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ABSTRACT
This work proposes new techniques for saving communica-
tion and computational resources when solving distributed
constraint optimization problems using the Max-Sum algo-
rithm in an environment where system hardware resources
are clustered. Solving a coordination problem in a decentral-
ized environment requires a large amount of resources and
thus exploiting the innate system structure and external in-
formation as much as possible is necessary for such a problem
to be solved in a computationally effective manner. These
techniques facilitate effective problem solving through the
use of a pre-computed policy and two phase propagation on
Max-Sum algorithm, one inside the clustered resources and
one among clustered resources. This approach shows equiv-
alent quality to the standard Max-Sum algorithm while re-
ducing communication requirements on average by 50% and
computation resources by 5 to 30% depending on the spe-
cific problem instance. These experiments were performed
in a realistic setting involving the scheduling of a network of
as many as 192 radars in 48 clusters.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence
and coordination

General Terms
Algorithms, Performance

Keywords
DCOP, Max-Sum, semi-centralized

1. INTRODUCTION
This paper focuses on utilizing semi-centralized (clustered)

hardware system structure to solve the agent coordination
problem in large-scale networks of agents. It proposes modi-
fications on message-passing algorithms for reducing the re-
quired computation and communication resources for effi-
cient solving. Decentralized coordination in large-scale sys-
tems of cooperative agents requires large computational and
communication resources and often is not feasible in realistic
problems requiring real-time deadlines: The decentralized
computation of an optimal coordination policy often requires
control overhead involving the construction of the structure
for solving the problem, e.g. establishing a psuedo-tree for
DPOP [1]. In a realistic decentralized setting of multiple

agents, the establishment of a constraint optimization prob-
lem often occurs online and needs to be solved as quickly
as possible and thus control overhead should be minimized.
Also, the requirement for quick delivery of the solution limits
the amount of communication or computation. Even with-
out these problems, as the network gets very large, com-
munication and computation burden still can be extensive
given the time and bandwidth constraints and thus minimiz-
ing these resource requirements in these settings is valuable.

We consider the real-time sensor system NetRad, which
is designed for detecting and monitoring hazardous weather
phenomena in real time [2]. The NetRad system at the high-
est level is organized as a collection of controllers, each re-
sponsible for scheduling a cluster of radars based on the
evolving weather scenario. Because one radar cannot scan
effectively its entire region within the given time limit and
some phenomena need to be scanned by more than one radar
for velocity measurement, radar scheduling is vital for maxi-
mum system performance. Given a new map of phenomena,
the policy generation should be done within the limited time
(e.g. in this system 60 seconds).

We model the distributed scheduling problem as a con-
straint optimization problem and solve it approximately us-
ing the Max-Sum algorithm [3]. Although the Max-Sum
algorithm is not guaranteed to be optimal with cyclic con-
straint graphs, it has been shown to work very fast and
efficiently even in an approximate mode with little control
overhead. This work proposes new extension of the Max-
Sum algorithm for saving communication and computational
resources by exploiting the innate semi-distributed system
structure of NetRad. These techniques facilitate effective
problem solving through the use of pre-computed policy and
two phase propagation, one inside the clustered resources
and one among clustered resources. This approach shows
equivalent quality to the standard Max-Sum algorithm while
reducing extensive communication requirements on average
by 50% and computation resources by 5 to 30% depending
on the specific problem instance. These experiments were
performed in a realistic setting involving the scheduling of a
network of as many as 192 radars in 48 clusters.

The rest of the paper is structured as follows: In Sec-
tion 2 we review related work, while in Section 3 we model
the scheduling problem as DCOP. In Section 4 we describe
the individual techniques employed, while in Section 5 we
present the experimental results. Finally, we conclude the
paper and points to future work in Section 6.

2. RELATED WORK



As already described, we model the radar scheduling prob-
lem in NetRad system as a distributed constraint optimiza-
tion problem (DCOP) solved with the approximate Max-
Sum algorithm. DCOPs are applied on various problems
on real world multiagent systems such as meeting room
scheduling [1] and sensor network problems(traffic light syn-
chronization [4] and smarthome devices [5]). Although such
DCOP applications indicate that the exact algorithms work
on such system, solving real world problems of 50 or more
nodes often requires extensive communication on many prob-
lems [4].

There has been work done on speeding up the Max-Sum
algorithm and the fast Max-Sum [6] avoids sending unnec-
essary information which will not be used in computing the
maximum value. However, this work does not directly ap-
ply to the NetRad application where the utility of agents’
choices are dependent on each other. Also, given the semi-
centralized system structure, our techniques also can be ap-
plied on top of this extension of Max-Sum.

There are many approaches from a systems perspective
for exploiting a semi-centralized system structure [7], but to
our knowledge, there has not been extensive work involving
DCOP algorithm. There is some work in the DCOP commu-
nities that utilizes partial centralization [8, 9] but that does
not directly exploit the structure of hardware resources and
the centralization decisions are made given the constraint
graph. The most similar work is the iterative decoding al-
gorithm in compound code networks [10] where the network
consists of fixed-size subnetworks. The algorithm works on
constituent codes which do not have cycles and then on the
connections between constituent codes, therefore iterating
between two different levels (within each subnetwork and
across the sub-networks).

Our approach to exploit this clustered structure is to uti-
lize a pre-computed policy and modify the message pass-
ing schedule of the algorithm for using semi-centralized sys-
tem structure without involving additional control overhead.
Optimization algorithms on graphical models can be consid-
ered as solving the multiple factorized local functions involv-
ing a subset of variables [11]. To our knowledge, the benefit
of the prior knowledge on values of such local functions have
not been studied.

Additionally, in the Max-Sum algorithm, we modified the
so called synchronized flooding schedule [10], with which
messages are exchanged between every neighbor each clock
tick, to work in two phases given limited global dependen-
cies in the utility structure of the graph. There are many ap-
proaches that work in two levels in DCOP literature[koptimal,ls-
optimal] to save computation or to provide solution quality
guarantees, however none works by modifying or delaying
the message schedules.

3. RADAR SCHEDULING PROBLEM

3.1 NetRad System
The NetRad System is a system of radars specially de-

signed for the purpose of quick detection of low-lying mete-
orological phenomena such as tornadoes. They are short-
range radars used in dense networks, thereby alleviating
blind-spots caused by the curvature of the Earth. NetRad
radars additionally do not just use the traditional sit-and-
spin strategy; rather, they can be focused to scan in a par-
ticular volume of space. By exploiting the collected infor-

(a) The system structure for 48
radars

(b) 48 radars with 96
phenomena

Figure 1: System structure for radars (a), Example
configuration of radars with example scenario (b).
All radar ranges and phenomena are assumed circu-
lar shaped. All phenomena locations and sizes are
randomly selected. In (b), Radar 1 (R1) can choose
to scan Event 1 (Ev1), Event 2 (Ev2) or to scan both
depending on the utility. Scanning all phenomena
in range with sufficient quality may not be possible
given the time limit to scan.

mation on weather phenomena, scanning strategies can be
dynamically created for specific weather phenomena in the
current environment.

The NetRad system consists of multiple MCCs1 each of
which controls a set of radars. The MCC system is a closed
loop control system in that it responds to the emerging
weather events based on detected features in the radar data
and end-user concerns that may vary over time. End-users
such as forecasters, emergency managers, and researchers
can provide information as to what sort of data they are
looking for and how frequently. Consequently, the MCC
ranks the importance of tasks dynamically so as to give pref-
erence to what the data users want currently.

The MCC gathers moment data from the radars and then
runs detection algorithms on this weather data. The re-
sult of this analysis leads to a set of weather-scanning tasks
of interest for the next radar scanning cycle. The MCC
then determines the best scanning strategy for the available
radars that will maximize the sum of the utility associated
with the chosen tasks according to a utility function based
on the end-user priorities. This scan strategy is used by the
NetRad radars on the next cycle.

Tasks may also be either pinpointing or non-pinpointing,
meaning either there is, or is not, a significant gain by scan-
ning the associated volume of space with multiple radars at
once. The utility gained from scanning a pinpointing task
increases up to a certain limit with the number of radars
scanning the task; the utility for a non-pinpointing task is
the maximum utility among the individual radars that scan
the same phenomenon. The global utility is simply the sum
of utilities of all tasks. For a more in-depth description of
the MCC system, see [2, 12] for more details on the utility
function.

3.2 Radar Scheduling Problem Formulation
The NetRad system simulator consists of controllers of

radars which are put in a grid structure and can communi-
cate with all of its neighbors with equal cost. Each controller
agent Ai controls and schedules a set of radars Ri. At each

1meteorological command and control



heartbeat the system shares a map of phenomena and the
maximum utility assigned to each phenomena.

Given the map of phenomena, each radar selects discretized
scanning ranges by choosing a subset of phenomena in its
range. For efficiency, only the scans that tightly cover a
phenomena are created and then merged with other such
scans to create new combined wider sweeps. Therefore it
limits unnecessary scans that do not cover any phenomena
and minimize the domain size of each radar to simplify the
scheduling problem while still having at least one scan that
covers each phenomena.

For each phenomena pj , the weight wj is a constant de-
termined by the requested user or the weather pattern. The
utility (factorized local function) for each phenomenon pj is
defined as,

uj : pj × rpj → cj (1)

where cj denotes coverage where 0 ≤ cj < 4 and rpj denotes
the scanning policy of radars which have pj in range.

The goal of the system is to find a radar configuration
r1, . . . , rn which maximize the sum U of the utilities for all
phenomena and represented as,

U =
X

j

uj(pj , r
pj )× wj =

X
j

cj × wj (2)

Each radar with a set of possible scanning policy can be
thought as a variable with a finite discrete domain and the
local utility function uj works as constraint function with
parameter rpj . With these variables with finite domains
and constraints, the radar scheduling problem can be nat-
urally modeled as distributed constraint optimization prob-
lem with local functions involving a subset of variables.

4. MAX-SUM AND MODIFICATIONS

4.1 Max-Sum algorithm in NetRad System
Max-Sum is a distributed message-passing optimization

algorithm belonging to the class known as Generalized Dis-
tributive Law (GDL) [13]. Max-Sum is a variation of Sum-
Product algorithm where the global utility function is max-
imized.

In the Max-Sum algorithm, there is a set of variables x =
{x1, x2, . . . , xm} on which a set of functions F = {F1, F2, . . . , Fn}
depend. Each function Fi = Fi(xi), xi ⊂ x. The goal is to
find x∗ which satisfies the following:

x∗ = arg max
x

nX
i=1

Fi(xi) (3)

Therefore, the Max-Sum algorithm can be viewed as a
constraint optimization algorithm where the search is for the
settings of variables which maximize the sum of a set of local
utility functions. To achieve this, the Max-Sum algorithm
defines a factor graph by creating a node for each variable
and for each function. The graph is bipartite, and a function
node is connected to a variable node if the corresponding
function is dependent upon that variable. The bulk of the
algorithm is in the messages passed between nodes, which
are:

The message qi→j from Variable i to Function j is:

qi→j(xi) = αij +
X

k∈Mi\j

rk→i(xi) (4)

Here αij is a scalar set such that
P

xi
qi→j(xi) = 0, and

Mi contains the indices of function nodes connected to vari-
able node i.

The message rj→i from Function j to Variable i:

rj→i(xi) = max
xj\i

[Fj(xj) +
X

k∈Nj\i

qk→j(xk)] (5)

where Nj contains the indices of variable nodes connected
to function node j in the factor graph.

If the factor graph is cycle-free, then the messages are
guaranteed to converge, and the resulting solution will max-
imize

Pn
i=1 Fi(xi). When the graph contains cycles, the

messages may not converge, and even if they do the resulting
solution may be sub-optimal. Empirical results show that
even in this case, the algorithm frequently provides good
solutions [14].

In NetRad domain, radars are mapped to variable nodes
where each value of variable is a radar’s possible scanning
strategy and phenomena to function nodes and the optimiza-
tion problem is defined as finding the radar configuration
that maximizes the sum of utility functions for phenomena
in the system. Each MCC controls multiple radars and mes-
sages exchanged within the MCCs have no cost. However,
communication across MCCs occur for shared phenomena
among multiple radars controlled by different MCCs.

4.2 Using Organization Structure: Max-Sum
Alternating 2-level Hierarchy (MS2L)

We modify Max-Sum to work on two levels for the gen-
eral graphs with cycles in order to increase the algorithm
efficiency in the context of clustered hardware resources.
We modified the message passing schedule of Max-Sum to
propagate sometimes within a subgraph of the factor graph
associated with clustered hardware resources where the com-
putation within each node occurs as regular Max-Sum using
the message values obtained in the previous cycle. There is
no modification to the algorithm except skipping the compu-
tation of outgoing messages to the nodes outside the parti-
tion, thus saving inter-processor communication. This mod-
ified Max-Sum, which we call MS2L, alternates between a
global propagation cycle and a local propagation cycle so
as to ensure that the utility values can also travel to other
parts of the graph.

In the algorithm, information is shared among nodes through
messages and the algorithm converges to a single point when
there is no new information flowing in any direction [15].
We conjecture that the communication can be more effi-
cient when this information sharing is delayed until a subset
of nodes become closer to consensus. By delaying sending
messages outside the local processor until more developed
values are constructed within a subgraph, we expect to re-
duce inter-processor communication without affecting over-
all performance. Also, in order to avoid getting into local
optima, we ensure that the algorithm periodically commu-
nicate globally. Therefore we modify Max-Sum to have fol-
lowing message passing schedule.



The 2-level propagation schedule
1. (Initialization) At any vertices, carry out the global
flooding.
2. (Local flooding) Both variable and function nodes
sends messages only to the neighbors within the same
MCC. For each local neighbor, given the newest mes-
sage on each edge, compute the message values for
each local neighbor and send. Let the variable node’s
neighbors be Ni and the nodes in MCC k mk. In func-
tion nodes, it sends the same message to a subset of
neighbors Ni ∩mk. In variable nodes, it computes the
message using the previous messages from neighbors
outside the MCC. At cycle t, the message from the
variable to function node is,

qt
i→j(xi) = αij+

X

k∈Ni∩mk\j

rt
k→i(xi)+

X

k∈Ni\mk

rt−1
k→i(xi)

3. (Global flooding) For all neighbors, do a regular
message calculation using the newest message on each
edge. Function nodes compute the messages at cycle t
for all neighbors using messages at t− 1 for neighbors
Ni \ mk. The function node does not have updated
messages for all neighbors due to local propagation in
the previous cycle thus it combines previous messages
from neighbors outside MCC.

rt
j→i(xi) = maxxj\i[Fj(xj) +

P
k∈(Nj∩mk\i) qt

k→j(xk)

+
P

k∈(Nj\(i∪mk)) qt−1
k→j(xk)]

4. Repeat step 2 and 3.

This scheme is different from simplifying the problem by
breaking the network into several subgraphs. It only delays
the message delivery to make communication more efficient
and the computational complexity remains same even in lo-
cal flooding. This modification explores how Max-Sum can
adapt to the system’s organizational structure and its associ-
ated communication topology as well as the utility structure.
In the NetRad domain, as the connection between function
nodes and variables nodes are determined based on the spa-
tial location of the corresponding radar and the phenomena,
the dependency structure between nodes are simpler and the
factor graph constructed following the domain is more eas-
ily decomposable. We exploit the property of the graph
structure in the domain and modify Max-Sum to reduce the
required resource for global level propagation.

Also, in NetRad, the system has an organizational struc-
ture where an MCC manages several radars and where MCCs
communicate to collaborate with neighboring radars. It is
beneficial to simplify the computation and communication
occurring across MCCs. Therefore, we adapted Max-Sum to
exploit this structure effectively by skipping some outgoing
messages from MCCs in alternating cycles.

4.3 Starting with Known Policy
In the previous section, we proposed modifications to the

message-passing scheme utilizing semi-centralized system struc-
ture. In this section, we propose to construct better initial
messages incorporating global information to further opti-
mize the efficiency of the algorithm i.e. to start the algo-
rithm with a policy for subgraph contained in the cluster

processor.
We speculate that a good known policy can be used to

create such starting messages as it incorporates non-local
inference if created based on more information than just a
local function. In the Max-Sum algorithm, a node’s out-
going messages are dependent on the incoming messages it
received in the prior cycles and the first initial messages will
depend only on the local function. The variable after the
first message would take on the value

x̃i = arg max
xi

X
j∈Ni

max
xj\i

Fj(xj) (6)

This message would be the value assuming the best-case
setting of other variables and only incorporates the local
preferences. Given a known policy x̂, we modify the al-
gorithm for function nodes to send the following messages
which do not involve maximization to the connected variable
nodes. Function node j to variable node i:

Fj((x̂j \ i) ∪ xi) (7)

After receiving these messages, if a variable node were to
take on a value, it would be:

x̃i = arg max
xi

X
j∈Ni

Fj((x̂j \ i) ∪ xi) (8)

Proposition 1. If the assignment x̂ is such that no in-
dividual variable can by itself change its value to increase
the global utility, then x̂ is a solution to the assignment con-
straints imposed by Equation 8. If changing any individual
variable’s value will strictly decrease the global utility, then
x̂ is the unique solution for Equation 8.

Proof. From the perspective of an arbitrary variable node
i, all other nodes are fixed to the configuration specified by
x̂. Maximizing

P
j∈Ni

Fj((x̂j \i)∪xi) leads to maximization
of the global utility given the values of other variables. This
is because only the functions for nodes j ∈ Ni are affected
by xi.

If x̂i were not a solution to this, then the algorithm which
selected x̂i to be part of x̂ could have instead selected x̃i to
receive a higher utility. Since by supposition, no individual
variable can change its value to increase the global utility, x̂i

is a solution to Equation 8. If changing any variable’s value
in x̂ will decrease the global utility, then there can be only
one solution to Equation 8. Since x̂i is a solution, it must
be the unique solution.

Thus, in the sense of the above property, we can insert a
variable assignment into a factor graph as a starting solution.
The property requires that no single variable can change its
value to increase the utility. This is a desirable property
for an optimization algorithm to have, and a fairly lax one.
Any algorithm which does not satisfy this constraint can be
followed by a hill-climbing procedure in order to meet the
requirement of Property 1.

In addition to what Property 1 can tell us, Equation 8 by
itself looks quite a bit better than Equation 6. While the
assignment still only considers directly neighboring function
nodes, it does so using better assumptions. For nodes other
than itself, it assumes a configuration that is known to ex-
ist rather than a separate maximization for each function
node. The assumed variable assignments are also known to
be consistent with a good global utility, and xi will fit itself
into this assignment.



After the messages from function nodes to variable nodes,
we allow the variable nodes to send one set of messages be-
fore proceeding with the regular algorithm. This is so the
next set of messages from function nodes will have a start-
ing point other than assuming uniform functions in variable
node messages.

4.3.1 Using the Structure for Policy Generation

Figure 2: 2-level Hierarchy Scheme

We provide a scheme which computes a policy which can
be used as in Section 4.3. Instead of generating a policy for
the whole problem, we tried to compute the locally optimal
policy for subproblems associated with each MCC(See Fig-
ure 2). We break the full factor graph into factor subgraphs
for each MCC that contains only the radars and phenom-
ena in each MCC and are smaller than the original factor
graph. In this way, we first solve a smaller problem within
MCCs and then solve a bigger problem using the informa-
tion from the smaller problem. This is the key difference
between local propagation in Section 4.2 as we break down
the factor graph into subgraphs each of which has decreased
complexity.

In order to accomplish this, we assign each phenomenon to
one MCC to avoid redundant utilities for shared phenomena
in computing the initial policy. Consequently, the domain
of variable nodes and parameter values in the cost function
at the function nodes are smaller than the original problem.
Thus the computation at each function node fj that belongs
to the set of nodes mk, which belong to MCCk, is done only
for each neighbor vi ∈ mk.

rj→i(xi) = max
xj\i

[F ′j(xj ∧mk) +
X

k∈Nj∧mk\i

qk→j(xk)] (9)

The message from variable node vi to function node fj for
fj ∈ mk is,

qi→j(xi) = αij +
X

k∈Mi∧mk\j

rk→i(xi). (10)

We assume that function F ′j with a subset of arguments
that excludes the variable nodes outside the MCC can be
deduced from the original function Fj . Additionally, the
domain of a variable vi is a subset of the original problem
only relevant to fj ∈ mk. The subproblem is used to create
the policy used as prior information on local functions.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setting
We experimented with the Max-Sum algorithm on an ab-

stract simulation environment of the NetRad radar system
developed in the Farm simulator framework [16]. In this
simulator, weather tasks are abstracted as circular areas as
shown in Figure 1(b). Aspects such as the utility function,
the effective range of radars, and the separation between
radars, however, are the same as in the operational testbed.
On the simulation environment, see [17].

For a statistically meaningful result, we repeated each in-
stance for 100 runs by randomly generating the weather phe-
nomena varying in their size, location and importance. To
make the results more easily interpretable, each trial is run
for only one radar scan cycle for clear comparison.

The computation time is measured in CPU Time. The
experiments were run on a single machine although we as-
sumed that there are several computation units working in
parallel in a time step simulation. For experiments involving
both the negotiation algorithm and the Max-Sum algorithm,
each MCC, when the local computation is completed, waits
for other MCCs to finish the computation and then they
exchange messages. Therefore, the time complexity in the
decentralized setting results from the sum of the longest time
taken in the local computation for each round.

We do not account for any communication delay in mea-
suring the completion time. For measurement on communi-
cation amount, both the number of messages and the size
of messages were measured counting the control messages to
construct the network as well including the connectivity es-
tablishment between nodes and information sharing on pos-
sible values that each variable can take. The total amount of
communication is measured in bytes considering one double
number as 8 bytes and one integer as 4 bytes.

5.2 Performance of Max-Sum on NetRad
In order to evaluate the performance of several alternative

optimization algorithms, we varied the number of radars and
the number of phenomena. We compare the performance
of Max-Sum algorithm to a decentralized negotiation algo-
rithm [17], an exact distributed constraint optimization al-
gorithm [1] and a centralized optimization algorithm based
on a genetic algorithm that is currently used for local op-
timization in the negotiation algorithm in each MCC. The
negotiation algorithm, specifically developed for the NetRad
problem domain, is an iterative two step process performed
concurrently at each MCC. In the first step each MCC per-
forms a local optimization based on its local tasks and knowl-
edge of its neighboring MCCs’s proposed scan schedules. In
the second step, the MCC negotiates with its neighbors so as
to make adjustments to its scheduling based on the strategy
of other MCCs. This two step process for performing the
distributed optimization tries to maximize the parallelism
at the MCC level and to minimize communication among
MCCs. In contrast, the standard Max-Sum algorithm does
not consider such an organizational structure and is com-
pletely decentralized. The Max-Sum algorithm does not ex-
plicitly take into account that certain communication links
are within an MCC cluster and others are between MCC
clusters. The genetic algorithm uses a centralized approach;
no communication is required and it only utilizes one pro-
cessor.
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Figure 3: Gen:Genetic, MS:Max-Sum, Neg:Negotiation. The algorithm is run with the same number of
tasks (weather phenomena) as the number of radars. The Genetic algorithm is run with a computation time
limit of 10 minutes. We set the time limit to 10 minutes in order to get reasonable optimizations for sake of
measuring the performance. Given less than 10 minutes, the utility generated by the centralized optimization
were significantly lower than the other approaches

5.2.1 Different Network Sizes
In order to evaluate the general performance and the scal-

ability of the algorithms, we compare the performance on
different sized networks. In these scenarios, there are the
same number of phenomena as the number of radars in the
network as shown in Figure 3. The performance quality of
Negotiation and Max-Sum are approximately the same for
all network sizes whereas the performance of the centralized
genetic algorithm starts to degrade with more radars. Both
the Negotiation and Max-Sum algorithm remain quite close
to the optimal solution computed by the DPOP algorithm
on 48 and 96 radar cases. We were not able to use DPOP
on bigger networks due to memory constraints. The result
shows that the Max-Sum algorithm is able to handle the
problem well in terms of both quality and computation time
on bigger sized problems. We have varied the parameters
of the genetic algorithm to improve its performance but it
still remains inferior to other methods. This applies similar
to an optimization algorithm based on Simulated Annealing
not shown in the graph due to general inferior performance
on the problem.

In terms of communication, when only messages exchanged
across MCCs are counted, Max-Sum needs no more than
twice the communication in the negotiation algorithm, but
remains significantly lower in comparison to DPOP as seen
in Table 1. Communication only between MCCs are mea-
sured for both algorithms.

48 96
Max-Sum 687.15 894.71
DPOP 3.98M 35.46M

Table 1: Communication Amount in bytes by DPOP
and Max-Sum

5.2.2 Different Number of Phenomena
In the next experiment, we increase the number of phe-

nomena in a 48-radar network, thereby requiring more coor-
dination among radars and studied how the algorithms per-
form. While the quality of solution of Max-Sum is slightly
better, the time complexity of the Max-Sum algorithm sharply
increases because the number of neighbor in function nodes
in Max-Sum increases as more weather phenomena are added.

Also, the number of messages across MCCs increases as
shown in Figure 4(c) as there are more tasks shared by mul-
tiple MCCs in the environment. In contrast, the number of
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Figure 4: Run with different number of phenom-
ena. The basis is 48 weather phenomena and this is
increased to 120 phenomena(i.e. 2.5).

messages in the negotiation algorithm decreases because the
algorithm quickly converges to a suboptimal solution due
to a time limit on local computation inside each MCC sub-
ject to time constraints in the system resulting in an early
termination within only 1-2 cycles.

5.3 Starting with Initial Policy
As described in Section 4.3 and Section 4.3.1, we pro-

vided the algorithm with 3 different approaches for comput-
ing the initial policy of a 48 radar network with the limit
of 10 rounds, where we took the results at the last cycle.
The initial policies includes : 1) the solution from the ge-
netic algorithm within MCCs(Init-Gen), 2) the solution of
the Max-Sum algorithm within MCCs (MS-Init) following
the scheme described in Section 4.3.1, and 3) a randomly
generated initial policy (Init-Rand). The initial policy for
Init-Rand was generated in each function node which is po-
tential inconsistent among multiple function nodes but these
inconsistencies are often quickly resolved.

The quality of the final solution rarely changes by more
than a fraction of utility and the computation time including
policy generation decreases. The policy helps the algorithm
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Figure 5: (a) The decentralized computation time
of Max-Sum including policy generation time (b) T-
test result on hypothesis that each policy improves
the computation time of regular Max-Sum with α =
0.05 (c) Value convergence trend at each round (c)
Number of Max-Sum rounds

save computation time as shown in Figure 5(a) and also
improves its anytime performance behavior as in Figure 5(c).
Given the policy, Max-Sum can almost instantly produce
the initial messages avoiding the maximization step and the
policy also reduces the number of rounds taken to converge.

Using this policy, Max-Sum seems to produce a policy
with high utility quickly because the messages at the initial
round are not biased towards the local functions reaching the
final solution quickly as shown in Figure 5(c). It also shows
that Max-Sum with a higher-utility-initial-policy starts with
the higher utility.

Init-MS provides computation time saving as well as quick
convergence speed and stability, although it requires specific
domain structure to be effective. Additionally Init-Rand
shows less anytime characteristics and some unstable per-
formance showing oscillation between multiple values ending
up a higher number of rounds to converge as in Figure 5(d),
but it is a quick and easy way to provide an initial policy
on any occasion and no need to synchronize policies over
multiple nodes is another benefit.
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Figure 6: Performance of MS-Init. MS:Max-Sum,
Neg:Negotiaton, MS-Init: Max-Sum with Init-MS

Policy Generation Using Structure
We experimented with the algorithm using Init-MS further
to show how much we can improve the algorithm using the
policy. We ran Max-Sum for 5 cycles where, for Max-Sum
with Init-MS, we replace the first two cycles with initial
policy computing cycles.

As shown in Figure 6, not only does the performance
quality remain similar to Max-Sum, the time complexity de-
creases by half as well as the communication amount. This
computational saving is due to the fact that the computation
on the factor graph using only local nodes is much simpler
than the computation on the global-level factor graph and
also the result of this computation leads to a quicker conver-
gence on the global level. As messages are exchanged only
within MCCs to compute the initial policy, the number and
size of messages also decreases.
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Figure 7: Performance of MS2L

5.4 Performance of Max-Sum in a Two-Level
Hierarchy

We next tried MS2L, the alternating Max-Sum algorithm
that uses a repetitive cycles of local and global propagation
of messages as in Section 4.2. We experimented with in-
creasing number of phenomena and also with the Init-MS
policy replacing the first 2 cycles for generating the policy.
We ran experiments with various number of phenomena, as
we would like to see the result of MS2L varying the network
connectivity which will increase the need for global propa-
gation.

As shown in Figure 7, the utility of MS2L with Init-MS
(MS2L-Init) remains similar. Moreover, the communication
is reduced by half. It also shows the result of MS-50Comm
where we randomly skip the communication 50% of the time
and note that the algorithm has not yet converged in the
given number of cycles unlike MS2L. Even in the local prop-
agation cycle, the utility is being propagated as effectively
as the global propagation cycle and half of the global propa-
gation cycles are enough to reach similar performance. Also
by starting with Init-MS, the computation time can be also
decreased as in Figure 7(b).



6. CONCLUSION
We applied the Max-Sum approximate constraint opti-

mization algorithm in the NetRad system for coordinating
and scheduling weather-sensing radars. In this system, Max-
Sum generated policies with high utility but requires more
communication and computation than the negotiation al-
gorithm in some settings. We thus modified Max-Sum to
start with initial policy to guide and expedite the search
process and improves Max-Sum’s anytime performance and
saves computation. As part of using a policy, we generated
a scheme to create a starting policy which works in the two-
level hierarchy solving a partial problem within the local
processer. Additionally, we developed MS2L, an adapted
message passing scheme which alternates between different
scopes of the message propagation. This scheme proved
the benefit of exploiting the organizational structure by re-
quiring less computation and communication than all other
tested algorithms.

This work on the Max-Sum algorithm suggests some direc-
tions for future research. One possible direction is a decom-
position of factor graph given weak dependency. Temporar-
ily restricting the connections to a subset of variable nodes
based on the factor graph will greatly reduce the complex-
ity of the function nodes. This will also reduce the required
communication as well as the computational complexity.

Finally, as shown in the experiments, Max-Sum propa-
gates information effectively with delay as in MS2L and ab-
sorb new information along with previous messages. In a
dynamic environment when tasks are changing, Max-Sum
could potentailly profit from using the solution from the
previous problems resulting in a saving in resources; we are
now exploring this option.
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