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ABSTRACT
Parking in crowded urban areas is a precious resource that im-
pacts driver stress levels, daily productivity, and the environ-
ment. A reservation system that enables individuals to buy park-
ing spots prior to leaving their home would significantly ease
these concerns. However, designing an infrastructure for guaran-
teed parking requires extensive sensor deployment and manpower,
which is expensive and time-consuming proposition.

In this paper, we present CrowdPark, a crowdsourcing platform
that enables users to “loosely reserve” parking spots. Unlike tra-
ditional reservation platforms where sellers are usually the owners
of resources, CrowdPark achieves parking reservation by crowd-
sourcing information about when parking resources will be avail-
able, and using this availability information to help other users
find parking spots. The design of such a crowdsourcing-based
parking reservation system presents several challenges including
incentive design, robustness to malicious users, and handling the
spatial and temporal uncertainty due to real-world vagaries. We
present novel solutions to address these challenges that combine
protocol design, game-theoretic and cost-benefit analysis, sensor
data processing techniques, and navigation-based tools. With a
combination of simulation and real-world experiments, we show
that CrowdPark can 1) effectively incentivize user participation
and detect malicious users with accuracy of over 95%, and 2)
handle over 95% of spatial uncertainty and achieve over 90% suc-
cessful parking reservation with a few minute long waiting time.

1. INTRODUCTION
Parking in crowded urban areas is a precious resource

and drivers spend substantial amounts of time locat-
ing empty parking spots. Metropolitan cities such as
San Francisco and New York City, in particular, have
a pressing problem due to limited parking in downtown
areas, both for street as well as garage parking [28].
Making matters worse, information about parking avail-
ability is typically unavailable to drivers. Studies by
the US Department of Transportation have reported
that parking patrons “often do not know where the best
parking locations are”, and “most importantly, whether
a parking place will be available when they arrive” [23].

The chasm between demand versus supply of parking
spots causes a spectrum of environmental, health and
safety issues. Drivers keep vehicles on the road in the
process of circling (usually slowly) the areas where they
want to locate parking. This leads to lengthy queues of
vehicles that can block several streets. In addition, the

increased acceleration, deceleration, and braking behav-
ior while circling has significant impact on automobile
emissions [2]. Parking issues also adds to driver stress
levels, and has been reported to increase road rage and
accidents [6].

These concerns have led to significant efforts to design
online real-time parking information systems that pro-
vide up-to-date information about parking availability.
For example, SFPark is a pilot project to monitor real-
time parking availability in San Francisco by deploying
a massive network of sensors [27]. While such parking
information systems can help direct drivers to available
parking locations, they are in their pilot stages and face
daunting scaling and budgetary challenges given the
vast volume of street parking in U.S. cities. Continu-
ous monitoring of street parking requires installation of
occupancy sensors on hundreds of thousands of parking
spots or parking meters, and a vast wireless infrastruc-
ture to obtain and transmit sensing data in a reliable
manner.

The difficulties in deploying a continuous-sensing based
parking infrastructure has led to increased interest in
the use of crowdsourcing using mobile phones. Several
mobile applications such as Google’s OpenSpot [14] and
PrimoSpot [3] were recently released, with the intent of
using the general public to locate empty parking spots.
Compared with infrastructure-based approaches such
as SFPark [27], crowdsourcing-based approaches offer
higher agility, lower cost, and larger coverage since it
utilizes the vast number of mobile phone users. Recent
research has also shown that using distance sensors at-
tached to taxis [21] for obtaining parking availability
information is promising, although this is a more ex-
pensive and less scalable approach than using mobile
phones. A fundamental limitation in all these systems
is that they are designed to share parking availability
information and do not provide any information about
when a parking space is taken. Parking availability
information, by itself, is not particularly useful since
empty spots in crowded areas are quickly consumed.
Also, these systems do not address several fundamental
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challenges including incentives for users to provide in-
formation, or mechanisms to verify the validity of this
information.

In this paper, we address this limitation of crowd-
sourced parking systems by designing CrowdPark, a
crowdsourcing platform that enables users to “loosely
reserve” parking spots. CrowdPark is based on the
idea that an individual who is currently parked can
provide advance notification about when they plan to
leave, and this information may be sold to a buyer
who is willing to pay for reserving the parking spot.
The buyer arrives at the reserved parking spot close
to the leaving time, and can occupy the spot when
the seller leaves. Since individuals transact parking
availability information as oppose to concrete parking
spots, CrowdPark presents a loose reservation model in
contrast to a guaranteed service such as valet parking.
However, CrowdPark requires no additional infrastruc-
ture or man-power, making the system considerably less
expensive that infrastructure-based approaches.

Although the vision of loose parking reservations is
intriguing, a practical realization of such a crowdsourcing-
based parking reservation system presents several hur-
dles. First, such a system should encourage partici-
pation, both by providing incentives for first-time sell-
ers to contribute their leaving time information, and
by encouraging buyers to re-sell the spots that they
successfully reserve. Second, the incentive mechanism
should take into account the “utility” of a transaction
— bonuses should be provided when a transaction leads
to successful parking, and refunds when unsuccessful.
Third, there is a need to handle malicious users whose
goal is solely to maximize their monetary gain, either
by masquerading as fake sellers or by denying successful
reservations to obtain a refund. Fourth, there is a need
to accurately identify a specific parking spot since loca-
tion error can lead to low success rates of reservation.
Fifth, there is a need to handle uncertainty in seller
and buyer behavior — a seller may not leave at the
time indicated and the buyer may not arrive at that
time, leading to missed opportunities for a successful
reservation.

CrowdPark addresses these challenges using a novel
combination of incentive designs, sensor data process-
ing techniques, and navigation-based tools. Our incen-
tive protocol is designed to create a vibrant market-
place for parking information, and incentivizes partic-
ipation, provides utility-based bonuses, offers refunds
for failed reservations. We analytically show that by
choosing payment and incentive parameters carefully,
we can discourage malicious buyers and ensure that the
service provider always makes a profit. However, not
all challenges can be addressed solely by adjusting pay-
ment parameters, and we turn to phone-based sensing
and user interaction to address these. We develop 1)

techniques that use activity recognition and image pro-
cessing to detect malicious sellers, and buyer-seller co-
operation techniques assisted by route navigation tools
to address uncertainty in location and time.

The CrowdPark system is implemented with a central
server and a mobile client on HTML-5 enabled smart-
phones. We show that:
• Our game-theoretical design and cost-benefit analy-

sis ensures that rational users act honestly and that
CrowdPark is profitable for the service provider.
• Our sensing-based approach can detect malicious users

with close to 100% accuracy when they are pedestri-
ans and over 95% when they are motorists.
• Our positioning scheme can identify the precise loca-

tions of reserved parking spots up to 95% of the time
in the San Francisco downtown area.
• CrowdPark can detect late arrival of buyers with ac-

curacy of a few minutes in San Francisco downtown
area.
• With cooperation from sellers, CrowdPark can achieve

over 90% successful reservation rate.

2. CROWDPARK RESERVATIONS
CrowdPark provides a platform where users can trade

parking availability information. There are two types of
users in CrowdPark system: sellers and buyers. Sellers
are the drivers who occupy parking spots, and sell their
“when-to-leave” (henceforth referred to as WTL) infor-
mation. Buyers are the drivers who buy the WTL infor-
mation to reserve parking spots. CrowdPark uses vir-
tual credits as the incentive for the exchange of WTL in-
formation between sellers and buyers — several providers
including Facebook support virtual credits, which can
be exchanged for monetary rewards or products in a
store [1]. This section describes the basic reservation
protocol underlying CrowdPark, and discusses several
open challenges that we address in the coming sections.

2.1 Reservation Protocol
A WTL transaction, shown in Figure 1, comprises

three major steps: 1) a seller submits a WTL message to
CrowdPark, 2) a buyer buys a WTL message to reserve
a parking spot, and 3) the buyer drives to the reserved
parking spot, and sends back the reservation result. We
explain these three steps in more detail as follows.
Seller submits WTL to CrowdPark . In order to
incentivize users to share WTL information, CrowdPark
pays sellers two types of rewards - a fixed reward of D
points and a bonus of X points. The fixed reward is
granted immediately after a WTL message is accepted
by CrowdPark. This incentive is provided irrespective
of whether the spot is purchased by a buyer. Such a par-
ticipation incentive can help bootstrap our system, and
ensure a steady stream of available slot information to
make the marketplace attractive to buyers. This fixed
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Figure 1: The transaction process of a WTL
message. The messages marked with dotted
lines are not mandatory, and will be explained
in later sections.

reward is expected to be a small amount, say a quarter,
although this may be adjusted based on the importance
of the location and time of the sale — for example, the
reward for downtown San Francisco may be higher than
suburban areas, and can vary over time depending on
parking need. The bonus reward is granted right after
the parking reservation is confirmed a success i.e. after
a buyer has successfully parked at the seller’s location.
This amount is expected to be significantly larger than
the fixed reward, say one or a few dollars depending on
the location and time.

A WTL message contains location and time informa-
tion of the parking spot, to allow a buyer to accurately
locate a spot and arrive at the spot in a timely manner.
Location information is specified by a combination of
inputs: 1) GPS location at the parking spot, 2) identi-
fier of the parking spot, and 3) an identification of the
seller’s vehicle such as the color, make, and license plate
number of the seller’s car. Note that the sellers vehi-
cle identification is collected only once upon registering
with CrowdPark and does not have to be re-sent each
time. §5.1 describes how these inputs are obtained and
combined to determine location of the spot. The time
information is specified by the expected leaving time of
the seller.
Buyers buy WTL to reserve parking spots . A
buyer who wishes to purchase a parking spot provides a
destination and arrival time to CrowdPark, and receives
a list of matching WTL messages. The returned WTL
messages are first presented to buyers as an “overview”
mode, where the precise information in a WTL is ob-
fuscated. For example, the actual time is replaced by a

GPS

Timestamp
When-to-leave

automatically 
gathered require user input

User 
Credentials

Parking Spot
Identification

Figure 2: Contents of a WTL message sent by
a seller. Parking spot identification and “when-
to-leave” field are provided by seller. Crowd-
Park combines this with seller’s vehicle identifi-
cation information to form a full WTL message
for reservation.

time window of 10 minutes, and the location is replaced
by the distance to buyers’ destination. The “overview”
mode allows buyers to identify the appropriate WTL
messages while not to revealing the WTL information in
its entirety before buyers pay for it. After a buyer pays
for a WTL message, the actual content of the WTL,
including the location and leaving time information, is
visible to the buyer. The reservation is complete at this
point. The payment from buyers, N points per WTL
message, is deposited to CrowdPark.
Buyers confirm reservation results The final step
is a confirmation from the buyer about the success or
failure of the parking reservation. If a reservation is
successful, the seller receives a bonus of X; if it fails,
a refund R is returned to the buyer. Note that re-
fund R may be different from the deposit paid by the
buyer, also the base reward D depends on the Crowd-
Park dynamics as well as the desired profit margin for
the service provider. We discuss this in detail in § 3.

2.2 Challenges
The reservation protocol underlying CrowdPark leaves

several unanswered questions. Since monetary incen-
tives are involved, one class of problems that Crowd-
Park needs to solve is how to deal with malicious sellers
or buyers who may be willing to lie to maximize their re-
wards. A second class of problems involves dealing with
real-world vagaries such as location error, early depar-
ture of the seller, or late arrival of the buyer. More
specifically, there are four key challenges that we ad-
dress in the rest of this paper:

• How to ensure that buyers are honest? A malicious
buyer can buy a reservation and park successfully
but deny the fact to obtain a refund. In § 3.1, we
introduce a game-theoretical design that ensures
rational buyers maximize their gain by confirming
the truth.

• How to ensure profitability for the service provider?
The parameters of the reservation protocol influ-
ence the margins for the parking service provider.
In §3.2, we provide a cost-benefit analysis from
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Fixed incentive for seller D
Seller bonus for successful reservation X
Buyer deposit for reservation N
Buyer refund for unsuccessful reservation R
Probability of successful reservation p
Probability of unsuccessful reservation q
Alternate revenue (e.g. ads) C

Table 1: CrowdPark Parameters.

the provider perspective and describe how it can
be used to determine protocol parameters.

• How to make CrowdPark robust against malicious
sellers? Malicious sellers might provide fake WTL
information to receive base reward. In section 4,
we introduce two sensing based schemes, ActCheck
and SpotCheck, to detect malicious sellers.

• How to precisely localize the parking spot? A park-
ing reservation system relies on the ability to pre-
cisely pinpoint the location of the spot being re-
served. But GPS location is often inaccurate, par-
ticularly in downtown areas with tall buildings. In
§5.1, we describe how a combination of GPS-based
processing, parking meter identifiers, and car iden-
tification information can enable precise localiza-
tion.

• How to handle uncertainty in buyer arrival and
seller departure? Despite the best intentions, it
is difficult to precisely arrive at the parking spot
at the WTL time due to traffic vagaries, and pre-
cisely leave at that time due to scheduling difficul-
ties. In §5.2, we discuss predictive techniques to
inform the buyer/seller of delays and enable better
synchronization, and utilize cooperation of sellers
and buyers to improve reservation success rate.

3. SETTING CROWDPARK PARAMETERS
How to fully incentivize users to act honestly in Crowd-

Park while meet a budget for service providers? In this
section, we provide a novel game-theoretical design and
cost-benefit analysis, where we achieve this goal by care-
fully setting the different reward and payment variables
such as D, R, and X in the system.

3.1 Incentivizing Honest Buyers
The first challenge that we address is dishonest buy-

ers. In the protocol described earlier, a buyer can deny
that a parking was successful even if it was indeed suc-
cessful, and thereby receive a refund. Buyer dishon-
est also has the negative consequence that the seller
is not being given a bonus, which can reduce partici-
pation. We now present a game theoretical design of
the parking reservation rules which ensures that buyers
maximize their gain by telling the truth. With such a

Honest Dishonest

Successful D + pX R
Unsuccessful R D

Table 2: The gain for buyers by being honest
and dishonest when reservations are successful
and unsuccessful.

design, rational buyers would choose to be honest in our
system.

The key idea behind our approach is that a buyer who
successfully parks at a reserved spot can re-sell that spot
through the CrowdPark system if they tell the truth. If
they deny a successful parking, obviously they cannot
re-sell this spot. We use this idea to set reward pa-
rameters to ensure that the average gain of re-selling is
higher than the gain by lying and receiving a refund.
The approach has two benefits: a) it incentivizes hon-
est reporting from buyers, and b) it encourages buyers
to keep re-selling a spot thereby ensuring that a steady
pool of spots are available on CrowdPark. We now de-
scribe the approach more formally.

As mentioned in the previous section, the gain of sell-
ing a WTL message contains two parts: a constant re-
ward D, and a bonus reward X. If the probability of
selling a WTL and confirmed successfully is p, the re-
ward for selling a WTL message is: D + pX. To ensure
that a buyer is better off being truthful, we only need
to ensure that the average reward of reselling a reserved
parking spot is higher than R.

Table 3.1 shows the gain for a buyer if they tell the
truth vs lie, and when parking was successful vs unsuc-
cessful. To ensure buyers maximize their gain by being
honest, we need the following constraint to hold:

D + pX ≥ R ≥ D (1)

or, X ≥ 1
p

(R−D) (2)

The above analysis assumes that we know p, the prob-
ability that a WTL is sold and confirmed successful. In
a live system, p is simply a measured system parameter,
and the current measured value of p can be used in the
inequality.

While Equation 2 provides a lower bound for X, the
bonus has to be upper bounded as well, since a service
provider has profit considerations.

3.2 Service Provider Cost-Benefit Analysis
Under what conditions is CrowdPark a profitable busi-

ness enterprise? As we will show, the analysis for this
question helps further narrow down the region of the
values for bonus X and refund R.

Let’s consider a single WTL transaction. For each
WTL message, the cost for the service provider is as
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follows: 1) reward to the seller is D + pX, where p
is the probability that a WTL is sold and confirmed
successful, and 2) refund to the buyer is qR, where q
is the probability that a WTL is sold and confirmed
unsuccessful. The benefit for the service provider is the
income that can be earned from each WTL, which is
(p + q)N .

Mobile businesses typically have multiple sources of
revenue such as targeted advertisements (e.g. for park-
ing garages), so they may not be reliant solely on income
from parking reservations. Let us assume that service
provide has a per-WTL revenue of C from these alter-
nate sources. Our goal is to ensure that service provider
can break even. In other words, we have the following
constraint:

C + (p + q)N ≥ D + pX + qR

or, X ≤ 1
p

(C + (p + q)N −D − qR) (3)

Together with (2), we have upper and lower bounds
for bonus X as follows:

1
p

(R−D) ≤ X ≤ 1
p

(C + (p + q)N −D − qR) (4)

The above inequality implies that:

R−D ≤ C + (p + q)N −D − qR

or, R ≤ 1
(1 + q)

(C + (p + q)N)

Together with (1), we can derive the constraints for
refund R as follows:

D ≤ R ≤ 1
1 + q

(C + (p + q)N)

or, D ≤ 1
1 + q

((p + q)N + C) (5)

This is the constraint for base reward D and WTL price
N given a budget C from service provider.

Example We now instantiate the above analysis with
a simple example. Let C = 0, which means that there is
no additional source of income, and CrowdPark needs
to be profitable on its own. Then, we can derive the
relation between D and N based on (5) as follows:

D ≤ 1
1 + q

((p + q)N)

or,
D

N
≤ p + q

1 + q
(6)

This is the condition that CrowdPark is profitable.
We can change the ratio of D and N based on the reser-
vation probability, p that we learn over time. For ex-
ample, assume that N = $2, and that p = q = 0.1. We
can derive other system parameters as follows:

I From (6), we have D ≤ $0.36.
I From (1), we have $0.20 ≤ R ≤ $0.36.

I From (4), we have $1.5 ≤ X ≤ $1.65.
Thus, we have derived system parameters D, R, and
X that encourage honesty from buyers and ensure that
the service provider is profitable from CrowdPark.

4. DETECT MALICIOUS SELLERS
While reservation parameters can be chosen to en-

courage honesty from buyers, it cannot address the is-
sue of dishonest sellers. A dishonest seller gets a fixed
reward, D, whether or not a reservation is successful
and can therefore submit a large amount of incorrect
parking information to the system. Such dishonest sell-
ers can greatly degrade the experience for the buyer and
adversely impact the viability of CrowdPark.

In this section, we describe three approaches to de-
tect malicious sellers, and how these approaches can be
used in conjunction to design a robust detection sys-
tem. Throughout this discussion, we assume that users
can be compromised but the phones are trustworthy.
Thus a malicious user cannot manipulate GPS coordi-
nates and timestamp intentionally. We also assume that
malicious users cannot have multiple accounts, which
is reasonable since it would require a separate vehicle,
credit card, and phone for each account.
Baseline schemes A few simple baseline mechanisms
can be used as a first-level filter for preventing malicious
sellers. First, the service provider can pre-determine
parking hotspots that are considered valuable to users
and reject WTLs originating from other areas. Second,
the service provider can rate limit the number of WTL
messages per day. If a seller generates more than the
limit, the service provider can place the seller in a black-
list. The advantage of these approaches is that both are
easy to implement at the server-side and require no ad-
ditional information from the phone. However, these
techniques cannot completely prevent malicious sellers
— hotspot areas can be easily guessed by a malicious
seller, and rate limits typically need to be set conserva-
tively and a malicious seller could sell several spots per
day once they know the limit.
SpotCheck using geo-tagged licence plate A sim-
ple yet effective measure to detect whether a seller is
actually parked at the claimed location is to require the
seller to provide a geo-tagged photo of the vehicle’s li-
cense plate using their phone. The license plate number
can be accurately extracted from the photo using auto-
matic techniques for Automatic Number Plate Recogni-
tion (ANPR [20]), or if the accuracy of these approaches
is low, can be performed at low cost using human com-
putation on the Amazon Mechanical Turk. The geo-tag
associated with the photo can be cross-checked against
the claimed location in the WTL message, and the li-
cense plate number in the photo can be matched against
the information provided by the seller during registra-
tion. The benefit of this approach is that it provides an
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in-scene proof. However, it requires the seller to take
a photo and transmit it to the server, which is time-
consuming for the seller and energy-intensive for the
phone. Another problem is that image quality can vary
significantly, due to the reasons such as lighting, expo-
sure. For example, if a vehicle is parked at night, it may
be harder to get a clear image of the license plate due
to lighting conditions. Also, a malicious seller could
take an in-scene photo of not the plate itself, but a
previously obtained photo of the license plate. It also
requires image processing techniques have the ability to
detect duplicated images. While these image process-
ing is challenging, we could utilize crowdsourcing based
human recognition to provide highly accurate results
within a few minutes delay [32].

ActCheck using activity recognition on the phone
A third approach is to use activity recognition tech-
niques on the phone to detect if the activities performed
by the seller is consistent with expectations. We expect
that a normal seller be detected walking between the
WTL submission and the leaving time, and within a
moving vehicle after the leaving time. Activity recog-
nition using phones is a well-studied research area, and
several state-of-the-art algorithms[5, 18, 19, 30, 31] ex-
ist for accurately detecting activities such as walking,
driving, biking, etc in a power-efficient manner. For
example, the system that we use, Jigsaw[19] , uses an
accelerometer to detect high frequency vibration and
speed to infer user activity. By primarily using the ac-
celerometer rather than the GPS, Jigsaw can reduce
battery consumption.

ActCheck requires one additional message from the
seller, a ”Leaving Now” (LN) message that informs the
system that they are leaving at a particular time. While
the leaving time can be inferred from the activity, it
provides more explicit information to the system.

ActCheck consumes less energy than SpotCheck since
it requires limited communication, requires no explicit
work from the seller, and uses lightweight and power-
efficient sensors. However, it requires that the appli-
cation be running continuously on the sellers phone.
It also assumes a specific activity model for the seller,
which can both lead to attacks from a malicious seller
and lead to false positives when a legitimate seller ex-
hibits behavior that is detected to be abnormal. For
example, a malicious seller can deceive the system by
slowly driving after WTL submissions to act as a vehicle
owner who parked and walked out to the destination.
Our experience with the Jigsaw system indicates that
such deception is very hard to achieve in practice — ma-
licious sellers need to perform a perfect combination of
extremely slow driving (less than 10 mph), shaking the
phone vigorously while driving to give the impression
of walking, and following specific driving loops, in-order
to deceive the system. Perhaps more problematically,

ActCheck might trigger a false positive for legitimate
activity that does not follow the normal behavior — for
example, a user might send a WTL while arriving via a
subway train to the parking lot. We do not consider all
such cases in this paper, but as shown in [30], many of
them can be detected by combining GPS information,
bus/train schedules, and activity information.
Combining above approaches: While there are
several approaches, each of them has pros and cons.
The baseline schemes are the easiest to implement at
the server-side, and provide a first-order filter against
malicious sellers. When the baseline schemes detect a
pattern, for example, a seller whose WTL information
is repeatedly unsuccessful, or never bought, ActCheck
is triggered. ActCheck provides a second-order filter
to detect if the activity pattern of the seller follows
expected behavior. If ActCheck triggers alarms for a
seller, we trigger SpotCheck for future sales from the
same seller as a more reliable mechanism for detecting
malicious behavior.

5. DEALING WITH UNCERTAINTY
In addition to malicious buyers and sellers, a funda-

mental set of real-world challenges that need to be ad-
dressed in CrowdPark is location and time uncertainty.
Precise location estimation of a parking spot is critical
to the success of CrowdPark. GPS location, by itself, is
insufficient since GPS error can be large in urban areas.
Time uncertainty is also a crucial challenge — sellers
may not leave at the precise time stated in the WTL
message, and buyers may not arrive at this time either.
In the rest of this section, we present our solutions to
these challenges.

5.1 Handling Spatial Uncertainty
CrowdPark uses a mixture of GPS localization and

physical identification to accurately locate parking spots.
First, we use GPS to achieve street segment level po-
sitioning accuracy – identifying which street or which
parking garage corresponds to the spot. Second, we
use physical identification of parking spots such as a
parking meter identifier, the level/section number in a
garage, or the color/make/license number of the seller’s
car to identify the parking location. We discuss these
techniques in more detail below:
Street-Segment Matching: The first challenge in
handling spatial uncertainty is finding the correct street
segment. A single GPS reading is not enough since
GPS readings can change significantly even with small
perturbations in urban areas. Thus, even waiting for
a longer duration does not ensure that GPS converges
to the right location. In CrowdPark, we use a simple
Street-Segment matching algorithm to reduce the error
of GPS readings, and to find the correct street segment
with high probability.
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Figure 3: Parking meter ID. Left one in San
Francisco and right one in Amherst, MA

CrowdPark reads GPS samples for a few minutes af-
ter sellers register their parking spot with the server.
For each sample, we match it to the street segment
which has the minimum distance to the sample and has
valid street parking. For all the street segments that
have one or more samples matched, we rank them by
the number of samples matched. We then return the
top ranked street segments which in total contains over
90% of samples to sellers, and let sellers choose the cor-
rect street segment from the results.

Street Parking Spot Identification: The street-
segment matching algorithm has two problems: 1) it
provides only coarse-grained information about the park-
ing spot and a buyer needs to search the entire street
segment to identify the specific seller spot, and 2) the
algorithm cannot provide 100% accuracy due to GPS
inaccuracy, particularly in urban areas.

To address this issue, we use physical identification
to locate the parking spot. The best physical identifier
of a parking spot that we found is the parking identi-
fication meter number that is available on all parking
meters. (An example is shown in Figure3). This num-
ber on the parking meter does not appear to be unique
across the U.S. but is unique in a local scope (such as a
district). The number of digits on the meter also vary
— there are ten digits in San Francisco and three dig-
its in Amherst. Since we already obtain street-segment
level information from GPS, we only require that they
are locally unique within the small region. Thus, a seller
only needs to enter the last three digits of the parking
identifier to precisely pinpoint the location of the spot.

The discussion above assumes that we have access
to a database of parking meter identification and their
GPS coordinates. We have not been able to find an
open database with this mapping; however, even if such
a database is not available from official sources, obtain-
ing this information is a one-time overhead. In fact,
this data collection can even be crowdsourced by re-
cruiting sellers to contribute to the database by provid-
ing input of additional information associated with the
meter, such as the address of the closest building, or
simply mark it on a Google Map street view interface.

5.2 Handling Temporal Uncertainty
The “when-to-leave” information is only a rough esti-

mation of the time that a parking spot can be released.

In reality, sellers might leave earlier or later depend-
ing on various delays or just a poor estimation of their
leaving time. Buyer arrival time can be similarly un-
certain — traffic jam, detours, and other factors can
make precise estimation of arrival time very hard. Un-
certainty in sellers’ departure and buyers’ arrival times
can cause two problems: 1) if buyers arrive later than
the departure of sellers, there is a time window during
which the reserved spot may be taken by hidden drivers
i.e. drivers other than the buyer, and 2) if buyers arrive
earlier than the departure of sellers, they have to wait,
which is difficult in many locations since it can cause
traffic backups. In the rest of this section, we discuss s
these two problems respectively.

5.2.1 Buyer-Seller Gap
If a buyer arrives after than the seller departs, the

buyer has to compete with hidden drivers. In this case,
buyers have a lower chance of successful parking at the
spot. There are two cases when a buyer can arrive after
the seller leaves: 1) the seller leaves punctually or later
than then reservation time, but the buyer arrives even
later, and 2) the buyer arrives punctually or earlier than
the reservation time, but the seller leaves even earlier.

Late Arrival Notice: In the first case, it is buyer’s
fault for not being able to meet the reservation time.
However, it is very likely that the buyer is already on
road and may be only a few blocks away from the park-
ing location. In this case, if sellers are willing to wait
for a few more minutes, the reservation can still happen
successfully. CrowdPark uses a “Late Arrival Notice”
service to co-ordinate between the buyer and seller.

CrowdPark calculates the estimated arrival time for
buyers by utilizing their latest GPS location and the
destination location, and determines whether this time
will be later than the WTL time. In our evaluation in
§7, we demonstrate that state-of-art navigators provide
an estimated travel time with only a few minutes er-
ror within a radius of five miles from the destination.
Therefore, the estimated travel time from navigators
can be utilized as a indicator for sellers to decide how
much longer to wait. The “Late Arrival Notice” service
is designed as follows: if buyers enable the navigator-
integrated in CrowdPark client for routing, for example
the Nokia Ovi Map, CrowdPark estimates the arrival
time directly on client side. Otherwise, the CrowdPark
client sends the latest GPS locations back to server to
estimate the travel time. The estimated travel time is
sent to sellers in two cases, either when the seller de-
cides to leave by sending a “leaving now” message to
server, or when the estimated travel time exceeds the
reservation time. In both cases, CrowdPark asks sellers
if they are willing to wait until the estimated arrival
time of buyers.

Seller Not In Scene: CrowdPark tries to discourage
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sellers from leaving earlier than the reservation time,
since a buyer would have too little time to adjust to
such an eventuality. If a seller leaves earlier than the
reservation time and it results in a failed reservation for
the buyer, we grant full refund to the buyer if they show
evidence that they parked at a different location. Using
the ActCheck mechanism running on the seller’s phone,
we can identify if the seller left prior to the WTL time.
In addition, if the buyer provides evidence that they
parked at a different location using a geo-tagged image
of their license plate, we use the SpotCheck approach
discussed in §4 to validate this proof and provide a full
refund to the buyer. (If the seller persistently leaves
prior to the expected time, the participation incentive
paid to the seller may be potentially withdrawn as well
to discourage such behavior.)

5.2.2 Buyer-Seller Overlap
If buyers arrive earlier than the departure time of

sellers, buyers have to wait for sellers to release the
parking spot. In some instances, buyers might be able
to find a temporary spot near the reserved parking spot
to park and wait for a short duration. We refer to this
as ”double parking”. However, double parking time can
be very short, typically one to two minutes in downtown
street parking to avoid blocking traffic, or a few minutes
within parking garages. After the double parking time,
buyers have to circle around the reserved parking spot
and return to check again if sellers are leaving or not.
If sellers leave during the time buyers are circling, buy-
ers again have to compete with hidden drivers, which
reduces their chances of obtaining the slot.

To avoid buyers from losing the spot while circling,
CrowdPark allows buyers to send an “arriving now”
message via CrowdPark to ask seller for a updated “when-
to-leave” message. If buyers decide to accept the new
WTL, CrowdPark can give a guide of where to circle
and estimate the circling time using GPS-based navi-
gation techniques (similar to the “Late Arrival Notice”
service described earlier). The estimated arrival time is
sent back to seller. If sellers agree to the new arrival
time, the reservation is still valid.

6. SYSTEM IMPLEMENTATION

6.1 CrowdPark System
The CrowdPark system consists of a backend server

at Nokia Research at Palo Alto, and an HTML-5 based
client designed for several popular smartphones. The
components diagram of CrowdSearch system is shown
in Figure 4.
CrowdPark Client: The client consists of two views,
seller’s view and buyer’s view. The seller’s view con-
tains two major modules: reservation module and ActCheck
module. The reservation module allows users to submit

WTL messages to the CrowdPark server and get their
reward, and ActCheck Module initiates malicious user
detection after users send WTL messages or LN mes-
sages. The buyer’s view also contains two major mod-
ules: reservation and navigation. The reservation mod-
ule allows users to search and buy WTL messages, and
the navigation module allows users to navigate to re-
served parking spot and calculates the estimated travel
time.

CrowdPark Server Implementation: The Crowd-
Park server comprises the incentive engine, reservation
engine, and cooperation engine. The incentive engine
calculates system parameters based on the constraints
we derived in §3. The reservation engine accepts and
validates WTL messages from sellers, and reservation
requests from buyers. It is also responsible for reward-
ing sellers and refunding buyers, according to the sys-
tem parameters determined by the incentive engine.
The cooperation engine deals with the negotiation of
a new WTL time when buyers send a Late-arrival No-
tice. Besides the three major engines, there are two
other modules in CrowdPark server. One is the ANPR
module, which runs an ANPR software for plate num-
ber image recognition. The other is the map service,
which supports the navigation and map functions on
the client.

Implementation Status: CrowdPark is still under
prototyping, and we are working on a full live version
of the system. Our current implementation of Crowd-
Park server contains over 10,000 lines of Java code. We
have implemented the three engines and integrated with
ANPR. Our next step is to integrate with Nokia’s Ovi
Map to provide map service and enable the navigation
function on the client side. Our current implementa-
tion of the CrowdPark client contains over 5,000 lines
of javascript code for the logic part and over 10,000
HTML-5 and CSS code for UI design. The reservation
module is implemented on the client, but the ActCheck
module is yet to be integrated since a cross-platform
implementation is not currently available. We plan to
have a cross-platform implementation of ActCheck (cur-
rently it is written in Symbian C++), and integrate it
with other parts of the client.

6.2 CrowdPark Simulator
Besides the implementation of CrowdPark system, we

also built a CrowdPark simulator to simulate the reser-
vation performance for different parameter settings. The
simulator consists of three major components: user en-
gine, hidden user engine, and Reservation engine. The
user engine generates sellers and buyers following a Pois-
son distribution. It also simulates parking events as well
as transactions (i.e., buy, sell, and confirm) of WTL
messages. The hidden user engine generates hidden
drivers according to a Poisson distribution and their
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Figure 4: CrowdPark Architecture.

parking events. The reservation engine manages WTL
messages for sale and rewards users according to the
reservation results. The WTL lifetime is modeled in
six states: CREATED, SOLD, EXPIRED, PARKED,
CONFIRMED, and LOST, where LOST means that the
spot is taken by hidden drivers.

The CrowdPark simulator is driven by events that
occur sequentially. At every simulation step, the simu-
lator first adds new buyers or sellers into queues man-
aged by the simulator, then enumerates all buyers, sell-
ers, and WTL messages. While visiting each object in
the queues, the reservation engine updates the state of
the corresponding WTL and the gains (or earnings) of
each buyer and seller. We assume that user behavior is
decided by a simple honesty attribute – either always
honest or dishonest. This is clearly an approximation
of human behavior but is sufficient for understanding
CrowdPark performance.

7. EVALUATION
We evaluate incentive design, malicious seller detec-

tion, and handling uncertainty in this section.

7.1 Variation in Parking Availability
In this section, we evaluate the lifetime of empty

parking spots in San Francisco downtown areas, where
street-parking supply is far less than parking demand.
The purpose of this study is two-fold: first, we use this
study to demonstrate the parking problem in big cities,
and second, the study provides valuable parameters to
seed our simulator models.

We spent two weeks in August 2010 monitoring street
parking in San Francisco. We monitored four blocks in
total — two blocks near Union Square and two blocks in
the Financial District. We recorded the time at which
each parking spot is taken and released for all street
parking spots within these four blocks. Each day, we
monitored the street parking from noon to 6 pm to cover

both lunch time and rush hours.
The availability of parking exhibits significant tempo-

ral dependency. Figure 5(a) shows the log-scale CCDF
of the lifetime of empty parking spots for three con-
secutive afternoons near Union Square, San Francisco.
From this figure, we find that 80% of the time, an empty
parking spot is taken within 5 minutes on Saturday
afternoon. However 80% of empty parking spots has
10 minutes or longer lifetime on Friday afternoon, and
around 15 minutes on Thursday afternoon. The num-
bers matches our observation: on Thursday afternoon,
a large fraction of vehicles parked along streets are com-
mercial ones, while both personal vehicles and commer-
cial ones compete with each other to park along streets
on Saturday.

Parking availability also varies spatially. Figure 5(b)
shows the log-scale CCDF of the lifetime of empty park-
ing spots in two adjacent blocks in Financial District
during the same time period. Since one block is closer
to shopping areas, it has significantly higher parking de-
mand than the other. From this figure, we observe that
the lifetime of empty parking spots in the busy block is
about half that of the other block.

These results have two implications. First, the re-
sults show that systems that use solely parking avail-
ability information are limited due to their inability to
precisely know the time when a spot is taken. For ex-
ample, Google OpenSpot keeps a spot on the map for 20
minutes by default, but that number clearly depends on
the location and time as described above. Second, the
results help seed our simulator with appropriate mod-
els of hidden driver behavior for a parking spot. The
plots are all roughly linear in logscale, which gives cre-
dence to the use of a poisson distribution for modeling
hidden drivers. Also, we see that in heavily congested
areas, the inter-arrival time of parking events is about
2-5 minutes, which we also use in our simulations.

7.2 Setting Reservation Parameters
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In §3, we derived value ranges for base reward, bonus,
and refund to ensure buyer honesty and profitability to
the service provider. In this section, we study how to
configure these parameters in real scenarios. Our evalu-
ation consists of two parts. First, we evaluate the frac-
tion of rational users via a user study and demonstrate
the relation between reward and truth-telling. Next,
we evaluate how a service provider can set the bonus
despite the presence of dishonest users.

7.2.1 User Study: Rational Behavior of Users
The goal of this user study is to understand whether

the parameter choices made by CrowdPark would lead
to honest reporting from buyers. One of the assump-
tions that we make is that a buyer can quickly deter-
mine that honesty leads to the best outcome, and is
therefore the most rational approach. But how quickly
can a buyer identify that this is indeed the case?

We utilize Amazon Mechanical Turk (AMT) [24] in
this evaluation. We recruit 131 participants from AMT
for this study. We design a web-based survey that repli-
cates the actual scenario of buyer confirmation as fol-
lows: participants assume that they have already paid
$2 for reserving a parking spot. Depending on whether
they successfully park or not, they can either claim a
partial refund of $1 or re-sell the reserved parking spot.
Re-selling gives them a base reward of $0.2 and a bonus
of $2 if re-selling leads to another successful parking.
For each participant, the probability that they can re-
sell their parking spot successfully, denoted as p, is set
a priori but hidden from participants. The re-selling
probability is randomly chosen from a set of 0.1, 0.3, 0.5,
0.7, and 0.9 uniformly. Note that changing the probabil-
ity p effectively changes the expected bonus pX. Also
note that when the probability is 0.4, the gain of re-
selling becomes same as partial refund. Rational users
would choose to re-sell against refund for the probability
greater than 0.4. In order to observe how participants
converges to a final decision, we ask each participant to
answer this survey question for 15 times. Each time the
re-selling result is randomly generated based on the pre-
set probability p. Since one of our goals is to test how
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Figure 6: User Study of honest confirmation us-
ing Amazon Mechanical Turk.

quickly users can converge to the best strategy, we ask
participants to maximize their gain during 15 rounds
and give them a $5 bonus for their achievements. We
divide the 15 round responses into three groups: 1-5
rounds, 6-10 rounds, and 11-15 rounds in the following
evaluation.

Figure 6 illustrates how users behave in terms of ra-
tionality when p varies. From this figure, we first find
that higher reward significantly increases the fraction of
users who choose tell the truth. We also see that peo-
ple can learn the 0.4 threshold quickly. We observe that
the fraction of honest confirmation remains almost con-
stant for the first five rounds regardless of the amount
of reward because users are trying to infer the under-
lying hidden probabilities. But after 15 rounds, people
learn the best strategy: when p is 0.1, around 80% par-
ticipants choose lying, which is the best strategy for a
rational user in this case. However, when p approaches
to 0.9, almost all participants choose honest confirma-
tion, which is again the best strategy for a rational user
for the case.

7.2.2 Simulation Study: Setting Parameters
We now study how to set bonus when the fraction

of rational users (or honest confirmation) varies. In
our simulation, we assume that the budget from service
provider is $0.1 per WTL message, and the price for
a WTL message is $2. Following the steps presented
in the example in §3, we choose D = $0.2, R = $0.3,
and X = $0.3 + $0.2

p̂ , where the value of p̂ denotes the
estimated value of p, and X is chosen to make the bonus
meet the truth-telling constraint and budget constraint.
In our simulator, the value of p̂ is predicted by a service
provider by counting the number of successful parking
reservations over the previous 10,000 WTLs.

Figure 7 shows the lower and upper bounds for bonus
and the actual bonus setting in our simulation. We
vary the fraction of rational users from 1% to 100%
with a step 1%, and for each fraction setting, we simu-
late 100,000 WTL transactions. This figure shows that
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bonus is correctly set within its bounds despite the pres-
ence of dishonest users. Meanwhile, we can also con-
clude from this figure that when the fraction of honest
buyers is over 50%, the value of bonus is relatively sta-
ble, implying that a fixed bonus is robust to variation
in the fraction of honest buyers.

7.3 Detecting Malicious Sellers

7.3.1 Performance of ActCheck
In this section, we evaluate how accurately ActCheck

can detect malicious sellers. We focus on two types of
malicious sellers, pedestrians and motorists. We first
evaluate the case where malicious sellers are unaware of
ActCheck, and then evaluate the case where malicious
sellers are aware of ActCheck and try to deceive it.

Malicious Users Unaware of ActCheck: We run
ActCheck after sellers send either “when-to-leave” mes-
sage or “leaving-now” message. For each case, we tune
the running time of ActCheck from one minute to five
minutes. Figure 8 shows the accuracy of ActCheck in
classifying normal users and malicious users. From this
figure, we find that the accuracy of ActCheck improves
significantly as the running time increases. When ActCheck
runs for five minutes, it can classify over 98% normal
users correctly, while less than 5% malicious users can
pass this classification filter. While the energy con-
sumption of ActCheck increases with time, it is still
energy-efficient in comparison to transferring an image
since it only uses an accelerometer sensor [19].

Malicious Users Aware of ActCheck: In this ex-
periment, we act as malicious sellers to deceive ActCheck.
Since ActCheck expects that a seller behave as a pedes-
trian, a runner, or a cyclist after sending “when-to-
leave” message and behaves as a motorist after sending
the “leaving now” message, we tried two malicious be-
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haviors in this experiment: 1) act as a pedestrian in a
moving vehicle, and 2) act as a motorist when walking.

To act as a pedestrian in a moving vehicle, users
need to meet two conditions: acceleration (in x and
y axes) and high frequency vibration (caused by mov-
ing vehicles) should be kept small enough. To keep
the acceleration value small enough, users have to drive
smoothly and slow. To force the high frequency vi-
bration, users have to detach the phone from vibrating
objects (i.e., vehicle and drivers); users can throw and
catch the phone in vehicles. ActCheck can be deceived
if both conditions are met. However, the effort to per-
form such deception becomes harder particularly when
the running time of ActCheck is sufficiently long. To act
as a motorist when walking is much harder, since it is
difficult to mimic the high frequency vibration pattern
of vehicles.

7.3.2 Performance of SpotCheck
In this section, we evaluate the performance of SpotCheck.

We collected 54 license plate images using mobile phones.
Collected images cover a large spectrum of real-world
conditions such as different lighting, exposure, and fo-
cus. We use an open-source Automatic Number Plate
Recognition (ANPR) software called javaANPR [20] to
recognize the plate numbers automatically. We also
send plate images to Amazon Mechanical Turk for human-
based recognition. We recruit five different AMT users
to recognize each plate image and pay each individual
five cents to recognize a plate. We then evaluate the
accuracy and delay of the first response, the majority
of the first three responses, and the majority of all five
responses.

Table 3 shows the performance of both ANPR and
human validation. In this table, Human-k denotes that
we evaluate the first k AMT responses. To our surprise,
we found that ANPR software has very low accuracy.1

However, AMT-based human recognition performs well

1We expect that commercial ANPR software such as those
used by the Department of Transportation may have higher
accuracy. However, these were too expensive for experiment.
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# Methods Recognition Accuracy Average Delay(seconds)

ANPR 10% 5
Human-1 96% 98
Human-3 98% 220
Human-5 100% 325

Table 3: The accuracy and delay of using ANPR
and Amazon Mechanical Turk for Vehicle Num-
ber Plate Recognition.

# Segments Precision

1 0.64
2 0.85
3 0.89
4 0.95

Table 4: Accuracy of street-segment matching.

enough to be an excellent alternative. From Table 3,
we find that the accuracy of human recognition is close
to 100% even with a single individual. The delay is
only one or a few minutes, which is sufficiently small
for its use in CrowdPark. Thus, even without a pro-
fessional ANPR software, AMT-based human recogni-
tion achieves high accuracy and acceptable delay for
SpotCheck.

7.4 Handling Uncertainty
We now evaluate approaches that we use for handling

uncertainty in location, seller departure time, and buyer
arrival time.

7.4.1 Performance of Street-Segment Matching
In this section, we evaluate the performance of our

street-segment matching algorithm. We conducted 30
trips in San Francisco downtown area, and 12 trips in
San Jose downtown area to evaluate our algorithm. San
Francisco downtown area is full of highrise buildings
with cloudy weather, which gives the worst condition
for GPS positioning performance. For each trip, we
stop at a parking location for around two minutes to
collect GPS samples. We sample GPS readings every
five seconds, so we collect up to 24 GPS samples per
parking location. For each trip, we run our street seg-
ment matching algorithm to find the most likely street
segment. Table 7.4.1 shows the precision of our street
segment matching algorithm over top-4 results. Here
the precision of top-n results is defined as the probabil-
ity that one of top-n results contains a correct match.

From Table 7.4.1, we find that street-segment match-
ing is a reasonable heuristic for capturing the location of
the parking spot under noisy GPS samples. If we aug-
ment this technique by asking the seller to choose the
correct segment from four choices, then parking spot
localization can be precise enough. In conjunction with
other information such as vehicle physical information
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(e.g., car make/models/color) and the meter identifier
discussed in §5.1, parking spot localization can be made
precise as well.

7.4.2 Performance of Late Arrival Notice
In this section, we evaluate the performance of the

Late Arrival Notice that buyers send sellers. The goal
of this experiment is to evaluate how accurately naviga-
tors can estimate the arrival time and trigger the Late
Arrival Notice. We used two commercial navigators,
Google map and Garmin, and average the results. We
made 12 trips in the San Francisco downtown area, and
8 trips in San Jose downtown area. Each trip has a
length of over five miles. San Francisco trips encounter
more traffic lights and pedestrians than San Jose trips,
which makes travel time more unpredictable.

Figure 9 shows the average error of estimated travel
time (actual travel time minus estimated travel time)
vs. distance. Clearly, the estimation error is higher
when the distance is longer. From this figure, we can
conclude that the estimation error from navigators is
within a reasonable range for the Late Arrival Notice
to be useful. First, we see that the absolute error when
the buyer is about five miles away is around five min-
utes in San Francisco, and around two minutes in San
Jose. It means that if a navigator estimates that a
buyer can arrive on time, the actual case would be no
worse than having a five minutes delay, which can be in-
formed to the seller. In addition, this error continually
reduces and becomes close to a couple of minutes when
the buyer is about a mile away, which is typically the
time at which a seller may be near their vehicle. Sec-
ond, the estimated travel time is always smaller than
the actual travel time. In other words, the navigators
always under-estimate arrival time. The benefit is that
there is no false alarms. When a Late Arrival Notice is
triggered, it is always true.

7.4.3 Simulation Study: Performance of CrowdPark
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The time gap between a seller’s departure and a buyer’s
arrival can be either zero or greater. Zero gap can be
achieved by punctual buyers and sellers on WTL time.
Also, the Late Arrival Notice and “leaving now” mes-
sages can help reduce the time gap close to zero. In this
section, we explore how the time gap impacts success-
ful reservation rate. There are two cases that we need
to study: 1) a buyer arrives after a seller leaves and
2) a buyer arrives before a seller leaves. In the former
case, reservations can fail because of hidden drivers – a
nearby driver can occupy the parking spot during the
gap between a seller and a buyer. In the latter case,
reservations can fail since a buyer can only wait at the
parking location for limited time (e.g., double parking).
We model the behavior of buyers under the situation as
follows: if a buyer arrives earlier than the departure of
seller, the buyer parks close to the reserved spot for a
few minutes and circles if the spot is still not released.
We call it double parking. The buyer comes back to
the reserved spot after a few minute long circling and
repeats the action of double parking if the seller has still
not left. During the circling time of the buyer, the seller
can leave and hidden drivers may occupy the spot.

We set the interarrival time of hidden drivers to be
two to five minutes, as observed in our parking availabil-
ity pattern study in §7.1. The circling time may change
depending on situations (e.g., garage or on-street, traffic
conditions, signalized intersections, and pedestrians).
We model the circling time a uniform distribution, the
interval of which is from three minutes to seven min-
utes. We consider double parking times of 30 seconds,
1 minute, and 2 minutes. The larger double parking
time corresponds to a buyer at a parking garage.

Figure 10(a) illustrates how the successful reservation
rate decreases as the gap between the seller and buyer
increases when the seller leaves before the buyer. For
example, if a buyer arrives within two minutes after a
seller’s departure and the rate of hidden drivers is 0.5
per minute, then the buyer’s probability of successful
reservation is 50%. Therefore, we need to encourage
sellers to wait a few more minutes for buyers to reduce
the chance of sellers’ early departure, especially when
WTL time has not been reached.

Figure 10(b) depicts the case when buyers arrive be-
fore sellers. The curves are periodic due to buyer cir-
cling. If sellers leave during the double parking time,
buyers can successfully park. However, a hidden driver
may park if the seller leaves during the circling time.

Cooperation between sellers and buyers significantly
prevents periodic drops in reservation rate that are ob-
served in figure 10(b). Figure 10(c) shows the benefit
of cooperation in terms of successful reservation rate.
If buyers simply notify sellers of their circling, sellers
can wait for a few more minute depending on their tol-

erance levels. With only one minute long waiting, the
reservation rate can be increased by 25% in average in
comparison with no cooperation. If sellers can wait for
five more minutes, the reservation rate is over 90% and
two times better than when there is no cooperation.

8. RELATED WORK
We now provide an overview of salient related work.

Crowdsourcing Challenges: There has been a grow-
ing body of work that address various challenges in
crowdsourcing including the micro-payment models [13,
25, 33], auction-based models [7, 17], and data quality
issues [29, 32]. Our work is unique in that it looks at all
of these issues in conjunction — we combine incentive
design and sensing techniques together to ensure users
providing high quality data.

Crowdsourced Parking Availability: An increas-
ing number of mobile crowdsourcing applications allow
users to share empty parking spot information. Exam-
ples include OpenSpot [14], Rodify [15], and others [3,
16, 26]. Among all these applications, Rodify is clos-
est to us, as it allow users to share parking spots that
are both available now and available soon. However,
none of these applications solve the challenges we ad-
dressed in this paper, including incentives, detecting
malicious users, and handling real-world uncertainties.
Another relevant recent project is ParkNet [21], which
installs ultra-sonic sensors on vehicles, and detects park-
ing availability when vehicles drive by. This approach
requires expensive infrastructure to be installed, and
suffers from the same limitation as other approaches in
that it only provides availability information and not
when a spot is taken, unlike our approach.

Participatory Sensing Applications: There have
been a spectrum of participatory sensing and personal
sensing applications for mobile phones that use onboard
sensors to obtain bike routes [8], images [4], activity
patterns [18], bus arrivals [30], traffic and road qual-
ity [9, 10, 12], and others [11, 22]. CrowdPark leverages
activity monitoring mechanisms that many of these ap-
proaches propose. We differ from these approaches by
integrating participatory sensing with incentive mecha-
nisms and data authenticity checking techniques.

9. CONCLUSION
Crowdsourcing has seen considerable interest in re-

cent years, and has been seen as a potential solution
for a wide range of technical problems including park-
ing in urban areas. However, realizing the promise of
crowdsourcing necessitates that we tackle thorny tech-
nical problems including incentive design, authenticity
of information, precise localization, and a plethora of
other real-world issues. This paper provides a holis-
tic solution that addresses several of these issues in the

13



0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

Late Arrival (Minutes)

S
uc

ce
ss

fu
l P

ar
ki

ng
 P

ro
ba

bi
lit

y

 

 

Hidden user interarrival time = 2mins
Hidden user interarrival time = 3mins
Hidden user interarrival time = 4mins
Hidden user interarrival time = 5mins

(a) Late Arrival

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1.0

Early Arrival (Minutes)

S
uc

ce
ss

fu
l P

ar
ki

ng
 P

ro
ba

bi
lit

y

 

 

Double parking = 30secs
Double parking = 1min
Double parking = 2mins

(b) Early Arrival

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1.0

Early Arrival (Minutes)

S
uc

ce
ss

fu
l P

ar
ki

ng
 P

ro
ba

bi
lit

y

 

 

Seller tolerance = 0
Seller tolerance = 1min
Seller tolerance = 3mins
Seller tolerance = 5mins

(c) Early Arrival with Cooperation

Figure 10: Reservation successful rate when buyers arrive later and earlier than seller departure.

context of a parking reservation system using mobile
phones. We address the challenges using a combination
of incentive protocol design, game-theoretical and cost-
benefit analysis, and sensing based techniques. While
this paper presents a specific combination of approaches
to address the parking problem, we believe that the
methodology that we follow is more widely applicable
to other mobile crowdsourcing applications.

We address several practical challenges but many more
remain. We need to further study the spatial and tem-
poral dynamics of parking, have better characteriza-
tion of human behavior in a parking reservation system,
have better integration with existing parking informa-
tion systems, and so on. However, our efforts demon-
strate that crowdsourced parking reservations is a viable
model for addressing a pressing societal need.
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