
Max Observability PMU Placement with
Cross-Validation
Technical Report UM-CS-2011-14

Daniel Gyllstrom, Elisha Rosensweig, and Jim Kurose
Department of Computer Science. University of Massachusetts Amherst USA

{dpg, elisha, kurose}@cs.umass.edu

Abstract—Significant investments have been made to deploy
phasor measurement units (PMUs) on electric power grids
worldwide. PMUs allow the state of the power system – the
voltage phasor of system buses and current phasors of all incident
transmission lines – to be directly measured. In some cases,
it is also possible to infer the voltage and current phasors at
neighboring buses and lines. Because PMUs are expensive, it
is typically not possible to deploy enough PMUs to observe all
phasors in a grid network [3], [6].

In this paper, we formulate three PMU placement problems
that place PMUs at a subset of system buses to achieve differ-
ent goals: MAXOBSERVE, SAFEPLACE, and MAXSAFEPLACE.
MAXOBSERVE aims to observe the maximum number of buses
with a given number of PMUs. SAFEPLACE and MAXSAFE-
PLACE consider PMU placements that meet the requirement
that all PMUs are placed near each other so their measurements
can be cross-validated. SAFEPLACE considers cases when the
entire network can be observed, and MAXSAFEPLACE tries
to maximize the number of observed buses under this new
constraint.

We prove that all three problems are NP-Complete. We
then consider the performance of a simple greedy algorithm
that places PMUs incrementally, with the next PMU placed
at a bus where it observes the maximum of number of buses.
Through simulations, we compare the performance of this greedy
algorithm with the optimal placement of PMUs over several
IEEE bus systems as well as synthetic graphs. For all three
placement problems, the greedy algorithm yields, on average,
a PMU placement that is within 96% of optimal.

I. INTRODUCTION

Significant investments have been made to deploy phasor
measurement unit (PMUs) on electric power grids worldwide.
A new generation of PMUs provide synchronized voltage and
current measurements at a sampling rate orders of magnitude
higher than the status quo: 10 to 60 samples per second rather
than one sample every 1 to 4 seconds. Consequently, PMUs
have the potential to enable an entirely new set of applications
for the power grid: protection and control during abnormal
conditions, real-time distributed control, postmortem analysis
of system faults using time synchronized data, advanced state
estimators for system monitoring, and the reliable integration
of renewable energy resources [1].

An electric power system consists of a set of buses – an
electric substation, power generation center, or aggregation of
loads – and transmission lines connecting those buses. The
state of a power system is defined by the voltage phasor –
the magnitude and phase angle – of all system buses and
the current phasor of all transmission lines. PMUs placed

on buses provide real-time measurements of these system
variables. However, because PMUs are expensive, they cannot
be deployed on all system buses [3], [6]. Fortunately, all
system variables can be observed even when PMUs are placed
at only a subset of system buses, by estimating the voltage
phasor of buses without PMUs and the current phasors of
unmeasured transmission lines using Ohm’s and Kirchhoff’s
laws [3], [4].

In this work, we study two sets of PMU placement prob-
lems. The first problem – MAXOBSERVE – aims to observe
the maximum number of system buses given a fixed number
of PMUs. A bus is said to be observed if there is a PMU
placed at it or if its voltage phasor can be estimated using
Ohm’s or Kirchhoff’s Law. MAXOBSERVE is closely related
to another well-studied PMU placement problem: finding the
minimum number of PMUs that can result in the observation
of all system buses [3], [4], [8], [10], [12]. However, the
MAXOBSERVE problem formulation presented here is unique.

The second set of placement problems aim to identify PMU
errors, which have been recorded in PMUs used in practice
[11]. Informally, the goal of the first such placement problem
(MAXSAFEPLACE) is to observe, given a set of PMUs, the
maximum number of buses while deploying PMUs “near” each
other to enable them to cross-validate each other’s measure-
ments. Next, we formulate a placement problem similar to
MAXSAFEPLACE, called SAFEPLACE. In SAFEPLACE, the
goal is to find the minimum number of PMUs such that all
system buses are observed under the constraint that each PMU
is placed near enough to at least one other PMU to allow its
PMU measurements to be cross-validated.

We make the following contributions in this paper:
• We formally define graph-theoretic rules for cross-

validating PMU placements. PMUs are cross-validated
when PMU data from two buses can be used to each,
independently, compute the voltage phasor of a non-PMU
bus (Section III-C).

• We define three related PMU placement problems. The
first problem seeks to observe the maximum number
of nodes given a fixed number of PMUs. The second
two problems consider placing the minimum number of
PMUs such that all PMUs are cross-validated and the
maximum number of nodes is observed (Section II).

• We prove that all three PMU placement problems are
NP-Complete. This represents our most important contri-
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Fig. 1. Example power system graph. The dark shaded nodes – a and b –
have PMUs.

bution (Section II).
• We present greedy approximation algorithms for each

PMU placement problem (Section IV) and through simu-
lations, we evaluate these algorithms over real IEEE bus
systems and synthetic graphs (Section V).

II. PRELIMINARIES

In this section we introduce notation and underlying as-
sumptions (Section II-A), and define our observability (Section
II-B) and cross-validation (Section III-C) rules.

A. System Assumptions, Notation and Terminology

In this work, we make the following assumptions about
PMU placements and buses:

1) A PMU can only be placed on a bus.
2) A PMU on a bus measures the voltage phasor at the

bus and the current phasor of all transmission lines
connected to it.

3) We assume all buses are zero-injection. A bus is zero-
injection if it has no load nor generator [14]. Kirchhoff’s
Current Law can only be applied to zero-injection buses.

We model a power grid as an undirected graph G = (V,E).
Each v ∈ V represents a bus. A bus is either an electrical
substation, a power generation center, or an aggregation of
loads. Each (u, v) ∈ E is a transmission line connecting buses
u and v. Figure 1 is an example of a power system modeled
as an undirected graph.

Using the same notation as Brueni and Heath [4], we define
two Γ functions. For v ∈ V let Γ(v) be the set of v’s neighbors
in G, and Γ[v] = Γ(v) ∪ {v}. A PMU placement ΦG ⊆ V is
a set of nodes at which PMUs are placed, and ΦRG ⊆ V is the
set of observed nodes for graph G with placement ΦG (see
definition of observability below). k∗ = min{|ΦG| : ΦRG = V }
is used to denote the minimum number of PMUs needed to
observe the entire network.

For convenience, we refer to any node with a PMU as a
PMU node. Additionally, we shall say that a set W ⊆ V is
observed if all nodes in the set are observed, and if W = V
we refer to the graph as fully observed.

B. Observability Rules

We use the simplified observability rules elegantly stated by
Brueni and Heath [4]. For completeness, we restate the rules
here:

1) Observability Rule 1 (O1). If node v is a PMU node,
then Γ[v] is observed. Formally, if v ∈ Φ, then Γ[v] ⊆
ΦRG.

2) Observability Rule 2 (O2). If a node v is observed and
Γ(v)\{u} is observed for some u ∈ Γ(v), then Γ[v] is
observed. Formally, if v ∈ ΦRG and |Γ(v)∩ (V −ΦRG)| ≤
1, then Γ[v] ⊆ ΦRG.

Consider the example in Figure 1, where the shaded nodes
are PMU nodes. Using O1, the PMU at a results in the
observation of a, c, and d. Likewise, the PMU at b make b,
f , and e observed. Finally, O2 can be applied at e because e
is observed and all of e’s neighbors except i are observed. As
a result, i becomes observed. Note that O2 cannot be applied
at f because f has two unobserved neighbors.

C. Cross-Validation Rules

From Vanfretti et al. [11], PMU measurements can be cross-
validated when: (1) a voltage phasor of a non-PMU bus can
be computed by PMU data from two different buses or (2) the
current phasor of a transmission line can be computed from
PMU data from two different buses. 1 Although PMU data
is actually being cross-validated, for convenience, we say a
PMU is cross-validated. Below is a precise statement of the
cross-validation rules taken from Vanfretti et al. [11]. A PMU
is cross-validated if one of the rules below is satisfied:

1) Cross-Validation Rule 1 (XV1). Adjacent PMU nodes
cross-validate each other. Formally, u, v ∈ Φ, u ∈ Γ(v),
and v ∈ Γ(u).

2) Cross-Validation Rule 2 (XV2). PMU nodes with a
common neighbor with no PMU cross-validate each
other. Formally, u, v ∈ Φ, v /∈ Γ(u), u /∈ Γ(v) and
∃w such that v 6= w, u 6= w, w ∈ Γ(v), w ∈ Γ(u), and
w /∈ Φ.

In short, the cross-validation rules require that the PMU is
within two hops of another PMU. For example, in Figure 1,
the PMUs at a and b cross-validate each other by XV1.

III. PROBLEM FORMULATIONS AND NP-COMPLETENESS
PROOFS

In this section we define three PMU placement problems:
MAXOBSERVE (Section III-B), SAFEPLACE (Section III-C),
and MAXSAFEPLACE (Section III-D). For each problem, we
first define the optimization version of the problem and then
its corresponding decision problem. Finally, we prove that
each decision problem is NP-Complete. Note that in all three
placement problems we are only concerned with computing
the voltage phasors of each bus. Using the values of the voltage
phasors, Ohm’s Law can be easily applied to compute the
current phasors of each transmission line.

A. Proof Strategy

In the coming sections we use slight variations of the
approach presented by Brueni and Heath in [4] to prove the
NP-completeness of the problems we consider. We found their
scheme to be extensible for proving many properties of PMU
placements. For purposes of clarity, we begin by explaining

1Vanfretti et al. [11] use the term “redundancy” instead of cross-
validation.
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Fig. 2. G(ϕ) = (V (ϕ), E(ϕ)) formed from ϕ in Equation (1)

this approach in general terms, and then consider the approach
in detail for each problem.

Our NP-Completeness proofs all reduce from planar 3-SAT
(P3SAT). A P3SAT formula, φ, is a boolean formula in
conjunctive normal form (CNF) such that each clause contains
at most 3 literals and the undirected graph G(φ) is planar
[9]. G(φ) = (V (φ), E(φ)) is a bipartite graph constructed
from a 3-SAT formula φ with variables {v1, v2, . . . , vr} and
the set of clauses {c1, c2, . . . , cs} as follows: V (φ) = {vi |
1 ≤ i ≤ r}∪ {cj | 1 ≤ j ≤ s} and E(φ) = {(vi, cj) | vi ∈ cj
or vi ∈ cj}. For example, P3SAT formula

ϕ = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) ∧ (v2 ∨ v3 ∨ v5)
∧(v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5) (1)

has graph G(ϕ) = (V (ϕ), E(ϕ)) shown in Figure 2. Note that
ϕ is a specific P3SAT formula used for this example and is
thus different from the generic P3SAT formula, φ, used in our
reductions.

Following the approach in [4], for P3SAT formula, φ, we
replace each variable node and each clause node in G(φ)
with a specially constructed set of nodes, termed a gadget.
Specifically, each variable gadget has a subgraph of nodes
that represent a “True” assignment to that variable, and a
subgraph of nodes that represent a “False” assignment to the
variable. All variable gadgets have the same structure, and
all clause gadgets have the same structure (that is different
from the variable gadget structure). We then prove that a
PMU placement for this graph results in a fully (maximally)
observed graph if and only if that PMU placement can be
interpreted as assigning unambiguous truth values to each
variable, in a manner which satisfies the formula φ. For
convenience, when we refer to reference [4], we are alluding
to Theorem 9 in [4].

B. MAXOBSERVE Problem Statement

MAXOBSERVE is a variation of the PMUP problem de-
scribed by Brueni and Heath [4] and the PDS problem defined
by Haynes et al. [8]: rather than consider the minimum number
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(a) Variable gadget Vi.The dashed
edges are connections to clause gad-
gets.
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(b) Clause gadget Cj . The
dashed edges are connections
to variable gadgets.

Fig. 3. Gadgets used in Theorem III.1 proof.
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Fig. 4. Graph G = (V, E) = H1(ϕ) formed from ϕ formula in Theorem
III.1 proof.

of PMUs required for full system observability, MAXOB-
SERVE finds the maximum number of nodes that can be
observed using a fixed number of PMUs.

MAXOBSERVE Optimization Problem:
• Input: Graph G = (V,E), k PMUs such that 1 ≤ k < k∗.
• Output: A placement of k PMUs, Φ, such that |ΦRG| is

maximum.
MAXOBSERVE Decision Problem:
• Instance: Graph G = (V,E), k PMUs such that 1 ≤ k <
k∗.

• Question: For a given m < |V |, is there a ΦG such that
|ΦG| ≤ k and m ≤ |ΦRG| < |V |?

Before proving that MAXOBSERVE is NP-Complete, we
provide some background on NP-Completeness. NP-Complete
problems are the hardest problems in complexity class NP .
Proving a decision problem, Π, is NP-Complete is a three
step procedure. First, we need to show Π is in NP . Second,
we select a known NP-Complete problem Π′ and construct a
polynomial-time transformation, f , that maps any instance of
Π′ to an instance of Π. Finally, we need to prove that f is a
transformation: f maps any “yes” instance of Π′ to a ”yes”
instance of Π and any ”no” instance of Π′ to a “no” instance
of Π [7].

Theorem III.1. MAXOBSERVE is NP-Complete.



Proof idea: First, we construct problem-specific gadgets for
variables and clauses. We then demonstrate that any solution
that observes m nodes must place the PMUs only on nodes
in the variable gadgets. Next we show that as a result of this,
the problem of observing m nodes in this graph reduces to the
NP-complete problem presented in [4], which concludes our
proof.

Proof: We start by arguing that MAXOBSERVE ∈ NP .
First, nondeterministically select k nodes in which to place
PMUs. Then we use the rules specified in Section II-B to
determine the number of observed nodes.

We reduce from P3SAT, where φ is an arbitrary P3SAT
formula, to show SAFEPLACE is NP-hard. Note that φ is
different from the example ϕ formula used to introduce
the P3SAT problem. Specifically, given a graph G(φ) we
construct a new graph H1(φ) = (V1(φ), E1(φ)) by replacing
each variable (clause) node in G(φ) (Figure 2) with the
variable (clause) gadget shown in Figure 3(a) (3(b)). The
edges connecting clause gadgets with variable gadgets express
which variables are in each clause: for each clause gadget Cj ,
node aj is attached to node T in variable gadget Vi if, in
φ, vi is in cj , and to node F if vi is in cj . The resulting
graph for the example given in Figure 2 is shown in Figure
4; the corresponding formula for this graph, ϕ, is satisfied
by truth assignment Aϕ: v1, v2, v3, v4, and v5 are True. This
corresponds to the dark shaded nodes in Figure 4. We also
note that H1(φ) is identical to the graph H(φ) constructed in
[4], except that there Cj consisted only of nodes {aj , bj}, and
thus |H1(φ)| = |H(φ)|+ 2s. We return to this similarity later
in the proof. For convenience, we let G = H1(φ).

With this construct in place, we move on to our proof. Here
we consider the case of k = r and m = 6r+2s, and show that
φ is satisfiable if and only if r = |ΦG| PMUs can be placed
on G such that m ≤ |ΦRG| < |V |. We will later discuss how
to extend this proof for any larger value of m.

(⇒) Assume φ is satisfiable by truth assignment Aφ. Then,
consider the placement ΦG s.t. for each variable gadget Vi,
Ti ∈ ΦG ⇔ vi = True in Aφ, and Fi ∈ ΦG ⇔ vi =
False. It has been shown in [4] that for H(φ) this placement
observes all H(φ), and it can be easily verified that all nodes
in H1(φ) are observed as well except for dj , ej for each Cj .
This amounts to 2s nodes, so exactly m nodes are observed
by ΦG, as required.

(⇐) We begin by proving that any solution that observes
m nodes must place the PMUs only on nodes in the variable
gadgets. Assume that there are 1 < t ≤ r variable gadgets
without a PMU. Then, at most t PMUs are on nodes in clause
gadgets, so at least max(s− t, 0) clause gadgets are without
PMUs. We want to show here that for m = 6r + 2s, t = 0.

To prove this, we rely on the following two simple obser-
vations:
• In any variable gadget Vi, nodes X (Figure 3(a)) cannot

be observed unless there is a PMU somewhere in Vi. Note
that there are 4 such nodes per Vi.

• In any clause gadget Cj , nodes ej and dj cannot be
observed unless there is a PMU somewhere in Cj . Note

XtXt FtTt

Tb FbXbXb

Xb Xb

XtXt

Fig. 5. Variable gadget used in Theorem III.2 proof. The dashed edges are
connections to clause gadgets.

that there are 2 such nodes per Cj .
Thus, given some t, the number of unobserved nodes is at
least 4t + max(2(s − t), 0). However, since |V | − m ≤ 2s,
there are at most 2s unobserved nodes. So we get 2s ≥ 4t+
max(2(s− t), 0). We consider two cases:
• s ≥ t: then we get 2s ≥ 2s+ 2t⇒ t = 0.
• s < t: then we get 2s ≥ 4t ⇒ s ≥ 2t, and since we

assume here 0 ≤ s < t this leads to a contradiction and
so this case cannot occur.

Thus, we have concluded that the r PMUs must be on nodes
in variable gadgets, all of which, it is important to note, were
also part of the original H(φ) graph. We return to this point
shortly.

We now observe that for each clause gadget Cj , such a
placement of PMUs cannot observe nodes of type ej , dj , which
amounts to a total of 2s unobserved nodes - the allowable
bound. This means that all other nodes in G must be observed.
Specifically, this is exactly all the nodes in the original H(φ)
graph, and PMUs can only be placed on variable gadgets, all of
which are included in H(φ) as well. Thus, the problem reduces
to the problem in [4]. We use the proof in [4] to determine that
all clauses in φ are satisfied by the truth assignment derived
from ΦG.

C. SAFEPLACE Problem Statement

SAFEPLACE Optimization Problem:
• Input: Graph G = (V,E).
• Output: A placement of PMUs, ΦG, such that ΦRG = V ,

each v ∈ ΦG is cross-validated according to the rules
specified in Section III-C, and ΦG is minimal.

SAFEPLACE Decision Problem:
• Instance: Graph G = (V,E), k PMUs such that k ≥ 1.
• Question: Is there a ΦG such that |ΦG| ≤ k, ΦRG = V ,

and each v ∈ ΦG is cross-validated?

Theorem III.2. SAFEPLACE is NP-Complete.

Proof: First, we argue that SAFEPLACE ∈ NP . Given a
SAFEPLACE solution, we use the polynomial time algorithm
described in our proof for Theorem III.1 to determine if all
nodes are observed. Then, for each PMU node we run a
breadth-first search, stopping at depth 2, to check that the
cross-validation rules are satisfied.



To show SAFEPLACE is NP-hard, we reduce from P3SAT.
Our reduction is similar to the one used in Theorem III.1. For
this problem, we use different variable and clause gadgets.
The clause gadgets consist of the edge (aj , bj) from Figure
3(b), which are the same as used in [4]. The new variable
gadget is shown in Figure 5. As can be seen in this figure, the
variable gadgets are comprised of two disconnected subgraphs:
we refer to the upper subgraph as Vit and the lower subgraph
as Vib. Clause gadgets are connected to a variable gadgets
in the following manner: for each clause cj that contains
variable vi in φ, the corresponding clause gadget has the
edges (aj , Tt), (aj , Tb), and for each clause cj that contains
variable vi in φ, the corresponding clause gadget has the edges
(aj , Ft), (aj , Fb). We denote the resulting graph as H2(φ), and
for what follows assume G = H2(φ).

We now show that φ is satisfiable if and only if k = 2r
PMUs can be placed on G such that G is fully observed under
the condition that all PMUs are cross-validated, and that 2r
PMUs are the minimal bound for observing the graph with
cross-validation.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For
each 1 ≤ i ≤ r, if vi = True in Aφ we place a PMU at
Tb and at Tt of the variable gadget Vi. Otherwise, we place a
PMU at Fb and at Ft of this gadget. In either case, the PMU
nodes in Vi must be adjacent to a clause node, making Tt
(Ft) two hops away from Tb (Fb). Therefore, all PMUs are
cross-validated by XV2.

Now we argue that ΦG observes all v ∈ V :
• Consider a clause node aj . Since φ is satisfied, for some

index i we have vi ∈ cj ∧ vi ∈ Aφ or vi ∈ cj ∧ vi ∈ Aφ.
For the first case, the PMUs in Vi are placed on {Tb, Tt}
and as a result aj is observed by applying O1 at Tb or at
Tt. A similar argument applies for the second case. So,
all aj nodes are observed.

• Next, consider the nodes on the variable gadgets. When
vi ∈ Aφ, Tt’s neighbors, in Vit, are observed via O1.
(the second case, vi ∈ Aφ, follows by symmetry). The
remaining Vit nodes are observed via O2 - note that if
Ft is connected to a clause gadget we know from the
previous step this clause is observed. By symmetry of
Vib and Vit, the same argument can be made for Vib to
show all Vib nodes are observed.

• Finally, all the neighbors of aj in variable gadgets are
observed, and aj is observed, so we can now apply O2
at each node aj to observe the remaining bj nodes.

This completes this direction of the theorem.
(⇐) Suppose ΦG observes all nodes in G under the con-

dition that each PMU is cross-validated, and that |ΦG| = 2r.
We want to show that φ is satisfiable by the truth assignment
derived from ΦG. We prove this by showing that (a) each
variable gadget must have exactly 2 PMUs and (b) there must
be a PMU at each subgraph of the variable gadget. Once (b)
is shown, (c) cross-validation restrictions force the PMUs to
be either on both T -nodes or both F -nodes. We conclude
by showing that (d) the PMU nodes correspond to true/false
assignments to variables which satisfy φ.

We begin by showing that each variable gadget must have 2
PMUs. Let Vi be a variable gadget with less than two PMUs.
By placing PMUs on clause gadgets attached to Vi, at most we
can observe Tt, Tb, Ft and Fb directly from the clause gadgets.
Next, at least one of the Vi subgraphs has no PMU: without
loss of generality, let this be Vit. We cannot apply O1 at Tt
or Ft, since they have no PMU. We cannot apply O2 at these
nodes since they each have two unobserved Xt nodes. Thus, all
Xt nodes are unobserved in Vit, contrary to our assumption
that the entire graph is observed. Thus we have shown that
there must be at least 2 PMUs at each variable gadget. Also
it is clear from this proof that, in fact, there must be at least
one PMU in each subgraph of each variable gadget. Finally,
since there are 2r PMUs and r variables, we conclude that
each variable gadget has exactly two PMUs – one PMU for
each variable gadget subgraph – and there are no PMUs on
clause nodes.

Due to the cross-validation constraint, it is clear that a PMU
on Vit can only be cross-validated by a PMU on Vib (since
all other variable-gadgets are more than 2 hops away), and
specifically this would require both to be either on {Tt, Tb}
or {Ft, Fb}.

Without loss of generality, assume for an arbitrary variable
gadget, Vi, we placed the PMUs at {Tt, Tb}. By applying O1
and O2, this placement can observe all nodes in the variable
gadget if {Ft, Fb} in this gadget are not adjacent to a clause
node. If they are adjacent to some ah node, each of {Ft, Fb}
can observe its adjacent leaf-X-node only via O2, and only if
ah is already observed. Since we are given a PMU placement
that observes the entire graph, this implies that ah is indeed
observed and thus adjacent to some variable node with a PMU,
such that O1 could be applied to view ah. Assume without
loss of generality, ah is adjacent to PMU nodes Tb, Tt from
variable gadget Vl, then the clause ch ∈ φ is satisfied if vl is
true. A similar argument can be made if Vl is adjacent to PMU
nodes Ft, Fb. We conclude that all clauses in φ are satisfied
by the truth assignment derived from ΦG.

D. MAXSAFEPLACE Problem Statement

MAXSAFEPLACE Optimization Problem:
• Input: Graph G = (V,E) and k PMUs such that 1 ≤ k <
k∗.

• Output: A placement of k PMUs, ΦG, such that |ΦRG| is
maximum under the condition that each v ∈ ΦG is cross-
validated according to the rules specified in Section III-C.

MAXSAFEPLACE Decision Problem:
• Instance: Graph G = (V,E), k PMUs such that 1 ≤ k <
k∗, and some m < |V |.

• Question: Is there a ΦG such that |ΦG| ≤ k, m ≤
|ΦRG| < |V | under the condition that each v ∈ ΦG is
cross-validated?

Theorem III.3. MAXSAFEPLACE is NP-Complete.

Proof Idea: We show MAXSAFEPLACE is NP-hard by
reducing from P3SAT. Our proof is a combination of the



NP-hardness proofs for MAXOBSERVE and SAFEPLACE.
Due to space constraints, From a P3SAT formula, φ, we
create a graph G = (V,E) with the clause gadgets from
MAXOBSERVE (Figure 3(b)) and the variable gadgets from
SAFEPLACE (Figure 5). The edges in G are identical the ones
the graph created in our reduction for SAFEPLACE.

We show that any solution that observes m = |V |−2s nodes
must place the PMUs exclusively on nodes in the variable
gadgets. As a result, we show 2 nodes in each clause gadget
– ej and dj for clause Cj – are not observed, yielding a
total 2s unobserved nodes. This implies all other nodes must
be observed, and thus reduces our problem to the scenario
considered in Theorem III.2, which is already proven.

Proof: MAXSAFEPLACE is easily in NP . We verify a
MAXSAFEPLACE solution using the same polynomial time
algorithm described in our proof for Theorem III.2.

We reduce from P3SAT to show MAXSAFEPLACE is NP-
hard. Our reduction is a combination of the reductions used for
MAXOBSERVE and SAFEPLACE. Given a P3SAT formula,
φ, with variables {v1, v2, . . . , vr} and the set of clauses
{c1, c2, . . . , cs}, we form a new graph, H3(φ) = (V (φ), E(φ))
as follows. Each clause cj corresponds to the clause gadget
from MAXOBSERVE (Figure 3(b)) and the variable gadgets
from SAFEPLACE (Figure 5). As in Theorem III.2, we refer
to the upper subgraph of variable gadget, Vi, as Vit and the
lower subgraph as Vib. Also, we let H3(φ) = G = (V,E).

Let k = 2r and m = 12r + 2s = |V | − 2s. As in our NP-
hardness proof for MAXOBSERVE, m includes all nodes in G
except dj , ej of each clause gadget. We need to show that φ
is satisfiable if and only if 2r cross-validated PMUs can be
placed on G such that m ≤ |ΦRG| < |V |.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For
each 1 ≤ i ≤ r, if vi = True in Aφ we place a PMU at
Tb and at Tt of the variable gadget Vi. Otherwise, we place a
PMU at Fb and at Ft of this gadget. In either case, the PMU
nodes in Vi must be adjacent to a clause node, making Tt
(Ft) two hops away from Tb (Fb). Therefore, all PMUs are
cross-validated by XV2.

This placement of 2r PMUs, ΦG, is exactly the same one
derived from φ’s satisfying instance in Theorem III.2. Since
ΦG only has PMUs on variable gadgets, all aj and bj nodes
are observed by the same argument used in Theorem III.2.
Thus, at least 12r + 2s nodes are observed in G. Because no
PMU in ΦG is placed on a clause gadget, Cj , we know that
all ej and dj are not observed. We conclude that exactly m
nodes are observed using ΦG.

(⇐) We begin by proving that any solution that observes
m nodes must place the PMUs only on nodes in the variable
gadgets. Assume that there are 1 < t ≤ r variable gadgets
without a PMU. Then, at most t PMUs are on nodes in clause
gadgets, so at least max(s− t, 0) clause gadgets are without
PMUs. We want to show here that for m = 12r + 2s, t = 0.

To prove this, we rely on the following observations:
• As shown in Theorem III.2, a variable gadget’s subgraph

with no PMU has at least 4 unobserved nodes.

• In any clause gadget Cj , nodes ej and dj cannot be
observed if there is no PMU somewhere in Cj . Note that
there are 2 such nodes.

Thus, given some t, the number of unobserved nodes is at
least 4t + max(2(s − t), 0). However, since |V | − m ≤ 2s,
there are at most 2s unobserved nodes. So we get 2s ≥ 4t+
max(2(s− t), 0). We consider two cases:
• s ≥ t: then we get 2s ≥ 2s+ 2t⇒ t = 0.
• s < t: then we get 2s ≥ 4t ⇒ s ≥ 2t, and since we

assume here 0 ≤ s < t this leads to a contradiction and
so this case cannot occur.

Thus, we have concluded that the 2r PMUs must be on
variable gadget. We now observe that for each clause gadget
Cj , such a placement of PMUs cannot observe nodes of type
ej , dj , which amounts to a total of 2s unobserved nodes -
the allowable bound. This means that all other nodes in G
must be observed. Specifically this is exactly all the nodes in
H2(φ) from the Theorem III.2 proof, and PMUs can only be
placed on variable gadgets, all of which are included H2(φ)
from the Theorem III.2 proof. Thus, the problem reduces to
the problem in Theorem III.2 and so we the Theorem III.2
proof to determine that all clauses in φ are satisfied by the
truth assignment derived from ΦG.

E. Extending Gadgets to Cover a Range of m and |V | values

In the MAXSAFEPLACE and MAXOBSERVE proofs we
demonstrated NP-completeness for m = |V | − 2s. We show
that slight adjustments to the variable and clause gadgets can
yield a much wider range of m and |V | values. We present
the outline for new gadget constructions and leave the detailed
analysis to the reader.

To increase the size of m (e.g., the number of observed
nodes), we simply add more X nodes between the T and
F nodes in the variable gadgets used in our proofs for
MAXSAFEPLACE and MAXOBSERVE. The new variable gad-
gets for MAXOBSERVE and MAXSAFEPLACE are shown in
Figure 6(a) and Figure 6(b), respectively. The same PMU
placement described in the NP-Completeness proofs for each
problem observes these newly introduced nodes.

In order to increase the size of |V | while keeping m the
same, we replace each clause gadget, Cj for 1 ≤ j ≤ s,
with a new clause gadget, C ′j , shown in Figure 7(a). For
MAXOBSERVE, the optimal placement of PMUs on C ′j is to
place PMUs on every fourth bj,h node, as shown in Figure
7(b). As a result, the optimal placement of l PMUs on C ′j
can at most observe 6l nodes. By adding 6l T nodes to each
variable gadget, more nodes are always observed by placing a
PMU on the variable gadget rather than at a clause gadget. We
can use this to argue that PMUs are only placed on variable
gadgets and then leverage the argument from Theorem III.1 to
show MAXOBSERVE is NP-Complete for any m

|V | . A similar
argument can be made for MAXSAFEPLACE.

IV. APPROXIMATION ALGORITHMS

Because MAXOBSERVE, SAFEPLACE, and MAXSAFE-
PLACE are NP-Complete problems, we propose greedy ap-
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proximation algorithms for each problem, which iteratively
add a PMU in each step to the node which observes the
maximum number of new nodes.

MAXOBSERVE Greedy Algorithm. We start with Φ = ∅.
At each iteration, we add a PMU to the node that results in
the observation of the maximum number of new nodes. The
algorithm terminates when all PMUs are placed. This is the
same greedy algorithm proposed by Aazami and Stilp [2].

SAFEPLACE and MAXSAFEPLACE Greedy Algorithm.
The greedy algorithm is almost identical to MAXOBSERVE’s,
except that PMUs are added in pairs such that the selected pair
observe the maximum number of nodes under the condition
that the PMU pair satisfy one of the cross-validation rules.

V. SIMULATIONS

We evaluate our approximation algorithms using simula-
tions. For each algorithm, we determine the number of nodes
that are observed by placing k PMUs on IEEE bus systems 14,
30, 57, 118 and 300, 2 as well as synthetic graphs generated
by using these IEEE graphs as templates.

A synthetic graph is generated from a given IEEE graph in
the following manner: for each bus system, we start with the
original graph and then randomly choose pairs of edges and
“swap” their endpoints. Specifically, given two disjoint edges
(u, v), (w, y), an edge swap converts these to (u, y), (v, w). We
swap edges until the original graph and generated graph share
no edges. Note that this edge-swapping procedure ensures that
the degree distribution of each generated graph is exactly the
same as the degree distribution of the original bus system.

When possible we compare the results of our greedy algo-
rithms to an optimal placement of PMUs. The optimal place-
ment was computed in brute-force manner, by enumerating
all valid placements of k PMUs and then selecting the PMU
placement that observes the maximum number of nodes. For
SAFEPLACE and MAXSAFEPLACE, we ignore PMU place-
ments that do not meet cross-validation requirements. Because
this brute-force algorithm has exponential running time in the
size of the input, we were unable to determine optimal PMU
placements for larger k values in synthetic graphs generated
from the IEEE 118 bus system and the actual IEEE 118 bus
system. For this reason, the “optimal” curve stops abruptly in
Figure 8(c), Figure 9(c), and Figure 10.

We first present the results for the synthetic graphs and then
briefly discuss the results for the actual IEEE bus systems.
For the synthetic graphs, each data point is generated as
follows. For a given number of PMUs, k, we generate a
graph, place k PMUs on the graph, and then determine the
number of observed nodes. We continue this procedure until
[0.9(x), 1.1(x)] – where x is the mean number of observed
nodes using k PMUs – falls within the 90% confidence
interval.

The results for MAXOBSERVE are shown in Figure 8.
Figure 9 shows the results for SAFEPLACE and MAXSAFE-
PLACE. The 90% confidence interval is shown in each plot.
The simulation results for graphs based on IEEE bus 14 are
omitted because each greedy algorithm always correctly finds
the optimal solution. Also, we do not show the IEEE bus 300
results because the graph size prevented us from running the
brute-force optimization algorithm.

Our greedy algorithms perform well. For the MAXOB-
SERVE problem, on average, the greedy algorithm is within
96.5% of optimal. Greedy is never below 86% of the op-
timal solution, and in most cases gives the optimal result.
Likewise, for MAXSAFEPLACE the greedy solution always
gives a solution at least 84% of optimal. On average the
MAXSAFEPLACE greedy algorithm is within 97% of optimal
and in about half the cases, the greedy solution is optimal.
These results suggest that the simple greedy approach works

2http://www.ee.washington.edu/research/pstca/
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well in practice. Typically, greedy algorithms fail because they
commit to a choice too early and do not reconsider earlier
decisions. Our results suggest that this is not the case for
MAXOBSERVE, SAFEPLACE, and MAXSAFEPLACE.

Surprisingly, we found that optimal for MAXSAFEPLACE
observed close to the same number of nodes as optimal
for MAXOBSERVE. Across the same k values, on average
optimal for MAXSAFEPLACE observed only 12% fewer
nodes than optimal for MAXOBSERVE. This suggests that
the restriction that all nodes are cross-validated does not have
a significant effect on the resulting number of observed nodes.

We also ran simulations over the actual IEEE bus systems.
We found the trends between our greedy and optimal
algorithms were consistent with the results from our simu-
lations over synthetic graphs. For example, Figure 10 shows
the number of observed nodes for greedy and optimal for
both the MAXOBSERVE and MAXSAFEPLACE problems over
IEEE bus 118. In both cases, the greedy algorithm observes
nearly as many nodes as the optimal solution. In many
cases, greedy yields the optimal placement. These results are
consistent with our findings for IEEE bus system 14, 30, and
57.

VI. RELATED WORK

The PMUP problem – find the minimum number and place-
ment of PMUs to allow a bus system to be fully observable
– is well-studied [3], [4], [8], [10], [12]. Although similar,
the MAXOBSERVE problem differs from the PMUP problem:
MAXOBSERVE considers the more general case in which
a constant number of PMUs are given and the task is to
place the PMUs such that the maximum number of nodes
are observed. Haynes et al. [8] and Brueni and Heath [4] both
prove PMUP is NP-Complete. We leverage these proofs in our
NP-Completeness proofs.

The power systems literature generally ignores the fact that
PMUP is NP-Complete because, in practice, power system
graphs are small enough to allow for an exact solution to be
found. Xu and Abur [12], [13] use integer programming to
find the optimal PMU placement when a subset of buses are
zero injection. O2 can only be applied to zero injection buses.
As a result, the PMUP problem is simplified when only some

buses are zero injection. Baldwin et al. [3] and Mili et al. [10]
use simulated annealing to determine PMU placement.

Aazami and Stilp [2] investigate approximation algorithms
for the PMUP problem. They derive a hardness approximation
threshold of 2log1−ε n for PMUP. Also they prove that in the
worst case, the same greedy algorithm presented in Section
IV does no better Θ(n) of the optimal solution.

Chen and Abur [5] and Vanfretti et al. [11] both study the
problem of bad PMU data. Chen and Abur [5] formulate their
problem differently than SAFEPLACE and MAXSAFEPLACE.
They consider graphs that are already fully observable and
then add PMUs to the system to make all existing PMU
measurements non-critical (a critical measurement is one in
which the removal of a PMU makes the system no longer fully
observable). Vanfretti et al. [11] define the cross-validation
rules used in this paper. They also derive a lower bound on
the number of PMUs needed to ensure all PMUs are cross-
validated and the system is fully observable.

VII. CONCLUSIONS AND FUTURE WORK

In conclusion, we have formulated three PMU placement
problems: MAXOBSERVE, SAFEPLACE, and MAXSAFE-
PLACE. MAXOBSERVE aims to observe the maximum number
of nodes given a constant number of PMUs. The observability
rules from Brueni and Heath [4] were used to determine when
the voltage phasor of non-PMU nodes can estimated. Like
MAXOBSERVE, SAFEPLACE and MAXSAFEPLACE have the
goal of observing the maximum number of nodes but also
require that PMUs be placed near each other so their measure-
ments can be validated. We called this cross-validation, a term
which we formalized. Cross-validation is possible when two
or more PMUs measure the current on the same transmission
line or the voltage of the same (adjacent) bus.

We proved that MAXOBSERVE, SAFEPLACE, and
MAXSAFEPLACE are all NP-Complete. For this reason,
we presented a simple greedy algorithm which iteratively
adds a PMU to the node which observes the maximum
of number of nodes. In a simulation study, we compared
our greedy algorithm with a brute-force optimal algorithm
over several IEEE bus systems and synthetic graphs. For all
three placement problems, our greedy algorithm, on average,
yielded a PMU placement within 96% of optimal.

As future work, we plan to derive theoretical bounds on
worst case performance of each greedy algorithm. Also, it
would be interesting to relax our assumption that all buses are
zero injection and evaluate our greedy algorithms over graphs
with a mixture of zero and non-zero injection buses.
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