
Lifecycle Environments:

A Retrospective View of the Contributions of Leon J.
Osterweil

Lori A. Clarke

Department of Computer Science, University of Massachusetts, Amherst, MA USA 01003

clarke@cs.umass.edu

Abstract Throughout his career, Leon Osterweil has made significant contribu-
tions that have impacted the research and state-of-the-practice on development en-
vironments. Initially his focus was on programming environments, mostly ad-
dressing issues needed to support his work in program analysis. Later his focus
expanded to software lifecycle issues, such as flexible component interaction
models, efficient system regeneration, and the use of process definitions as the
major coordination mechanism to orchestrate the interactions among collections of
tools, hardware devices, and human agents. His current research continues to ad-
dress environment issues, but now the emphasis is on supporting continuous proc-
ess improvement by providing process languages, execution, simulation, and an
assortment of analysis tools for evaluating the effectiveness, safety, and vulner-
abilities of processes for a range of domains, from healthcare, to digital govern-
ment, to scientific workflow.

1. From Program Analysis to Programming Environments

The early work on program analysis undertaken by Osterweil and Fosdick [21,37],
Ryder [47], Balzer [5] and others initiated a new research direction, where analy-
sis was used not only to assist with compilation but also to help find problems in
the code. The early analysis work was primarily concerned with supporting
FORTRAN, and Osterweil and Fosdick were working with the Numerical Analy-
sis Group (NAG) in Oxford, England, which was trying to develop efficient and
accurate numerical software packages [35] in close collaboration with Argonne
National Labs, a major user of such libraries. As discussed in Part I of this book,
program analysis has continued to grow as an important research area, as software

2

systems have grown in size and complexity while also becoming a driving force of
much of our societal infrastructure.

Early work in program analysis, however, soon confronted inherent and diffi-
cult problems in implementing these approaches, first as isolated tools and even
more so as collections of tools. These problems laid the foundation for a thread of
work, undertaken by Osterweil and others, addressing the need for environments
of tools that support the full lifecycle of software activities. The early work on
Software Development Environments (SDEs), such as Interlisp [60] and Mesa
[54], were extremely innovative but were focused on a single, central program-
ming language. The Gandalf Project [23] and the Cornell Program Synthesizer
Project [44,59] built upon and generalized these approaches by creating meta-
programming environments that could be instantiated for different programming
languages. For the most part, these environments were tightly integrated around a
central repository and one focused goal, the development and execution of a pro-
gram. The Toolpack project [33] took a somewhat broader view of environments
and recognized that collections of tools would be needed to support the various
software engineering activities. It argued that these tools should not be monolithic,
but instead they should be decomposed into tool fragments that could be called
upon in different ways to achieve support for the many varied activities associated
with software development. In many regards, this was one of the first arguments
for component-based software engineering, made at a time before the infrastruc-
ture was available to easily define the components or flexibly glue them together.

In addition to recognizing the importance of component-based development,
the Toolpack project was grappling with how to deal with software evolution. At
that time, the FORTRAN systems being developed were considered large and re-
compilation and reanalysis were expensive. If one piece of the system changed,
then did all of the tools in the environment have to be reapplied? Building on the
success of Make [20], which automatically assembles executables from various
source files for Unix, Clemm and Osterweil developed Odin [14]. Odin would also
automatically assemble the executables from various source files, but it would first
analyze what had changed in the system and then, based on those results, deter-
mine which tool fragments needed to be reapplied and automatically initiate their
execution. Moreover, Odin tried to determine when it should eagerly recompute
and save intermediate results versus lazily delay and only recompute when a cur-
rent version was needed.

2. Integrated Software Development Environments

Toolpack was one of the first attempts to recognize that software development was
a complicated set of processes and would need to be supported by a collection of
tools that interacted with each other. The US Department of Defense (DoD) was
just starting to recognize the importance of software systems to their mission, and
Defense Advanced Research Projects Agency (DARPA), which previously had

3

primarily focused on networking and artificial intelligence, initiated research pro-
grams to support the development of large, complex systems. The DARPA-funded
Arcadia Project was novel in that from the get-go it involved collaborations
among researchers from different institutions. The academic ties to Osterweil were
quite strong however. The major academic departments were the University of
California, Irvine, the University of Colorado, Boulder, and the University of
Massachusetts, Amherst, along with TRW and Incremental Systems, Inc. It is no-
table that the university efforts were all led by former students of Osterweil or
their descendants.

Early SDEs, now called Integrated Development Environments (IDEs), focused
on how to have a collection of tools work together to support the software devel-
opment process. Based on the success of the programming environments for LISP
and Mesa, interest developed for providing an environment for Ada, an emerging
language at the time. Early Ada documents [6] outlined an agenda that went be-
yond just programming language support and included support for the full soft-
ware lifecycle. Most of these efforts, however, assumed that these environments
would be tightly integrated, in that there would be a single repository and a single
user interface. Thus, any new tools would have to be developed with this common
architectural view, which would no doubt limit extensibility. The Arcadia Project
[26,57,58] broke from this view and argued for alternative integration models.
These included using loose interaction models, object management, tool composi-
tion, and process models.

In their work on interaction models, Maybee, Heimbigner and Osterweil devel-
oped the Q system [28]. Q, like the Field system being developed about the same
time by Reiss [42,43], supported loose interaction among distributed components
and provided much more flexibility than commonly used RPC or message passing
models. With respect to data interoperability, Q built upon the Module Intercon-
nect Language [39,40] and IDL [27,52] work that was going on at that time to
support data interoperability across languages. It is interesting to note that Q was
the first open source and publicly available implementation of the CORBA 2.0
standard [32]. Subsequently, CORBA and other middleware systems built upon
and extended many of the ideas that initially appeared in Q. A similar approach to
loose interaction was also incorporated into the Chiron user interface system [66]
that is now the standard architectural model for user interfaces.

The work on object management was an attempt to circumvent the restricted
relational data base view of objects that assumed that there would be, at least con-
ceptually, a single repository and associated data schema. APPL/A [53], PGraph-
ite [56,62], Triton [24] and then Pleiades [55], Arcadia object management proto-
types, included capabilities that allowed abstract data types to be defined,
manipulated, and made persistent. The Arcadia object management work, as well
as other efforts in this area (e.g., [3,31]), led to interesting interactions between the
database community and the software engineering community and was the precur-
sor of work on object-oriented data bases (e.g., [1,2]) and the impetus to incorpo-
rate persistence into programming languages [22].

4

Another contribution that arose from the Arcadia project was the importance of
providing clean interfaces to various language-independent, intermediate results
that arose from front-end compilation and analyzes. For example, language-
independent interfaces to commonly used objects such as abstract-syntax trees,
control flow graphs, dependency graphs, etc., facilitated the application of further
analyses, one of the focal areas of the Arcadia Project [13,45,46]. This tool com-
position approach that was advocated in the Arcadia project has been subsequently
widely adopted in environments such as Eclipse [18] and Visual Studio [61].

The research on interaction models, object management, and tool composition
was, in some regards, focused on software architectural models, an important
thread of much of the Arcadia project. This emphasis, directly or indirectly, led to
some of the earliest work on software architecture, such as the PIC model for de-
scribing access control among components [63], the C2 interaction model [29], ar-
chitectural classification work [30], and one of the earliest papers to introduce the
concept of software architecture and associated concerns [38]. All of the Arcadia
researchers engaged in long, and often heated, arguments about these topics and
all benefited from these exchanges. The Taylor paper in Chapter 9 further elabo-
rates on many of these issues and the ensuing research that built upon these early
insights.

3. Process-driven Environments

One of the major insights that arose from the Arcadia project was Osterweil's re-
alization that Make, Odin, and all of the existing scripting notations were inade-
quate to capture the complex interactions that were needed to describe how
agents—that is, software components, hardware components, or human users—
were to interrelate and interact in an IDE. Osterweil postulated that nothing short
of a programming language would suffice in his seminal paper [34], “Software
Processes are Software Too” (reprinted in Chapter 17). In this paper, Osterweil ar-
gued that it was necessary to accurately represent all the desired interactions
among agents required by all of the development phases (e.g., requirements, de-
sign, etc.) in order to support the careful planning required to develop a software
system. Moreover, he argued that the many analysis tools in the Arcadia environ-
ment, as well as the infrastructure components, such as the middleware and object
management components, had to be orchestrated by process definitions defined in
a rich, process language with well-defined semantics so that it, too, could be the
subject of analysis.

This work was the harbinger of a rich body of work on software processes, de-
scribed in more detail in Part III. Osterweil, however, soon viewed this work on
process definition as going far beyond software development, which he now
viewed as just one domain of interest, albeit an important one. He saw processes
everywhere and soon came to realize that having an articulate process language

5

provided an important basis for developing an environment to support systematic
process improvement in many different domains.

4. Environments for Continuous Process Improvements

Osterweil was strongly influenced by the work of Deming [16] and Shewhart [48]
on the study of process improvement. He realized that the process language that he
had developed, Little-JIL [7], could be used to capture complex processes in a
number of domains. Building upon his earlier work on SDEs and his view that
processes are software too, he argued that process definitions need to be as care-
fully developed and analyzed as any other software system. This led to work with
Clarke and Avrunin on developing a Process Improvement Environment [4] that
included a visual editor for the language, plus a set of analysis capabilities. Analy-
sis techniques that were originally developed to capture requirements of software
systems [15,51] and to verify these requirements [17] were enhanced to address
the complexities of process definitions. In some cases, the strong control-oriented
view of process definitions made them even more amenable to this type of analy-
sis than more data-oriented software systems.

To evaluate the hypothesis that a process improvement environment could ben-
efit a wide variety of domains, case studies were undertaken in the areas of health-
care [9,10,25], on-line dispute resolution [11], elections [49], scientific workflow
[19,36] and other areas. Each domain illustrated the benefits of this approach and
provided insights about possible enhancements to the process improvement
environment itself. For example, the work on healthcare resulted in the
development of hazard analysis techniques to detect vulnerabilities, such as single
points of failure [8], and discrete event simulation capabilities [41] to evaluate the
comparative effectiveness of alternative processes or resource assignments. Some
of the issues that have arisen during this work are reminiscent of early research
threads that emerged in the early SDE work. For example, maintaining coherence
between process performers and executing processes extends the early work on
GUI design and event based notification with more extensive mediation mecha-
nisms [50] that now need to be extended even further to support on-line process-
guidance. Modeling complex processes, such as emergency room patient flow, of-
ten requires not only object management, but also resource management so that
contested items can be effectively allocated and utilized. This has led to research
on defining and allocating very diverse types of resources, such as those found in
challenging real-world domains [64,65].
Because the Little-JIL language was specifically designed to support the flexibility
that human agents like to retain, this process improvement approach is seen as par-
ticularly applicable to human-intensive systems, that is systems where human de-
cisions and participation are an integral part of a complex process [12]. Such hu-
man-intensive systems arise in a range of domains from healthcare, to emergency
response, to command and control, and will probably continue to grow in impor-

6

tance as devices, software systems, and human ingenuity are brought together to
solve complex problems. Cugola et al. describe their recent work on applying
process programming to the human-intensive domain of service-oriented comput-
ing in Chapter 10. Osterweil’s current work is focusing on environments for mod-
eling, evaluating, and executing such systems, going beyond the application of
static analysis techniques to detect errors and vulnerabilities to also include on-
line process monitoring and guidance as well as process improvements based on
post-execution assessment and probabilistic analysis.

5. References

1. Andrews T, Harris C Combining Language and Database Advances in an Object-Oriented
Development Environment. In: Object-Oriented Programming Systems Languages and Ap-
plications, Orlando, FL, October 1987. pp 430-440

2. Atkinson M, Bancilhon F, DeWitt D, Dittch K, Maier D, Zdonik S The Object-Oriented Data-
base System Manifesto. In: First International Conference on Deductive and Object-Oriented
Databases, 1989. pp 166-178

3. Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott WP, Morrison R (1983) An Approach to
Persistent Programming. The Computer Journal 26 (4):360-365

4. Avrunin GS, Clarke LA, Osterweil LJ, Christov SC, Chen B, Henneman EA, Henneman PL,
L. C, Mertens W Experience Modeling and Analyzing Medical Processes: UMass/Baystate
Medical Safety Project Overview. In: First International Health Informatics Symposium, Ar-
lington, VA, November 11-12 2010. ACM, pp 316-325

5. Balzer RM Exdams -- Extendable Debugging and Monitoring System. In: 1919 Spring Joint
Computer Conference, 1969. AFIPS Press, pp 567-580

6. Buxton J (1980) Requirements for Ada Programming Support Environments. Department of
Defense,

7. Cass AG, Lerner BS, McCall EK, Osterweil LJ, Sutton Jr. SM, Wise A Little-JIL/Juliette: A
Process Definition Language and Interpreter, ,demonstration paper. In: 22nd International
Conference on Software Engineering, Limerick, Ireland, June 4-11 2000. pp 754-758

8. Chen B, Avrunin GS, Clarke LA, Osterweil LJ Automatic Fault Tree Derivation from Little-
JIL Process Definitions. In: Software Process Workshop and Process Simulation Workshop,
Shanghai, China, January 2006. Springer-Verlag, pp 150-158

9. Chen B, Avrunin GS, Henneman EA, Clarke LA, Osterweil LJ, Henneman PL Analyzing
Medical Processes. In: Thirtieth International Conference on Software Engineering, Leipzig,
Germany, May 2008. pp 623-632

10. Clarke LA, Avrunin GS, Osterweil LJ Using Software Engineering Technology to Improve
the Quality of Medical Processes, Invited Keynote. In: Thirtieth International Conference on
Software Engineering, Leipzig, Germany, ACM 2008. pp 889-898

11. Clarke LA, Gaitenby A, Gyllstrom D, Katsh E, Marzilli M, Osterweil LJ, Sondheimer NK,
Wing L, Wise A, Rainey D A Process-Driven Tool to Support Online Dispute Resolution. In:
2006 International Conference on Digital Government Research, San Diego, CA, 2006.
ACM, pp 356-357

12. Clarke LA, Osterweil LJ, Avrunin GS Supporting Human-Intensive Systems. In: FSE/SDP
Workshop on the Future of Software Engineering Research, Santa Fe, NM, November 7-8
2010. ACM, pp 87-92

13. Clarke LA, Richardson DJ, Zeil SJ TEAM: A Support Environment for Testing Evaluation
and Analysis. In: SIGSOFT '88: Third Symposium on Software Development Environments,
1988. ACM, pp 153-162

7

14. Clemm GM, Osterweil LJ (1990) A Mechanism for Environment Integration. ACM Transac-
tions on Programming Languages and Systems 12 (1):1-25

15. Cobleigh RL, Avrunin GS, Clarke LA User Guidance for Creating Precise and Accessible
Property Specifications. In: 14th SIGSOFT International Symposium on Foundations of
Software Engineering, Portland, OR, November 2006. ACM, pp 208-218

16. Deming WE (1982) Out of the Crisis. MIT Press, Cambridge
17. Dwyer MB, Clarke LA, Cobleigh JM, Naumovich G (2004) Flow Analysis for Verifying

Properties of Concurrent Software Systems. ACM Transactions on Software Engineering and
Methodology 13 (4):359-430

18. Eclipse-an Open Development Platform. (2007). http://www.eclipse.org/.
19. Ellison AM, Osterweil LJ, Hadley JL, Wise A, Boose E, Clarke LA, Foster D, Hanson A,

Jensen D, Kuzeja P, Riseman E, Schultz H (2006) Analytic Webs Support the Synthesis of
Ecological Data Sets. Ecology 87 (6):1345-1358

20. Feldman SI (1979) MAKE- A Program for Maintaining Computer Programs. Software -
Practice and Experience 9 (4):255-265

21. Fosdick LD, Osterweil LJ (1976) Data Flow Analysis in Software Reliability. ACM Comput-
ing Surveys 8 (3):305-330

22. Gosling J, Joy B, Steele GL (1996) The Java Language Specification. Addison-Wesley, Bos-
ton

23. Habermann AN, Notkin D (1986) Gandalf: Software Development Environments. IEEE
Transactions on Software Engineering SE-12 (12):1117-1127

24. Heimbigner D Experiences with an Object-Manager for A Process-Centered Environment.
In: Eighteenth International Conference on Very Large Data Bases, Vancouver, British Co-
lumbia, Canada, August 24-27 1992. pp 585-595

25. Henneman EA, Avrunin GS, Clarke LA, Osterweil LJ, Andrzejewski CJ, Merrigan K,
Cobleigh R, Frederick K, Katz-Basset E, Henneman PL (2007) Increasing Patient Safety and
Efficiency in Transfusion Therapy Using Formal Process Definitions. Transfusion Medicine
Reviews 21 (1):49-57

26. Kadia R Issues Encountered in Building a Flexible Software Development Environment:
Lessons from the Arcadia Project. In: Fifth SIGSOFT Symposium on Software Development
Environment, Tyson's Corner, VA, December 1992. ACM pp 169-180

27. Lamb DA (1987) IDL: Sharing Intermediate Representations. ACM Transactions on Pro-
gramming Languages and Systems 9 (3):297-318

28. Maybee MJ, Heimbigner DM, Osterweil LJ Multilanguage Interoperability in Distributed
Systems. In: 18th International Conference on Software Engineering, Berlin, Germany,
March 1996. pp 451-463

29. Medvidovic N, Oreizy P, Robbins JE, Taylor RN Using Object-Oriented Typing to Support
Architectural Design in the C2 Style. In: Garlan D (ed) SIGSOFT '96 Fourth Symposium on
the Foundations of Software Engineering, San Francisco, CA, October 1996. ACM, pp 24–32

30. Medvidovic N, Taylor RN (2000) A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering

31. Morrison R, Dearle A, Bailey PJ, Brown AL, Atkinson MP The Persistent Store as an Ena-
bling Technology for Project Support Environments. In: Eighth International Conference on
Software Engineering, 1985. IEEE, pp 166-172

32. OMG (1995) CORBA 2.0/Interoperability, vol OMG TC Document 95.3.xx. Revised 1.8
edn. Object Management Group, Framingham, MA

33. Osterweil LJ (1983) Toolpack -- An Experimental Software Development Environment Re-
search Project. IEEE Transactions on Software Engineering SE-9 (6):673-685

34. Osterweil LJ Software Processes are Software, Too. In: Ninth International Conference on
Software Engineering, Monterey, CA, March 30-April 2 1987. IEEE Computer Society Press,
pp 2-13

35. Osterweil LJ Improving the Quality of Software Quality Determination Processes. In: Bois-
vert R (ed) The Quality of Numerical Software: IFIP TC2/WG2.5 Working Conference on

8

the Quality of Numerical Software Assessment and Enhancement, Oxford, UK, July 8-12,
1996 1997. Chapman & Hall London, pp 90-106

36. Osterweil LJ, Clarke LA, Ellison AM, Boose ER, Podorozhny R, Wise A (2010) Clear and
Precise Specification of Scientific Processes. IEEE Transactions on Automation Science and
Engineering 7 (1):189-195

37. Osterweil LJ, Fosdick LD (1976) DAVE -- A Validation Error Detection and Documenta-
tion System for Fortran Programs. Software Practice and Experience 6 (4):473-486

38. Perry DE, Wolf AL (1992) Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes 17 (4):40–52

39. Purtilo J Polylith: An Environment to Support Management of Tool Interfaces. In:
SIGPLAN '85 Symposium on Language Issues in Programming Environments, Seattle, WA,
July 1985. ACM pp 12-18

40. Purtilo JM (1994) The POLYLITH Software Bus. ACM Transactions on Programming Lan-
guages and Systems 16 (1):151–174

41. Raunak MS, Osterweil LJ, Wise A, Clarke LA, Henneman PL Simulating Patient Flow
through an Emergency Department Using Process-Driven Discrete Event Simulation. In: 31st
International Conference on Software Engineering Workshop on Software Engineering in
Health Care, Vancouver, Canada, May 2009. pp 73-83

42. Reiss SP (1985) PECAN: Program Development Systems that Support Multiple Views.
IEEE Transactions on Software Engineering SE-11 (3):276-285

43. Reiss SP (1990) Connecting Tools Using Message Passing in the FIELD Environment. IEEE
Software 7 (4):57-67

44. Reps TW, Teitelbaum T The Synthesizer Generator. In: SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development Environments, April 1984. ACM
pp 42-48

45. Richardson DJ, Aha SL, Osterweil LJ Integrating Testing Techniques Through Process Pro-
gramming. In: SIGSOFT Third Symposium on Testing, Analysis, and Verification Key West,
FL, December 13-15 1989. ACM, pp 219-228

46. Richardson DJ, O'Malley TO, Moore CT, Aha SL Developing and Integrating ProDAG in
the Arcadia Environment. In: Fifth SIGSOFT Symposium on Software Development Envi-
ronments, Tyson's Corner, VA, December 1992. ACM, pp 109-119

47. Ryder BG (1974) The PFORT Verifier. Software - Practice and Experience 4:359-378
48. Shewhart WA (1931) Economic Control of Quality of Manufactured Product. D. Van Nos-

trand Co.,
49. Simidchieva B, Engle SJ, Clifford M, Jones AC, Peisert S, Bishop M, Clarke LA, Osterweil

LJ Modeling and Analyzing Faults to Improve Election Process Robustness. In: 2010 Elec-
tronic Voting Technology Workshop/Workshop on Trustworthy Elections, Washington, DC,
August 9-10 2010.

50. Sliski TJ, Billmers MP, Clarke LA, Osterweil LJ An Architecture for Flexible, Evolvable
Process-Driven User Guidance Environments. In: Joint Eighth European Software Engineer-
ing Conference and Ninth ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, Vienna, Austria, September 2001. ACM Press, pp 33-43

51. Smith RL, Avrunin GS, Clarke LA, Osterweil LJ PROPEL: An Approach Supporting Prop-
erty Elucidation. In: 24th International Conference on Software Engineering, Orlando, FL,
May 2002. pp 11-21

52. Snodgrass RT (1989) The Interface Description Language: Definition and Use. Computer
Science Press, Rockville, MD

53. Sutton Jr. SM, Heimbigner D, Osterweil LJ (1995) APPL/A: A Language for Software-
Process Programming. ACM Transactions on Software Engineering and Methodology 4
(3):221-286

54. Sweet RE The Mesa Programming Environment. In: SIGSOFT/SIGPLAN Symposium on
Language Issues in Programming Environments, June 1985. ACM pp 216-229

9

55. Tarr PL, Clarke LA PLEIADES: An Object Management System for Software Engineering
Environments. In: SIGSOFT Symposium on Foundations of Software Engineering, Los An-
geles, CA, December 1993. ACM, pp 56-70

56. Tarr PL, Wileden JC, Clarke LA Extending and Limiting PGraphite- style Persistence. In:
Fourth International Workshop on Persistent Object Systems, Martha's Vineyard, MA,
August 1990. pp 74-86

57. Taylor RN, Belz FC, Clarke LA, Osterweil LJ, Selby RW, Wileden JC, Wolf A, Young M
Foundations for the Arcadia Environment Architecture. In: ACM SIGSOFT Software Engi-
neering Symposium on Practical Software Development Environments, 1988. ACM, pp 1-13

58. Taylor RN, Clarke LA, Osterweil LJ, W. SR, Wileden JC, Wolf A, Young M Arcadia: A
Software Development Environment Research Project. In: ACM/IEEE Symposium on Ada
Tools and Environments, Miami, Florida, April 1986.

59. Teitelbaum T, Reps TR (1981) The Cornell Program Synthesizer: A Syntax Directed Pro-
gramming Environment. Communications of the ACM 24 (9):563-573

60. Teitelman W, Masinter L (1981) The InterLisp Programming Environment. Computer 14
(4):25-33

61. Visual Studio. (2010). http://www.microsoft.com/visualstudio/en-us/.
62. Wileden JC, Wolf AL, Fisher CD, Tarr PL PGraphite: An Experiment in Persistent Typed

Object Management. In: Third ACM SIGPLAN/SIGSOFT Symposium on Practical Software
Development Environments, Boston, MA, November 1988. pp 130-142

63. Wolf AL, Clarke LA, Wileden JC (1989) The AdaPIC Toolset: Supporting Interface Control
and Analysis Throughout the Software Development Process. IEEE Transactions on Software
Engineering 15 (3):250-263

64. Xiao J, Osterweil LJ, Wang Q Dynamic Scheduling of Emergency Department Resources.
In: First ACM International Health Informatics Symposium, Arlington, VA, November 11-12
2010. pp 590-599

65. Xiao J, Osterweil LJ, Wang Q, Li M Dynamic Resource Scheduling in Disruption-Prone
Software Development Environments. In: Fundamental Approaches to Software Engineering,
Paphos, Cyprus, March 2010.

66. Young M, Taylor RN, Troup DB Design Principles Behind Chiron: A UIMS for Software
Environments. In: Tenth International Conference on Software Engineering, Singapore, April
1988. pp 367-376

