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ABSTRACT
We present an in-depth analysis of the performance of
attempting concurrent AP connections from highly mo-
bile clients. Previous solutions for concurrent Wi-Fi are
limited to stationary wireless clients and do not take
into account a myriad of mobile factors. Through an
analytical model, optimization framework, and numerous
outdoor experiments, we show that connection duration,
AP response times, channel scheduling, available and
offered bandwidth, node speed, and dhcp joins all affect
performance. Building on these results, we design, imple-
ment, and evaluate a system, Spider, that establishes and
maintains concurrent connections to 802.11 APs in a
mobile environment. The system uses multi-AP selection,
channel-based scheduling and opportunistic scanning to
maximize throughput while mitigating the overhead of
association and dhcp. While Spider can manage multiple
channels, we empirically demonstrate that it achieves
maximum throughput when using multiple APs on a sin-
gle channel. Our evaluation shows that Spider provides a
400% improvement in throughput and 54% improvement
in connectivity over stock Wi-Fi implementations.

1. INTRODUCTION
As wide-area cellular networks continue to strain un-

der the heavy load of data access, they are increasingly
reliant on offloading traffic to private, public, and openly
shared Wi-Fi networks. Most smart-phones are equipped
with both Wi-Fi and cellular data and prioritize Wi-Fi
over cellular to take advantage of high bandwidth, lower
latency, and higher per-bit energy efficiency. While of-
floading traffic has been used by stationary users, recent
measurement work has shown that it is also beneficial
to offload mobile users’ data [2].

To realize the fullest extent of these gains, Wi-Fi sys-
tems can aggregate a large number of access points con-
currently to achieve improved network characteristics,
unlike cellular, where devices are relegated to a single ac-
cess point assignment. Recent virtualized Wi-Fi systems,
such as Chandra et al. [5], FatVAP [11], and Juggler [18],
have shown that stationary users connected to multiple

access points can achieve up to 3x greater bandwidth
than users connected to a single access point [11]. These
systems work by switching between access points on
multiple channels rapidly, aggregating bandwidth at the
client.

Unfortunately, such multi-AP systems were built to
support only nomadic access and not truly mobile use.
These systems employ scheduling policies that assume
that the dhcp join has already completed and that the
user’s connection to the AP is without end. Thus, they
perform poorly in a mobile context, producing a schedule
that results in significantly lower performance.

The dhcp delays in mobile systems are relatively long
and not handled by power-save mode, requiring any vir-
tualized Wi-Fi system to dwell on a channel to wait for
dhcp responses. As we show in this paper, through an-
alytical study, measurement, and experimentation, the
dwell times required to obtain dhcp leases from APs can
swamp TCP round trip times, creating TCP timeouts,
resulting in greatly reduced bandwidth. Our results show
that at higher speeds, mobile users receive better perfor-
mance by connecting to multiple APs only if they appear
on the same channel. Only at lower speeds can mobile
users recover from the throughput loss resulting from
dhcp joins to APs on separate channels. While these two
extremes are clear, the breaking point between them is
not predicted easily. One of our contributions is a general
model of this problem that isolates the critical factors
that determine an optimal schedule using one or more
channels. These factors include the user’s speed, the
AP’s dhcp response time, the AP’s offered bandwidth,
and the attained bandwidth. For example, in a typical
environment, our model suggests that users that travel
with an average speed of 10 m/s (∼22 mph) or faster
should form concurrent Wi-Fi connections only within a
single channel. We also show empirically that link-layer
association, dhcp and, TCP performance are affected
negatively by multi-channel solutions.

Building from the results of our analytical study, we
design and implement a practical version of a mobile,
virtualized Wi-Fi system called Spider that is designed
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for high-speed mobile users. Spider solves the practical
issues of access point discovery and dhcp lease acquisi-
tion while optimizing bandwidth using a single wireless
channel. Through a set of extensive outdoor experiments
we show that we can maximize bandwidth using multiple
APs on a single wireless channel, achieving 122KBps,
which is more than 400% improvement over a multi-
channel approach. These results present Spider as an
effective supplement to cellular networks for highly mo-
bile clients.

We also investigate empirically tradeoffs between through-
put and connectivity. Spider can be used to manage and
schedule joins to APs on multiple channels, and at a
serious penalty to achieved bandwidth as our model pre-
dicts. We demonstrate that if connectivity is a priority,
then joining to multiple APs on multiple channels is
best: Spider achieves 44% connectivity (compared to
35% in the single-channel case), lowering bandwidth to
28KBps.

2. CHALLENGES OF MOBILE MULTI-AP
CONNECTIONS

Past research has shown the benefits of both mobile
Wi-Fi systems [2,8] and virtualized multi-AP bandwidth
aggregation schemes in static wireless scenarios [5,11,18].
In this work, we investigate whether a multi-AP solution
is possible and beneficial in truly mobile scenarios where
Wi-Fi connections are both fleeting and intermittent.

An obvious starting point would be to take one of
the existing virtualized multi-AP solutions and apply
it in a mobile setting. However, a closer look at the
dynamics of both static multi-AP solutions and mobile
Wi-Fi networks shows that the integration of the two is
not straightforward.

Since APs can be instructed by the client to buffer
packets, concurrent connections between a static client
and multiple APs [5, 11,18] are possible for Wi-Fi. The
client falsely claims it is entering power-save mode (PSM),
implicitly asking the AP to queue the incoming pack-
ets, and then communicates with another AP. Given
that the backhaul bandwidth is typically smaller than
the wireless bandwidth, such a scheme results in higher
aggregate throughput if switching delays are kept very
short. Static multi-AP solutions are not concerned with
the delay incurred by the process of joining to the APs,
and they do not need to be. In a static scenario joining
process (association and dhcp) happens once, and its
duration is negligible compared to the total connection
time.

In a mobile Wi-Fi environment, on the other hand,
clients must continuously associate and obtain dhcp
leases from APs as they become available. In addition,
the packets associated with the join process cannot be
buffered by the PSM request, and therefore, the client
cannot switch away without reducing its chances of

join request join response

AP on channel i

D D
Mobile Client

Figure 1: Depiction of a join failure due to untimely arrival
of the join response message in our simplified scenario.
White regions represent the fraction (fi) of the scheduling
period (D) spent on channel i to communicate with the AP.
Gray regions depict the rest of the scheduling period spent
away from the AP on another channel. Switching delay (w)
is shown in black. For simplicity, the model assumes that
join requests are sent in the beginning of intervals of length
dDfi

c e where c is a constant. Join process becomes more
complicated in reality, where it involves multiple steps to
associate and obtain a dhcp lease instead of one.

getting a dhcp lease.
To understand the effect of mobility on the perfor-

mance of multi-AP systems, we design and validate a
model that predicts the probability of obtaining a dhcp
lease from an AP as a function of the amount of time
spent in range. Based on this model, we then formulate
an optimization framework to determine schedules that
maximize aggregate throughput.

Our analytical framework allows us to find the divid-
ing speed above which a mobile multi-AP solution should
consider APs only on a single channel for throughput
maximization. However, the framework is limited since it
does not consider the complexities of the multi-phase al-
gorithms running link-layer association, dhcp, and TCP.
In order to isolate the effects of multi-channel switching
on these protocols, we also perform a series of real ex-
periments (Section 2.2). The bottom line of the model,
optimization framework, and empirical experiments is
that switching is detrimental to overall throughput for
almost any short-lived connection. This conclusion is
further supported by a series of extensive experiments in
Section 4 using a complete system in an outdoor setting.

2.1 Analytical Framework
We have designed our analytical framework with two

key questions in mind: First, how does channel switching
and node speed affect the time to associate and obtain a
dhcp lease? And second, at vehicular speeds, when is it
desirable to aggregate throughput from APs on multiple
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channels?

2.1.1 Join Model
We model the probability of a mobile node successfully

joining an AP operating on channel i during the first
t seconds that it is in range. We assume a round robin
schedule, where the node spends a fraction of time fi on
channel i from the total scheduling duration of D. To
switch channels, the node incurs a delay w during which
no packets can be received. We approximate t ' s×D,
where s is a positive integer reflecting the speed of the
mobile node (note that s is larger when the node is
moving more quickly). We refer to each of the s time
intervals as a round. In sum, in each round, a duration
of Dfi is spent on channel i. For simplicity, we assume
that the mobile node switches to channel i as soon as it
enters the range of the AP.

While in practice, a Wi-Fi join event consists of sev-
eral complimentary steps, for simplicity we assume that
association involves a single handshake. Further, we as-
sume that in the absence of losses, the time between the
transmission of the single join request and the reception
of the single join response in a non-virtualized scenario is
uniformly distributed in the interval [βmin, βmax]. Dur-
ing a round, the mobile node can transmit a maximum
of dDfi

c e join requests to the AP, where c is the time
between two consecutive requests. In practice, the du-
ration c is determined by dhcp and link-layer timeout
values, and we set it to a constant in the model. We let
βm,k ∈ [βmin, βmax] denote the join time corresponding
to a request transmitted in segment k of round m, where
1 ≤ k ≤ dDfi

c e. We then compute the probability that
a request made at the beginning of segment k in round
m leads to a successful join. Note that for a successful
join, the response from the AP must be received at the
mobile node within a time interval Dfi of the current
or later round (see Figure 1). The above constraint can
be mathematically formulated as follows.

w + (k − 1)c+ βm,k ≤ (n−m)D +Dfi (1)
w + (k − 1)c+ βm,k ≥ (n−m)D (2)

These can be combined into one equation as

(n−m)D+c−w ≤ kc+βm,k ≤ (n−m+fi)D+c−w (3)

where n ≥ m is the round in which the response is
received. Since βm,k ∈ [βmin, βmax], we have

kc+ βmin ≤ kc+ βm,k ≤ kc+ βmax (4)

Using the above equations, we can derive the proba-
bility that a request sent during segment k of round m
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Figure 2: The probability of join success as a function of
the fraction of time, fi, spent on the AP based on the
presented model (Eq. 7) and simulation. Mobile node with
a scheduling period of D = 500ms spends t = 4s in the
vicinity of the AP with βmin = 500ms, βmax = 5s and 10s.
Switching overhead of the driver is w = 7ms. Join requests
are sent every c = 100ms and loss rate is h = 10%.

leads to a successful join for a lossless channel as

q(m,n, k) =
0 if δminm,n > αmaxk

0 if δmaxm,n,fi < αmink
min{αmax

k ,δmax
m,n,fi}−max{αmin

k ,δmin
m,n}

αmax
k −αmin

k

otherwise

(5)

where

αmink = kc+ βmin

αmaxk = kc+ βmax

δminm,n = (n−m)D + c− w
δmaxm,n,fi

= (n−m+ fi)D + c− w

Hence, the probability that no requests made in round
m leads to a successful join in round n in a lossy channel
with message loss probability h can be calculated from
the previous equation as

q(m,n, h) =
dDfi−w

c e∏
k=1

(
1− q(m,n, k)(1− h)2

)
(6)

Thus, given that the mobile node spends a fraction fi
of time on a channel i, the probability of obtaining at
least one lease in time t is the following:

p(fi, t) = 1−
b t

D c∏
m=1

b t
D c∏

n=m

q(m,n, h) (7)

Validation. We validate our analytical model by using
a simulation with the same assumptions. Figure 2 shows
the probability of successfully joining an access point as
a function of the fraction of time spent on the channel
for both the model (Eq. 7) and the simulation. Each
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Figure 3: The probability of join success as a function of
the maximum time it takes the AP to respond. When a fixed
fraction of time is spent on the channel, shorter maximum
join times lead to higher chances of join success. Mobile
node with a scheduling period of D = 500ms spends t = 4s
in the vicinity of the AP with βmin = 500ms. Switching
overhead of the driver is w = 7ms. Join requests are sent
every c = 100ms and loss rate is h = 10%.

point on the simulation line represents an average of
hundred runs, and error bars represent one standard
deviation. Each run uses a different seed and represents
100 trials where a join is attempted and the value of
βm,k is sampled from the given distribution. We set
other input parameters to typical values we observed
in practice (see Section 2.2). The simulation results are
statistically equivalent to the model and hence, internally
validate it.

2.1.2 Discussion
Eq. 7 represents a non-linear relationship between

the fraction of time spent on the channel, fi, and the
probability of a successful join p(fi, t). For instance, in
Fig. 3, the probability of getting a lease during the first
t = 4 seconds falls from 75% to 20% when the percent-
age of time devoted to the AP reduces from 30% to
10%. Further, the node should spend nearly 100% of
its time on the channel for an assured successful join.
These results motivate a channel switching approach to
schedule concurrent Wi-Fi connections in mobile scenar-
ios as opposed to the AP switching approach used in
static cases [11]. Spending all its time on one channel,
the mobile node can aggregate bandwidth from several
APs on that channel without affecting the probability
of successful joins.

Another implication of our analysis is the relationship
between the maximum join time, βmax, and the probabil-
ity of a successful join p(fi, t). Figure 3 graphs the value
of p(fi, 4) with βmax as the independent variable for four
different values of fi, using Eq. 7 . Note that βmax repre-
sents the maximum amount of time to join to an AP in
the absence of losses and in a non-virtualized scenario.
When a fixed fraction of time is spent on the channel,

shorter maximum join times lead to higher chances of a
successful join. While this is a known fact for single-AP
scenarios, our results demonstrate that techniques such
as caching dhcp leases, maintaining a history of APs
with short join times, and decreasing link layer timeouts
that reduce βmax are essential for multi-AP systems. In
other words, when these techniques are not available —
when mobiles travel in areas they do not normally do
and AP responses are slow — multi-AP systems will see
significant drops in performance.

2.1.3 Throughput Maximization
A major objective of maintaining concurrent connec-

tions to multiple access points is bandwidth aggregation.
To understand how channel schedules and node speed
affect bandwidth aggregation, we formulate an optimiza-
tion framework for throughput maximization.

The objective function and the associated constraints
are shown in Equation 8. To construct it, we assume that
the mobile node is in range of APs for T seconds. We let
E[Xi] =

∑T
t=0 p(fi, t) be the expected amount of time to

join an AP on channel i given fi and T . We let Bw be the
maximum bandwidth of each channel. We distinguish
current and offered bandwidth: let Bij be the total end-to-
end bandwidth from APs on channel i that the node has
already joined to; let Bia be the end-to-end bandwidth
available from APs that the node is attempting to join
to and would have during the duration (1 − E[Xi])T .
We let k be the number of available channels and we
state the objective function as follows.

max
fi

{
T

i=k∑
i=1

(fiBw)

}
(8)

s.t. 0 ≤ fi ≤
Bij + (1− E[Xi])Bia

Bw
, ∀i (9)

i=k∑
i=1

(fiD + dfiew) ≤ D (10)

The formulation is similar to the FatVap optimization
problem [11] except the constraint on fi which considers
the additional bandwidth gained from APs that the node
is associating with. Note that for simplicity, we have
assumed all APs are in range for a duration of T and
thus have the same E[Xi].

We numerically solve the above optimization to deter-
mine the optimal schedule as a function of the speed of
the node. Specifically, we evaluate three scenarios for a
two-channel case:

1. B1
j = 0.75Bw and B2

a = 0.25Bw

2. B1
j = 0.25Bw and B2

a = 0.75Bw

3. B1
j = 0.50Bw and B1

a = 0.50Bw
Our goal is to determine the speeds at which it is optimal
to switch channels, given a practical Wi-Fi range of 100
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Figure 4: Maximum aggregated bandwidth for different speeds when only two channels are used. The offered bandwidth
on the first and second channels are (25%,75%), (50%,50%), and (75%,25%) of the wireless bandwidth (Bw =11Mbps)
respectively in each figure from left to right for βmax = 10s and βmin = 500ms. Wi-Fi range is assumed to be 100m.

meters. Figure 4 shows the results for the three scenarios
in terms of the optimal bandwidth that can be extracted
from each channel. For every scenario, there is a dividing
speed: when moving slower than the divide, the mobile
node should switch channels to maximize bandwidth.
Quantitatively, this speed is less than 10m/s for most
scenarios. This result implies that for highly mobile
networks (where the average node speed is greater than
10m/s), the best policy to maximize bandwidth is to
stay on a single channel. While we examined only three
scenarios to produce Figure 4, we note that our model
and optimization framework solves all combinations of
inputs. We empirically validate and further explore this
result in Section 4 using a mobile testbed.

2.2 Experimental Analysis
Our model shows that scheduling fractional time on

several channels has an adverse effect on the probability
of successfully joining APs (see Fig. 3). Additionally, for
high vehicular speeds, maintaining concurrent connec-
tions to access points while staying on one channel leads
to optimal bandwidth aggregation. However, our model
makes two simplifying assumptions. First, it assumes
that joining is a one-shot process, while in practice Wi-
Fi joins involve a multi-phase bidirectional handshake
involving both association and dhcp. Second, it assumes
that the schedule is short enough so that TCP timeouts
are avoided. The assumptions cause the model to be
optimistic: multi-channel switching performs better in
the model than can be expected in a real scenario.

To quantify the affect of switching on link-layer as-
sociations, dhcp and TCP, we performed two sets of
experiments, one on an outdoor vehicular testbed and
the other on an indoor wireless testbed. Our results
quantify the relationship between channel schedule, join
success, and TCP throughput. In sum, successful link-
layer association and dhcp joins have some tolerance for
switching, while TCP is more sensitive.

2.2.1 Association and dhcp
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Figure 5: The rate of successful link-layer associations on
a channel as a function of the amount of time the Wi-Fi
driver spends on a single channel (out of 400ms for all
channels).
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Figure 6: The rate of successful dhcp requests on a channel
as a function of the amount of time the Wi-Fi driver spends
on that channel as well as the dhcp timeout.

In our first set of experiments, we use a testbed of
vehicular nodes and a Wi-Fi driver that can simultane-
ously associate with APs on different channels, just as
we modeled above — in fact, the driver is the core of our
full system, and we provide full details of its operation
in Section 3. The goal of our outdoor experiments is
to quantify the affect of varying the fraction of time
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spent on each channel on the failure rate of associating
and obtaining a dhcp lease. Moreover, these experiments
allow us to quantify the surprisingly detrimental effect
of decreased link-layer response timeouts on a multi-
AP driver, an approach shown by Eriksson et al. [8] to
improve single-AP/single-channel drivers.

To evaluate the effect of the driver’s schedule on the
join success rate, we performed several experiments, each
lasting six hours on five vehicles moving around a small
town, representing hundreds of trials. Each mobile node
spends a fraction f6 = x of D = 400ms on channel 6,
and a fraction f1 = f11 = (1− x)/2 on channels 1 and
11, applying terminology from our model and where
0 ≤ x ≤ 1. Our results show the association delays
on channel 6 and consider it as our primary channel.
Since join delays are affected by link-layer timeouts, we
reduced them from a standard of 1s to 100ms in these
experiments1.

Figs. 5 and 6 plot the empirical cumulative distri-
bution functions for durations of association and dhcp
respectively for these experiments. Separate conclusions
can be drawn for association and dhcp.

Our analytical framework, which only evaluates a sim-
ple join-request scenario, predicts that join success is
dependent on the channel schedule. However, these real
experiments demonstrate that the performance of actual
link-layer joins are more complicated given the inter-
actions of scanning and the four-way handshake used.
As shown in Fig. 5, when the driver spends all its time
on one channel (f6 = 1), the median association time
is 200ms, and all associations complete within 400ms.
However, when this fraction drops to f6 = 0.75, the
median association time increases to 300ms and only
75% of associations are successful within 400ms. Inter-
estingly, this performance does not degrade significantly
as f6 decreases to 0.50 and 0.25 suggesting that link
layer association is in some ways robust to switching.
dhcp is a more complicated protocol. It relies on suc-

cessful association and involves at least four more frames
between client and AP. Moreover, in default implementa-
tions, the client attempts to acquire a lease for 3 seconds,
and it is idle for 60 seconds if it fails. The performance
of this default scheme dedicated to a single channel
is shown in Fig. 6 (as “100% default”) with a median
join time of 2.5s. The figure shows that reducing both
timeouts above to 100ms [8] has a significant effect on
performance. For the same schedule of f6 = 100%, the
median join time reduces to 1.3s when a 100ms dhcp
timeout is used. Once the schedule is set to f6 = 25%
and D = 400ms, equal to the timeout, repeated failures
cause the accumulated time to degrade performance
once again. Hence, while reconfigured dhcp timers are a

1Note that the link-layer timeout reflects a timer for each
message in a multi-step protocol and not a timeout for the
entire request-response process.
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Figure 7: Average TCP throughput as a function of the
percentage of time spent by the Wi-Fi driver on the primary
channel. Since the cumulative time spent on all the channels
is 400 ms (which is less than two RTTs) the throughput is
proportional to the percentage of time spent on the primary
channel.
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Figure 8: Average TCP throughput as a function of the
absolute time spent on each channel. For time x spent on
the channel, time 2x is spent away from it. The throughput
is very sensitive to the amount of time spent by the driver
on each channel due to TCP timeouts and TCP slow start.

boost to performance, we could not make dhcp robust
to low fractions of scheduled time. This result suggests
that the driver’s time cannot be divided among more
than two channels at 50% each in a mobile setting where
the duration of time in range of an AP is limited.

2.2.2 TCP performance
Our throughput maximization framework assumes

that the schedule does not lead to TCP timeouts. How-
ever, in a practical setting, if the channel schedule is
skewed towards spending a large fraction of the time
on a single channel, TCP connections on an orthogonal
channel can timeout, potentially strangling performance.
There is an inherent tension between the probability of
successfully associating with APs on one channel and
sustaining TCP connections on another channel.

To quantify this tradeoff, we performed a set of con-
trolled experiments in an indoor setting. We configured
an AP on one channel (the primary channel) and varied
two parameters, the fraction of time spent on the pri-
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mary channel for a fixed scheduling period of D = 400ms
and the total scheduling time equally distributed across
channels 1, 6, and 11 (f1 = f6 = f11 = 1/3). When the
fraction of time spent on the primary channel is varied
for a 400 ms schedule (equal to two typical RTTs), the
TCP throughput increases monotonically, as shown in
Fig. 7. However, when the total scheduling time is varied
instead, the throughput increase is non-monotonic, as
shown in Fig. 8. This behavior is a result of increasing
the total schedule which increases the amount of time
spent away from the channel which can lead to TCP
timeouts.

2.3 Main Result of Analysis
Our analytical model, throughput maximization frame-

work, and experimental analysis point to the following
conclusion: At vehicular speeds, the best channel schedul-
ing policy for throughput maximization is to spend all
of the time on a single channel that provides maximal
bandwidth.

Several observations from our analytical and exper-
imental framework substantiate this result. First, as
shown in Figs. 2, 5, and 6, our model predicts that the
probability of successfully joining to APs within a short
time is high only when the node spends close to 100%
of the time on the channel. Note that continuously as-
sociating with APs is mandatory in mobile scenarios
to sustain connectivity, given short encounters at vehic-
ular speeds (median of 8 s and average of 22 s in our
town). Second, link-layer association, dhcp joins, and
TCP throughput (shown in Figs. 5, 6, and 8) are all
adversely affected if the card spends a large amount of
time away from the channel. Therefore, when the mobile
node spends a small amount of time in vicinity APs,
it should aggregate bandwidth from one channel while
simultaneously associating with APs on that channel.

3. SPIDER
Based on the results of our analytical framework and

experimental analysis in Section 2, we have designed
and implemented Spider, a system that leverages con-
current 802.11 connections to improve performance in
highly mobile networks. Our implementation is a freely
available, open source Linux kernel module2.

3.1 Design
Our analytical framework suggests that leveraging

multiple APs to maximize bandwidth in a highly mobile
scenario requires a system that is different from multi-
AP Wi-Fi drivers designed for static environments [5,11].
Hence, we have made several design choices in Spider
that are different from stock virtual Wi-Fi drivers [18].

Design Choice 1: Channel-based switching. In
contrast to previous work that slices time across indi-
2URL removed for anonymity.

vidual APs [5, 11, 18], Spider schedules a physical Wi-
Fi card among 802.11 channels. Spider maintains one
packet queue per channel that is swapped in and out of
the driver. As shown in the previous section, the time
to join with access points can be long. Therefore, in an
AP scheduling scheme such as FatVAP [11], the queue
corresponding to an AP can reserve the driver for a long
time. This implies that the card cannot communicate
with other APs on the same channel, which as we dis-
cussed in Section 2 degrades performance. Per-channel
queues mitigate the above problem since they allow the
driver to communicate with all APs on the same chan-
nel simultaneously. Additionally, it incurs no switching
overhead for interfaces on the same channel.

Design Choice 2: AP selection based on Join
Success. A multi-AP solution in a highly mobile sce-
nario requires a low-overhead AP selection algorithm.
Unfortunately, selecting multiple APs while maximiz-
ing a given system utility function is NP-hard (see Ap-
pendix A for a proof). While an optimal dynamic pro-
gramming approach can be formulated, its complexity
increases exponentially in the size of the power set of
access points, making a real-time solution infeasible in
mobile scenarios where the node is within range of an
access point for only a few seconds.

Spider uses a simple heuristic to select APs. The
heuristic is driven by our observations in Section 2 that
join times with APs is the critical factor for performance
in highly mobile scenarios. Therefore, instead of choosing
APs with maximum end-to-end bandwidth, we select
APs that have the best history of successful joins.

Stated formally, each AP m is assigned a utility Um
which is a function of the number of successful join
attempts the client has made with the AP previously.
A successful join comprises of three steps: i) link-layer
association, ii) dhcp lease acquisition, and iii) end-to-
end connectivity testing. Spider assigns fixed values va,
vb, or vc (where va < vb < vc) to each specific join
attempt depending on how far it succeeds in the joining
process. Joins that fail during link layer associations
are assigned a zero value. The intuition behind such
weighing of values is that APs that have completed the
join process are more reliable than those that have only
been successful in link-layer associations or obtaining a
dhcp lease. The utility Um of each AP m is the weighted
average of previous and recent join attempts—the re-
cent joins are given larger weights. To bootstrap the
process, every new open AP that has sufficient signal
strength is assigned the maximum utility so that the
AP is considered for association at least once. Signal
strength is used to break ties when APs have the same
utility. Additionally, to reduce the time to join to the
APs, Spider uses dhcp caches and fine-tunes link-layer
and dhcp timeout values.

Design Choice 3: One Linux interface per AP.
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Figure 9: An illustration of Spider’s components.

Spider exposes a separate Linux network device interface
for each connection, allowing maximal flexibility in the
way that applications may use concurrent Wi-Fi connec-
tions. Consequently, Spider does not require any custom
modifications to the kernel socket data structure (unlike
Juggler [18]). As a result, Spider remains a completely
standalone loadable module that is compatible with off-
the-shelf wireless utilities such as iwconfig, iwlist,
iwspy and iptables, making link management and net-
work debugging much easier.

3.2 Implementation
Spider consists of two components: a custom Wi-Fi

device driver responsible for opportunistic scanning and
channel switching, and a user-space link management
module (LMM) that implements connection establish-
ment and policies for channel switching and AP selection.
The overall design of Spider is illustrated in Figure 9.

3.2.1 Wireless Driver
Spider is implemented as a modified MadWiFi driver

that provides multiple “virtual” network interfaces. Spi-
der’s wireless driver schedules multiple APs on a single
channel concurrently. It also supports opportunistic scan-
ning, allowing new APs to be discovered in the back-
ground without sacrificing foreground data-transfers.
The driver exposes configurable parameters such as the
channel-switching schedule and link-layer timeouts to
the link management module using a proc interface.

The driver follows a number of steps to switch be-
tween channels. First, it buffers outgoing packets on the
virtual interfaces of the current channel. Next, it sends
a management frame with the PSM bit set to each AP
with which it is associated on the current channel, indi-
cating that it is entering power-save mode. This causes
the APs to buffer all frames destined for the client until
it returns to the channel. After deactivating the virtual
interfaces on the previous channel, the driver changes
the state of the wireless card to the new channel. A

hardware reset is required to apply the change. Finally,
the set of interfaces that are associated or attempting
to associate with APs on the new channel are activated.

Opportunistic Scanning. To maximize the time
available for useful work, the driver scans opportunis-
tically in the background without disrupting ongoing
connections. While associated with an AP, a client often
receives beacons and probe responses transmitted by
other APs on the same channel. Spider accepts these
frames and maintains a list of APs which it has heard
from recently. Spider can also be configured to periodi-
cally broadcast probe requests.

3.2.2 Link Management Module
Spider’s link management module is responsible for

applying AP selection policies, managing concurrent con-
nections, detecting lost connections and establishing new
ones, as well as notifying applications of the availability
of a link.

The link management module creates a configurable
number of virtual interfaces on boot-up and sets an ap-
propriate channel schedule akin to an operation mode.
An operation mode is defined by the total amount of
time to be scheduled among channels and the fraction
of time spent on each channel. The link management
module provides support for dynamically changing the
schedule when needed. Since operation modes are con-
figured from user-space, applications can easily change
these settings without any modification to the driver or
the linux kernel. We present results from experiments
using different operation modes in Section 4.

After the initial setup phase, the link management
module performs link discovery and management opera-
tions for that interface. Our synchronization mechanism
ensures that no two interfaces are bound to the same
AP. As soon as an interface joins a network and obtains
an IP address, corresponding iptables rules are set to
allow routing traffic to and from that specific interface.
While in practice, IP address collisions are rare, if the
same IP address is assigned to different virtual inter-
faces by different APs, we only use the most recently
assigned interface. For each interface, the module selects
the AP with the highest utility which is not already in
use. In case of ties, signal strength is used as the final
determinant.

Upon a successful link-layer association, per-BSSID
dhcp caches are used to speed up the process of obtain-
ing a lease. Additionally, after a successful join, Spider
continuously uses end-to-end pings to determine whether
the connection is alive. In case an AP does not allow
icmp pings to propagate, Spider pings the gateway to
test connectivity. If thirty consecutive pings fail (sent
at a rate of 10 pings per second), Spider assumes that
the connection is dropped, notifies applications using
a shared flag resident on the system’s RAM disk, and
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tries associating with another AP on that interface.

4. SYSTEM EVALUATION
We intend Spider to complement cellular data services.

Wi-Fi solutions like Spider are a natural supplement to
cellular networks due to their higher capacity. Their
drawback, however, is that they do not provide continu-
ous connectivity by themselves.

Spider aims at improving throughput and connectivity
for mobile clients using open Wi-Fi access by synergisti-
cally using multi-AP selection, channel switching, oppor-
tunistic scanning, and parallel per-channel association.
Here, we evaluate the performance of Spider by focusing
on the following key questions:
• What improvement in throughput and connectivity

does Spider provide over stock Wi-Fi access?

• What is the effect of AP density on Spider’s per-
formance?

• Does Spider meet connectivity needs of common
wireless users?

While answering these questions, we also present sev-
eral micro-benchmarks and explore trade-offs available
when setting different dhcp and link-layer timeouts.

4.1 Experimental Setup
We evaluated Spider on a vehicular platform in two

different cities: our town and Boston, MA. We chose
Boston because it was the site of Cabernet [8] experi-
ments and is a major urban area.

During experiments in our town, almost all APs were
on channels 1 (28%), 6 (33%), or 11(34%). Cabernet [8]
reported comparable numbers for the Boston area with
83% of the APs on either of the three channels and
39% on channel 6. Since majority of APs dwell on these
three channels, we configured Spider to schedule at most
among these three channels.

We test four configurations of Spider. (1) Single-
channel, Single-AP: Spider mimics off-the-shelf Wi-Fi
on a single channel. (2) Single-channel, Multiple-AP:
Spider stays on one channel (channel 1, 6, or 11) and
joins to as many APs on the channel as possible. (3)
Multiple-channel, Multiple-AP: Spider switches between
the three orthogonal channels using static schedules. (4)
Multiple-channel, Single-AP: Spider switches channels
but is associated with one AP at a time. We also tested
the unmodified MadWiFi driver as a point of comparison
to configuration 1.

The equipment used in the experiments was comprised
of a 1GHz Intel Celeron M system running Ubuntu Linux
2.6.18 and Atheros 802.11abg MiniPCI wireless card. The
duration of each experiment was 30–60 minutes with the
mobile node following the same route multiple times.

4.2 Driver Micro-benchmarks

Num. of interfaces
0 1 2 3 4

Mean 4.942 4.952 5.266 5.546 5.945
Std Dev 0.009 0.009 1.236 0.823 1.121

Table 1: Channel switching latency (ms) of the Spider
driver.

0 1 2 3 4 5
0

200

400

600

800

1000

1200

backhaul bandwidth per AP (Mbps)

av
er

ag
e 

th
ro

ug
hp

ut
 (

K
B

ps
)

 

 

one card, stock
two cards, stock
Spider, (100,0,0)
Spider, (50,0,50)
Spider, (100,0,100)

Figure 10: Throughput micro-benchmark. Spideŕs through-
put when dedicated to two APs on a single channel is
equivalent to two cards running stock drivers.

We ran two micro-benchmarks designed to measure (1)
the latency overhead incurred when switching channels,
and (2) the ability of our driver to aggregate bandwidth
across connections through multiple APs.

Table 1 shows the mean latency and the standard
deviation of a channel switch operation. The channel
switching latency is the time required to send a PSM
frame to each associated AP on the old channel, perform
a hardware reset to apply the channel change, and then
send a PSM poll frame to each associated AP on the
new channel. The latency is typically in the range of
5-6ms, increasing proportional to the number of APs,
because a separate PSM frame must be sent to each AP.
The largest contributor to the latency is the hardware
reset step, which can vary depending on the model of the
card. The latency is within a few ms of that achieved
by other multi-AP drivers [11,18].

Fig. 10 shows the ability of the driver to utilize the
bandwidth offered by multiple APs. We measured mean
aggregate throughput achieved while downloading large
files over HTTP for a number of configurations: a host
with a single card running stock MadWiFi, for compari-
son; a host with two physical cards running stock drivers;
Spider connected to two APs on the same channel; and
Spider associated with one AP on channel 1 and one on
channel 11, with a schedule of 50ms on each channel;
and the previous configuration while spending 100ms on
each channel. The APs and servers were connected via
LANs in our lab, and a traffic shaper was used to adjust
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(Config) Parameters Throughput Connectivity

(1) Channel 1, Multi-AP 121.5 KB/s 35.5%
(2) Channel 1, Single-AP 28.0 KB/s 22.3%
(3) Multi-channel, Multi-AP 28.8 KB/s 44.6%
(4) Multi-channel, Single-AP 77.9 KB/s 40.2%
(2) Channel 6, single-AP∗ 90.7 KB/s 36.4%
MadWiFi driver ∗ 35.9 KB/s 18.0%

Table 2: Avg. throughput and connectivity for Spider con-
figurations. Staying on a single channel and leveraging
multiple AP connections provides best avg. throughput.
The multi-channel, multi-AP approach provides the best
connectivity. (Multi-channel scenarios use a static schedule
of 200 ms on ch. 1, 6, and 11. ∗ denotes experiments
performed in Cambridge, where channel 6 was the best.)

the backhaul bandwidth available through each AP.
The host with two physical interfaces and the host

with Spider running on a single channel (connected to
two APs) both achieved an aggregate throughput equal
to twice that achieved by the host with a single card
and stock driver—this is expected, as Spider incurs no
channel-switching overheads in this configuration and
does not run the risk of causing TCP timeouts when
using one channel. The results for the multi-channel Spi-
der configurations show the trade-off between exploiting
new connectivity opportunities and extracting through-
put from connected APs. When high-bandwidth links
are available, a schedule which switches more rapidly
between channels is able to achieve greater throughput
by reducing the risk of TCP timeouts.

4.3 Connectivity and Throughput
We analyze throughput and connectivity of Spider us-

ing four key metrics. (1) Average throughput: the amount
of data transferred to a sink per unit time during an
experiment. (2) Average connectivity: the percentage of
time that a non-zero amount of data was transferred
to a sink. The average throughput and connectivity are
bounds on open Wi-Fi performance using multi-AP so-
lutions. (3) Disruption length: the contiguous period
of time when there is no connectivity. This distribu-
tion indicates whether interactive applications such as
VoIP or web search can be supported. (4) Instantaneous
bandwidth: the amount of data per second transferred
by a Spider node when there is connectivity. This met-
ric indicates whether multi-AP solutions can support
applications that require bursts of high throughput con-
nectivity.

We present the average throughput and average con-
nectivity for a Spider node in its four configurations
in Table 2. These experiments were performed using a
passenger car in our downtown area. A static schedule
of D = 600ms and f1 = f6 = f11 = 1/3 was used in
multi-channel scenarios.
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Figure 11: CDF of the Internet connectivity duration for
Spider configurations.
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Figure 12: CDF of disruptions for Spider configurations.

Two conclusions can be drawn from the results. First,
the single-channel multi-AP configuration performs best
in terms of throughput. It has an average throughput of
more than 4 times that of the single-AP counterpart. The
use of multiple channels incurs an additional overhead
of switching and associating on orthogonal channels,
strangling throughput. This is in agreement with the ob-
servation made from another analytical framework where
we demonstrated that at vehicular speeds, aggregating
bandwidth from one channel leads to optimal perfor-
mance. Second, the multi-channel multi-AP solution has
the best performance in terms of connectivity. Although
the average throughput is lower, multiple channels host
a larger pool of APs for Spider to choose from.

Figs. 11 and 12 are the CDFs of the disruption and
connection lengths for different configurations of Spider
respectively. The results demonstrate several trade-offs.
The longest periods of Internet connectivity are obtained
by staying on one channel and maintaining concurrent
connections to several APs. However, that strategy also
experiences the longest disruptions due to areas where
there is no Wi-Fi coverage on the chosen channel. In
contrast, the multiple-channel multi-AP solution experi-
ences the shortest connections due to disruptions caused
joins to APs on separate channels. However, such an
approach has the shortest disruptions due to larger set of
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Figure 13: CDF of KB/s transferred (during connectiv-
ity) for Spider configurations. Single-channel configs. pro-
vide the best instantaneous throughput. Multi-AP, multi-
channel reduce throughput due to the overhead of joining.

possible APs that the node can transfer data with. The
single-AP configurations provide trade-offs between the
two extremes. We compare these results with usability
needs of wireless users in subsection 4.7.

Fig. 13 shows the instantaneous bandwidth that Spi-
der provides when actively transferring data. The single-
channel, multi-AP configuration performs best in terms
of per-connection throughput. The 60th percentile is
around 300 KBps and the 90th percentile is around 1000
KBps — comparable to the throughput provided by Fat-
VAP in a static environment (see Figure 13 in [11]). Spi-
der’s multi-channel, multi-AP solution performs poorly
in terms of instantaneous bandwidth due to the overhead
of association and dhcp on separate channels, clearly
illustrating (as in our analytical framework) the impor-
tance of staying on a single channel if high throughput
is the design goal.

4.4 Effect of AP Density
We evaluated the effect of AP density on the perfor-

mance of Spider using the same set of experiments listed
in Table 2. Here, we compare the case in which Spider
is allowed to associate with one AP with the case where
it maintains connection with multiple APs. During our
experiments, Spider associated with a maximum of three
APs 5% of the time, 2 APs 10% of the time, and is asso-
ciated with one AP around 85% of the time. It is notable
that, even with such a meager open Wi-Fi density in
our town, multi-AP Spider has an average throughput
that is four times that of a single AP case.

For external validation, we ran a similar set of experi-
ments in the city of Cambridge, an environment with a
different mobility pattern and AP density from ours. The
last two entries in Table 2 are results for those experi-
ments. Interestingly, on Channel 6, Spider has an average
throughput that is 800% more than the throughput re-
ported by Cabernet for the same city (a throughput

parameters Failed dhcp
chan 1, linklayer: 100ms,
dhcp: 600ms, 7 interfaces

23.0% ±6.4%

channel 1, linklayer: 100ms,
dhcp: 400ms, 7 interfaces

27.1% ±5.4%

chan 1, linklayer: 100ms,
dhcp: 200ms, 7 interfaces

28.2% ±4.0%

3 Chans, static 1/3 schedule,
linklayer: 100ms, dhcp: 200ms,
7 interfaces

23.6% ±10.7%

Chan 1, default timer,
7 interfaces

13.5% ±6.3%

3 Chans, static 1/3 schedule,
default timer, 7 interfaces

21.8 % ±6.9%

Table 3: dhcp failure probabilities for different timeout
configurations for Spider. Primary differences are bolded.
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Figure 14: The rate of successful joins as a function of
dhcp timeout. The cost of switching among channels over-
shadows the benefit of quickly establishing connections
when timeouts are reduced.

of 10.75 KBps [8])3. Additionally, when comparing the
results with the stock MadWiFi driver, we find that
Spider provides 2.5x improvement in throughput and
2x improvement in connectivity.

4.5 Effect of Join Timeouts
As discussed in section 2, one of the primary challenges

in designing multi-AP solutions for mobile Wi-Fi access
is the overhead associated with dhcp and association. A
way to minimize this overhead is to reduce the timeouts
associated with dhcp and link layer retries. Table 3 and
Fig. 14 show the effect of reducing these timeouts on
Spider. Table 3 presents the increase in failure rate of
dhcp requests with reduced timeouts while maintaining
concurrent connections on multiple channels. Compared
to the default timers, reducing timeouts can lead to a two-
3It is of course impossible to set up the exact conditions in
which Cabernet was tested: 802.11G is now widely available
and it is not possible to determine if more or less open APs
are available.
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Parameters Throughput Connectivity

3-channel (equal schedule) 28.8 KB/s 44.7%
2-channel (equal schedule) 25.1 KB/s 35.8%
Single-channel 121.5 KB/s 35.5%

Table 4: Average throughput and average connectivity seen
when applying different static schedules for multi-channel
configuration for Spider.

fold increase in dhcp failure rates. Similarly, switching
among multiple channels while trying to associate with
multiple APs leads to high probability of failure (as high
as 30–35%).

Although the number of failed dhcp attempts increases
with timeout reduction, in Fig. 14 we find that the
median time to successfully obtain a lease improves—
similar to the observation made in Cabernet [8]. However,
the absolute median time to join is still 2–3 seconds,
which increases by 2x when using multiple channels.
Such long join times imply that is best to stay on one
channel to maximally aggregate throughput.

4.6 Effect of Number of Channels
To understand the effect of number of channels on

throughput, connectivity, and join overhead, we present
Fig. 15 and Table 4. We tested three scenarios (1) three
channels with a equal schedule (200 ms) and (2) two
channels with an equal schedule (200 ms each), and (3)
a single channel. Fig. 15 shows that the single channel
mode with reduced timeouts performs best in terms of
join time–however, the reduced timeouts lead to a large
number of dhcp failures. Moreover, the three channel
schedule performs worse than the dual channel schedul-
ing. Hence, switching between channels during asso-
ciation is a primary source of overhead in multi-AP
solutions. Table 4 presents throughput and connectiv-
ity results for the different configurations—as expected
throughput is maximized when Spider uses a single chan-
nel and connectivity is maximized when it uses an equal
schedule on three channels.

4.7 Matching Usability Needs
An open question that is widely asked is whether open

Wi-Fi access can cater to connectivity needs of mobile
users? To answer this question, we performed a study
using data from a permanent Wi-Fi mesh we deployed in
our downtown. The mesh consists of 25 nodes and covers
an area of about 0.50 km2. We collected performance
data on all TCP flows from 161 wireless users for an
entire day. Although, all users might not be mobile, the
data provides us with a plausible baseline. Overall, there
were 128,587 completed TCP connections in the collected
data and a total number of 13,645,161 packets (1.7 GB)
were sent by the users. Of these, 86,838 connections
were made to the http port (68% of the connections).
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Figure 15: Delay in obtaining a dhcp lease and link layer
association for different scheduling policies in Spider. The
figure also considers reduced timeouts.
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Figure 16: Comparison of connection lengths for wireless
users and Spider.

0 100 200 3000

0.2

0.4

0.6

0.8

1

disruption length (s)

fre
qu

en
cy

 

 

multiple APs (ch1)
user inter−connection
multiple APs (multi−channel)

Figure 17: Comparison of disruption lengths for wireless
users and Spider.

We compare the traffic needs of wireless users with
those provided by Spider based on two key metrics: (1)
distribution of the duration of TCP connections, and
(2) distribution of inter-connection time.

Fig. 16 compares the TCP flow lengths gathered from
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actual users using our mesh network and Spider in
its multi-channel and single-channel modes. The fig-
ure shows that Spider can support all the TCP flows
that users need. Additionally, in Fig. 17 we compare the
time between two connections for the mesh users and
disruption time for Spider. When Spider uses multiple
channels and multiple APs, it experiences disruptions
comparable to what real users can sustain.

These results present Spider as a plausible complement
to cellular data services. However, more data on mobile
user’s connectivity needs and network usage pattern is
required in order to find out the degree to which Spider
can align itself with the needs of each individual user.
Conducting this study forms part of our future work
with Spider.

4.8 Limitations and Future Work
The primary limitation of our work is largely with

the design of Spider. First, the system is not adaptive.
Specifically, it does not change its scheduling policy dy-
namically based on speed and AP density. An augmented
design would encompass both mobile and nomadic sce-
narios by alternating between staying on one channel
at high speeds and managing multiple channels when
moving slowly. Although we have evaluated the effect of
such schedules in separate experiments, as future work,
we are extending Spider to dynamically adapt schedules
based on these parameters. To facilitate such integra-
tion, Spider’s AP selection has to incorporate a suite of
other criteria such as end-to-end bandwidth estimates
in addition to the past successful joins. Current design
only considers throughput maximization as an objective.
We are planning to extend the design to minimize con-
nectivity outages by dynamically exploiting connections
on multiple channels.

5. RELATED WORK
Spider builds on previous work on Wi-Fi access from

mobile nodes, fast Wi-Fi and cellular hand-offs, and
using multiple APs for throughput aggregation. Here,
we compare and contrast Spider with the most relevant
literature.

Wi-Fi Access from Moving Vehicles: Several
challenging problems such as lossy wireless mediums [4,
8, 9, 13], tuning TCP performance for mobility [1], and
AP selection [17] are well studied. The feasibility of
using cached history to reduce association and dhcp
overheads [6] has been demonstrated. Directional an-
tennas have also been used to improve throughput [15].
However, this body of work concentrates on using a stock
Wi-Fi model—association and data transfer with one AP
at a time. However, as we have demonstrated, using a ag-
gregation of APs can provide high aggregate throughput
and better connectivity in a mobile environment.

Performance through diversity: Using technolog-
ical and spatial diversity to improve Wi-Fi connectivity
has also been studied in the past. This class of related
work can be broadly classified by either infrastructure-
end or client-end modifications. Infrastructure-end mod-
ifications includes coordination or selection amongst
multiple open APs [3, 12–14,14,22]. In contrast to these
approaches, Spider is a purely client-side solution that
aims at improving a mobile user’s performance in an
organic Wi-Fi setting. Client-side diversity-based so-
lutions rely on aggregating bandwidth across multiple
APs [5,11,18]. However, these solution are tuned to work
efficiently only in a static, stationary wireless environ-
ment.

An orthogonal approach to aggregating bandwidth
in mobile nodes is using additional hardware—the as-
sumption is that each client has more than one Wi-Fi
card and data can be striped across concurrent con-
nections to APs. PERM [21] is a multi-homed solution
that aggregates throughput across multiple residential
ISPs, profiles on-going connections, and assigns flows
to interfaces to minimize delay. MAR [20] exploits het-
erogeneity of existing wide-area wireless networks by
using a router architecture that aggregates independent
cellular links into one fat reliable virtual data transfer
pipe. Horde [19] is a middleware solution on mobile
nodes that performs network striping over diverse cellu-
lar links tuned to application needs. Most of these data
striping approaches can be built into Spider to enhance
mobile user performance.

Soft hand-off and AP selection: Spider also builds
on related work on fast cellular hand-offs and AP se-
lection in mobile Wi-Fi networks. Fast hand-off is used
to mitigate the adverse effects of disruptions in cellular
networks [7]. While fast soft hand-off is plausible in a cel-
lular network where the cell towers are under the control
of one central authority, it is not feasible in Wi-Fi net-
works laid down by third-party users. The only practical
soft hand-off solution using client side modifications is
Spider that virtualizes the Wi-Fi card and maintains
concurrent AP connections. Access point selection has
also been an active area of research in Wi-Fi mobile
networks. Several techniques including RSSI [10] and
history-based techniques [16] have been proposed. How-
ever, multi-AP selection, solved by Spider is a harder
problem (as we demonstrate in the Appendix) since it
involves selection of a set of APs.

6. CONCLUSION
We presented an in-depth analysis of the performance

of attempting concurrent AP connections from highly
mobile clients. Through an analytical model, optimiza-
tion framework, and numerous indoor and outdoor ex-
periments, we isolated several factors that affect the poor
performance of multi-channel networking in contrast to
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single-channel, multi-AP networking and conventional
approaches. We found that connection duration, AP
response times, channel scheduling, and attained and
offered bandwidth all affect performance. Moreover, link
association, dhcp joins, and TCP are all negatively af-
fected by fractional channel scheduling.

Building off these results, we designed and imple-
mented a novel multi-AP driver. Spider uses utility-
based multi-AP selection, channel-based scheduling, and
opportunistic scanning to maximize throughput while
mitigating the overhead of association and dhcp. While
Spider manages multiple channels if desired, we show
empirically that using multiple APs on a single channel
achieves higher throughput than scheduling on multiple
channels, as predicted. Our evaluation of Spider on a
vehicular testbed shows that it provides a significant
improvement in throughput, making it an effective sup-
plement to cellular data services for highly mobile nodes.
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APPENDIX
A. PROOF OF NP-HARDNESS

We assume that the mobile node spends T seconds
on a road segment that has n open WiFi access points.
We also assume that the driver has n virtual interfaces,
thus, it is possible to establish concurrent connections to
the n APs. Let Si be subset i of the power-set of n APs.
We define a value Vi for each subset Si. Vi is a function
of the APs in the subset and quantifies connectivity or
throughput. For example, if cumulative throughput is
our desired metric, and the wireless bandwidth that Si
can provide is Wi then Vi = Ti ×Wi, where Ti is the
time spent by a Spider node within the range of the APs
in Si. We also define a cost Ci associated with Si. Ci is
the sum of the time that Spider spends within range of
the APs in Si, the association time, and the switching
overhead among channels and processing per channel
queues. If Di is this overhead, Ci = Ti + dTi/T e ×Di.

With these parameters as input, the goal of the multi-
AP optimization problem is to select a set of subsets Si,
such that the sum of their values is maximized subject
to the following constraints: (1) the total cost should
not exceed the total time T and, (2) each Ti must be
positive and less than T . Formally stated:

max
X

i

TiWi (11)

such that
X

i

(Ti + dTi/T eDi) ≤ T (12)

∀i, 0 ≤ Ti ≤ T (13)

The above problem is equivalent to the 0-1 knapsack
problem, which is known to be NP-hard.
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