equilibrium

for realistic ranges of the parameters in one-to-many settings reduces to the

computation of the equilibrium either in one-to-one settings with uncertainty

or in one-to-many settings without uncertainty. We also compare the efficiency

of the negotiation mechanism with that of some other mechanisms like VCG

auction.

• We provide an algorithm to find a pure strategy sequential equilibrium in one-

to-many negotiation where there is uncertainty regarding the reserve price of

one agent. Our algorithm combines together game theoretic analysis with state

space search techniques and it is sound and complete.

The assumptions made in this chapter are not more restrictive than related work

in the literature. The assumption of the existence of deadline and reserve price
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in bargaining is widely used in the literature (e.g., [57, 61, 102, 112]). Computing

agents’ equilibrium strategies in incomplete information bargaining is extremely dif-

ficult and most related work only considers one type of uncertainty. For instance,

Rubinstein [112] considered bilateral bargaining with uncertainty over two possible

discount factors. Gatti et al. [61] analyzed bilateral bargaining with one-sided un-

certain deadlines. In this chapter, we consider the uncertain information about the

reserve price of an agent while assuming complete information about other negotia-

tion parameters. As in most related work, we consider the negotiation over a single

issue, price of a good. However, our analysis can be easily extended to the multi-

attribute negotiations in which the attributes are negotiated simultaneously [61].

The next chapters of this thesis will consider more realistic negotiation problems

and will present heuristic based negotiation strategies and also protocols.
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CHAPTER 5

STRATEGIC AGENTS FOR MULTI-RESOURCE

NEGOTIATION

This chapter investigates automated negotiation in resource allocation among

resource providers (sellers) and consumers (buyers), where consumer agents may re-

quire multiple resources to successfully complete their tasks. Therefore, consumer

agents may need to engage in multiple negotiations. If the multiple negotiations are

not all successful, consumers gain nothing. This is a simple form of multi-linked

negotiation where the resources are interrelated in the sense that, from the perspec-

tive of the overall negotiation, resources are dependent as an agent’s utility from

the overall negotiation depends on obtaining overall agreements on all the resources.

This chapter presents the design and implementation of agents that concurrently

negotiate with other entities for acquiring multiple resources.

5.1 Background

In electronic commerce markets where selfish agents behave individually, agents

often have to acquire multiple resources in order to accomplish a high level task with

each resource acquisition requiring negotiations with multiple resource providers.

Such scenarios widely exist in practical applications. For example, a complex task
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may need several robots to work together and the absence of any robot results in

the failure of the task. This is a simple form of multi-linked negotiation where the

resources are independent but are interrelated. Resources are independent in the

sense that there is no dependence between different resources, i.e., acquiring one

resource doesn’t constrain how the other resources are acquired. However, from

the perspective of the overall negotiation, resources are dependent as an agent’s

utility from the overall negotiation depends on obtaining overall agreements on all the

resources. The negotiation problem in this chapter has the following three features:

1. When acquiring multiple resources, a consumer agent only knows the reserve

price available for the entire set of resources, i.e., the highest price the agent

can pay for all the resources, rather than the reserve price of each separate

resource. In practice, given a plan and its resource requirements, an agent

can easily decide the reserve price for all the resources in that plan based on

the overall worth of the task. However, it is difficult (even impossible) for a

resource consumer to understand how to set the reserve price for each separate

resource. In fact, we show experimentally that it is undesirable to set a fixed

reserve price for an individual resource prior to beginning negotiations.

2. Agents can decommit from tentative agreements at the cost of paying a penalty.

Decommitment allows agents to profitably accommodate new tasks arriving

or new negotiation events. If these events make some existing contracts less

profitable or infeasible for an agent, that agent can decommit from those con-

tracts [121].
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3. Negotiation agents are assumed to have incomplete information about other

agents, for example, a buyer agent knows the distribution of the reserve price

of a seller agent and the number of trading competitors. However, an agent’s

negotiation status (the set of proposals it has received) and negotiation strategy

are its private information. For strategic reasons, a negotiation agent won’t

disclose such information during negotiation. During negotiation, negotiation

agents can quit negotiation at any time, even without notifying their trading

partners. When a buyer acquires multiple resources, it concurrently negotiates

with sellers to reach agreements for all the resources.

Currently, there are limited techniques based on auctions or independent negotia-

tions over single resources for performing the assembly of multiple resources required

by a task. A centralized approach such as reverse combinatorial auctions [42, 99]

requires a controlling agent (the auctioneer) for determining which agents receive

which resources based on the bids submitted by individual agents. However, the

auctioneer may face significant computational overload due to a large number of

bids with complex structure. Assume that each buyer runs a reverse combinatorial

auction, each seller may participate in multiple auctions as there are multiple buyers

requiring its resource. It’s difficult for each seller to derive its optimal bids for all

the concurrent auctions. An alternative approach is that each buyer (seller) submits

its resource requirement (supply) to a super agent and the super agent runs auctions

for all the buyers (sellers). However, it may be difficult to find such an auctioneer

agent that selfish agents can trust and can comply with the decisions made by the

auctioneer. Moreover, in dynamic environments that resource supply and demand
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arrive randomly, it is very difficult for the auctioneer to decide optimally when to run

auctions. In our distributed approach, allocations emerge as the result of a sequence

of distributed negotiations and each selfish agent acts on behalf of itself. An agent

can negotiate with other agents when needed. The distributed model is also more

suitable for the situation when the needed resources are from multiple electronic mar-

ketplaces (i.e., no centralized auction is possible), and more natural in cases where

resources belong to different selfish agents and finding optimal allocations may be

(computationally) infeasible. We feel it is key that the acquisition of multiple re-

sources necessary is seen as an integrated process in which the results/status of any

one negotiation affects all other negotiations.

Because resource providers and consumers may have different goals, preferences,

interests, and policies, the problem of negotiating an optimal allocation of resources

within a group of agents has been found to be intractable both in terms of the

amount of computation [45] and communication needed [47]. The multi-resource ne-

gotiation studied in this chapter is even more complex due to the possibility of agents’

decommiting from previously made agreements. An agent’s bargaining position in

each round is determined by many factors such as market competition, negotiation

deadlines, current agreement set, trading partners’ proposals, and market dynamics.

During each round of negotiation, an agent has to make decisions on how to proceed

with each negotiation thread and there are many possible choices for each decision

based on a variety of factors. Thus, it is difficult to construct an integrated framework

in which all these factors are optimized concurrently. Rather than explicitly modeling

these inter-dependent factors and then determining each agent’s best decisions by an
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intractable combined optimization, this work tries to connect those inter-dependent

factors indirectly and develops a set of heuristics to approximate agents’ decision

making during negotiation. The distinguishing feature of negotiation agents in this

chapter is their flexibility; they can adjust 1) the number of tentative agreements for

each resource and 2) the amount of concession by reacting to i) changing market con-

ditions, and ii) the current negotiation status of all concurrently negotiating threads.

In our approach, agents utilize a time-dependent negotiation strategy in which the

reserve price of each resource is dynamically determined by 1) the likelihood that

negotiation will not be successful (conflict probability), 2) the expected agreement

price of the resource, and 3) the expected number of final agreements given the set

of tentative agreements made so far. The negotiation deadline of each resource is

determined by both its scarcity and the overall deadline for the entire negotiation. A

buyer agent can make more than one tentative agreement for each resource and the

maximum number of tentative agreements is constrained by the market situation in

order to avoid the agent’s making more agreements than necessary.

Our work here is connected to several lines of research in agent-mediated ne-

gotiation including multi-issue negotiation (e.g., [49, 50, 51, 80, 81, 82, 130, 133]),

one-to-many negotiation [13, 14, 28, 96, 97, 106], negotiation strategies (e.g., [48, 78,

124, 125, 127]), and decommitment (e.g., [5, 98, 121]). This chapter presents the

first design of negotiation agents in dynamic and uncertain environments in which

1) a consumer negotiates for multiple resources and its negotiation fails if it fails to

get some resources, and 2) agents can choose to decommit from existing agreements

within a fixed period. This research is intellectually challenging because of both the
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complex interactions among concurrent negotiations for multiple resources and the

uncertainty associated with the outcome of these negotiations. This research pro-

vides a deep understanding of the influence of sophisticated negotiation mechanisms

on individual agents’ performance in dynamic environments, and hence contributes

to the construction of effective problem-solving approaches in open environments.

The proposed approach can be used for designing negotiation agents in many practi-

cal applications like service composition [105], grid resource management [126], and

supply chain [138].

5.2 Negotiation mechanism

5.2.1 Assumptions

We make the following assumptions about agents’ knowledge and strategies:

1) Agents have incomplete information about each other. The assumption of

incomplete information is intuitive because in practice, agents have private informa-

tion, and for strategic reasons, they do not reveal their strategies, constraints, or

preferences. In [109, p.54], it was noted that the strategy of a trading agent cor-

responds to its internal program, and extracting the true internal decision process

would be difficult. Moreover, when selfish agents have competing interests, they may

have incentive to deviate from protocols or to lie to other agents about their pref-

erences. This chapter assumes that 1) agents know the number of trading partners

and competitors and 2) the distributions of trading partners’ reserve price. The as-

sumption that the number of trading partners is known is less restrictive or similar

to the assumptions in most related work (e.g., [50, 87, 96, 97, 98]). We consider both
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assumptions are realistic in practice. For example, consider the streaming process-

ing system CLASP [27], in which each resource provider (consumer) always posts

its resource supply (requirement). Further, the distribution of trading partners’ re-

serve prices can be learned as a result of repeated interaction with agents in the

marketplace. We explored the sensitivity of these assumptions in the experiment

section.

2) A consumer agent negotiates over multiple resources in parallel and, for each

resource, the agent concurrently negotiates with its trading partners. Given that the

buyer doesn’t know how to appropriately set the reserve price of each of its resources,

one approach that requires no prior knowledge of the marketplace about current re-

source scarcity and expected competition of a specific resource is for a consumer to

negotiate over all the resources in parallel. For each resource, there are multiple

trading partners and the agent concurrently negotiates with all the trading partners.

Therefore, each negotiation thread of one resource has multiple concurrently exist-

ing outside options. Generally, a buyer obtains more desirable negotiation outcomes

when it negotiates concurrently with all the sellers in competitive situations in which

there is information uncertainty and there is a deadline for the negotiation to com-

plete [96, 97]. Additionally, inefficiency may arise in sequential negotiation when

considering the overall time cost to complete all the necessary negotiations [51].

5.2.2 The Negotiation Problem

All the analysis in this chapter is from the perspective of a randomly selected

buyer a (see Figure 5.1). Let I = {I1, I2, . . . , Il} be the set of resources needed by

a and τ be a’s negotiation deadline. Let a negotiation period of a be denoted by t,
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Buyer a … … 

Resource Il

Sellers for resource I1

Resource I1

Sellers for resource Il

Figure 5.1. Buyer a’s multi-resource negotiation problem

t ∈ {0, 1, . . . , τ − 1}. For resource Ij, a has a set T P t
j of trading partners (sellers)

at round t. Also, a has a set CP t
j of trading competitors (buyers) for resource Ij at

round t. φt
a→s is the proposal of a to its trading partner s ∈ T P t

j at round t. φt
s→a

is the proposal of seller agent s to a at round t. RP and IP are respectively, the

reserve price (maximum amount of money a can spend) and the desirable price of a

before negotiation begins, respectively. IPj is a’s initial proposal price for resource

Ij , i.e., φ0
a→s, and it follows that

∑

j IPj = IP . RP t is a’s reserve price for all

negotiating resources It at round t. Once a tentative agreement (defined below) for

Ij becomes a final agreement, a doesn’t need further negotiation about Ij . Therefore,

It ⊆ It−1 ⊆ I.
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An agent can decommit from an agreement within λ rounds after the agreement

has been made. Assume a makes an agreement Ag about resource Ij with agent s

at round Tm(Ag) = t and the agreement price is Prc(Ag). Assume a decommits

from the agreement Ag at round t′ where t′ − Tm(Ag) ≤ λ. The penalty of the

decommitment is defined by ρ(Prc(Ag), t, t′, λ). This chapter assumes that 1) penalty

functions are nonnegative, continuous, and nondecreasing with time and agreement

price, and 2) the maximum penalty is less than the agreement price. Therefore, if

an agent makes unnecessary agreements for a resource, it will decommit from these

unnecessary agreements. An example of such a penalty function is 0.1× Prc(Ag)×
(

(t′ − t)/λ
)ς

where ς > 0.

Penalties could be different from one resource to another resource. If the two

parties decommit at the same time, they don’t need to pay a penalty to each other.

An agreement made in the bargaining process is called a tentative agreement and

it becomes a final agreement if neither party decommits from the agreement in

the λ rounds after the agreement was made. Agent a needs to fulfill all its final

agreements, i.e., a needs to pay for all final agreements, even through it needs only

one final agreement for each resource. a tries to make agreements for all its resources

and a gains nothing if it fails to make an agreement for any resource in I, no matter

how many and how good the agreements for other resources are. In other words,

a requires a set of resources and only receives a positive utility if it acquires all of

them, and zero otherwise. This assumption makes sense in some practical domains

like some supply chain or Grid applications where the failure of one step (or one

sub-task) will result in the failure of the whole task. The utility function of a when
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a makes at least one final agreement for each resource is defined as:

ua = RP −
∑

Ij∈I

∑

Ag∈FAGτ+λ
j

Prc(Ag) +
τ+λ
∑

t=0

(

ρtin − ρtout
)

where τ + λ is the maximum period that a was involved in negotiation and decom-

mitment, FAGτ+λ
j is the set of final agreements for resource Ij at τ + λ, ρtout is the

penalty a pays to other agents at t when it decommits, and ρtin is the payment of

penalty a receives from other agents at t if they decommit.

If a fails to make a final agreement for at least one resource, a gains nothing and

its utility is defined as:

ua = −
∑

Ij∈I

∑

Ag∈FAGτ+λ
j

Prc(Ag) +
τ+λ
∑

t=0

(

ρtin − ρtout
)

In this case, a does not get the value RP since its task cannot be completed and

thus its utility may be negative. Its only “income” in this case is the penalty received

from its trading partners.

5.2.3 The Negotiation Protocol

As agents can choose to decommit from agreements, negotiation consists of a

bargaining stage and a decommitment stage for each negotiation thread. This work

adopts the well known alternating offers protocol (see [111, p.100]) so that a pair of

buyer and seller agents in a negotiation thread bargain by making proposals to each

other. At each round, one agent makes a proposal first, then the other agent has
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three choices in the bargaining stage: 1) accept the proposal, 2) reject the proposal,

or 3) make a counter proposal. For ease of analysis, this work assumes that buyers

always propose first to sellers during negotiation. Many buyer-seller pairs can bargain

simultaneously since each pair is in a negotiation thread. If the seller accepts the

proposal of the buyer, negotiation terminates with a tentative agreement. If the

seller rejects the proposal of the buyer, negotiation terminates with no agreement.

If the seller makes a counter proposal, bargaining proceeds to another round and

the buyer can accept the proposal, reject the proposal, or make a counter proposal.

Bargaining between two agents terminates 1) when an agreement is reached or 2)

with a conflict (i.e., no agreement is made) when one of the two agents’ deadline is

reached or one agent quits the negotiation. After a tentative agreement is made, an

agent has the opportunity to decommit from the agreement and the decommiting

agent pays the penalty to the other party involved in the decommited agreement.

5.2.4 The Negotiation Strategy

An agent’s negotiation strategy is a function from the negotiation history to its

actions at each negotiation round [109]. An agent a’s negotiation strategy can be

represented as a sequence of functions fa = {f t
a}
∞
t=0, where f t

a is a’s strategy at

round t. As the agent is negotiating for multiple resources and there are multiple

negotiation threads for each resource, the agent’s negotiation strategy f t
a specifies

for the agent what to do at round t for each of the active negotiation thread. For

each trading partner s, the agent a has four choices: 1) accept the proposal by s, 2)

reject the proposal by s, 3) make a counter proposal to s in the bargaining stage, or

4) decommit from the agreement between a and s in the decommitment stage.
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A strategy profile F = (fa, fT P , fCP) is a collection of strategies, one for each

agent, where fT P and fCP are the strategies for a’s trading partners and trading

competitors, respectively. Let ℑ : F → O be a social choice function which de-

termines the negotiation result given the negotiation strategies F of all the agents.

Given the strategy profile of all the agents, game theory has been widely applied in

analyzing the equilibria of bargaining models (e.g., Nash equilibria, Sub-game perfect

equilibria, Sequential equilibria) [100]. The analytic complexity of equilibrium anal-

ysis increases rapidly when more elements (e.g., deadline, outside options, bargaining

costs, market competition) and more agents are included in the model. As a result,

in most models, only one or two elements are considered. For example, Rubinstein

[111] studies a two-player sequential bargaining game in which bargaining cost is

considered. The latest advance in computing sequential equilibrium strategies only

considers a bilateral bargaining model in which one agent has incomplete information

about the deadline of the other agent [61]. We take a set of elements into account,

for example, deadline, outside option, market competition, multiple resources, and

decommitment. In addition, we are not assuming that agents have complete informa-

tion about the factors considered in our framework, which makes agents’ reasoning

even more difficult. Therefore, we feel that it is impractical to formally model the

complex interaction that occurs between the bargaining and decommitment nor the

interaction among multiple resources in the framework.

If we assume that each agent has information, which could be a probabilistic

distribution, about other agents’s strategies (i.e., fT P and fCP), the optimization

problem of agent a is to find the optimal negotiation strategy f ∗a from the set Fa of
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possible negotiation strategies:

f ∗a = argmaxfa∈Fa
ua
(

ℑ(fa, fT P , fCP)
)

where ua(ℑ(fa, fT P , fCP)) is a’s utility of the negotiation result ℑ(fa, fT P , fCP).

Agent a’s optimization problem at each negotiation round t can be formulated as

a Markov Decision Process (MDP) < S,A, P,R > where the state set S can be

characterized by the market situation (e.g., the number of buyers or sellers, the

agreement set of each buyer or seller), action set A consists of all the actions each

agent can choose (e.g., a counter-proposal including the price, or decommitment de-

cision), transition function P is determined by agents’ negotiation strategies and the

change of market with time, reward function R is based on the utility each agent

can gain from a specific state. As the action space A is infinite, solving the MDP

problem could be computationally intractable [22]. Moreover, as stated before, it’s

impractical to assume that agents have information about other agents’ negotiation

strategies. For strategy or privacy reasons, an agent is unwilling to broadcast its

decisions.

Given that 1) it’s hard (even impossible) to compute agents’ equilibrium strate-

gies, and 2) it’s not appropriate to assume that a knows other agents’ negotiation

strategies, this chapter presents a set of heuristics for agents to make negotiation de-

cisions at each negotiation round. The set of heuristics consider many relevant issues

such as the risk that their negotiation partners may decommit (and therefore the fact

that ideally a buyer needs to secure more than one agreement for any given resource),

the competition that buyers face from other buyers, uncertainty about the reserve
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prices of their trading partners, multiple opportunities of reaching an agreement, the

set of available tentative agreements, deadline, and negotiation history.

5.3 Heuristics based Strategies

Agent a has l resources to acquire, and for each resource, a conducts multi-

threaded negotiation with a set of trading partners. For each negotiation thread

associated with the acquisition of a resource, a needs to decide 1) what is its proposal

during the bargaining stage and 2) when and whether to decommit from an agreement

in the decommitment stage.

5.3.1 An overview of negotiation strategies

Algorithm 3 gives an overview of a’s strategy during the bargaining stage and

the decommitment stage.

At round t = 0, a needs to make an initial proposal IPj to each trading partner s.

During each later round (t > 0), a will always first update its information structures

(see Algorithm 4). First, if another agent decommits from an agreement, then remove

the agreement from the tentative agreement set. Second, if another agent sends a

message indicating rejection of the current proposal, the corresponding negotiation

thread terminates. If another agent accepts a proposal, then add the agreement to

the tentative agreement set. If one tentative agreement becomes a final agreement (no

decommitment allowed) for the resource Ij as the negotiation moves to a new round,
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Table 5.1. Symbols used in this chapter

τ deadline of agent a

Ij resource j

RP reserve price for all resources

IP desirable price for all resources

IPj initial proposal for resource Ij

τ tj deadline of agent a for resource Ij at round t

It the set of resources at round t

T P t
j the set of partners (sellers) about Ij at round t

CP t
j the set of competitors (buyers) about Ij at round t

φt
a→s a’s proposal to s at round t

P t
j a’s trading partners’ proposals about Ij at round t

RP t a’s reserve price for all negotiating resources at round t

RP t
j a’s reserve price for resource Ij at round t

T AGt
j a’s set of tentative agreements for resource Ij at round t

FAGt
j a’s set of final agreements for resource Ij at round t

Prc(Ag) price of the agreement Ag

Tm(Ag) time when the agreement Ag was made

ρtout the penalty a pays to other agents at round t

ρtin the payment of penalty a receives at round t

Ct
j the scarcity of resource Ij at t

RCt
j the relative scarcity of resource Ij at t

δtj the concession rate with respect to resource Ij at round t

χt
j the conflict probability of the negotiation for Ij at t

̟t
j the expected agreement price of resource Ij at t

ωt
s(Ag) the probability of s’s decommiting from Ag at t

ϕ(T AGt
j) the expected number of final agreements given T AGt

j

γ(T AGt
k) model how ϕ(T AGt

j) affects the offering price

169



then a will decommit from all tentative agreements about Ij, stop all negotiation

threads for Ij , and remove Ij from It.1

Next a computes the negotiation deadline τ tj for each resource Ij ∈ It (Sec-

tion 5.3.2) and generates a proposal φt
a→s to each trading partner s ∈ T P t

j (Sec-

tion 5.3.3). If φt
a→s < φt−1

s→a (i.e., s’s last proposal is not acceptable), then a sends the

proposal φt
a→s to s directly. Otherwise, it adds < φt−1

s→a, t > into tentative agreement

set T AGt
j.

For resource Ij , a checks whether the current set of agreements are sufficient. If

the current set of agreements is more than needed, a recursively removes agreements

from the tentative agreement set (Section 5.3.4). Assume that Ag needs to be re-

moved and the trading partner in the agreement Ag is seller s. If Ag ∈ T AGt−1
j ,

then a decommits from the agreement. If Ag is not in T AGt−1
j , the agreement Ag

has been just added to T AGt
j by a at time t but the seller involved in the agreement

hasn’t received the “accept” message from a. Although a doesn’t intend to make

the agreement Ag and a can quit the negotiation with s, it’s better for a to continue

the negotiation with s and try to get better agreements than an agreement in the

current tentative agreement set T AGt
j . Therefore, a removes Ag from T AGt

j and

1The only additional value that can be achieved by keeping alive any future negotiation is the
possibility that a trading partner is likely to decommit. In this case, it would be profitable to delay
decommitment and thus the agent does not need to pay the decommitment penalty but receives
the penalty from its trading partner. However, since each buyer does not know whether a seller
will decommit from an agreement and the penalty increases with time, the buyer may have to
pay a higher penalty if it has to decommit before the unnecessary tentative agreement becomes
a final agreement. We evaluated the benefit of delaying decommitment through experimentation
and found that delaying decommitment did not increase the buyer’s average utility. In the current
implementation, we do not take this into account.
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sends s a proposal with lower price than the price in the agreement Ag. Finally, if

an agreement Ag is contained in T AGt
j but is not in T AGt−1

j , then a sends an accept

proposal to the corresponding seller involved in the agreement Ag.

The overall negotiation process will terminate if 1) the deadline is reached, or 2) a

makes a final agreement for each resource Ij, or 3) |T AGt
j | = 0 for some Ij at t ≥ τ tj ,

which means it no longer makes any sense for a to make any other agreements.

This work assumes that a buyer agent always offers the same price to all trading

partners of one resource. Formal analysis of concurrent negotiation [7] suggests that

it is an agent’s dominant strategy to make the same offer to all trading partners.

While this chapter considers more complex negotiation, it is still intuitive to not

make price discrimination proposals for the same resource. While making an offer, a

buyer hopes that the offer would be accepted. If there are two offers which have the

same probability of being accepted, the buyer will choose the offer with the lower

price.

5.3.2 Different deadlines for different resources

The number of buyers and sellers for different resources varies. A resource is

easy to obtain if the number of sellers is much larger than the number of buyers.

In contrast, if there are more buyers and less sellers, the resource is relatively dif-

ficult to obtain since the resource seems “scarce” in terms of the ratio of supply

to demand. The intuition behind using different negotiation deadlines for different

resources is based on the following scenario: a makes an agreement about a scarce

resource Ij before the deadline approaches. However, the other party involved in the

agreement later decommits from the agreement. Then, the overall negotiation fails
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Algorithm 3: Negotiation Strategy of Agent a

Data Structure: Tentative agreement set T AGt
j , final agreement set FAGt

j ,
sellers’ proposal set for each resource Ij at round t.
Output: Final agreement set FAGt

j for each Ij

1: Initial proposing: Let t = 0 and propose IPj to every trading partner s about
Ij .

2: repeat
3: t++;
4: It = It−1;
5: T AGt

j = T AGt−1
j , FAGt

j = FAGt−1
j for Ij ∈ It;

6: Step 1: initialization (Algorithm 2)
7: Step 2: deadline calculation (Section 5.3.2)
8: Step 3: proposal generation (Section 5.3.3)
9: Step 4: meet the agreement number constraint (Section 5.3.4)

10: Step 5: send left proposals
11: until 1) t ≥ τ + λ, or 2) |FAGt

j| > 0 for each Ij , or 3)|T AGt
j | = 0 for some Ij

at t ≥ τ tj

as it’s difficult for agent a to get another agreement for the scarce resource Ij in the

remaining time and thus a needs to pay the penalty for its other agreements. To

decrease the possibility of this situation happening, we can reduce the deadlines of

scarce resources to increase the likelihood that we have a final agreement for those

resources in place before the overall negotiation deadline. In other words, we would

like to quickly secure one final agreement for a scarce resource. On one hand, by

decreasing one resource’s artificial deadline, a is inclined to make larger concessions

to its trading partners and thus its probability of making a final agreement for the

resource increases. On the other hand, if it’s difficult for a to make a final agree-

ment for one resource, a can know this earlier. Thus a can pay less decommitment

penalties by decommiting from agreements earlier as penalties increase with time.
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Algorithm 4: Initialization

1: for each Ij ∈ It do
2: for each s ∈ T P t−1

j do
3: if φt

s→a=“decommit from Ag” then
4: remove Ag from T AGt

j

5: else
6: if φt

s→a=“reject” then
7: remove s from T P t

j

8: end if
9: else

10: if φt
s→a=“accept” then

11: add < φt−1
s→a, t > into T AGt

j

12: end if
13: end if
14: end for

15: for each Ag ∈ T AGt
j do

16: if t− Tm(Ag) > λ then
17: remove Ag from T AGt

j and add it to FAGt
j

18: end if
19: end for
20: if |FAGt

j| > 0 then
21: decommit from all agreements in T AGt

j, stop all negotiation threads for Ij,
and remove Ij from It.

22: end if
23: end for

However, the determination of this virtual deadline for scarce resources is a dynamic

process which can either decrease or increase the deadline as conditions change in

the future.

The scarcity of a resource Ij is evaluated based on the competition situation of

the negotiation over resource Ij. A negotiator’s bargaining “power” is affected by the

number of competitors and trading alternatives. Multiple options give a negotiator

more “power” since the negotiating party needs not pursue the negotiation with
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any sense of urgency. The competition situation of an agent is determined by the

probability that it is considered as the most preferred trading partner [127]. An

agent’s preferred trading partner refers to the one who makes the best proposal to

the agent. a has CP t
j competitors and T P t

j partners. While it’s impossible for a to

compute exactly the probability that it is considered as the most preferred trading

partner since a doesn’t know other agents’ negotiation strategies, the probability

can be approximated in the following way. The probability that a is not the most

preferred trading partner of any trading partner is CP t
j/(CP

t
j+1). The probability of

the agent a not being the most preferred trading partner of all the trading partners

is approximated by

Ct
j =

( CP t
j

CP t
j + 1

)T Pt
j

Ct
j measures the scarcity of resource Ij at t. With more trading partners, it

is relatively less difficult to acquire the resource and Ct
j will decrease. With more

trading competitors, it is relatively more difficult to acquire the resource and Ct
j will

increase.

If resource Ij is scarce and the other resources are not scarce, it’s reasonable to

decrease Ij ’s deadline in order to decrease the probability that the overall negotiation

fails due to the failure of the negotiation about resource Ij. However, if all the

desired resources are scarce, it may not be necessary to decrease the deadline of all

the resources. In other words, whether to decrease the deadline of the resource Ij

may not depend on the absolute scarcity of the resource, but rather its “relative

scarcity”. The relative scarcity of the resource Ij is defined as the ratio of the Ij’s

scarcity measure to the harmonic mean of the scarcity measure of all the resources:
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RCt
j =

Ct
j

|It|
∑

Ik∈It
1

Ct
k

=
Ct

j

∑

Ik∈It
1
Ct

k

|It|

Using harmonic mean, the scarcer resource dominates the deadline calculation,

which is close to the practice. Given the relative scarcity of each resource Ij ∈ It,

the deadline of resource Ij at time t is given as follows

τ tj =











τ if RCt
j < 1

(RCt
j)

̺τ if RCt
j ≥ 1

where ̺ < 0. If the resource Ij is not scarce as compared with most resources, the

deadline for resource Ij will be the deadline of the overall negotiation. Otherwise,

i.e., RCt
j ≥ 1, its deadline τ tj is smaller than τ as (RCt

j)
̺ < 1, and it can be found

that τ tj will decrease with the increase of RCt
j . That is, a relatively scarcer resource

will have a shorter deadline.

5.3.3 Generating proposals

Since bargaining is fundamentally time-dependent [78, 48], agents utilize a time-

dependent strategy when making concessions. Assume that a is negotiating with s

about resource Ij . Then, a’s proposal to s at round t is given by:

φt
a→s = IPj + (RP t

j − IPj)δ
t
j

where RP t
j is agent a’s current reserve price of resource Ij at round t and δ

t
j is agent

a’s concession rate with respect to resource Ij at round t, which is given by
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δtj = T (t, τ tj , ε) = (t/τ tj )
ε

With infinitely many values of ε, there are infinitely many possible strategies

in making concessions with respect to the remaining time. However, they can be

classified into: 1) Linear : ε = 1, 2) Conciliatory : 0 < ε < 1, and 3) Conservative:

ε > 1 [127]. ε reflects an agent’s mental state about its eagerness for finishing the

negotiation earlier [78, 48]. Before making proposals, a needs to decide its reserve

price RP t
j . To calculate RP t

j , we consider three factors: 1) the conflict probability χ
t
j

which measures the aspiration level of the current negotiation for resource Ij , 2) the

expected agreement price ̟t
j of resource Ij, and 3) the expected number ϕ(T AGt

j)

of final agreements based on the estimation of the decommitment probabilities of the

current tentative agreement set. Function γ(T AGt
k) is used to model the effect of

the expected number ϕ(T AGt
j) of final agreements.

RP t
j is defined as:

RP t
j = RP t

χt
j̟

t
jγ(T AGt

j)
∑

Ik∈It
χt
k̟

t
kγ(T AGt

k)

where RP t= RP −
∑

Ij∈I

∑

Ag∈FAGtj
Prc(Ag) +

∑t−1
t=0(ρ

t
in − ρtout) is agent a’s reserve

price for all resources at round t, i.e., the maximum amount of money that it can

spend to acquire all the remaining resources. We can see that the reserve price RP t
j

increases with the increase of the conflict probability χt
j and expected agreement

price ̟t
j. If the current negotiation for resource Ij seems difficult, a needs to set a

higher reserve price for resource Ij. Similarly, a needs to set a higher reserve price for

resource Ij if the expected agreement price for resource Ij is high. Later we will show
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that γ(T AGt
j) decreases with the increase of ϕ(T AGt

j). Thus, the reserve price RP t
j

decreases with the increase of the expected number ϕ(T AGt
j) of final agreements,

which is intuitive as buyers don’t need to set a higher reserve price for a resource Ij

when a has already made enough tentative agreements for Ij .

Conflict probability χt
j : Suppose that at round t, a’s last proposal φt−1

a→s gen-

erates a utility of va for itself and vs for s, and its trading partner s’s proposal φt−1
s→a

generates a utility of ws for itself and wa for a. Since a and s are utility maximizing

agents, va > wa and vs < ws. If a accepts s’s last proposal, then it will obtain wa

with certainty. If a insists on its last proposal and 1) s accepts it, a obtains va and

2) s does not accept it, a may be subjected to a conflict utility ca. ca is the worst

possible utility for a (i.e., a’s utility in the absence of an agreement with s). If s does

not accept a’s last proposal, a may ultimately have to settle with lower utilities (the

lowest possible being the conflict utility), if there are changes in the market situation

in subsequent cycles. For instance, a may face more competitions in the next or

subsequent cycles and may have to ultimately accept a utility that is lower than wa

(even ca). If the subjective probability of obtaining ca is pc (conflict probability)

and the probability that a achieving va is 1 − pc, and if a insists on holding its last

proposal, a will obtain a utility of (1 − pc)va + pcca. Hence, a will find that it is

advantageous to insist on its last proposal only if

(1− pc)va + pcca ≥ wa

i.e., pc ≤ (va − wa)/(va − ca) [124, 125, 127]. The maximum value of pc = (va −

wa)/(va − ca) is the highest probability of a conflict that a may encounter in which
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va = RP t
j −φ

t−1
a→s and wa = RP t

j −φ
t−1
s→a. pc is a ratio of two utility differences. While

va − wa measures the cost of accepting the trading agent’s last proposal, va − ca

measures the cost of provoking a conflict. va − ca represents the range of possible

values of utilities between the best case utility and the worst case (conflict) utility.

If there is no tentative agreement for resource Ij, i.e., |T AGt
j| = 0, the worst case

utility ca is 0. If |T AGt
j | > 0, a can use one of its tentative agreements as the finally

agreement and ca is defined as

max
Ag∈T AGtj

(

RP t
j − Prc(Ag)− Pnt(T AGt

j −Ag, t, λ)
)

where Pnt(T AG, t, λ) is an estimation of the penalty a needs to pay while decom-

miting from the set of agreements T AG. Pnt(T AG, t, λ) is defined as

∑

Ag∈T AG

∑Tm(Ag)+λ
t′=t ρ(Prc(Ag),Tm(Ag), t′, λ)

Tm(Ag) + λ− t + 1

in which any agreement Ag ∈ T AG can be decommited at any time before the

decommitment stage expires.

Aggregated Probability of Conflict : Let pic be the conflict probability of a with

any of its trading partner s and wi
a be a’s utility if it accepts s’s proposal, then the

aggregated conflict probability of a with all of its trading partners about Ij is given

as follows [124, 125, 127]:

χt
j =

|T Pt
j |

∏

i=1

pic =

|T Pt
j |

∏

i=1

va − wi
a

va − ca
=

∏|T Pt
j |

i=1 (va − wi
a)

(va − ca)
|T Pt

j |
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Expected agreement price ̟t
j : Different resources have different ranges of

agreement prices. For example, you may need to spend $20,000 for a car but only need

$500 for a bike. Therefore, it’s necessary to consider a resource’s expected agreement

price ̟t
j while determining the reserve price of the resource. ̟t

j is computed based on

agent a’s estimation of the reservation price of a trading partner. The estimation is

characterized by a probability distribution Fs(.), where Fs(y) denotes the probability

that the reservation price of a trading partner s is no greater than y. Fs(y) is

identical and independent across all sellers.2 This probability distribution is the

prior belief of the buyer. For simplicity, let Fj(y) = Fs(y) denote the probability

that the reservation price of any trading partner s ∈ T P t
j is no greater than y. The

probability density function of Fj(y) is denoted by fj(y). The desirable price IPj for

resource Ij is simply computed by considering sellers’ reserve price for resource Ij :

IPj =
∫∞

−∞
fj(y)ydy.

Let F k
j (y) be the probability distributions of the kth highest maximum reserve

price. The probability density function of F k
j (y) is denoted by fk

j (y). F
1
j (y) is equal

to the product of the probabilities that the maximum reserve price is less than or

equal to y in each thread. F 2
j (y) is equal to F 1

j (y) plus the probability that the

highest maximum reserve price is greater than y, and the second highest maximum

reserve price is less than or equal to y. These probabilities can be calculated by the

following formulas:

2Our model can also be extended to allow Fs(y) to be different for different trading partners.
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F 1
j (y) =

(

Fj(y)
)|T Pt

j |

F 2
j (y) = F 1

j (y) + C1
|T Pt

j |

(

1− Fj(y)
)2−1(

Fj(y)
)|T Pt

j |−1

F k
j (y) = F k−1

j (y) + Ck−1
|T Pt

j |

(

1− Fj(y)
)k−1(

Fj(y)
)|T Pt

j |−k+1

The corresponding probability density functions are:

f 1
j (y) = |T P t

j|
(

Fj(y)
)|T Pt

j |−1

f 2
j (y) = f 1

j (y)− C1
|T Pt

j |
fj(y)

(

Fj(y)
)|T Pt

j |−1 + C1
|T Pt

j |

(|T P t
j | − 1)fj(y)

(

1− Fj(y)
)2−1(

Fj(y)
)|T Pt

j |−2

fk
j (y) = fk−1

j (y)− Ck−1
|T Pt

j |
(k − 1)fj(y)

(

1− Fj(y)
)k−2(

Fj(x)
)|T Pt

j |−k+1

+ Ck−1
|T Pt

j |
fj(y)

(

1− Fj(y)
)k−1(

Fj(y)
)|T Pt

j |−k+1

We provide a heuristic approach to estimate the expected agreement price for

resource Ij. When the number of trading partners is less than the number of trading

competitors, the agreement price follows the highest maximum reserve price distribu-

tion. Otherwise, the agreement price follows a lower reserve price distribution. This

is also the case with less trading competitors. The intuition behind the heuristic is

as follows. Consider the single-shot negotiation between buyers and sellers in which

buyers make offers first and then sellers decide whether to accept or not. If there is

no competitors, the equilibrium offer of the buyer a is sellers’ lowest reserve price.

If there is one competitor, the equilibrium offer of the buyer a is the second lowest
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reserve price. In the same way, if there are |CP t
j | competitors, the equilibrium offer

is the (|CP t
j |+ 1)th lowest reserve price, i.e., (|T P t

j | − |CP t
j|)

th highest reserve price.

Since in our model buyers don’t know sellers’ exact reserve prices, distributions are

used instead. Formally, ̟t
j is given as follows:

̟t
j =











∫∞

−∞
f
|T Pt

j |−|CP
t
j |

j (y)ydy if |T P t
j | > |CP t

j |
∫∞

−∞
f 1
j (y)ydy if |T P t

j | ≤ |CP t
j|

where ȳ is the upper bound of the possible reserve price for resource Ij. The above

estimation is “conservative” in the sense that we assume that agent a is less com-

petitive than its trading competitors.

γ(T AGt
j) models how the current set T AGt

j of agreements will affect agent a’s

reserve price for resource Ij at round t. a will set a lower reserve price if it has

made more agreements. Since current agreements may be decommited in the future.

Rather than considering the number |T AGt
j | of agreements having already made,

it’s more prudent to use the expected number of final agreements, which can be

computed based on the decommitment probabilities of agreement set T AGt
j . The

decommitment probability of an agreement Ag ∈ T AGt
j between a and s is approx-

imated by considering the competition situation of negotiation over resource Ij and

s’s satisfaction about the agreement Ag.

The competition situation of negotiation over resource Ij is evaluated by the

probability that the agent s is not the most preferred trading partner is [(T P t
j −

1)/T P t
j]
CPt

j+1 [124, 125, 127]. s’s satisfaction about the agreement Ag is estimated

by the probability that the agreement is no worse than the trading partner’s reserve
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price. The price of the agreement Ag ∈ T AGt
j is Prc(Ag), s’s satisfaction about the

agreement Ag is Fj(Prc(Ag)).

Hence, the approximation of the probability of s’s decommiting from agreement

Ag ∈ T AGt
j is defined as:

ωt
s(Ag) = ϑ×

(

1−
(T P t

j − 1

T P t
j

)CPt
j+1)(

1− Fj(Prc(Ag))
)

For the tentative agreement set T AGt
j, the expected number of final agreements

is ϕ(T AGt
j) =

∑

Ag∈T AGtj
(1− ωt

s(Ag)). Given ϕ(T AGt
j), buyer a can determine how

it will affect the reserve price about resource Ij at round t. γ(T AGt
j) decreases with

the increase of ϕ(T AGt
j) and can be defined as:

γ(T AGt
j) =

1
(

1 + ϕ(T AGt
j)
)2

5.3.4 Maximum number of final agreements

Since trading partners may decommit from agreements, a may need to make

more than one tentative agreement for resource Ij . Then, how many agreements are

enough for the resource Ij? For an agreement Ag between a and a trading partner s,

s may be inclined to decommit if there are many buyers requesting the resource. On

the other hand, s may be inclined to decommit if the agreement price is not favorable

from s’s perspective. Here we provide an approach to decide the maximum number

of agreements a can make on resource Ij at round t based on the expected number

of final agreements. Given the expected number ϕ(T AGt
j) of final agreements about
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resource Ij at t, a needs to decide whether the tentative agreements is enough or

insufficient. If T AGt
j is more than needed, a may decommit from some agreements.

If the agreement set is insufficient, a will make more agreements if the negotiation

deadline hasn’t approached. This work assumes that a only needs to make one final

agreement for each resource. Therefore, by intuition, the most favorable result for

agent a is that a makes exactly one final agreement for each resource.

As a only needs one final agreement about resource Ij, if ϕ(T AGt
j) ≫ 1, only

part of the final agreements will be used by a, which corresponds to the tentative

agreement set T AG ⊂ T AGt
j. Maintaining the tentative agreement set T AG is

better than maintaining the tentative agreement set T AGt
j as in the later case, a

needs to pay more for redundant agreements. Therefore, it’s better for a to decommit

from some agreements in T AGt
j .

Let ϕt
j be the satisfactory number of final agreements about resource Ij at t

which represents the upper bound of the number of final agreements needed. Before

the deadline is reached, a has the opportunity to make more agreements and thus

reach one final agreement. Thus, the satisfactory number of final agreements about

resource Ij at t < τ is 1, ϕt
j = 1. After the negotiation deadline, a will determine

whether to decommit from any agreement T AGt
j for resource Ij at round τ ≤ t <

t + λ. Is it the best option for a to set the satisfactory number of final agreements

about resource Ij at t be 1? Consider the following scenario, at t, the expected

number of final agreements for resource Ij is 1 and the expected number of final

agreements about any other resource is close to 0, which implies that the negotiation

about other resources has a very high failure probability. If a sets ϕt
j to be 1, it’s
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with very high probability that a would need to decommit from all its agreements.

Therefore, a will not set a high ϕt
j value if ϕ(T AGt

k) is small for another resource

Ik. On the other hand, a will try to increase the probability of making one final

agreement for each resource as it’s desirable for a to make one final agreement for

each resource. Concerning above, ϕt
j is defined as:

ϕt
j =











1 if t < τ

minIk∈It ϕ(T AGt
k) if τ ≤ t < t + λ

If
∑

Ag∈T AGtj
(1−ωt

s(Ag)) < ϕt
j, a needs to make more agreements as the expected

number of agreements is less than ϕt
j. If

∑

Ag∈T AGtj
(1 − ωt

s(Ag)) > ϕt
j, a needs

to decommit from some agreements. Let the set of tentative agreement set after

removing unnecessary agreements be T AG. The optimization problem of computing

T AG is given by

min
T AG

∑

Ag∈T AGtj−T AG

ρ(Prc(Ag),Tm(Ag), t, λ)

where T AG satisfies
∑

Ag∈T AG(1− ωt
s(Ag)) ≤ ϕt

j.

Theorem 23. The optimization problem of removing redundant tentative agreements

is NP-complete.

Proof. We show that the problem is NP-complete by formulating the problem as a

0-1 Knapsack problem, which is well known to be NP-complete.
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Formal definition of 0-1 Knapsack problem: There is a knapsack of capacity c > 0

and N items. Each item has value vi > 0 and weight wi > 0. Find the selection

of items (δi = 1 if selected, 0 if not) that fit,
∑N

i=1 δiwi ≤ c, and the total value,

∑N
i=1 δivi, is maximized.

The set of tentative agreements T AGt
j = {Ag1, . . . , AgN} can be treated as items.

The value of each item Agi is defined as the penalty if a decommits from the agree-

ment, i.e., vi = ρ(Prc(Agi),Tm(Agi), t, λ). The weight of each item Agi is defined

as the probability that Agi will not be decommited by a’s trading partner, i.e.,

wi = 1− ωt
s(Agi). The capacity of the knapsack is defined as c = ϕt

j. δi = 1 implies

that Agi will be not decommited by agent a.

The constraint of the optimization problem can be rewritten as the exact con-

straint
∑N

i=1 δiwi ≤ c of the 0-1 Knapsack problem. The optimization formula can

be rewritten as

min

N
∑

i=1

(1− δi)vi =

N
∑

i=1

vi +min

N
∑

i=1

−δivi

which is equivalent to

max

N
∑

i=1

δivi

Thus, the optimization problem can be formulated as a 0-1 Knapsack problem

and it’s NP-complete.

A simple greedy approximation algorithm is used to compute the set of agree-

ments which will not be decommited by a (Algorithm 5) [44]: first sort all the ten-

tative agreements T AGt
j by decreasing ratio of penalty to probability that an agree-

ment will not be decommited by a’s trading partners, then greedily pick agreements
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Algorithm 5: Decommit from unnecessary agreements

Input: Tentative agreement set T AGt
j.

Output: Tentative agreement set T AGt
j satisfying the constraint of the

maximum number of final agreements.

1: Sort all the tentative agreements T AGt
j by decreasing ratio of ρ(Prc(Agi),

Tm(Ag), t, λ) to 1− ωt
s(Ag).

2: Set T AG = ∅, i = 1, and Ag be the ith agreement in T AGt
j .

3: while
∑

Ag′∈(T AG+Ag)(1− ωt
s(Ag

′)) ≤ ϕt
j do

4: Add Ag into T AG;
5: i++, and let Ag be the ith agreement in T AGt

j;
6: end while
7: return T AG

in this order (starting from the first agreement) until when adding a new agreement

will violate the constraint of the maximum expected number of final agreements. For

a removed agreement Ag ∈ T AGt
j , a decommits from the agreement; otherwise, a

sends the agent s a proposal worse than φt
s→a.

5.4 Empirical evaluation and analysis

In this section, we first detail the methodology for analyzing the performance of

the developed negotiation strategies. We then proceed to the actual empirical study

of the proposed strategies. Finally, some properties of our negotiation strategies are

analyzed.

5.4.1 The methodology

To evaluate the performance of negotiation agents, a simulation testbed consist-

ing of a virtual e-Marketplace, a society of trading agents and a controller was im-

plemented using JAVA. The controller generates agents, randomly determines their
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parameters (e.g., their roles as buyers or sellers, set of resources they provide or

acquire, initial prices, reserve prices, deadlines), simulates the entrance of agents to

the virtual e-Marketplace, and handles message passing and payment transfer.

5.4.1.1 Agent design

While there has been a lot of research in agent-mediated negotiation [70, 81, 90],

most work focuses either on bilateral multi-issue negotiation (e.g., [49, 50, 51, 80, 81,

82, 133]) or single issue one-to-many negotiation (e.g., [13, 14, 28, 96, 97, 106]). One

exception is [130] which studies concurrent one-to-many negotiations for multiple re-

sources. But in [130], an agent is assumed to know the reserve price of each resource.

Given that there is no existing negotiation agents dealing with our multi-resource

negotiation problem, for comparison reason, we implemented three other types of

buyers based on existing techniques for single resource negotiation and negotiation

with decommitment: 1) TDAs using a time-dependent strategy, 2) MTDAs using a

market based time-dependent strategy, and 3) ACMAs using an adaptive commit-

ment management strategy detailed in [130]. Experiments were carried out to study

and compare the performance of our buyer agents (HBAs, heuristic-based buyer

agents) with TDAs, MTDAs, and ACMAs.

TDAs, MTDAs and ACMAs adopt the strategy suggested by Nguyen and Jen-

nings [98] and make at most one tentative agreement for each resource. TDAs,

MTDAs and ACMAs use the same approach to determine the reserve price of each

resource and use existing single resource negotiation strategies for the negotiation

for each resource. The reserve price of resource Ij of each TDA (or MTDA and

ACMA) is determined by considering the distribution of the reserve price of resource
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Ij . Specifically, the reserve price of resource Ij is proportional to its average reserve

price. That is,

RP t
j = RP t

∫∞

−∞
fj(y)

∑l
i=1

∫∞

−∞
fi(y)

where l is the number of resources (i.e., issues) to acquire.

Similar to HBAs, TDAs, MTDAs and ACMAs generate proposals using a time-

dependent negotiation decision function [48], which is widely used for designing ne-

gotiation agents (e.g., [13, 14, 48, 51, 97, 98, 124, 125, 127, 130]). However TDAs,

MTDAs and ACMAs adopts different concession making strategies, i.e., they take

different ε values. As HBAs, TDAs adopt the linear concession strategy, i.e., ε = 1.

In contrast, MTDAs take market competition into account when making proposals.

An MTDA’s parameter ε for concession making is adjusted in the following way:

while the number of sellers are less than the number of buyers, an MTDA chooses

the conciliatory concession strategy by setting ε < 1. Otherwise, an MTDA uses

the conservative or linear concession strategy by setting ε ≥ 1. MTDAs’ adaptive

concession making strategy based on market competition has been shown to make

minimally sufficient concessions in single resource negotiation [125]. ACMAs use the

adaptive commitment management strategy used in [130] for each single resource

negotiation. Specifically, ACMAs use a fuzzy decision making approach for deriving

adaptive commitment management strategy profiles of buyers. The value of ε of a

resource is determined dynamically at each round using fuzzy rules.

Each seller agent in the market randomly chooses a negotiation strategy from the

set of alternations outlined in [48]: the time-dependent function (linear, conceder,

conservative) and the behavior-dependent function (e.g., tit-for-tat). Each seller
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Table 5.2. Experimental settings

Input Data Possible Values

Market Type Favorable Balanced unfavorable

supply/demand 10:1, 5:1, 2:1 1:1 1:2, 1:5, 1:10

Market Density Sparse Moderate Dense

No. of agents 6− 35 36− 65 66− 95

Deadline Short Moderate Long

Tmax 10− 30 35− 55 60− 80

Resources/job Lower range Mid-range High range

l 1− 3 4− 6 7− 9

agent can only make at most one tentative agreement and it will decommit from an

agreement if and only if it can benefit from the decommitment.

5.4.1.2 Experimental settings

In the experiments, agents were subjected to different market densities, market

types, deadlines, number of resources to acquire or sell, and supply/demand ratio

of each resource (see Table 5.2). Both market density and market type depend

on the probability of generating an agent in each round and the probability of the

agent being a buyer (or a seller). When the number of agents are in the range

of 6 − 35 (respectively, 36 − 65 and 66 − 95), the market is sparse (respectively,

moderate and dense). The lifespan of an agent in the e-market, i.e., its deadline, is

randomly selected from [10, 80]. The range of [10, 80] for deadline was adopted based

on experimental tuning and agents’ behaviors. In our experimental setting, we found

that: 1) for a very short deadline (< 10), very few agents could complete deals, and
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2) for a deadlines longer than 80, there was little or no difference in the performance

of agents. Hence, for the purpose of experimentation, a deadline between the range

of 10 − 30 (respectively, 35 − 55 and 60 − 80) is considered as short (respectively,

moderate and long). Each buyer may have different number of resources to acquire

through negotiation. The number of resources each job (or task) needs is randomly

selected from 1 to 9, where 1 − 3 (respectively, 4 − 6 and 7 − 9) is considered as

lower range (respectively, mid-range and upper range). The value of ε (eagerness)

is randomly generated from [0.1, 8] as it was found that when ε > 8 (respectively,

ε < 0.1), there was little or no difference in performance of agents.

Each resource’s demand (i.e., the number of buyers who want to buy the re-

source) may not be equal to its supply (i.e., the number of sellers who want to sell

the resource). If one buyer is negotiating for multiple resources, there are two sit-

uations: 1) All the resources have the same supply/demand ratio. From a buyer

agent’s perspective, for a favorable (respectively, an unfavorable) market, the supply

is much higher (respectively, lower) than the demand. 2) The resources have different

supply/demand ratios. Then the range and variance of resources’ supply/demand

ratios will affect agents’ performance. All our discussions of supply/demand ratio

implicitly assume that the supply/demand ratio of each resource is randomly chosen.

There are four kinds of buyers (i.e., HBA, TDA, andMTDA, ACMA) and different

kinds of sellers. The number of buyers (or sellers) of each kind is decided in a random

way. Without loss of generality, we assume that, there is at least one agent for each

kind of agent.
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Table 5.3. Performance Measure

Success Rate Rsuc = Nsuccess/Ntotal

Expected Utility Uexp = (
∑Ntotal

i=1 Ui)/Ntotal

Agreement per ResourceAGaver =
∑Ntotal

i=1

∑ISi
j=1 A

j
i

∑Ntotal
i=1 ISi

Rate of Recovery from
Decommitment

RRaver =
SDtotal

Dtotal

Message per Resource Maver =
∑Ntotal

i=1

∑ISi
j=1 M

j
i

∑Ntotal
i=1 ISi

Ntotal Total number of runs

Nsuccess No. of runs that reached consensus

Ui Utility of the ith run

ISi The number of resources in the ith run

Aj
i The number of tentative agreement for resource j in

the ith run

M j
i The number of messages for resource j in the ith run

Dtotal The number of runs in which one resource’s tentative
agreements were all decommited

SDtotal The number of runs in which negotiation is success-
ful after one resource’s tentative agreements were all
decommited

5.4.1.3 Performance measure

We use a number of performance measures in the experiments (Table 5.3). An-

alyzing agents’ utility can provide insights into how effective a strategy is. Since

negotiation outcomes of each agent are uncertain (i.e., there are two possibilities:

eventually reaching a consensus or not reaching a consensus), it seems more pru-

dent to use expected utility for all runs (rather than expected utility for all suc-

cessful runs) as a performance measure. For ease of analysis, agent a’s utility ua
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(defined in Section 5.2.2) is normalized in each experiment in the following way:

u′a = ua/|RPa − IPa|, which implies that u′a ≤ 1 if not considering the penalty

a received from sellers. This normalization is the same for agents with different

strategies. It was pointed out in [70, 129] that in addition to optimizing agents’

overall utility, enhancing the success rate is also an important evaluation criterion

for designing negotiation agents.

In addition to the expected utility and success rate, it’s necessary to compare

the number of messages sent and received by each buyer during negotiation. As

the number of resources each buyer is acquiring may be different at each time, it’s

intuitive to compare the number of messages sent or accepted for each resource. As

an agent may make more than one tentative agreement for each resource, measuring

the average number of tentative agreements for each resource is also important.

During negotiation, it’s possible that all of one agent’s tentative agreements for one

resource are decommited by its trading partners and thus an agent’s ability to recover

from such situation is extremely important. Therefore, we also record and compare

the number of cases where an agent makes a final agreement after all its tentative

agreements for one resource are decommited by its trading partners.

5.4.1.4 Results

A “matched-pair” study was conducted to evaluate the performance of HBAs, as

compared with TDAs, MTDAs, and ACMAs. At the beginning of each run (experi-

ment), the controller of the testbed will generate all the agents and set the parameters

of all the agents according to the experimental setting, e.g., the number of agents,

the supply/demand ratio of each resource, etc. Among all the buyers, there are some
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Table 5.4. Experimental results for 106 runs (performance measures are defined in
Table 5.3)

Strategy Uexp Rsuc AGaver RRaver Maver

HBA 0.206 0.59 1.34 478
1356

= 0.35 86

HBA-1 0.153 0.58 1.27 597
2389

= 0.25 91

HBA-2 0.111 0.50 1.33 835
3134

= 0.27 89

HBA-3 0.144 0.43 0.63 3052
8945

= 0.34 88

HBA-12 0.135 0.47 1.23 2933
9578

= 0.31 92

HBA-13 0.144 0.42 0.63 2704
9362

= 0.29 88

HBA-23 0.087 0.35 0.59 3171
10489

= 0.30 84

ACMA 0.033 0.27 0.59 3737
13347

= 0.28 85

MTDA 0.021 0.25 0.57 4423
15584

= 0.28 84

TDA 0.019 0.25 0.72 9200
33459

= 0.27 86

target buyers, one for each negotiation strategy we want to compare. All the target

agents at each run have the same properties. For example, when we want to compare

the performance of HBAs with TDAs, MTDAs, and ACMAs, we create one target

HBA, one target TDA, one target MTDA and one target ACMA, which have the

same properties (e.g., the set of resources to acquire, the reserve price, the initial

price) except that they use different negotiation strategies. Then all the agents ne-

gotiate and compete with each other. At the end of this experiment, the controller

will record the experimental results for each target agent, which will be averaged and

analyzed on a large number of runs.

Extensive stochastic simulations were carried out for all the combinations of mar-

ket density, market type and other agents’ characterizations. All the values of differ-

ent performance measures were averaged based on more than 106 runs. In addition,
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we tried different decommitment deadlines and penalties functions. Even though

experiments were carried out for all the situations, due to space limitations, only

representative results are presented in this section. For the empirical results pre-

sented in this section, the market is of moderate density, λ = 4 is chosen as the

decommitment period and the penalty function is 0.06 × Prc(Ag) × ((t′ − t)/λ)1/2.

λ = 4 is chosen based on the value of negotiation deadline. The shortest negotia-

tion deadline is 10 in our experiments and setting a decommitment period shorter

than negotiation deadline is reasonable. As in [5, 98], we choose a penalty func-

tion in which the penalty increases with the contract price and the period between

agreement making and decommiting. The multiplier 0.06 in the penalty function is

chosen to make the decommitment penalty smaller than the contracting price. In

the sensitivity analysis section (Section 5.4.2.6), we discussed the effect of changing

the decommitment period and the penalty function. We also found that the confi-

dence interval for each reported value is not wider than 0.001, which is negligible as

compared with each value. Therefore, the experimental results can be trusted, which

is mainly due to the large sample size.

5.4.2 Observations

5.4.2.1 Observation 1

HBA agents use three heuristics: Heuristic 1 (Section 5.3.2) is used to decide the

deadline for each resource; Heuristic 2 (Section 5.3.3) is used to make a proposal

for each resource in which the reserve price of each resource is dynamically chosen

based on current market dynamics; Heuristic 3 (Section 5.3.4) is used to decide the

number of tentative agreements to be made for each resource. Is it possible that
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a buyer in fact can get better negotiation performance by just using one or two

heuristics? To verify that agents can get better negotiation performance by using

all three heuristics simultaneously, we also compare the performance of HBAs with

a special kind of buyers (called HBA-s here) which only use part of the heuristics

used by HBAs. When a HBA doesn’t use heuristic 2, it will use MTDAs’ strategy

to make proposals. When a HBA doesn’t use heuristic 3, it makes at most one

tentative agreement for each resource. HBA-1 s are HBAs which don’t use heuristic

1 and HBA-12 s are HBAs which don’t use heuristic 1 and heuristic 2. HBA-123 s are

equivalent to MTDAs. Table 5.4 shows the performance of TDAs, MTDAs, ACMAs,

HBAs, and different types of HBA-s which only use part of HBAs’s three heuristics.

From column 2 of Table 5.4, we can find that HBAs gain a higher expected utility

Uexp than agents using other strategies. We also found that HBA-s get higher utilities

than ACMAs, MTDAs, and TDAs. In addition, heuristic 2 seems more important

than the other two heuristics. HBA-2 s’ expected utility is lower than that of HBA-

1 s and HBA-3 s. The average utility of HBA-s when HBA-s don’t use heuristic 2 is

(0.111 + 0.135 + 0.087)/3 = 0.111. The average utility of HBA-s when HBA-s don’t

use heuristic 1 is (0.153 + 0.135 + 0.144)/3 = 0.144. The average utility of HBA-s

when HBA-s don’t use heuristic 3 is (0.144 + 0.144 + 0.087)/3 = 0.125. Therefore,

HBA-s will get lower utility when they don’t use heuristic 2, as compared with not

using either heuristic 1 or heuristic 3. In the same way, we can conclude that heuristic

3 is more important than heuristic 1. However, the above observations are based on

the averaged results in all scenarios and they don’t suggest that the heuristic 1 is

more important than the other two heuristics in every specific scenario. When the
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supply/demand ratio of all the resources has a large variance, the average utility

of HBA-s when HBA-s don’t use heuristic 1 (respectively, heuristic 2 and heuristic

3) is 0.101 (respectively, 0.107 and 0.114 ), which implies that heuristic 1 is more

important than the other two heuristics in this specific context. For all the values in

columns 2 and 3, a t-test analysis with confidence level 95% was carried out and the

difference between every two different values for the same performance is significant.

Column 3 of Table 5.4 shows that HBAs have higher success ratesRsuc than agents

using other strategies and HBA-s have higher success rates than ACMAs, MTDAs,

and TDAs. In addition, heuristic 3 is more important than the other two heuristics

from the perspective of achieving a higher success rate. This observation is intuitive

since without using heuristic 3, each buyer makes only one tentative agreement and

its probability of making a final agreement will be low if one or more trading partner

decommits from an agreement. For the same reason, from column 4 of Table 5.4, we

can see that HBAs have the highest number AGaver of tentative agreements for each

resource. HBA-s using heuristic 3 have more tentative agreements than HBA-s not

using heuristic 3 which make at most one tentative agreement for each resource.

HBAs’ number of runs in which all tentative agreements are decommited is lower

than all other kinds of buyers (see column 5 of Table 5.4). The recovery rate RRaver

of HBAs is also higher than the recovery rate of other kinds of buyers. For example,

the recovery rate RRaver of HBAs is 478
1356

= 0.35 indicating that there were 1356

situations in which all the tentative agreements for one resource were decommited

and 476 of the situations in which the agent made a final agreement. This observa-

tion corresponds with the intuition that HBAs are good at organizing and balancing
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the multi-resource negotiation. It’s not surprising that HBAs will send more mes-

sages during negotiation as it may make more than one tentative agreement for each

resource, which is mainly due to the use of heuristic 3. However, HBAs’ average

number Maver of messages transferred for each resource is less than 3% higher than

that of all other kinds of agents.

5.4.2.2 Observation 2

Our negotiation strategy uses the estimation of sellers’ probability of decommit-

ment. The decommitment probability is an approximation of the real probability,

which is unknown to the buyer. It’s impossible to justify our estimated “probabili-

ties” with theory without making strong assumptions about knowing other agents’

private information. Moreover, a seller’s probability of decommiting from a tenta-

tive agreement is determined by many factors, e.g., its deadline, reserve price, its

negotiation situation, which is unknown to a buyer.

Here we use an empirical approach to verify the accuracy of HBAs’ estimation of

decommitment probabilities. More specifically, HBAs’ estimation of decommitment

probabilities are compared with their trading partners’ real decommiting actions dur-

ing negotiation. Assume HBAs made n predictions <ωt
s(Ag1), . . . , ω

t
s(Agn)> for ten-

tative agreements <Ag1, . . . , Agn> throughout all the experiments in which ωt
s(Agi)

is a HBA’s predicted probability that its trading partner s will decommit from the

agreement Agi. Then HBAs’ accuracy of predicting decommiting probabilities is

given by:

AP =

∑

1≤i≤nAP (ω
t
s(Agi))

n
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Figure 5.2. Prediction accuracy of HBAs
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where

AP (ωt
s(Agi)) =











ωt
s(Agi) if s decommits from Agi

1− ωt
s(Agi) otherwise

The average prediction accuracy in more than 106 runs is 0.774. Figure 5.2

shows the factors affecting the prediction accuracy. First, the prediction accuracy

increases with the increase of HBAs’ deadlines (Figure 5.2(a)). This result is intuitive

as, with the increase of deadline, negotiation agents have longer time to interact

with other agents. Then agents have a better understanding of the market and

thus agents can make more precise predictions. Second, the prediction accuracy

decreases with the increase of supply/demand ratio when all resources have the

same supply/demand ratio (Figure 5.2(b)). When the supply/demand ratio is low,

HBAs face high pressure of competition and decommitment is more likely to happen

for each tentative agreement. As a consequence, it’s more difficult to make a precise

prediction. Finally, the prediction accuracy changes little with the change of the

number of resources (Figure 5.2(c)). This observation is also intuitive as, a seller’s

decommitment decision is only affected by the agreement price, its reserve price

and market competition. It has nothing to do with the negotiation status of other

resources.

Our function of decommitment probability is based on our intuitions about which

factors affect agents’ decision to decommitment. The parameter ϑ = 0.68 is a pa-

rameter of the function for computing trading partners’ decommitment probabilities,

which is based on experimental tuning. With the experimental tuning, we were able

to get 77.4% accuracy averaged over all environments. However, it is unclear to
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us whether we can get a better result considering that HBAs do not know other

agents’ strategies nor their exact reserve prices. On a more positive note, our heuris-

tic function performs in ways that would be expected. For instance, when a HBA’s

uncertainty reduces (e.g., change the distribution of sellers’ reserve prices), it gains

higher prediction accuracy. A reasonable prediction approach should have the prop-

erty that the prediction accuracy increases with the decrease of uncertainty which

our approach does. Although we can reduce uncertainty in the market and thus

get higher prediction accuracy, our experiments will become less interesting. In ad-

dition, it’s impractical to assume that agents have (almost) complete information

about others.

Sim et al. [128, 130] also proposed a function for evaluating a trading partner’s

decommiting probability, which are used by ACMAs and achieved an average 38%

accuracy in all the scenarios. Although the function in [130] appears to be simpler as

it only considers the prices of the proposals it has received, it is noted that [130] did

not make the assumption that an agent has knowledge of the number of competitors.

In contrast, our function takes both market competition and the trading partner’s

satisfaction of agreements based on each agent’s knowledge about 1) the number of

trading competitors and 2) the reserve price of each trading partner.

5.4.2.3 Observation 3

The experimental results in Figure 5.3 show that: 1) Negotiation results become

more favorable with the increase of the deadline for all kinds of buyers. With short

(respectively, long) deadlines, different kinds of agents have equally insufficient (re-

spectively, sufficient) time to optimize their agreements. 2) Given the same deadline,
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(c) Favorable market

Figure 5.3. Deadline and expected utility
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Figure 5.4. Deadline and success rate
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Figure 5.5. Number of resources and expected utility
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Figure 5.6. Number of resources and success rate
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Figure 5.7. Supply/demand ratio and expected utility
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Figure 5.8. Supply/demand ratio and success rate

206



HBAs achieved higher utilities than ACMAs, MTDAs, and TDAs. 3) The advan-

tages of HBAs over MTDAs and TDAs decreases when the market becomes more

favorable.

Experimental results in Figure 5.4 indicate that the success rate of HBAs are

always higher than that of ACMAs, MTDAs, and TDAs. However, this advantage

decreases when the market become more favorable. In addition, with the increase

of deadline, agents’ success rates have a large increase at the beginning and slightly

decrease when the deadlines are long. When agents have long deadlines, agents

have more time to bargain with other agents and seek good agreements with the

increase of deadlines. Since agents use time-dependent strategies, buyers with longer

deadlines are inclined to make less concessions at each time as agents will prefer

to propose their reserve prices when their deadlines approach. Thus, buyers will

become more patient and will not accept proposals which are not favorable enough

while considering their future opportunities to make better agreements. Therefore,

buyers with longer deadlines will fail to make agreements with some sellers, especially

sellers with shorter deadlines. Although buyers’ success rates decrease with the

increase of deadlines when deadlines are relatively long, buyers’ utilities increase

with the increase of deadlines. This is because buyers will set higher expectation

about the agreements with the increase of deadlines. Thus, the agreements made by

buyers with longer deadlines are more favorable as compared with agreements made

by buyers with shorter deadlines.
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5.4.2.4 Observation 4

From Figure 5.5 we can see that, as the number of resources to be acquired

increases, the utilities of all kinds of agents decrease. That is because, with the

increase of the number of resources each agent acquires, it’s harder to manage all the

negotiations and the probability that the overall negotiation fails increases, which

directly correlates with the decreased success rates in the strategies explored here.

HBAs always achieved higher utilities than ACMAs, MTDAs, and TDAs.

Experimental results in Figure 5.6 indicate that the success rate of HBAs are

always higher than that of ACMAs, MTDAs, and TDAs. However, this advantage

decreases when agents have longer deadlines as in this case, all agents have enough

time to negotiate for agreements. Agents’ success rate decreases significantly as a

small number of resources (e.g., 1 or 2). With more resources, it’s more difficult for

buyers to manage and establish agreements for all resources because of the difficulties

of managing all the negotiation threads.

5.4.2.5 Observation 5

It can be observed from Figure 5.7 and Figure 5.8 that HBAs always get higher

utilities (respectively, success rates) than ACMAs, MTDAs, and TDAs when all re-

sources have the same supply/demand ratios. Additionally, when the supply/demand

ratio is high (e.g., 10), the average utilities of the three types of agents are close espe-

cially in the long deadline case since agents have many choices and can easily switch

from one agreement to another agreement, i.e., there is limited space to optimize

the agreements. The advantage of HBAs in success rate decreases when agents have

longer deadlines. Since buyer agents with different strategies compete with each
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other, it is possible that one strategy achieved much better negotiation results than

another strategy in a specific market. Due the strategic interaction among agents,

one strategy may achieve a good performance in only certain markets. In Figure 7

we can see that when the ratio is in the range 0.5-0.7, MTDAs achieved very low

utilities as compared with the utilities when the ratio less than 0.5 or higher than

0.7. When the ratio is in the range 0.5-0.7, HBAs achieved higher utility than that

when the ratio less than 0.5 or higher than 0.7. When the supply/demand ratio is

very low (e.g., 0.2-0.4), it is difficult for an agent to get agreements, thus all dif-

ferent strategies achieved low utilities. When the supply/demand ratio are slightly

low (e.g., 0.5-0.7), some HBAs may make agreements for all required resources. An

MTDA can also make agreements for some of its resources using its market-driven

concession strategy. However, since MTDAs are lacking of the ability of coordinat-

ing their negotiation for multiple resources. They often can only satisfy part of their

resources. Therefore, when the whole negotiation failes, an MTDA either pays a

lot of penalties to decommit from its agreements or pays for some final agreements

which have not been decommited. Accordingly, MTDAs often get negative utili-

ties. When MTDAs decommit from agreements, HBAs have a better chance to make

new agreements in this situation. The experimental results also show that when the

supply/demand is in the range 0.5-0.7, MTDAs made more agreements (including

both tentative and final) than TDAs and ACMAs but the success rate of MTDAs is

not higher than that of TDAs and ACMAs. When the market is almost balanced

(e.g., the supply/demand is in the range of 0.8-1), it is easier for MTDAs to make
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agreements which can satisfy their resource requirements and their utilities are much

higher than that when the supply/demand is in the range 0.5-0.7.

5.4.2.6 Sensitivity analysis

We also did additional experiments to explore how sensitive are our experimental

results to changes of the parameters of our experimental environments or assumptions

about our negotiation model.

1) With the increase of penalty, the average utility of agents including HBAs

decreases. For example, when we double the penalty fee, the average utility of HBAs

is decreased by 7%. The main reason is that with a higher penalty, a buyer is more

likely to commit to an early agreement, which may have a low utility value. When

the penalty fee is low, a buyer will decommit from an early agreement and make a

new agreement with a higher utility value. Similarly, each seller is also more likely

to stick to an early agreement when the penalty is high. HBAs always have better

performance than other types of buyers when using different penalty functions.

2) With the increase of decommitment period λ, the average utility of agents

including HBAs decreases. For instance, when we set a decommitment period λ = 6

instead of 4, the average utility of HBAs is decreased by 8%. With a longer decom-

mitment period, the probability that an agreement will be decommited will increase,

and thus the probability that a buyer will get a final agreement decreases. However,

the advantage of HBAs over other types of buyers increases with the increase of the

decommitment period λ as buyers like ACMAs, MTDAs, and TDAs make at most

one tentative agreement for each resource.
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3) When agents have more accurate information about other agents, agents in-

cluding HBAs achieved better performance. This chapter assume that a buyer knows

the probability distribution of sellers’ reserve prices and the number of competitors.

We find that that the accuracy of this information does have an effect on agents’ ne-

gotiation performance. When a buyer’s knowledge becomes less accurate, its utility

decreases. For example, when the believed number of competitors is less than half

of the actual number of competitors, the average utility of HBAs is 7% lower than

that of HBAs knowing the actual number of competitors. However, even with this

level incorrect information, HBAs still achieved better performance than other types

of agents.

4) While keeping the supply/demand ratio of each resource constant, market

density has little effect on agents’ performance. In a moderate density market, agents’

average utilities are 2% lower than that in a market of dense density and are 1%

higher than that in a market of sparse density.

5.4.3 Analysis of properties

Typically, agents use a monotonic concession protocol by insisting on their previ-

ous proposals or raising/reducing their proposals monotonically until an agreement

is reached. In a dynamic negotiation environment, market competition and agents’

evaluation may change over time, protocols that are not monotonic may achieve

higher average utilities. Negotiation agents in this chapter make a proposal based

on market situation and the negotiation situations of other threads. Therefore, the

proposed negotiation protocol is not monotonic.
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In a favorable market, there are fewer competitors and more trading partners.

Hence, an agent has stronger bargaining power and doesn’t need to make large

concessions. In an unfavorable market, an agent experiences more competition, and

it may attempt to make more concessions. With respect to competition, an agent

strives to avoid making large concessions in favorable markets or making too large

concessions in unfavorable markets. Additionally, when the expected number of final

agreements is high, an agent is inclined to make less concession as it only needs one

final agreement.

Property 24. Agents will make less concession with the increase of the expected

number of final agreements when the worst possible utility doesn’t increase.

Take the resource Ij for example. The number of agreements has no effect on

the expected agreement price ̟t
j. As the worst possible utility doesn’t increase, the

conflict probability χt
j will not increase. γ(T AGt

j) will decrease with the expected

number of final agreements ϕ(T AGt
j). Therefore, the reserve price of resource Ij will

decrease and thus agents will make less concession.

Property 25. Agents will make less (respectively, more) concession with the increase

of the number of trading partners (respectively, competitors).

Take resource Ij for example. The number of trading partners has no effect on

γ(T AGt
j). With the increase of trading partners, χt

j will not increase and ̟t
j will

also not increase. Thus, the reserve price of resource Ij will not increase and thus

agents make less concessions. Similarly, with the increase of trading competitors, ̟t
j

will decrease. Thus, the reserve price of resource Ij will increase and thus agents will

make more concession.
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Property 26. When competition is high and penalty is very low, agents may make

agreements with all the trading partners.

Take resource Ij for example. The decommitment probability increases with the

increase of competition. As the penalty is very low, an agent with more tentative

agreements won’t pay too much penalty when it has to decommit from some tentative

agreements. An extreme situation is that the agent can even make agreements with

all the trading partners.

From Properties 2 and 3 we can learn that the market competition places an

important role on deciding the amount of concessions and the number of tentative

agreements. With respect to competition, a negotiation agent decides the maximum

number of agreements. In a favorable market, there are fewer competitors and more

trading partners. Hence, an agent doesn’t need to make many agreements (conces-

sions, respectively). In an unfavorable market, an agent’s bargaining power decreases

as it experiences more competition, and it may attempt to make more agreements

(concessions, respectively) as its trading partners are more likely to decommit from

agreements.

One possible strategy is to make agreements later and thus potentially a buyer

will pay less decommitment penalties given that the penalty will increase with time.

However, “delaying” agreements will also increase the probability that the whole

negotiation fails. In addition, generally a buyer will increase its offering price grad-

ually and it is possible that it can get some resources with a cheap price in the early

negotiation stages. While taking the “delaying” strategy, the buyer will miss those

cheap resources and buy expensive resources in a later time. Another disadvantage
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of delaying agreements is that the buyer may fail to get all resources when one seller

decommits from agreements when the deadline is approaching. In our model, no

agent can decommit from an agreement after a fixed time period based on when the

agreement was made. Accordingly, making agreements earlier can potentially avoid

negotiation’s “collapsing” at the last minute. We examined agents’ performance

when they choose delaying agreements and found that such strategic “delaying” do

not improve agents’ performance.

As a result of this extensive empirical analysis, we have verified that the negoti-

ation strategy for multi-resource acquisitions is both very effective in comparison to

existing approaches and behaves in a consistent and appropriate manner as impor-

tant characteristics of the marketplace are varied.

5.5 Summary

This chapter presents the design and implementation of negotiation agents that

negotiate for multiple resources where agents don’t know the reserve price of each

resource and are allowed to decommit from existing agreements. The contributions

of this chapter include: 1) To avoid the risk of the “collapse” of the overall nego-

tiation due to failing to acquire some scarce resources, negotiation agents have the

flexibility to adjust the deadline for different resources based on market competition,

which allows agents to response to uncertainties in resource planning. 2) Each agent

utilizes a time-dependent strategy in which the reserve price of each resource is dy-

namically determined by considering (conflict probability), expected agreement price,

and expected number of final agreements. 3) As agents are permitted to decommit
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from agreements, an agent can make more than one agreement for each resource and

the maximum number of agreements is constrained by the market situation. 4) An

extensive set of experiments were carried out and the experiments results show that

each of the proposed heuristics contributes to improve agents’ performance and our

proposed approach achieved better negotiation results than representative samples

of existing negotiation strategies.

The experimental results showed that HBAs achieved better negotiation results

(higher expected utilities and higher success rates) thanACMAs, MTDAs, and TDAs.

Moreover, it’s better for HBAs to use all the three heuristics together as each heuris-

tic has different features. The heuristic for proposal creation seems more important

than the other two heuristics. From our experimental results we can see that, when

the negotiation environment is either very “tough” (i.e., short deadline, high compe-

tition, and more resource to negotiate) or very “favorable” (i.e., long deadline, less

competition, and less resource to negotiate), HBAs did not significantly outperform

MTDAs and TDAs. That is because in a “tough” market, all the agents have little

opportunity for making individual agreements, and thus it’s very hard to find a good

set of agreements that satisfy all the resource requirements. In contrast, in a very

“favorable” market, agents can easily make good agreement set. It is in the middle

ground that you see the significant advantage of our approach.
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CHAPTER 6

NEGOTIATION WITH DECOMMITMENT FOR
DYNAMIC RESOURCE ALLOCATION IN CLOUD

COMPUTING

We consider the problem of allocating networked resources in dynamic environ-

ment, such as cloud computing platforms, where providers strategically price re-

sources to maximize their utility. Resource allocation in these environments, where

both providers and consumers are selfish agents, presents numerous challenges since

the number of consumers and their resource demand is highly dynamic. While nu-

merous auction-based approaches have been proposed in the literature, this work

explores an alternative approach where providers and consumers automatically ne-

gotiate resource leasing contracts. Since resource demand and supply can be dynamic

and uncertain, we propose a distributed negotiation mechanism where agents nego-

tiate over both a contract price and a decommitment penalty, which allows agents

to decommit from contracts at a cost. We compare our approach experimentally,

using representative scenarios and workloads, to both combinatorial auctions and

the fixed-price model used by Amazon’s Elastic Compute Cloud, and show that the

negotiation model achieves a higher social welfare. Different from designing nego-

tiation strategies to maximize an agent’s utility in the previous chapter, the focus

in this chapter is designing a mechanism to maximize the social welfare (i.e., the
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sum of all agents’ utilities). The cloud computing resource allocation problem in this

chapter is different from the resource allocation problem in the previous chapter in

a number of aspects. For instance, a seller can sell multiple resources to a buyer and

thus the buyer needs to consider different “plans” (each plan specifies the set of re-

sources to buy from different sellers) to satisfy its resource requirement. In addition,

sellers need to provide resources during a fixed time period. These differences lead

to the need for new approaches that were not considered in the Chapter 5. Before

introducing the cloud computing problem and our resource allocation mechanism,

we first discuss the idea of negotiating over penalty and its advantages.

6.1 Negotiation Over Decommitment Penalty

In automated negotiation systems for self-interested agents, contracts have tra-

ditionally been binding and do not allow agents to efficiently deal with future events

in the environment. Sandholm and Lesser [121] proposed leveled-commitment con-

tracts which allow an agent to be freed from an existing contract at the cost of

simply paying a penalty to the other contract party. A self-interested agent will be

reluctant to decommit because the other contract party might decommit, in which

case the former agent gets freed from the contract, does not incur a penalty, and

collects a penalty from the other party. Despite such strategic decommiting, leveled-

commitment increases the expected payoffs of all contract parties and can enable

deals that are impossible under full commitment [121]. This approach has been

applied in a number of different applications [5, 11, 97, 98].
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In leveled-commitment contracting, both contract parties strategically choose

their level of commitment based on the contract price and decommitment penalty

which are determined prior to the start of the decommiting game. The efficiency of

leveled-commitment contracting depends on how the contract price and decommit-

ment penalty are set. In Sandholm et al.’s model of leveled-commitment contracts

[116, 121, 122], both the contract prices and decommitment penalties are assumed

to be known to the contract parties before the decommiting game. Although algo-

rithms are provided to optimize the social welfare of the equilibrium outcome [116],

the optimization is not for the favor of each contract party. In existing applications

(e.g., [5, 11, 97, 98]) of automated negotiation with decommitment, decommitment

penalties are set by third parties (e.g., system designers) and are either fixed or a

function of contract prices.

Negotiating simultaneously over contract prices and decommitment penalties is

appropriate for several reasons. First, it is difficult for system designers to decide

optimal contract prices and decommitment penalties to maximize the social welfare,

especially when there are multiple agents and agents have incomplete information.

It is also intractable to compute agents’ rational equilibrium strategies in many

practical sequential games. Furthermore, it is not appropriate to assume that system

designers have complete knowledge about agents in the system. Finally, a selfish

agent may feel it is advantageous for it to decide the contract price and penalty by

itself. When agents are allowed to negotiate over penalties, each agent has a larger

strategy space which gives it more options for how to react to the current situation
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and it may be able to achieve a utility which cannot be achieved when it is not

allowed to negotiate over penalty.

This section analyzes agents’ strategic behavior in the bilateral contracting game

prior to the decommiting game to make agreements on a contract and a decommit-

ing penalty. One selfish contract party may prefer another pair of contract price and

decommiting penalty to the contract price and decommitment penalty which max-

imize the social welfare. The leveled-commitment contracting we propose includes

two games: a contracting game where the two parties bargain over contract price

and decommitment penalty and a decommiting game in which the two agents make

strategically decommiting decisions. During the decommiting game, agents will make

optimal decommiting decisions while taking into account the contract price and de-

commitment penalty previously agreed upon. Therefore, in the contracting game,

each agent will try to make the best contract price and penalty which will maximize

its utility in the decommiting game.

As in [116, 121, 122], we consider a contracting setting with two risk neutral

agents who attempt to maximize their own expected payoff: contractor b who pays

to get a task done, and contractee s who gets paid for handling the task. The setting

can be interpreted as modeling a variety of scenarios, for example bargaining between

a buyer and a seller in e-commerce. In our model, b and s negotiate over contract

price and decommitment penalty before additional offers (outside offers) from other

agents become available. Then they strategically choose to decommit or not when

their outside offers are available.
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6.1.1 Leveled-commitment contracting

We study a setting where the future of agents involves uncertainty. We model

this as agents’ potentially receiving outside offers as in [116, 121, 122]. The contrac-

tor’s outside offers could come from some other contractees which can provide the

service requested by the contractor. The contractor can make agreements with those

contractees in the future. The contractor’s best (lowest) outside offer v is character-

ized by a probability density function f(v). The contractee’s best (highest) outside

offer w is characterized by a probability density function g(w). f(v) and g(w) are

assumed statistically independent and are common knowledge [116, 121, 122]. That

is, both agents have symmetric information as they both don’t know the value of v

and w.

The contractor’s options are either to make a contract with the contractee or to

wait for future option v. Similarly, the contractee’s options are either to make a

contract with the contractor or to wait for future option w. The two agents could

make a full commitment contract at some price. Alternatively, they can make a

leveled-commitment contract which is specified by a contract price, ρ, and a decom-

mitment penalty q. If one agent decommits from the agreement, it needs to pay the

penalty q to the other agent.1 When the decommitment penalty q is very large, a

leveled-commitment contract is equivalent to a full contract as no agent will choose to

1Our analysis can be easily extended to handle the setting where the penalties for the contractor
and the contractee are different. Setting different penalties for contractor and contractee only makes
it difficult to solve the decommitment game, which has been thoroughly analyzed in the work by
Sandholm et al. [121]. For the contracting game, a new variable will be added but the analysis will
be the same.
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decommit. Therefore, full commitment contracts are a subset of leveled-commitment

contracts.

One implicit assumption is that during the contracting game, the contractor can

only bargain with one contractee and the contractee can also only negotiate with one

contractor. The other assumption is that the bargaining game finishes before outside

options become available. Bargaining protocols can be used to control the length of

negotiation. Moreover, even if agents are allowed to conduct infinite time negotiation,

negotiation often stops soon since bargaining agents usually have deadline constraints

and often face bargaining costs.

The leveled-commitment contracting consists of two stages. In the first stage,

which we call the contracting game, the agents make agreements on both a contract

price and a decommiting penalty. In the second stage, which we call the decommiting

game, the agents decide on whether to decommit or not. Clearly, the equilibrium

of the decommiting game affects the agents’ preferences over contract prices and

decommitment penalties in the contracting game. There is no decommiting game if

agents make a null contract (i.e., no agreement is made) in the contracting game.

6.1.1.1 Contracting game

We consider the widely used one-shot protocol [111]. Formally, agent a ∈ {b, s}

makes an offer [ρ, q] where ρ is contract price and q is decommitment penalty. The

other agent â can choose to 1) accept or 2) reject. If â accepts the offer , the

bargaining outcome is [ρ, q]. Otherwise, the bargaining fails and the outcome is null

contract.
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6.1.1.2 Decommiting game

The decommitting game happens only when the two agents make a leveled-

commitment contract [ρ, q]. In the decommiting game, each agent has exactly one

chance to decommit and there are different decommiting mechanisms depending on

who decommits first [116, 121, 122]: 1) contractee has to reveal its decision first; 2)

contractor has to reveal its decision first; and 3) agents reveal their decisions simulta-

neously. We consider the first decommiting mechanism, i.e., contractee takes actions

first and contractor moves next. The other mechanisms can be analyzed analogously.

6.1.2 Optimal contracts

Agents’ bargaining strategies in the contracting game are affected by the outcome

of the decommiting game: each agent wants to make theoptimal contract that maxi-

mizes its expected utility in the decommiting game. There may be multiple optimal

contracts or theoptimal contract may be the null contract.

We follow the same analysis as in [121] to compute agents’ optimal contracts.

Assume that the contract made during the contracting game is [ρ, q]. In a sequential

decommiting game where the contractee has to decommit first, if the contractee

has decommited, the contractor’s best move is not to decommit as q ≥ 0. In the

subgame where the contractee has not decommited, the contractor’s best move is to

decommit if−v−q > −ρ, i.e., the contractor decommits if its outside offer, v, is below

a threshold v∗ = ρ− q. So, the probability that it decommits is pb =
∫ v∗

−∞
f(v)dv.

The contractee gets w− q if it decommits, w+ q if it does not but the contractor

does, and ρ if neither decommits. Thus the contractee decommits if w− q > pb(w+

q)+(1−pb)ρ. When pb < 1 the inequality above shows that the contractee decommits
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if its outside offer exceeds a threshold w∗ = ρ+q(1+pb)/(1−pb). So, the probability

that it decommits is ps =
∫∞

w∗ g(w)dw.

Given agents’ equilibrium strategies under contract c = [ρ, q], b’s expected payoff

πb(c, f(v), g(w)) (πb(c, f, g) for short) is

ps

∫ ∞

−∞

(q−v)f(v)dv+ (1− ps)[

∫ v∗

−∞

−(v+ q)f(v)dv −

∫ ∞

v∗
ρf(v)dv]

The expected payoff πs(c, f, g) of contractee s is

∫ ∞

w∗

g(w)(w − q)dw +

∫ w∗

−∞

g(w)
[

pb(w + q) + (1− pb)ρ
]

dw

If agents fail to make a contract, an agent can wait for its best outside of-

fer. Thus, agents’ expected utilities under the null contract are πb(null, f, g) =
∫∞

−∞
−f(v)vdv = −E(v) and πs(null, f, g) =

∫∞

−∞
g(w)wdw = E(w).

Based on this analysis developed previously by Sandholm et al. [116, 121, 122],

we now extend it to a contracting game and discuss agents’ optimal contracts when

agents negotiate over contract prices and decommitment penalties. We assume that

agents are individually rational (IR), i.e., no agent will accept a contract worse than

the null contract. A contract c is IR if it is individually rational for both agents.

Formally, the set C(f, g) of IR contracts based on agents’ beliefs f(v) and g(w) are

{c|πb(c, f, g) ≥ −E(v), πs(c, f, g) ≥ E(w)}
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We assume that C(f, g) is not empty. The contract c∗b(f, g) (c
∗
s(f, g)) which maxi-

mizes the contractor’s (contractee’s) expected utility is the contractor’s (contractee’s)

optimal contract. Formally,

c∗b(f, g) = argmax
c∈C(f,g)

πb(c, f, g)

c∗s(f, g) = argmax
c∈C(f,g)

πs(c, f, g)

Therefore, the utility a can get is in the range [πa(null, f, g), πa(c
∗
a(f, g), f, g)].

6.1.3 Efficiency of Negotiating Over Penalty in Two-player Game

In this section, we experimentally evaluate the efficiency of negotiating over

penalty in the two-player game considered by Sandholm et al. [116, 121, 122]. Each

game is characterized by contractor’s best (lowest) outside offer v is characterized by

probability density functions f(v) and g(w). For each game, we compare the con-

tracting results when agents’ decommitment penalties are determined by negotiation

and results where decommitment penalties are determined exogenously. While there

are many methods to exogenously set decommitment penalties [5, 11, 15, 97, 98],

the following two approaches are the most widely used: 1) fixed penalty independent

of contract prices and 2) penalty as a percentage of contract prices. We compare

our negotiation based approach with the above two approaches. For fixed penalty,

the penalty is chosen from {0, 10, 20, 40}. When the decommitment penalty is a

percentage of a contract price, the rate is chosen from {0.1, 0.3, 0.5}, i.e., q = 0.1ρ,

q = 0.3ρ or q = 0.5ρ. Thus, there are 8 approaches to set penalties: 4 fixed penalty
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values, 4 penalty functions in which a penalty is a fraction of contract price, and the

bargaining approach. For the bargaining approach, one agent is randomly chosen to

offer to the other agent.

When the penalty is set exogenously, it is possible that two agents fail to make

an agreement whereas they can make an agreement while negotiating over penalty.

For instance, when both v and w are uniformly distributed between 30 and 90, the

two agents can make an agreement when they are negotiating over penalty. However,

they cannot make any agreement when the penalty is q = 40 or q = 0.5ρ for the

special distributions, no matter which agent is the offering agent.

We extensively evaluated the average social welfare (i.e., the sum of both agents’

average utilities) of different mechanisms in a variety of settings. We found that the

negotiating over penalty achieved higher social welfare than other penalty setting

approaches. Figure 6.1 shows the performance of different mechanisms as well as

the maximum social welfare (which is achieved when the offering agent or a third

party chooses to maximize the social welfare rather than its utility) when f(v) and

g(w) are uniform distributions. f(v) is defined by [vmin, vmax] and g(w) is defined by

[wmin, wmax] where 1) 0 < vmin, vmax, wmin, wmax ≤ 100 and 2) vmax ≥ wmin. That

is, the outside offers v and w are in the range of (0, 100] with the constraint that the

contractor’s outside offer v is not always less than the contractee’s outside offer w.2

All values reported in Figure 6.1 is the average value in 10000 randomly generated

settings. We can see that negotiating over penalty achieved much higher utility than

2Note that if v < w, the two agents cannot make a contract.
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Figure 6.1. Efficiency comparison in two-player game (1)

other exogenous penalty setting mechanisms. It can also be seen from Figure 6.1

that, even when the offering agent always chooses the price and penalty to maximize

its utility, the social welfare is close to the maximum social welfare.

Figure 6.2 shows the performance of different mechanisms under the same setting

except 50 < vmin, vmax ≤ 100, 0 < wmin, wmax ≤ 50. That is, the contractor’s outside

offer v is always no less than the contractee’s outside offer w. In this situation, the

optimal offer of the offering agent is the pair so that no agent has an incentive to

deviate from the contract. Consider that the contractor is the offering agent as an

example. The optimal price the contractor is E(w) and its optimal penalty q is

one value such that the contractee has no incentive to decommit. Obviously, the

contractor will also not decommit since E(w) < E(v). If the contractor offers a price
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Figure 6.2. Efficiency comparison in two-player game (2)

lower than E(w), the contractee will not accept it. The corresponding social welfare

is then 0. In this situation, the maximum social welfare which can be achieved by

exogenously setting the offer is always 0 when they make an agreement. We can find

that negotiating over penalty can always achieve the maximum social welfare. We

also noticed from Figure 6.2 that by exogenously setting a high penalty (40 in this

special case), agents can also achieve the maximum social welfare.

We have shown that in the canonical two player leveled decommitment games, ne-

gotiating over penalty achieved higher social welfare than exogenous penalty setting

mechanisms. In the two player games, agents have symmetric information and the

offering agent is able to compute its optimal offer by solving the contracting games

and decommitment games. In more realistic scenarios in which there are usually
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more than two agents and agents have more uncertainties (e.g., outside options), it

may be intractable to compute the optimal penalty to optimize the social welfare.

Strong assumptions in the two player games leads us to investigate the benefits of

negotiating over penalty in more realistic scenarios.

We have shown that in the canonical two player leveled decommitment games, ne-

gotiating over penalty achieved higher social welfare than exogenous penalty setting

mechanisms. In the two player games, agents have symmetric information and the

offering agent is able to compute its optimal offer by solving the contracting games

and decommitment games. In more realistic scenarios in which there are usually

more than two agents and agents have more uncertainties (e.g., outside options), it

may be intractable to compute the optimal penalty to optimize the social welfare.

Strong assumptions in the two player games leads us to investigate the benefits of

negotiating over penalty in more realistic scenarios such as the resource allocation

problem in GENI.

6.2 Resource Allocation in GENI

We explore our resource allocation problem in the context of NSF’s GENI ini-

tiative [1], which is building a prototype of a shared experimental infrastructure to

investigate next-generation Internet applications. GENI is similar to other cloud

platforms in that it exposes network-accessible APIs for consumers to lease virtu-

alized hardware components, although GENI offers a more diverse collection of re-

sources donated by many providers, such as universities and industry research labs.

The intent is for researchers to experiment with new Internet protocols and appli-
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cations by reserving collections of geographically distributed hardware components

and the network links connecting them, e.g., via Internet2 or NLR. A core concept

for GENI and other cloud computing platforms is resource leasing.

Since GENI allocates resources from multiple providers, it uses one or more Clear-

inghouses to mediate the allocation. Providers delegate the right to allocate their

resources to these Clearinghouses, which aggregate the resources and allocate them

to researchers. As with Amazon’s EC2 and EBS, GENI allocates virtualized hard-

ware components to leverage statistical multiplexing and allow multiple researchers

to use one hardware component simultaneously.

GENI consists of multiple consumers that acquire resources from one or more

Clearinghouses that act as brokers for transactions between providers and consumers.

The initial intent is for the GENI Project Office to operate a small number of Clear-

inghouses, but, in general, there may be multiple Clearinghouses operated by gov-

ernments, companies, or university-led consortiums. While the initial prototype’s

scale does not warrant market-based allocation mechanisms, reaching GENI’s goal

for Internet-scale operation—allocating millions of components—motivates a market-

oriented approach. Further, decentralizing resource allocation among multiple Clear-

inghouses gives GENI the flexibility to introduce market-oriented approaches incre-

mentally in only a few Clearinghouses initially. We chose GENI as our motivation

because its decentralized design is amenable to incrementally introducing market-

oriented approaches and its structure is still open for debate. Further, we believe

GENI’s goal as a platform for experimental research should also include research on

its own resource allocation mechanisms.

229



In a market-oriented GENI, consumers increase their utility by purchasing re-

sources from Clearinghouses and satisfying their resource requirements. Clearing-

houses allocate resources to maximize their profit—the difference between their rev-

enue from consumers and their cost of providing resources. As motivation for a

market-oriented approach, we also assume that the demand for GENI’s resources

will exceed its supply, which has been the case for GENI’s primary predecessor Plan-

etLab [19, 55]. In general, the market mechanism to determine the resource allocation

could be either centralized, e.g., auction, or distributed, e.g., negotiation. Distributed

approaches like negotiation, where allocations emerge as the result of a sequence of

interactions between self-interested agents, are well-suited to GENI, since its scale

and dynamics preclude a once-and-for-all global optimization of resource usage [1].

6.3 The Negotiation Model

6.3.1 The Resource Allocation Problem

We treat each consumer as a buyer and each provider as a seller, where B denotes

the set of buyers and S denotes the set of sellers. Each buyer b ∈ B has a high level

task τ , such as an experiment. The task τ of buyer b has the following attributes:

• A resource set Rb and the quantity of units τ requires. For a resource r ∈ Rb,

τ requires q(Rb, r) units of resource r.

• Task generation time tg(b) when the task is generated.
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• Earliest start time est(b) where task τ cannot start before time est(b). Gener-

ally est(b) > tg(b) and b can use the time between est(b) and tg(b) to acquire

resources.

• The period pd(b) of resource usage, such that b must use resources Rb for a

period of length pd(b).

• Deadline dl(b) that indicates the latest start time of the task of a buyer b. Since

dl(b) ≥ est(b). If dl(b) > est(b), the buyer has the flexibility to determine

the start time of the experiment. Note that the task must finish before dl(b)+

pd(b), and a rational buyer will not negotiate after dl(b).

• Value vb(t) represents the value b attaches to task completion as a function of

completion time t. Following [86], b has its maximum value at time est(b) +

pd(b) and its minimum value at time dl(b) + pd(b).

Each seller s ∈ S has different types of resourcesRs in varying quantities, q(Rs, r)

units of resource r ∈ Rs, and suffers a cost cs(r) for providing each unit of resource

r ∈ Rs for a unit time period. This model follows GENI in that sellers have different

types of resources, although we simplify our problem by allowing only one “plan”

for each task. While we specify only a single set of resources to satisfy each task,

in general, multiple different types of resources may be able to satisfy a task. For

example, a researcher may either plan an experiment with a small number of resources

for a long duration, or a large number of resources and a short duration. In these

cases, we can extend our formulation to include multiple plans.
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Figure 6.3. Finite state machine for the negotiation protocol

We assume each buyer is able to discover the set of resources each seller provides.

This assumption is reasonable since each seller is willing to let others to know its

capability, and, from a single agent’s perspective, knowing other agents’ information

may help it to develop appropriate strategies. For example, if a buyer knows that the

resource competition is low, it may offer a lower price. We assume that 1) each buyer

knows each seller’s expected cost cb(r) of providing a resource r ; and 2) each agent

has knowledge about the demand/supply ratio ψ(r) of resource r over time. This

assumption is not more restrictive than related work [11, 98]. Further, in dynamic

markets, a buyer can estimate a seller’s cost and market competition by analyzing its

negotiation history. We explore the sensitivity of this assumption in our experiments.
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Table 6.1. Symbols used in this chapter

Rb the set of resources needed by buyer b

Rs the set of resources provided by seller s

q(Rb, r) the quantity of resource r needed by buyer b

q(Rs, r) the quantity of resource r provided by seller s

tg(b) b’s task generation time

est(b) earliest start time of b’s task

pd(b) resource usage period of b’s task

dl(b) deadline of b’s task

vb(t) b’s value of completing its task at time t

cs(r) s’s cost for providing one unit of r for a unit time period

ψ(r) demand/supply ratio of resource r

Ab/As b/s’s final agreements

T Ab/T As b/s’s tentative agreement set

Af
b/T Af

b the set of final/tentative full agreements

R(A) the set of resources provided by the agreement set A

RAs s’s running agreements

KAs s’s set of final agreements not to decommit

KT As s’s set of tentative agreements to not to cancel

AOs s’s set of offers to accept

6.3.2 Negotiation Protocol

This work extends the alternating offers protocol [111], which has been widely

used for bilateral bargaining. Before we formally define the protocol, we first define

agents’ possible actions:

• offer [o], where o is buyer b’s offer to a seller s. An offer o is of the form

〈pr, pe,R, est, pd, dl〉 where pr is the offering price, pe is the decommitment
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penalty, R specifies the set of required resources and their quantities, est is the

earliest start time of providing resources, pd is the duration, and dl is the latest

time for providing resources. Note that when dl > est, the buyer provides a

flexible schedule and the receiving seller is able to decide the exact start time

of providing resources.

• accept [o]. When a seller s receives an offer o′, s is able to accept the offer

resulting in the two agents reaching a tentative agreement. If dl(o′) > est(o′),

s must decide the exact start time of providing R(o′) and dl(o) should be equal

to est(o).

• bid [Q]. When a seller s receives an offer o′ and the offer is not acceptable, s

can send quotes Q for its available resources. Each quote Q ∈ Q describes the

quantity of resource r ∈ R(o′) and its asking price.

• confirm[o]. When a seller s accepts an offer o, two agents reach a tentative

agreement and the buyer can confirm the tentative agreement. If b confirms

the tentative agreement, then the agreement becomes a final agreement.

• cancel [o]. After two agents make a tentative agreement, any agent can cancel

the agreement without paying a penalty. Then, negotiation between the two

agents fails with no agreement.

• decommit[o]. After a final agreement is made, an agent has the opportunity

to decommit from the agreement and the decommiting agent pays the penalty

to the other party. Note that after time est(o), no agent can decommit from
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the agreement. Furthermore, the decommiting agent pays the penalty after

decommitment happens.

Figure 6.3 shows the finite state machine for the negotiation between b and s.

The initial state is “buyer reasoning” in which b decides how to make the offer. After

b sends an offer to s, the state is “seller reasoning” in which s is deciding whether

to accept the offer or make a bid. If s accepts the offer, a tentative agreement is

made. Otherwise, s sends a bid to b and then it is b’s turn to decide its offer. If b

confirms a tentative agreement, the negotiation is in the “final agreement” state. If

one agent cancels a tentative agreement or decommits from a final agreement, their

negotiation fails and b can restart to make an offer.

An important feature of our negotiation model is that many buyer-seller pairs can

negotiate simultaneously. In addition to the decommiting action, we also introduce

another pair of actions “confirm’ ’ and “cancel’ ’. With the two actions, if a seller

accepts an offer, a buyer can still have the chance to “decommit” from the agreement

without paying a penalty. Assume that b only needs one resource. In absence of

the action cancel, if b makes offers to multiple sellers that all accept, b must buy

multiple items or decommit from agreements by paying penalties. Accordingly, b

may only propose to one seller. In presence of actions cancel and confirm, b can

choose only one contract while negotiating with multiple sellers simultaneously.

Next we formalize the notion of utility. The utility of buyer b depends on its task

completion time and its payment, including 1) its payment for getting resources, and

2) penalties it pays to other agents and receives from other agents. b’s utility at

time t is
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ub(t) =

{

vb(t) + ρb if b’s task is finished
ρb otherwise

where ρb is the balance of the buyer b—the difference between the payment received

and the payment paid to other agents.

The total utility of each seller s ∈ S from time 0 to time t is us(t) = ρs − cs

where ρs is the balance of the seller s at time t and cs is seller s’s cost for providing

resources from the beginning to time t.

6.4 Buyers’ Negotiation Strategy

Before formally defining a buyer b’s negotiation strategy, we first discuss other

important factors we consider:

• Deadline Pressure. b must satisfy its resource requirements by the deadline

dl(b), which is a hard constraint.

• Sellers’ Cost. A rational seller will not accept a price lower than its cost. A

buyer needs to offer different prices for different resources which have different

costs.

• Single Provider. If Rb ⊆ Rs, b can make a full agreement with a single

seller s which can satisfy b’s resource requirements. Otherwise, it must request

resources from different sellers and make a set of partial agreements, each of

which can only satisfy part of b’s resource requirements. The negotiation

for the latter case is more complex since b must have contracts with multiple

sellers, and making no agreement may be better than making agreements which
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cannot satisfy b’s requirements. Furthermore, if b’s resource requirements are

satisfied through a set of contracts, the set of contracts should be compatible

in that all contracts should provide resources during the same time frame.

In summary, a buyer agent’s optimal action at each time point is affected by

many factors and it is impossible to construct an integrated framework in which all

these factors are optimized concurrently. Instead, this work connects those inter-

dependent factors indirectly and develops a set of heuristics to approximate agents’

decision making. In what follows we first introduce buyer b’s strategy (Algorithm 6)

informally and then present it formally.
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Algorithm 6: Negotiation strategy of buyer b

Set Ab = ∅ , T Ab = ∅, t is the real time (initially, t = tg(b)).
Let estp = est(b), dlp = dl(b) be the earliest start time and deadline for negotiating partial contracts.
Let κ (e.g., 4) be the total number of times to try different execution schedules of partial agreements. Let
Tbk = (dl(b) − tg(b))/κ + tg(b).
while t < dl(b) and the task has not started to run do /* main loop */

foreach s ∈ S such that Rs ∩Rb 6= ∅ and b is not negotiating with s do
send offer GENERATE OFFER(Ab,T Ab, s) to seller s;

end

if seller s sends a bid Q then
update the bid set;

end

if seller s accepts offer o then
EVALUATE ACCEPT(Ab, T Ab, o, s);

end

if t > estp then

decommit (cancel) agreements Ab −A
f

b
(T Ab − T A

f

b
);

set estp = max{t, est(b)}, dlp = dl(b);
end

if t ≥ Tbk then
κ−−, Tbk = (dl(b) − t)/κ + t;

if R(Ab + T Ab −A
f
b
− T Af

b
) ⊂ Rb then

decommit (cancel) agreements Ab −A
f
b

(T Ab − T A
f
b
);

set estp = max{t, est(b)}, dlp = dl(b);
end

end

if seller s decommits from agreement o then
remove o from Ab;

end

if seller s cancel tentative agreement o then
remove o from T Ab;

end

if seller s has not responded to b’s proposing o for a period ǫ then
send offer GENERATE OFFER(Ab,T Ab, s) to seller s;

end

if seller s has not responded to b’s accepting offer o for a period ǫ then
cancel the tentative agreement o and remove o from T Ab;

end

end

cancel from all tentative agreements T Ab ;
if the task has started to run then

decommit from each agreement o ∈ Ab if o is useless and pr(o) > pe(o);
else

decommit from each agreement o ∈ Ab if pr(o) > pe(o);
end

One distinguishing feature of b’s negotiation strategy is that it always tries to

make two sets of agreements both of which can satisfy its resource requirements.

Therefore, if a set of agreements is decommited, b can use the other agreement set

to satisfy its resource requirements. If both set of agreements are not decommited,
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when one set of agreements starts execution, b can decommit from the other set of

agreements. If the start time of two sets of agreements are the same, b will choose

one set of agreements to decommit before the execution starts. Specifically, b is

always trying to make a final full agreement and a set of partial final agreements

both of which can satisfy its resource requirements. In case no single seller can

satisfy b’s resource requirements, b makes two sets of partial final agreements. In

addition, b sets a small penalty for each partial agreement and thus it only needs

to pay a small penalty for decommiting from any partial agreement. While a buyer

can make more agreements to increase the probability that its task can be finished,

it has to pay more for those agreements since for each unnecessary agreement, it

has to pay either the penalty or the agreement price. Alternatively, if a buyer only

makes one set of agreements, it may be difficult to find another set of agreements

to satisfy the buyer’s resource requirements when some agreements are decommited.

Experimental results show that making two sets of agreements is better than making

only one set of agreements and making more than two sets of agreements. While

the cloud resource allocation problem is different from the problem in the previous

chapter, our results correspond to our findings in the previous chapter that a buyer

making two or three tentative agreements always gained the highest utility.

Another distinguishing feature of b’s negotiation strategy is that while deciding

the offering price pr(R, est, dl, t) of requesting resources R at time t with earliest

start time est and latest start time dl, the following factors are considered. First,

the pressure of deadline. The buyer makes more concessions when the deadline

approaches. Such time-dependent concession strategies have been widely used in the
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Algorithm 7: GENERATE OFFER(Ab, T Ab, s)

if |Af
b
∪ T Af

b
| = 0 and Rb ⊆ Rs then

Let price be pr = pr(Rb,max{t, est(b)}, dl(b), t) using Eq. (6.1);
Let the penalty be pe = vb(max{t, est(b)} + pd(b)) − pr;
return offer o = 〈pr, pe,Rb,max{t, est(b)}, pd(b), dl(b)〉;

else

Let R = Rs ∩ (Rb −R(Ab + T Ab −A
f

b
− T Af

b
));

if R = ∅ then
return offer o = null;

end

if estp 6= dlp then
If possible, set the value of estp = dlp > t+ σ based on bids from sellers such that the available
resource from estp to estp+ pd(b) can satisfy b’s resource requirements;

end

Let price be pr = pr(R, estp, dlp, t) using Eq. (6.2);
Let the penalty be pe = α · pr (e.g., α = 0.05);
return offer o = 〈pr, pe,R, estp, pd(b), dlp〉;

end

Algorithm 8: EVALUATE ACCEPT(Ab, T Ab, o, s)
Let new offer o′ = GENERATE OFFER(Ab, T Ab, s);

if 1) R(o) = R(o′) = Rb, |A
f
b
∪ T Af

b
| = 0, and pr(o) ≤ pr(o′) or 2) R(o) = R(o′),

est(o) = est(o′) = estp = dlp, and pr(o) ≤ pr(o′) then
confirm agreement o and add it to Ab;

else
cancel agreement o;

end

literature [11, 48]. Second, the cost cb(r) of resource r. Intuitively, a buyer needs

to pay more for a resource with a higher cost. Third, the demand/supply ratio ψ(r)

of a resource r. The higher the ratio, the higher the price for the resource. Market

(resource) competition has the largest effect on the equilibrium price [7]. Formally,

the offering price pr(Rb, est, dl, t) for all resources Rb is defined as

c(Rb) +
(

RP (est, dl)− c(Rb)
)

(
t− tg(b)

dl(b) − tg(b)
)ε (6.1)

where c(Rb) =
∑

r∈Rb
cb(r)q(Rb, r)pd(b) is the expected cost of resources Rb and

RP (est, dl) is the expected value of finishing the task with earliest start time est and

latest start time dl. Formally,
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RP (est, dl) =

{ ∫ dl

est
vb(pd(b)+t′)dt′

dl−est if dl 6= est

vb(pd(b) + est) otherwise

When t = tg(b), pr(Rb, est, dl, t) = c(Rb), which is the lowest offer acceptable

to sellers. When t = dl(b), pr(Rb, est, dl, t) = RP (est, dl), which is the highest

offering price of b since the buyer will get negative utility if it pays more than its

value of finishing the task. Parameter ε > 0 is used to model how the buyer b

increases its offering price with the increase of time t. With infinitely many values

of ε, there are infinitely many possible strategies in making concessions with respect

to the remaining time. However, they can be classified into: 1) Linear : ε = 1, 2)

Conciliatory : 0 < ε < 1, and 3) Conservative: ε > 1 [48]. We adopt the linear

strategy for b.

By considering both resources’ costs and market competition, the buyer’s offering

price for R ⊂ Rb is calculated in the following way:

pr(R, est, dl, t) =
∑

r∈R

q(R, r)pd(b)pr(r, est, dl, t) (6.2)

pr(r, est, dl, t) = cb(r) +

(

pr(Rb, est, dl, t) − c(Rb)
)

ψ(r)cb(r)

pd(b)
∑

r∈Rb
ψ(r)cb(r)q(Rb, r)

pr(r, est, dl, t) is the price for one unit of resource r and it increases with its cost

cb(r) and the demand/supply ratio ψ(r).

Let Ab be b’s final agreements and T Ab be b’s tentative agreement set. Let

Af
b ⊆ Ab (T Af

b ⊆ T Ab, respectively) be the set of final full (tentative, respectively)
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agreements. Let R(A) be the set of resources provided by the agreement set A. If

b has no full agreement, i.e., |Af
b ∪ T Af

b| = 0, it will request for all resources Rb

from sellers which can satisfy its full resource requirements and request for resources

Rs∩ (Rb−R(Ab+T Ab−Af
b−T Af

b)) from each seller s which can only satisfy part

of its resource requirements. If b has a full agreement, it will request for resources

Rs ∩ (Rb − R(Ab + T Ab −Af
b − T Af

b)) from each seller s ∈ S.

When buyer b wants to acquire resources R from seller s at time t, in addition

to specifying the offering price, it also decides the decommitment penalty pe, and

the task execution period. First consider the case in which |Af
b ∪ T Af

b| = 0 and

R = Rb. In this case, b simply requests its earliest execution start time est(b),

deadline dl(b), and the execution period dl(b). The seller will decide the exact

start time. We use a simple rule to decide the decommitment penalty: the lower

the price pr(Rb, est, dl, t), the higher the penalty. In other words, b does not want

a cheap full agreement to be decommited. One example rule to set the penalty is

pe = vb(max{t, est(b)} + pd(b))− pr.

We also consider the case |Af
b∪T Af

b| > 0 or R 6= Rb. In this case, b must decide

what time period to request resources since different sellers need to provide resources

in the same time period and this decision making is difficult due to uncertainty and

agents’ selfishness. In this work, b decides the task execution schedule for partial

agreements based on its information about sellers’ available resources, which can be

obtained from the bid messages and acceptance messages from sellers. Note that

there is no guarantee that b can get part or all of s’s available resources due to

the market dynamics. Specifically, b searches from time max{t + σ, est(b)} until
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dl(b) and sets the task start time est as the earliest time point from which sellers’

available resources from time est to est + pd(b) can satisfy the buyer’s resource

requirements. We use the parameter σ > 0 to allow the buyer the flexibility to

negotiate for resources. We choose this simple rule for two reasons. First, since a

buyer’s value of finishing a task generally decreases with the task start time, the

buyer can potentially achieve a higher utility if it negotiates for a set of agreements

with an early task start time. Second, due to market dynamics and agents’ strategic

interaction, it is impossible to determine the best start time. If there is no start time

for which the buyer’s resource requirements can be satisfied, the buyer simply sets

est = est(b) and dl = dl(b) and it will not confirm any partial agreement. Using

our simple rule, we set the decommitment penalty in this case to pe = α · pr, where

0 < α < 0.2.

Once the task execution schedule of partial agreements is determined, buyer b

will request resources from sellers according to the task execution schedule. However,

the selected task execution schedule may cause buyer b to fail to find agreements

to satisfy its resource requirements. Therefore, it is important for buyer b to try

other task execution schedules if it fails to get agreements with the current schedule.

In other words, buyer b should have the “backtracking” ability of changing its task

execution schedule. In this work, a buyer agent will change its task execution schedule

if it fails to satisfy its resource requirements for a given time. When a buyer b changes

its task execution schedule, it will first decommit from its other partial agreements.
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6.5 Sellers’ Negotiation Strategy
Algorithm 9: Negotiation strategy of seller s

Set As = ∅, T As = ∅;
if buyer b decommits from agreement o then

remove o from Ab;
end

if buyer b cancels tentative agreement o then
remove o from T Ab;

end

if buyer b confirms tentative agreement o then
remove o from T Ab and add o to Ab;

end

if buyer b sends an offer o then
run the greedy algorithm for OPTs(RAs,As,T As,Os);

end

if buyer b has not responded to s’s proposing o for a period ǫ then
send offer to buyer s with a price cs(r)ϕ(r, t) for each resource r;

end

if buyer b has not responded to s’s accepting offer o for a period ǫ then
cancel the tentative agreement o and remove o from T As;

end

Our negotiation strategy for the seller (Algorithm 9) has two features. First, the

seller adopts a “myopic” negotiation strategy in the sense that it accepts an offer if

and only if it can gain some immediate payoff by accepting the offer, and will not

consider the effect of its current action on the future utilities. Part of the reason

is that the seller has limited information about other agents in the market and it

is impractical to make assumptions about behavior of other selfish agents in the

market. In addition, when a seller receives an offer, it will first make acceptance

and decommitment decisions, and then generate bids to the buyer if the offer is not

acceptable. Second, the seller decides the acceptable price for a set of resources based

on resource competition and cost of resources.

If the competition of a resource is high, a seller has an expectation that it will

receive a high price for the resource. When a seller receives an offer o, it first generates

a threshold price φ(o). If pr(o) < φ(o), it will not accept the offer. The threshold

price φ(o) is defined as
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φ(o) =
∑

r∈R(o)

q(R(o), r)cs(r)(1 + ψ(r))pd(o)

in which cs(r)(1 + ψ(r))pd(o) is seller s’s “asking” price for one unit of resource

r. Obviously, φ(o) > cost(o) =
∑

r∈R(o) q(R(o), r)cs(r)pd(o). If an offer is not

acceptable, the seller will simply report its available resources in the buyer’s request,

as well as the unit price of each resource r as cs(r)(1 + ψ(r)).

Since an agent can decommit from a final agreement, a seller can make more

agreements than its capacity. In this case, a seller can decommit from an unsatisfiable

agreement before the resource providing time. However, since an agent does not know

whether the other agent will decommit from an agreement and the seller may pay

a high penalty, we have chosen a seller’s strategy where the seller may not make

agreements beyond its capability. That is, without decommiting from any final

agreement or canceling any tentative agreement, the seller must be able to fulfill

its current running agreements RAs, final agreements As, and tentative agreements

T As [115]. This strategy also implies that when a seller receives a message indicating

confirmation of an agreement, it can fulfill the agreement without decommiting from

any final agreement or cancel any tentative agreement.

The most difficult decision problem for the seller is how to handle a set of accept-

able offers, which can be formulated as an optimization problemOPTs(RAs,As, T As,Os):

Given the running agreements RAs, final agreements As, tentative agreements T As,

and offers Os, compute the set KAs of final agreements not to decommit, the set

KT As of tentative agreements to not to cancel, and the set AOs of offers to accept

to maximize the following objective function
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∑

o∈KAs∪KT As∪AOs

pr(o)− cost(o)−
∑

o∈As−KAs

pe(o)

with the constraint that s can fulfill final agreements KAs and tentative agreements

T As ∪AOs.

Theorem 27. The optimization problemOPTs(RAs,As, T As,Os) is NP-complete.

The theorem’s proof is a straightforward reduction from the 0-1 Knapsack prob-

lem. Thus, we propose a greedy algorithm to handle this computationally costly opti-

mization problem. First, an agreement is treated as an offer and let Ω = As∪T As∪Os

be the set of offers that must be considered. s’s revenue of accepting offer o ∈ Ω is

rv(o) =

{

pr(o)− cost(o) + pe(o) if o ∈ As

pr(o)− cost(o) otherwise

Next, all the offers Ω are sorted by decreasing revenue and offers are greedily

picked in this order, starting with the first offer, and until no offers remain. Let

Ω′ = ∅ be the set of accepted offers. When an offer o is picked, add o to Ω′ and

check whether the seller is able to fulfill all agreements Ω′. Note that if o ∈ Os

and dl(o) > est(o), the seller must decide the schedule (the start time of providing

resources and end time of providing resources) for providing resources specified in the

offer. If the seller can fulfill all the agreements in Ω′ and o is an offer from a buyer,

the seller will send an acceptance message to the buyer. If the seller cannot fulfill

all the agreements in Ω′, remove o from Ω′. If o ∈ As, then send a decommitment

message to the buyer involved in the agreement and pay the penalty. If o ∈ T As,

send a cancel message to the buyer involved in the agreement.
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Table 6.2. Variables

Variables Values

Number of sellers [5, 20]

No. of resource types per seller [2, 8]

Quantity of a resource per seller [2, 20]

Unit cost of a resource [10, 100]

No. of resource types per buyer [2, 6]

Quantity of a resource per buyer [2, 8]

Value/cost ratio [1.2, 5]

pd(b) [10, 50]
dl(b)−pd(b)−est(b)+1

pd(b) (task execution flexibility) [0, 7]
est(b)−tg(b)+1

pd(b) (negotiation time ratio) [1, 8]

resource demand/supply ratio ψ(r) [0.2, 10]

6.6 Empirical evaluation

To evaluate the performance of our mechanism, we implement a simulation testbed

consisting of a discrete time virtual marketplace and a set of trading agents. We

generate all seller agents before the market opens and buyers dynamically enter the

market, which matches real-world environments with a fixed number of well-known

sellers.

6.6.1 Different Mechanisms

Negotiation mechanism (NG): When a buyer enters the market, it negotiates

with sellers following the protocol described in Section 6.3.2. At each time point,

first all buyers are triggered and then all sellers are triggered. All agents employ the

negotiation strategies described in Sections 6.4 and 6.5. A buyer quits the market
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when its task is finished or it fails to satisfy its resource requirements by its deadline.

For comparison, we also implemented two other widely used mechanisms:

• Combinatorial reverse auction (CRA): In combinatorial auctions [42], a large

number of items are auctioned concurrently. In combinatorial reverse auctions,

a buyer buys goods from many competing sellers. When a buyer enters the

market, it announces its resource requirements, and sellers submit bids indi-

cating the set of resources and their prices. Finally, the buyer determines the

set of contracts. The buyer uses the well-known strategy-proof Vickrey auction

mechanism. We assume that each seller has no knowledge of other buyers and,

thus, each seller truthfully reports its available resources and their costs.

• Fixed price scheme (Amazon) [3] : Amazon EC2 is a web service that provides

resizable compute capacity. The primary pricing mechanism for Amazon is a

fixed price scheme with hourly charges per virtual machine. While using the

Amazon scheme, a seller sets its price for each resource in advance and sellers

constantly update their available resources. When a buyer enters the market,

it decides the set of resources to buy. In our experiments, we tried different

methods for setting price of each resource, where the price/cost ratio is 1, 2, 3,

or 5.

The Amazon scheme is similar to CRA, except that in the Amazon scheme, a

seller’s payment from buyers is decided by the seller. In contrast, a seller’s payment

in CRA is the opportunity cost that its presence introduces to all the other agents.

Note that when the price/cost in the Amazon scheme is 1, the Amazon scheme is
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Figure 6.4. Social welfare and resource competition

equivalent to CRA in terms of the allocation since each seller will only charge its

cost. Our negotiation model is also similar to CRA since sellers’ accepting offers in

the negotiation model are equivalent to submitting bids in the auction model. There

are two main differences between our negotiation model and the other two models.

First, in the negotiation model, agents are allowed to decommit from agreements.

Second, there is a dynamic bargaining process in the negotiation model.

6.6.2 Experimental Settings and Measures

We performed a series of experiments in a variety of test environments using the

parameters from Table 6.2. The parameters are inspired by the current design of the

GENI infrastructure [1]. In the experiments, the number of sellers are in the range of
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Figure 6.5. Success rate and resource competition

[5, 20], where each seller can provide 4 to 8 different types of resources. The quantity

of a resource a seller can provide is in the range of [2, 20]. The cost of a resource

per unit time is in the range of [10, 100]. Each buyer needs 2 to 6 different types

of resources, and for each type of resource, a buyer needs 2 to 6 units. The length

of resource usage is in the range of [10, 50]. The ratio dl(b)−pd(b)−est(b)+1
pd(b)

∈ [0, 7]

describes a buyer’s flexibility of deciding when to start its task. Similarly, ratio

est(b)−tg(b)+1
pd(b)

∈ [1, 8] represents a buyer’s time to negotiate for resources. We assume

that each buyer has a linear value function in which the buyer gets the highest

value when the task starts from est(b) and the buyer gets the lowest value when the

task starts at dl(b). Value/cost ratio is used to generate a buyer’s maximum value

and minimum value based on sellers’ cost of providing resources. ψ(r) ∈ [0.2, 10] is
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Figure 6.6. Social welfare and number of resource to acquire

the ratio of total resource requirements to total resource supply through the whole

experiment horizon.

The main performance measure is the social welfare—the sum of all agents’ util-

ities. Since the social welfare of a mechanism in different settings could be signifi-

cantly different, we report the ratio of the social welfare of CRA and the Amazon

mechanism to the social welfare of NG. We also report the success rate of different

mechanisms—the percentage of buyers which successfully complete their tasks. Note

that a high success rate does not imply a high social welfare.
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Figure 6.7. Success rate and number of resource to acquire

6.6.3 Results

Extensive stochastic simulations were carried out for all the combinations of vari-

ables in Table 6.2. For each combination, we randomly generated over 5000 exper-

iments and for each experiment, and tried all the three mechanisms and generated

average performance measures. Even though extensive stochastic simulations were

carried out for all the situations, due to space limitations, we only present the repre-

sentative results. The length of each experiment is 1000 time units. We found that

the confidence interval for each average value is very tight around the value, so the

confidence intervals are not reported.
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6.6.3.1 Performance of the negotiation mechanism

Observation 1 : NG achieved about 13% higher social welfare than any other eval-

uated mechanism. Figure 6.4 shows how the social welfare of different mechanisms

changes with resource demand/supply ratio ψ(r). We can observe that in all situa-

tions, NG ’s social welfare is always higher than any other mechanism. Furthermore,

when ψ(r) is small (e.g., 0.2), CRA or the Amazon scheme with lower prices (e.g.,

Amazon-1.5) achieved higher social welfare than with higher prices (e.g., Amazon-8).

In contrast, when ψ(r) is large (e.g., 6), the Amazon scheme with higher prices (e.g.,

Amazon-8) achieved higher social welfare than CRA or Amazon scheme with lower

prices. This observation is intuitive: When the resource competition is low, there

are plenty of resources and each buyer can find them. However, when the resource

competition is high, a mechanism can achieve a high social welfare if tasks with high

revenues can be completed. If the price of each resource is low, a task with low

revenue may get resources and a task with high revenue may fail to get resources

since the resource were prematurely committed to the low revenue buyer and there

was no way to decommit from the decision. In contrast, if a high price is set for each

resource, only tasks with high revenues can get resources.

Figure 6.5 shows how the success rates of different mechanisms change with re-

source demand/supply ratio. First, a mechanism with a higher price has a lower

success rate than that of a mechanism with a lower price. NG ’s success rate is lower

than some mechanisms with lower prices due to fact that in negotiation, each agent

will not accept or offer any offer worse than its expectation. However, NG ’s suc-

cess rate is lower than that of any other mechanisms by no more than 10% when
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Figure 6.8. Social welfare and the flexibility of starting a task

the resource demand/supply ratio is low and is almost the highest when the re-

source demand/supply ratio is higher than 1. Second, with the increase of resource

competition, the success rate of each mechanism decreases, which corresponds to

the intuition that with higher resource competition, it is more difficult to acquire

resources.

Observation 2 : Figure 6.6 shows how the social welfare of different mecha-

nisms changes with the average number of resources acquired by buyers, which is
∑

r∈Rb
q(Rb, r). We can observe that the advantage of NG over other mechanisms

increases with the number of resources to acquire. Figure 6.7 shows that the success

rate decreases with the number of resources to acquire, which is intuitive since it is

difficult to acquire more resources which have to be provided during the same period.

254



0 1 2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Flexibility of starting a task

S
uc

ce
ss

 r
at

e 
of

 b
uy

er
s

 

 

Negotiation
Auction
Amazon−1.5
Amazon−2
Amazon−3
Amazon−5
Amazon−8

Figure 6.9. Success rate and the flexibility of starting a task

Observation 3 : In some cases, the difference between a deadline and the earliest

start time is large and each buyer has more flexility of deciding when to start its task.

A buyer b can use the time between est(b) and dl(b) to negotiate for resources. As

shown in Figure 6.9, the success rate of NG increases when buyers have more flexi-

bility to decide when to start task execution. However, an agreement’s probability

of being decommited increases with more flexibility. Accordingly, a buyer may fail

to get resources due to the decommitment. Figure 6.8 shows that, with the increase

of the flexibility, the advantage of NG over the other mechanisms increases at the

beginning and slightly decreases when buyers have a lot of flexibility to decide when

to start task execution, which is mainly due to sellers’ decommitment.
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Figure 6.10. Social welfare and negotiation time

Observation 4 : A buyer b can start negotiation at time tg(b) and its task cannot

start before est(b). Figure 6.11 shows that NG ’s success rate increases with (est(b)−

tg(b))/pd(b) since a buyer has more time to negotiate for resources. However, as

shown in Figure 6.10, the advantage of NG does not strictly increase with negotiation

time: its advantage decreases when buyers have a long negotiation time. The reason

is that a buyer’s agreements made at an early stage may be decommited by sellers

when there is a long negotiation deadline.

Observation 5 : In addition to a fully distributed auction (CRA), we also designed

a super buyer which receives requests from buyers and buys resources for buyers. The

super buyer runs the auction when it has received a certain number of requests or

one requesting buyer’s deadline is approaching, whichever occurs first. Experimental
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Figure 6.11. Success rate and negotiation time

results show that NG still beat the centralized CRA by 11%. The centralized CRA

beat the distributed CRA by no more than 2%.

One major difference between the distributed auction model and our negotiation

mechanism is that in the negotiation mechanism agents are allowed to decommit

from existing contracts at the cost of paying penalties. For comparison reason, we

also allow agents to decommit in the auction model where decommitment penalties

are set exogenously [11, 98], e.g., fixed penalties (e.g., {0, 10, 20, 40}) or penalty as a

percentage (e.g., {0.1, 0.3, 0.5}) of a contract price. Experimental results show that

CRA with decommitment is better than CRA without decommitment by no more

than 3.5%.
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6.6.3.2 Evaluating agents’ negotiation strategies

Observation 6 : Since it is impossible to find out agents’ equilibrium strate-

gies in the complex bargaining game, we designed strategies for agents by taking

into account some important factors which are considered in the literature. While

negotiation agents with the strategies achieved higher social welfare than other mech-

anisms, one may ask whether agents have an incentive to switch to other strategies.

To answer this question, we tried some other strategies as follows: 1) each buyer

makes only one set of agreements, 2) each buyer makes three sets of agreements,

3) when an agent decide to decommit from an agreement o, it decommits before

est(o) rather than decommits immediately, 4) and a seller makes contracts beyond

its capability.

We found that making these changes did not improve either utilities of agents

with new strategies or NG ’s performance. Always making two sets of contracts is

a good choice due to the tradeoff between failing to finish the task and paying too

much. While delaying decommitment does not “hurt” an agent directly, it hurts the

agent “indirectly” since resource competition will increase if each agent holds more

contracts. Further, it is better for a seller not to make contracts beyond its capability:

if the resource competition is low, generally a seller cannot make contracts beyond its

capability, and if the resource competition is high, a buyer is less likely to decommit

from a contract and a seller may have to pay more penalties for contracts beyond its

capability.
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6.6.3.3 Sensitivity analysis

We also did additional experiments to explore the sensitivity of our experimental

results to changes to the parameters of our experimental environments or assump-

tions about our negotiation model.

Observation 7 : This work assumes that each agent knows the demand/supply

ratio of each resource. In reality, an agent may not know the demand/supply ratio.

We tested the negotiation model without this assumption and alternatively, each

agent predicts the demand/supply ratio through its interaction with buyers. Specifi-

cally, a seller can estimate the competition of a resource according to 1) the requests

for the resource from all the buyers in the last λ time points and 2) the total number

of resources provided by other sellers. A buyer can estimate the competition of a

resource according to bids from sellers. In this case, we found that the social welfare

of NG is still 10% higher than other mechanisms.

Observation 8 : This work also assumes that each agent knows each seller’s cost

of a resource. We found that that the accuracy of this information does have a slight

effect on agents’ negotiation performance. When the believed cost is less than half

of the actual cost, the average social welfare of NG is 6% lower than that of NG in

which each buyer knows the actual cost.

Observation 9 : Different from existing work on automated negotiation with

recommitment, in our framework agents negotiate over both price and decomitment

penalty. We compared setting penalties through negotiation with exogenous mech-

anisms for setting penalties [11, 98], e.g., fixed penalties (e.g., {0, 10, 20, 40}) or

penalty as a percentage (e.g., {0.1, 0.3, 0.5}) of a contract price. We found that set-
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ting penalties through negotiation achieved much higher social welfare than those

exogenous mechanisms for setting penalties. In fact, setting a decommitment penalty

(function) to maximize social welfare is a difficult problem for the system designer

due to lack of knowledge and agents’ strategic behavior. Accordingly, it may be a

good idea to give agents the flexibility to decide the decommitment penalty.

6.7 Summary

This chapter presents the design and implementation of a negotiation mechanism

for dynamic resource allocation problem in cloud computing. Our negotiation model

goes beyond the state of the art in the following aspects: 1) Multiple buyers and sell-

ers are allowed to negotiate with each other concurrently and an agent is allowed to

decommimt from an agreement at the cost of paying a penalty; 2) Agents are allowed

to negotiate over both price and penalty; 3) Negotiation strategies for both buyers

and sellers consider important factors widely studied in the literature. Experimental

results show that the proposed negotiation model outperforms different combinato-

rial auction mechanisms and Amazon’s fixed price model. In general, the proposed

mechanism can be applied in wide range of dynamic resource allocation problems.

This chapter also complements previous work on leveled-commitment contracting

by integrating a strategic contracting game with the leveled decommiting game and

analyzing agents’ equilibrium strategies in the contracting game.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

This thesis set out to investigate the role of automated negotiation in various

aspects of complex multi-agent resource allocation problems. In this final chapter,

we will summarize the research contributions of this work, as well as discuss directions

for future research.

7.1 Contributions

The work described in this thesis makes a number of important contributions

to the state of the art in the area of agent mediated negotiation by extending both

theoretical and heuristic bargaining approaches to more realistic settings involving

uncertainty, market competition, decommitment, and acquirement of multiple re-

sources. The contributions of this work can be summarized as follows:

• We present a novel algorithm to find pure strategy sequential equilibria in bi-

lateral bargaining with multi-type uncertainty [6, 8]. Our algorithm combines

together game theoretic analysis with search techniques. Our algorithm goes

beyond existing algorithms dealing with complete information settings. Se-

quential games of incomplete information are ubiquitous and our approach is
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not specific to an application since it can be applied to other uncertainty set-

tings, e.g., multi-issue negotiation with uncertain weight functions [51]. Our

study shows that there exists at least one sequential equilibrium in more than

99.7% of scenarios we have tried in which there are deadline constraints and

incomplete information. We also compared the performance of the equilibrium

strategies and representative heuristic based strategies. Empirical results show

that agents with equilibrium strategies achieved higher utilities than agents

with heuristic based strategies. Furthermore, when both agents adopt the equi-

librium strategies, the agents achieved much higher social welfare than that in

all other strategy combinations.

• We extend the alternating-offers protocol to handle multiple trading opportu-

nities and market competition [7]. We provide an algorithm based on backward

induction to compute the subgame perfect equilibrium of concurrent one-to-

many negotiation and many-to-many negotiation. This is the first work on

analyzing agents’ equilibrium strategies in concurrent negotiation in markets.

We observe that agents’ bargaining power are affected by the proposing order-

ing and market competition. We find that for a large subset of the space of the

parameters, agents’ equilibrium strategies depend on the values of a narrow

number of parameters. We also provide an algorithm to find a pure strategy

sequential equilibrium in one-to-many negotiation where there is uncertainty

regarding the reserve price of one agent.

• We develop and experimentally evaluate negotiation agents that negotiate for

multiple resources where agents don’t know the reserve price of each resource
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and are allowed to decommit from existing agreements. Existing work only

considers single resource negotiation and often make unrealistic assumptions

about agents’ knowledge. The distinguishing feature of negotiation agents is

that they are designed with the flexibility to adjust 1) the number of tentative

agreements for each resource and 2) the amount of concession by reacting to i)

changing market conditions, and ii) the current negotiation status of all con-

currently negotiating threads. In addition, to avoid the risk of the “collapse”

of the overall negotiation due to failing to acquire some scarce resources, nego-

tiation agents have the flexibility to adjust the deadline for different resources

based on market competition, which allows agents to response to uncertainties

in resource planning. An extensive set of experiments were carried out and the

experiments results show that each of the proposed heuristics contributes to

improve agents’ performance and our proposed approach achieved better nego-

tiation results than representative samples of existing negotiation strategies.

• We propose a distributed negotiation mechanism for the problem of allocating

networked resources in dynamic environment, such as cloud computing plat-

forms. In the negotiation model, multiple buyers and sellers are allowed to

negotiate with each other concurrently and an agent is allowed to decommimt

from an agreement at the cost of paying a penalty. Furthermore, agents nego-

tiate over both a contract price and a decommitment penalty. We also propose

negotiation strategies for both buyers and sellers considering important fac-

tors widely studied in the literature. Experimental results show the advantage

of the negotiation model over different combinatorial auction mechanisms and
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Amazon’s fixed price model. In general, the proposed mechanism can be ap-

plied in wide range of dynamic resource allocation problems. This is the first

work that shows the importance of negotiation over decommitment penalties.

7.2 Future Research

Future research in negotiation theory includes attacking some challenging open

negotiation problems concerning issue multiplicity, information incompleteness, and

negotiation involving multiple agents. The problem of efficient negotiation over mul-

tiple issues is more difficult than simple issue negotiation due to difficulties in finding

efficient mechanisms that produce Pareto optimal agreements. In presence of incom-

plete information, it is often difficult to compute agents’ (sequential) equilibrium

strategies. We have proposed a general algorithm dealing with bargaining with un-

certainty and there are several natural directions suggested by our research. The

first one concerns the extension of our results in bargaining situations where there

are two-sided uncertainty or other parameters are uncertain (e.g., discount factor).

Second, we have seen from experimental results that there are more than one pure

strategy sequential equilibrium in some scenarios. It would be useful to design coor-

dination mechanisms for choosing certain equilibrium strategies for agents to play. In

addition, characterizing bargaining games with no sequential equilibrium is also on

the agenda. Finally, our experiments about the performance of equilibrium strate-

gies thus far have focused on scenarios ranging from low to moderate complexity, but

we wish to investigate much larger problems where there are longer deadlines and

more buyer types. Regarding multiple agents, a central research topic in bargaining
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theory is understanding bargaining power, which is related to the relative abilities of

agents in a situation to exert influence over each other. In bilateral bargaining, each

agent’s bargaining power is affected by its reserve price, patience attitude, deadline,

etc. When many buyers and sellers are involved in negotiation, it is important to

investigate how the market competition will affect agents’ equilibrium bargaining

strategies. With a large number of buyers and sellers, a single agent is unlikely to

have much influence on the market equilibrium.

Another future research direction is looking at new applications of automated

negotiation for complex multi-agent resource allocation. In practical multi-agent

resource allocation problems (e.g., the two resource allocation problem discussed in

Chapter 1), information incompleteness and existence of market competition make it

intractable to compute agents’ equilibrium strategies. The community has explored

solutions which are alternative to the classic game theoretic solution by bounding

agents’ rationality. In such situations, designing heuristics that perform well is still

a challenging problem. First, an agent needs to learn knowledge from its negotiation

history. Second, market dynamics may require an agent to reason about future

trading opportunities. In addition, each agent needs to reason about other agents’

strategies. I will try to apply the distributed negotiation approach for resource

allocation in new applications I have not looked into before, e.g., electronic commerce,

supply chain, web/grid service composition, workflow, and enterprise integration.

In addition to designing negotiation strategies to maximizing an agent’s utility,

designing negotiation mechanisms that maximize some global performance measures

(e.g., social welfare) is also a future research direction. One line of research is in-
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vestigating some simplified bargaining games. For instance, Athey and Segal [16]

consider the bargaining mechanism design problem of allocating a good between two

players where the players’ valuations in each period are private information, and the

valuations change over time following a first-order Markov process. The other line

of research is considering more complex environment and evaluating different mech-

anisms through experimentation. The negotiation model in Chapter 6 falls into this

category and there are a number of future research directions. First, in the current

design, an agent will make its decision (e.g., accept, confirm) immediately after it

receives a message. As future work, we will consider the role of delaying making

decisions. Second, while it is impossible to derive agents’ equilibrium strategies in

such dynamic resource allocation game, it would be interesting to investigate agents’

rational strategies in some simplified scenarios [7]. Third, fully understanding the

role of decommitment in this resource allocation game deserves further analysis and

experimentation. Finally, studying and evaluating other auction models (e.g., par-

tially centralized auction models with different ways of determining when to run

auctions) are also necessary.

Another interesting future research direction is bargaining in trading networks.

Different from trading in markets, a buyer and a seller can negotiate for an agreement

if and only if they have a relationship, or “link”, to engage in exchange. This setting

is practical since individual buyers and sellers often trade through intermediaries,

not all buyers and sellers have access to the same intermediaries. One good example

of this setting is the trade of agricultural goods in developing countries [25]. Given

inadequate transportation networks, and poor farmers’ limited access to capital,
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many farmers have no alternative to trading with middlemen in inefficient local

markets. Bargaining in trading networks has received a lot of attention in recent

years (e.g., [25, 103, 76, 32, 38]) and the focus is analyzing agents’ strategic behavior.

Future research should include analyzing agents’ strategies in incomplete information

settings and how network structure will agents’ strategies and bargaining outcome.

Bargaining theory so far assumes that agents are fully rational, which rarely holds

in real-world domains as is well known, such human beings may not be utility maxi-

mizers. Therefore, theoretic analysis may be not useful in practice. Future research

will include analyzing strategic behavior of agents with bounded rationality. Another

related future research direction is building systems to support human negotiation

(e.g., [88, 89]), which is difficult due to a number of reasons. First, we need to con-

sider much larger negotiation space and strategy space. For instance, human beings

often use body langues while doing negotiation. Second, we need to consider many

other factors such as emotion, trust, power, culture, belief, desire, and intention.

Future research should also include designing new business models for creating

virtual enterprises. A virtual enterprise is a temporary group of fully autonomous

agents that is formed to meet a special objective or to provide a special service.

Achieving this objective or service involves performing a series of tasks that require

repeated interactions among virtual enterprise members.
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