
Using Process Definitions to Support Reasoning
about Satisfaction of Process Requirements

Leon J. Osterweil and Alexander Wise

Department of Computer Science
University of Massachusetts

Amherst MA 01003
{ljo, wise}@cs.umass.edu

Abstract. This paper demonstrates how a precise definition of a soft-
ware development process can be used to determine whether the process
definition satisfies certain of its requirements. The paper presents a def-
inition of a Scrum process written in the Little-JIL process definition
language. The definition’s details facilitate understanding of this specific
Scrum process (while also suggesting the possibility of many variants of
the process). The paper also shows how these process details can support
the use of analyzers to draw inferences that can then be compared to re-
quirements specifications. Specifically the paper shows how finite state
verification can be used to demonstrate that the process protects the
team from requirements changes during a sprint, and how analysis of a
fault tree derived from the Little-JIL Scrum definition can demonstrate
the presence of a single point of failure in the process, suggesting that
this particular Scrum process may fail to meet certain process robustness
requirements. A new Scrum process variant is then presented and shown
to be more robust in that it lacks the single of point failure.

1 Introduction

In earlier work the authors have suggested that software development processes
seem to have much in common with application software [1, 2]. One similarity
was that just as applications are defined using a programming language, so
might the processes used to construct such applications also be defined using
a process programming language. This has led to the development of several
such languages, one of which (Little-JIL) is to be described later in this paper
[3]. The focus of this paper, however, is on a different similarity, namely that
both applications and the processes used to develop them should be designed so
as to demonstrably satisfy their requirements. Just as applications must satisfy
requirements (e.g. in dimensions such as functionality, speed, responsiveness,
robustness, and evolvability), so must development processes also satisfy similar
kinds of requirements. For example, software development processes must satisfy
speed requirements, namely that they complete within the time limit imposed by
customers and users. Development processes also have functional requirements
that specify such things as the artifacts they are to produce (i.e. only code, code
and design specifications, code and voluminous testing result reports, etc.).

This paper suggests the importance of devising a technology that supports
the demonstration that software development process implementations meet
specified process requirements, and suggests some initial capabilities for support-
ing that technology. At present the selection of development process approaches
to meet process requirements is typically done informally, generally based upon
intuition and anecdotal evidence. Thus, for example there is a general under-
standing that heavyweight processes such as those guided by the application of
such approaches as the CMMI [4] can be expected to lead to software products
that are relatively more robust, well- documented, and designed for evolvability
over a long lifespan. On the other hand such processes seem to be less well-
suited to the rapid production of software products, especially those that are
not expected to be used for an extended period of time, or evolved in an or-
derly way. Indeed the popularity of agile approaches [5] seems to have derived
largely from a sense that such development processes are more appropriate for
the rapid development of software products, especially those that are relatively
small, and destined for relatively short lifespans. While there is considerable
anecdotal evidence to suggest that these intuitions are well-supported by experi-
ence, we suggest that the selection of a software development process should not
be left entirely to intuition, and might better be done with at least the support
of engineering approaches and technologies.

An essential support for this more disciplined approach to the selection of a
software development process would seem to be technology for inferring the prop-
erties and characteristics of such processes. This, in turn, would seem to require
that these processes be defined with sufficient detail to render them amenable
to such analysis. Thus, this paper suggests how to use a process definition as
the basis for inferring the properties of a process, so that the inferred properties
might be compared to specifications of the requirements that the process is to
fulfill.

The example presented in this paper is the use of analyses of a definition of
the Scrum software development approach [6] written in the Little-JIL process
definition language. Specifically, the paper introduces the Little-JIL language in
section 2. In Section 3 Little-JIL is used to define a specific version of the Scrum
software development approach. This definition itself is shown to immediately
suggest some process properties and characteristics. Section 4 then demonstrates
how analysis of the Scrum definition can derive a property that seems suitable
for comparison to an expectable type of process requirement. The paper con-
cludes with an evaluation of this process analysis technology in section 6, and a
suggestion for future work in section 7.

2 The Little-JIL Process Definition Language

Little-JIL is a process definition language [3] that supports specification of pro-
cesses involving different agent and non-agent resources. The language is defined
through the use of finite state machines, which makes processes defined in Little-

JIL amenable to rigorous analysis. Its use of hierarchical decomposition supports
the specification of arbitrarily precise process details.

The most immediately noticeable component of a Little-JIL process defini-
tion is the visual depiction of the coordination. The coordination specification
looks initially somewhat like a task decomposition graph, in which processes are
decomposed hierarchically into steps, in which the leaves of the tree represent
the smallest specified units of work. The steps are connected to each other with
edges that represent both hierarchical decomposition and artifact flow. Each
step contains a specification of the type of agent needed in order to perform the
task associated with that step. Thus, for example, in the context of a software
development process, the agents would be entities such as programmers, testers,
managers, the customer, etc. The collection of steps assigned to an agent defines
the interface that the agent must satisfy to participate in the process. It is im-
portant to note that the coordination specification only includes a description of
the external view and observable behavior of such agents. A specification of how
the agents themselves perform their tasks (their internal behaviors) is a external
to the Little-JIL process definition. Thus, Little-JIL enforces a sharp separation
of concerns, separating the internal specification of what a resource is capable of
doing and how the agent will do it, from the specification of how agents are to
coordinate their work with each other in the context of carrying out the overall
process.

While space does not permit a complete description of the language, further
explanation of the notation will be provided in the context of the model of the
Scrum software development method and interested readers are referred to [3]
for a complete description of all of the features of the language.

3 Defining the Scrum Software Development Method

This section describes Scrum, a commonly used approach to the development
of software, especially software that must be developed rapidly. Many papers,
books, and courses have been developed to explain the Scrum approach, and
there have been many additional papers and books written to describe experi-
ences and anecdotes in the use of Scrum[6–10]. The fact that the descriptions
of Scrum contained in these many diverse books, papers, and anecdotes are
typically informal, and sometimes seem to be inconsistent with each other, has
posed problems for those who wish to use Scrum, sometimes leading to uncer-
tainty about whether the process actually being followed can or should be called
“Scrum”. This lack of rigor and agreement also made it difficult for us to de-
cide just which description of Scrum should form the basis for our own work as
described in this paper.

Ultimately, as the goal of this paper is to demonstrate the possibility, and
the value, of inferring the properties of a process from the rigorous and precise
definition of the process, the specific process definition chosen seemed to be less
of an issue than the choosing of some specific process. On the other hand, the
work described here does seem to also demonstrate the possibility that our ap-

Development Iteration

 product : Product
⇔ sprint backog channel: BacklogChannel

Sprint Planning Meeting
Sprint Review Sprint RetrospectiveSprint

product  product
● agent: ScrumMaster
● owner: ProductOwner
 deadline: Hours = 4
 product: Product

product  product

● agent: Team

sprint backlog  sprint backlog channel
sprint backlog  sprint backlog channel

Fig. 1. The Scrum Development Iteration

proach of applying a process definition language can also be useful in identifying
differences in opinion and interpretation of what is meant by a software devel-
opment approach such as Scrum, and what the implications of these differences
might be. The Little-JIL definition that is the basis for the work described here
is based upon the informal Scrum description provided in [6].

As suggested by the preceding discussion, this process is defined hierarchi-
cally. At the highest level, Scrum involves three concurrent activities: the man-
agement of the product and release backlogs, and the iterative development of
the product. For our example, we elaborate only the heart of the Scrum process:
the iterative performance of “sprints.” The Development Iteration step (Figure
1) specifies how one of these iterations is carried out. An iteration begins with
a Sprint Planning Meeting to determine the work to be performed during the
current iteration. This body of work is represented by the sprint backlog artifact
and is stored in the sprint backlog channel to prevent concurrent updates. The
Sprint Planning Meeting step is followed by the Sprint step in which the work is
actually performed. The iteration concludes with the Sprint Review step and the
Sprint Retrospective step. The Sprint Review step is a time-boxed meeting (note
the diamond annotation that specifies a fixed deadline for completion of this
step) led by the ScrumMaster agent with the support of the ProductOwner and
team as resources. This step takes as an input artifact (note downward arrow
annotation) the product artifact that was produced as the output of the Sprint
step. The purpose of this Sprint Review step is to enable the team to discuss the
results of the preceding sprint, and to close the loop between the product owner
and the team. After the Sprint Review step concludes, the Sprint Retrospective
is carried out with the team as the agent, indicating that the team meets in
private to assess its performance during the last sprint as preparation for the
next sprint.

3.1 Sprint

The Sprint subprocess (Figure 2) is the activity during which actual development
work gets done. To be more precise, the Sprint process consists of 30 (note the
30 annotation on the edge connecting the Sprint parent step to its Daily Sprint
child step) consecutive (note the right arrow step kind badge in the Sprint step)

Sprint

Daily Sprint

30
product  product

 product: Product

 product: Product
 deadline: Days = 1

Daily Scrum

sprint backlog  sprint backlog channel
sprint backlog  sprint backlog channel

● agent: ScrumMaster
● team: Team
● sprint burndown: BurndownTool
● editor: BacklogTool
 deadline: Minutes= 15
 sprint backlog: Backlog

Work

● agent: Team
 product: Product

Revise Sprint Backlog

● agent: Team
● editor: BacklogTool
 sprint backlog: Backlogproduct  product

sprint backlog  sprint backlog channel
sprint backlog  sprint backlog channel

+
*

Fig. 2. Elaboration of the Sprint Step

performances of the Daily Sprint subprocess. As indicated by the = sign badge in
the Daily Sprint step, this subprocess is carried out as the parallel performance
of its three substeps, Daily Scrum, Work, and Revise Sprint Backlog. Both the
Daily Scrum and the Revise Sprint Backlog steps require both access to, and
update capability for, the sprint backlog. These accesses for these two steps are
coordinated by using the sprint backlog channel to provide the needed concurrent
access permissions.

The Daily Scrum step is a 15 minute (note the specification of this deadline
by means of the diamond annotation) progress meeting during which the team
meets to assess their progress. Note that the sprint backlog artifact is passed in
as a parameter, and then also passed out of this step, after which it is written
to the sprint backlog channel so that it is made available to the Revise Sprint
Backlog step, which may be executing in parallel.

In addition to the execution of the Daily Scrum step, there are multiple
performances of the Work step (note the + sign on the edge connecting the
Work step to its parent). Each instance of the Work step produces a new version
of the product artifact, presumably being comprised of more completed work
items after the execution of this step. The agent for this step is the team.

Concurrently with the performances of the Work step there may be multiple
performances of the Revise Sprint Backlog step (note the * on the edge connect-
ing this step to its parent). The agent for this step is also team, and the effect of
a performance of this step is to update the sprint backlog to reflect the addition
or removal of tasks in the backlog.

4 Using Analysis to Determine Process Robustness

Any of a number of different process definitions could be derived by making
different changes to the definition just presented. This paper makes no claim

as to which of the resulting processes should still be considered to be Scrum
processes. But this paper is intended to suggest that different analyses can be
applied to these different processes to yield different characterizations. These
different characterizations might then be useful in supporting decisions about
which of the different processes seems appropriate for use in meeting different
process requirements.

In this section we will demonstrate how analyses can be applied to the process
model resulting in a characterization of the process that can be used to determine
its adherence to two different process requirements. Additional kinds of analysis
are suggested in section 7.

4.1 Applying Fault Tree Analysis

Fault tree analysis (FTA) is an analytic approach that is well known in safety en-
gineering and other engineering disciplines, where it is used to identify the ways
in which a specified hazard might arise during the performance of a process.
More specifically, in this approach a graph structure, called a Fault Tree (FT),
is built using AND and OR gates to indicate how the effect of the incorrect per-
formance of a step can propagate and cause consequent incorrect performance
of other steps. The analyst must specify a particular hazard that is of concern,
where a hazard is defined to be a condition that creates the possibility of sig-
nificant loss. Once such a hazard has been specified, FTA can then be used to
identify which combinations of incorrect step performances could lead to the oc-
currence of the specified hazard. Of particular interest are situations in which the
incorrect performance of only one step can lead to the creation of a hazard. Such
a step, referred to as a single point of failure, creates a particularly worrisome
vulnerability, and suggests that processes containing such steps are likely to fail
to meet certain critical process robustness requirements. A complete treatment
of the way in which an FT is generated from a Little-JIL definition is beyond
the scope of this document, but the interested reader is referred to [11].

Identification of a Scrum Method Hazard One key Scrum process char-
acteristic is that at the end of each sprint the ScrumMaster is always able to
present a product that actually runs. Failing to be able to do this could be con-
sidered to be a hazard, and identifying a single step leading to such a hazard (a
single point of failure) would suggest that such a process contains a robustness
vulnerability. By applying FTA, Figure 3 shows that the previously presented
Scrum process definition does not preclude the possibility of such a hazard re-
sulting from a single point of failure as “Step ‘Work’ produces wrong ‘product”’
is sufficient for “Artifact ‘product’ from ‘Sprint’ [to be] wrong.” Informally, we
suggest that the previously defined process could be performed in a way that
could be summarized as “write code for the first 29 days and then only on the
30th day make a first attempt to integrate everything.” We hasten to note that
this should not be taken as a weakness of the Scrum approach, because the
Scrum process description upon which our definition is based explicitly states

Artifact "product" is wrong when
step "Daily Sprint" is completed

Artifact "product" to
step "Sprint" is wrong

Step "Work" produces
wrong "product"

Artifact "product" from
"Sprint" is wrong

Fig. 3. Fault Tree Showing Single Point of Failure

that it is a management approach that does not incorporate any engineering
practices. Any application of Scrum will of course incorporate such practices.
What the analysis just presented demonstrates is that it is necessary to incor-
porate into the Scrum process definition appropriate product integration details
that preclude the possibility of the indicated single point of failure.

Modeling Continuous Integration One way to build such details into the
process definition is to integrate the Continuous Integration method into the
Scrum method by replacing the step Work in the original Scrum definition, with
a sub-process Checked Work (Figure 4). In Checked Work, the original Work
step is followed by the Integrate step, whose purpose is specifically to integrate
the work just completed with prior work products. The successful integration
of this new work is verified by the performance of a post-requisite(represented
by a upward-pointing triangle on the right of a step bar) to the Integrate step
that verifies the correctness of the integrated artifact. If the verification does
not succeed, then the Rework step is performed, to make whatever modifications
are necessary in order to ensure that the required modifications are carried out.
Details of the Continuous Integration method are not provided here, as the

Checked Work

Integrate ReworkWork

Fig. 4. Integration of Continuous Integration Into the Scrum Process Definition

Artifact "product" is wrong when
step "Daily Sprint" is completed

Artifact "product" to
step "Sprint" is wrong

Artifact "product" is wrong when
step "Checked Work" is completed

Artifact "product" from "Sprint" is wrong

Step "Checked Work" produces
wrong "product"

Artifact "product" is wrong when
step "Integrate" is completed

Exception "BuildFailed" is not
thrown by step "Integrate"

Artifact "product" from
"Integrate" is wrong

Exception "BuildFailed" is thrown
by step "Integrate"

Step "Work" produces wrong
"product"

Step "Integrate" produces wrong
"product"

Fig. 5. Fault Tree Showing Fix

purpose of this section is to indicate how process rigor can support greater
assurance about the success of method integration. Details of the Continuous
Integration method definition would look very analogous to the details of the
Scrum method definition.

As shown in Figure 5, the inclusion of Continuous Integration eliminates
the single point of failure step in this definition. For this modified method, if
”Step ‘Work’ produces the wrong ‘product’ ”, then it will still be necessary for
”Exception ’BuildFailed’ is thrown by step ’integrate’ ” to fail to be thrown (note
that the icon connecting ”Exception ’BuildFailed’ is thrown by step ’integrate’
” to its parent is a complementation gate). Thus two steps must fail to be
performed correctly in order for the hazard to occur, resulting in a process
that meets robustness requirements that were not met by the previously-defined
process.

4.2 Applying Finite-State Verification

Finite-state verification techniques are widely used to demonstrate the absence
of specified event sequence defects from computer hardware and from software

Begin Sprint

Change Sprint Backlog
End Sprint

Begin Sprint

Change Sprint Backlog
End Sprint

End Sprint

Begin Sprint

Change Sprint Backlog

Change Sprint Backlog
Begin Sprint

End Sprint

*

Fig. 6. Finite-State Machine Representation of the Property from PROPEL

code or designs. In [12], it is shown that Finite-state verification techniques may
also be used to check if user defined properties hold in a Little-JIL process
model. Finite-state verification is an analysis approach that compares a finite
model of a system to a property specification. For example, we might specify
an invariant that the development team is protected from requirements “churn”
during a sprint, by asserting that the features being implemented cannot be
changed except during the Sprint Planning Meeting (shown in Figure 1).

The FLAVERS[13] finite-state verification tool uses finite-state machines to
specify properties that are usually created via PROPEL[14], a tool that allows
the use of guided questions and disciplined natural language to aid the user in
the creation of property specification. For our property, we have used PROPEL
to specify that “Change Sprint Backlog” may not occur between a “Start Sprint”
event and an “End Sprint” event, resulting in the finite-state machine shown in
Figure 6.

Checking this property reveals that this property does not in fact hold for
Scrum, producing an example trace, which after some preamble indicates that:

1. The step “Sprint” begins.
2. The step “Revise Sprint Backlog” occurs, changing the sprint backlog.

As this trace shows, the team is permitted to make changes to the sprint
backlog during the sprint via the Revise Sprint Backlog step shown in Figure 2.
Indeed, an anecdote in [6] describes a situation in which the Product Owner was
bypassed and individuals were approaching team members and persuading them
to make changes during the sprint. If we assume that the team members redirect
any direct requests through the Product Owner as they are instructed to, then
we can revise our analysis to disregard changes made to the sprint backlog via
the “Revise Sprint Backlog” step, and then the property holds, showing that the
Scrum process does indeed protect the team since only they themselves are able
to make changes to the sprint backlog during the sprint.

5 Related Work

Many authors have addressed the problem of modeling, specifying, and defining
various software development processes. Prime venues for this work include the
International Conference on the Software Process (ICSP) series[15], and the jour-
nal Software Process Improvement and Practice (SPIP). Most of this literature
attempts to model processes informally or with pictorial diagrams. In particular
the Scrum approach to software development is described mostly in this way.
Some examples are [6–10]. There have been a number of noteworthy attempts
to create more rigorous notations with which to define processes (e.g. [16–19]).
But these have typically not attempted to define popular software development
processes. One notable exception is the Unified Process (UP) [20], which is de-
fined precisely in terms of well-defined formalism. But even the UP definition is
not then analyzed in order to infer properties for comparison with requirements.
This paper seems unique in demonstrating that this is plausible and desirable.

6 Evaluation

While any clear graphical notation supports better understanding of a process,
using a rigorously defined process language allows researchers and practition-
ers to evaluate, discuss, and improve the process based on analyses that are
supported by a rigorous definition. The Little-JIL process definition language
semantics are based on finite state machines to provide the precise semantic
meanings of each of the language’s features, which then serves as the basis for
analyses that offer greater insights into such processes, support integration with
other methods, and detect defects and vulnerabilities.

In this paper we showed how the Little-JIL Scrum method definition was used
successfully for such analyses. First, a fault tree was generated automatically and
used to identify a single point of failure in the process, suggesting a lack of process
robustness that would presumably be worrisome, and facilitating the removal
of that process vulnerability, as verified by analysis of a second automatically
generated fault tree that demonstrated greater process robustness. Additionally,
finite-state verification was used to show that the model does in fact demonstrate
one of the key features of Scrum, namely that the development team is protected
from requirements “churn” by the constraint that changes are routed through the
Product Owner. We note that the finite- state verification tools and technologies
used here have been shown to have low-order polynomial time bounds [13], which
suggests that the work described in this paper should scale up from the small
example presented here. Other work has demonstrated that these finite-state
analyses can be applied to processes having hundreds of Little-JIL steps [21].

7 Future Work

This first demonstration of the use of process definition and analysis suggests
that further kinds of analysis might also be successful in supporting additional

demonstrations of the adherence of process definitions to additional desired re-
quirements. For example, by attaching time limits to all steps (not just the steps
in the example in section 3), and bounding the iterations (also necessary for
finite-state verification) analyzers should be able to determine the maximum
time required to carry out the specified process and thus determine if the pro-
cess must always meet speed and responsiveness requirements. Discrete event
simulation could also be used to study the adherence of processes to other kinds
of requirements.

Finally we note that the application of these analyses to Scrum process defini-
tions was used only as an example. These analysis approaches should be equally
applicable to other types of processes to derive various sorts of properties and
characteristics. Indeed this approach should be equally applicable to processes
defined in other languages, as long as those languages have rigorously defined
semantics. It seems particularly interesting to consider the possibility that some
set of properties and characteristics might be identified that could be used to
define the nature of such types of processes as Scrum. We suggest that a defini-
tion of what is quintessentially a “Scrum process” might well best be done by
enunciating a set of properties and characteristics, rather than some canonical
structure of steps. Analyses of the sorts suggested here might then be used to
determine which actual processes are Scrum processes by subjecting them to
analyses that determine whether or not the processes adhere to the defining set
of properties and characteristics.

8 Acknowledgments

The authors gratefully acknowledge the many stimulating conversations with
Aaron Cass, Bobby Simidchieva, M.S. Raunak, and Junchao Xiao, all of which
have helped shape this paper. This work also builds fundamentally on the work
of Bin Chen, Lori A. Clarke, and George S. Avrunin who have creating tools and
technological approaches that enable the Finite State Verification and Fault Tree
Analysis of process definitions. In addition Gordon Anderson’s early versions of
the Scrum process definition provided an invaluable starting point for this work.
Financial support for this work was provided by the National Science Founda-
tion under Award Nos. CCR-0427071 and CCR- 0205575, and a subcontract from
Stevens Institute of Technology under the auspices of the DoD-sponsored Sys-
tems Engineering Research Center (SERC). The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied of The National
Science Foundation, or the U.S. Government.

References

1. Osterweil, L.J.: Software processes are software too. In: 9th International Confer-
ence on Software Engineering (ICSE 1987), Monterey, CA (March 1987) 2—13

2. Osterweil, L.J.: Software processes are software too, revisited. In: 19th Interna-
tional Conference on Software Engineering (ICSE 1997), Boston, MA (May 1997)
540—548

3. Wise, A.: Little-JIL 1.5 language report. Technical Report UM-CS-2006-51, De-
partment of Computer Science, University of Massachusetts, Amherst, MA (2006)

4. CMMI Product Team: CMMI for development, version 1.2. Technical Report
CMU/SEI-2006-TR-008, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburg, PA (August 2006)

5. Highsmith, J., Fowler, M.: The agile manifesto. Software Development Magazine
9(8) (2001) 29–30

6. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall,
Upper Saddle River, New Jersey (2002)

7. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond,
WA (2004)

8. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson
Education, Inc., Boston, MA (2010)

9. Scrum Alliance, Inc. http://www.scrumalliance.org/
10. Schwaber, K. http://www.controlchaos.com/
11. Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Automatic fault tree deriva-

tion from little-jil process definitions. In: 2006 Software Process Workshop (SPW
2006) and 2006 Process Simulation Workshop (PROSIM 2006). Volume 3966 of
LNCS., Shanghai, China, Springer-Verlag (May 2006) 150—158

12. Chen, B., Avrunin, G.S., Henneman, E.A., Clarke, L.A., Osterweil, L.J., Henne-
man, P.L.: Analyzing medical processes. In: ACM SIGSOFT/IEEE 30th Inter-
national Conference on Software Engineering (ICSE’08), Leipzig, Germany (May
2008) 623—632

13. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for
verifying properties of concurrent software systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 13(4) (October 2004) 359—430

14. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: ACM SIGSOFT 14th International Sympo-
sium on Foundations of Software Engineering (FSE14), Portland, OR (November
2006) 208—218

15. International Conference on Software Process. http://www.icsp-conferences.org/
16. Dami, S., Estublier, J., Amiour, M.: Apel: A graphical yet executable formalism

for process modeling. Automated Software Engineering 5(1) (1998)
17. Katayama, T.: A hierarchical and functional software process description and

its enaction. In: Proceedings of the 11th international conference on Software
engineering, Pittsburgh, PA (1989) 343—352

18. Kaiser, G., Barghouti, N., Sokolsky, M.: Experience with process modeling in
the marvel software development environment kernel. In: 23rd Annual Hawaii
Internationall Conference on System Sciences. (1990) 131—140

19. OMG: Software & systems process engineering meta-model specification. Technical
Report formal/2008-04-01, Object Management Group (2008)

20. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison-Wesley Longman, Inc., Reading, MA (1999)

21. Christov, S., Avrunin, G., Clarke, L.A., Osterweil, L.J., Henneman, E.: A bench-
mark for evaluating software engineering techniques for improving medical pro-
cesses. In: International Conference on Software Engineering, Workshop on Soft-
ware Engineering in Health Care (SEHC’10), Cape Town, South Africa (May 2010)

