
Flit: A Bulk Transmission Protocol for RFID-Scale Sensors

Jeremy Gummeson
Universty of Massachusetts
Amherst, Dept. of Computer

Science

gummeson@cs.umass.edu

Pengyu Zhang
Universty of Massachusetts
Amherst, Dept. of Computer

Science

pyzhang@cs.umass.edu

Deepak Ganesan
University of Massachusetts
Amherst, Dept. of Computer

Science

dganesan@cs.umass.edu

Abstract
RFID-scale sensors present a new frontier for distributed sens-

ing. In contrast to existing sensor deployments that rely on battery-
powered sensors, RFID-scale sensors rely solely on harvested en-
ergy from sources such as RF from a reader and ambient light.
Their small form factor, negligible weight, and long deployment
lifetimes, makes them ideal for several indoor and urban tagging
and tracking applications. These devices sense and store data when
not in contact with a reader, and use backscatter communication to
upload data when a reader is in range. A key challenge is that un-
like existing RFID tags that only transmit identifiers, RFID sensors
need to transfer more data to a reader during every contact event. In
this paper, we propose several optimizations to the RFID network
stack to support efficient bulk transfer while remaining compatible
with existing EPC Gen 2 readers. Our key contribution is the design
of a coordinated bulk transfer protocol for RFID-scale sensors that
maximizes channel utilization and minimizes energy lost to idle lis-
tening while also minimizing collisions. We present an implemen-
tation of the protocol for the Intel WISP, and describe how several
protocol parameters can be determined using empirical measure-
ments that characterize the wireless channel. Our results show that
our burst protocol vastly improves goodput to a reader in compar-
ison with vanilla EPC Gen 2 tags, improves energy-efficiency and
better use of a small energy buffer for data transfer, allows multiple
RFID sensors to share the channel, and also coexists with passive,
non-sensor tags.

1 Introduction
A wide range of sensing applications require miniature, ultra-

low power, and sensing in urban and indoor areas. This has led
to an increased interest in the design of small, cheap, harvesting-
based devices that are attached to common everyday objects (e.g.,
books, furniture, walls, doors, produce, etc), which can be used for
tracking these items [8]. One example of such devices are RFID-
scale sensors that exploit ambient light or RF for energy, and use
backscatter communication with an RFID reader for data transfer.

RFID-scale sensors, also referred to as Computational RFIDs or
CRFIDs, present a new frontier for distributed sensing [5]. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

devices are distinct from existing battery-powered sensor platforms
as well as commercial RFID tags. They are designed for continuous
sensing, however, unlike existing continuous sensing devices (e.g.
Motes), they use small capacitor buffers, rely solely on energy har-
vesting, and use more power-efficient backscatter communication
for data transfer. CRFIDs are also distinct from commercial RFID
tags in that they use hybrid harvesting to enable continuous sensing,
computation, and storage rather than just vanilla identification.

In this paper, we investigate how to efficiently utilize the energy
buffer of an energy harvesting CRFID node for enabling communi-
cation to a reader. CRFIDs are largely mobile and their movements
result in two communication states: connected and disconnected.
While tags are moving through their environment they perform any
number of sensing and computation operations. As time elapses,
these devices buffer some amount of data during disconnected op-
eration; occasionally they encounter a reader, resulting in a period
of connected operation of non-deterministic length, during which
the tag may transmit buffered data.

Our goal is to optimize bulk data transfer from a CRFID sensor
to an RFID reader. Because CRFID sensors buffer small amounts
of energy and potentially buffer large amounts of data, it is im-
perative that communications maximize the goodput while mini-
mizing the amount of energy per unit data. This presents several
challenges. First, commercial RFID readers follow the EPC Gen-
2 protocol which is optimized for large numbers of tags that each
transfer a small amount of data (tag identifier). This design makes
it inefficient when operating with CRFID sensors that are fewer in
number but need to transfer large amounts of buffered data to a
reader. While a complete re-design of the protocol stack is possi-
ble, this would mean that CRFIDs cannot take advantage of exist-
ing commercial RFID readers, making them far less attractive for
widespread use. Rather, we seek to support efficient bulk data trans-
fer while still being compatible with commercially available EPC
Gen 2 RFID readers. Second, in comparison with other sensor plat-
forms, CRFIDs have different hardware components, use different
energy sources, use different energy buffers, and follow a differ-
ent communication protocol. Thus, designing an energy-optimized
bulk transfer protocol for RFID sensors requires an entirely new
set of bandwidth and energy-optimization mechanisms. Third, CR-
FIDs present different usage scenarios since they are largely de-
ployed indoors, and often on mobile objects or people. Thus, any
data transfer protocol should operate effectively under such scenar-
ios where there are short contact durations with readers, and con-
siderable changes in link characteristics during mobility.

Our protocol, Flit, provides a fast and efficient alternative to the
existing EPC Gen 2 protocol for bulk data transfer from sensors,
while still remaining compatible with existing RFID readers. Flit
makes three fundamental changes to the protocol stack. First, it
enables each sensor to transfer data in a burst by responding to

all slots in a query round rather than just its assigned slot. This
design choice improves goodput and energy-efficiency by reduc-
ing wasted slots, and takes advantage of extended query rounds
with less control overhead. Second, Flit coordinates across sen-
sors by using explicit burst notifiers that are echoed by RFID read-
ers, rather than allowing devices to randomly pick a slot and trans-
mit. This approach serializes burst transfers across nodes, thereby
allowing greater goodput while reducing potential for collisions.
Third, Flit improves energy-efficiency by duty-cycling the RFID
sensor when another CRFID is in the middle of a burst. This avoids
wasted energy due to overhearing of reader messages during the
burst, thereby enabling better use of a small buffer of stored energy
on the CRFID sensor.

Our results show that:

• Flit achieves 60% greater goodput than EPC Gen 2 for a single
tag at different distances from the reader, and for different
mobility conditions. A breakdown shows that much of these
gains are due to the use of larger query rounds, and avoiding
wasted slots in the round.

• Flit achieves 4.5x more goodput than an EPC Gen 2 tag when
three tags are transferring data concurrently, and 9.2x goodput
when five tags are transferring simultaneously. In addition,
Flit has considerably higher fairness than EPC Gen 2, which is
skewed towards the node with highest SNR to the reader. This
allows sensors to take advantage of shorter contact durations
with readers.

• Duty-cycling in Flit acheives 34.6% better energy efficiency
than a non-duty cycled implementation. These energy sav-
ings are acheived by minimizing energy consumptions from
listening to other CRFIDs’ transmissions.

2 An EPC Class 1 Gen 2 Primer
The EPC Class 1 Gen 2 protocol is widely used by passive RFID

tags and readers using far-field communications in the 900 MHz
ISM band. Because RFIDs are primarily used for inventorying ap-
plications, the protocol is optimized for interrogating large numbers
of tags that each report a small amount of data. In this section, we
provide a brief introduction to the implementation details of Gen 2
that are relevent to this work.

2.1 Gen 2 Protocol Commands
The Gen 2 protocol for RFID tags is designed to inventory large

tag populations over a number of communication rounds. To realize
this protocol, a CRFID must traverse a simple state machine and
respond appropriately to a set of reader commands. Throughout this
discussion, refer to Figure 1 to understand how a sequence of reader
commands and tag responses are used to transmit data to a reader.
The critical subset of EPC commands a CRFID must implement
are:

Query, QueryRep, and QueryAdjust: A Query message (1) is
used to initiate a round of communication with tags. This message
is 22 bits long and contains several parameters to be used for this
round of communication such as the modulation and frequency to
be used for the backscatter communication link, and the number of
communication slots that will follow the query. The parameter crit-
ical to this discussion is the number of subsequent slots, Q, which
defines the number of slots to be 2Q− 1 where 0 ≤ Q ≤ 15. Tags
generate a random slot counter within the range of available slots
determined by Q, while the reader chooses Q such that the proba-
bility of tag collision is minimal.

Slots after a Query are filled with a series of QueryRep (10) and
QueryAdjust messages. A QueryRep message indicates a succes-
sive slot in the current round of communication, while a QueryAd-
just both indicates a new slot and the tag should increment or decre-

Query1

Random Number (RN16)

Acknowledgement (ACK)

Tag Reply(EPC Code)

2

3

4

Read Session Handle Request (Req_RN)5

Handle (RN16)

Acknowledgement(ACK)
Read Request

Requested Data

QueryRep
...

QueryRep

6

7
8

9

10

Reader Tag

EPC
 Transfer

R
ead O

verhead
O

ther Slots

Figure 1. An RFID reader initates a round of communication
with a Query message. A query is followed by a number of Rep
messages depending on the number of slots in a round chosen
by the reader. Each tag responds in one randomly chosen slot
and can optionally complete a read operation.

ment its Q value. Upon receiving either of these messages, a tag
decrements its slot counter; if this value becomes 0, the tag pro-
ceeds with communication.
Ack(RN16): A tag could directly reply to a query message, but
this is problematic because multiple tags could potentially choose
the same slot counter with probability 1

2Q−1 and collide; this is es-
pecially likely for small Q values. The reader must have a way
to disambiguate a specific tag to avoid this issue; for this purpose,
an RN16 (2) message is used. The RN16 message contains a 16-
bit random number generated by the tag. Upon decoding an RN16
from tag(s), the reader will echo back the RN16 as an ACK (7) it
received or the one it reconstructed or captured in the case of a col-
lision.
EPC: A tag can determine its RN16 was chosen by the reader if
it matches what was sent; if not, the tag gives up on this round of
communication to avoid further collisions. After receiving its own
RN16, the tag may backscatter its EPC (4) code to the reader. This
EPC code typically corresponds to a statically assigned Identifier.
An EPC code consists of 2 bytes of header, 12 bytes of data and
a 2 byte CRC. After sending its EPC, the tag will not respond to
subsequent QueryReps or QueryAdjusts during this round of com-
munication.
Req RN: A reader that wants to further investigate a tag’s state
after receiving its EPC code has the option to establish a communi-
cation handle using the commmand Req RN (5). A Req RN com-
mand consists of 40 bits of data: one byte of command data, two
bytes that contain the previously established RN16, and two bytes
of CRC. A tag responds by sending a handle and 2 bytes of CRC;
the reader ACKs (7) this message in the same way that precedes the
EPC.
Read: After establishing a session handle, the reader may send
a read command (8) to read a segment of the tag’s memory. This

command is 52 bits long: it contains one byte of header, 2 bits
that indicate a region of memory, a 2 byte address pointer, 1 byte
containing the number of 16-bit words to be read, the previously de-
fined handle, and 2 bytes of CRC. After receiving a Read command,
the tag responds with the requested data (9). The RFID appends the
session handle and a two byte CRC computed across the payload.

2.2 EPC Gen 2 Physical Layer
In addition to establishing reader and tag command sequences,

the Gen 2 protocol also defines a specification for the physical
layer used for communication between a reader and tags. Sim-
ilar to active radios, communication between a reader and tag is
half-duplex, meaning that tags cannot demodulate reader informa-
tion while backscattering requested data. Additionally, a tag relies
completely on the carrier wave transmitted by the reader to both
harvest energy and send information. Based on these unique chan-
nel characteristics, Gen 2 specifies the physical layer modulation
and encoding schemes used for the communication links between
tags and readers:

R→T modulation: The reader sends information to a tag by
modulating the RF carrier with amplitude shift keying (ASK). The
reader has the option to use one of three types of amplitude shift
keying (ASK): double-sideband ASK, single-sideband ASK, or
phase-reversal ASK. The motivation behind using ASK for sig-
naling is because of the simplicity of the decoding process; tags
need only measure the amplitude of the carrier wave to demodu-
late reader information. Readers use a fixed modulation format and
data rate for the duration of an inventory round, although tags are
capable of demodulating all three schemes. A reader will initiate
any signaling with either a preamble or a frame-sync bit sequence.
A preamble shall precede a Query command and denotes the start
of an inventory round. All other signaling begins with a frame-sync
bit sequence.

R→T encoding: Reader to tag communications use pulse-
interval encoding (PIE). A logical 0 is encoded by the reader as
one high amplitude pulse and one low amplitude pulse; a logical 1
is encoded as three high amplitude pulses and one low amplitude
pulse. Tags need only measure the amplitude and width of pulses
to decode bits information; in practice the amplitude is measured
by an analog comparator circuit and the tag only considers binary
amplitutdes. The main shortcoming of PIE is the bit error rate in-
troduced by quantization error. For example, if the second pulse of
a logical 1 is quantized as low, a logical 1 will be interpreted as two
0s.

T→R modulation: A tag backscatters data by detuning its an-
tenna; it uses fixed data encoding and data rate for the current in-
ventory round as specified by the reader’s query message. Tags
can select ASK or PSK modulation for its response; the reader is
capable of demodulating either type of modulation. Because tags
rely on the reader’s carrier wave to backscatter data, the modula-
tion scheme of a tag is limited by the modulation used for the car-
rier wave. Therefore frequency based modulation schemes, such as
FSK, cannot be used.

T→R encoding: One option for the tag to reader communica-
tion link, and the one the Intel WISP uses, is the miller-4 encod-
ing scheme. When using this scheme, a bit of information will
be encoded as normal high-low pulse combinations. For exam-
ple, Miller-4 encodes a logical 0 as 4 high-low pulse combinations;
however, the phase between two sequential 0s is inverted. A logi-
cal 1 is encoded as a phase inversion within a pulse. Because the
reader has more computational resources and power, more complex
encoding schemes such as Miller encoding, as opposed to PIE, can
be used to adapt the channel characteristics. Miller-4 encoding is
widely used in encoding radio signals because the frequency spec-

Protocol Operation bits Active Time Idle Time Energy
Query 22 983 µs 52 µs 648 nJ
QueryRep 4 273 µs 50 µs 210 nJ
QueryAdujst 9 415 µs 51 µs 319 nJ
Read 52 2100 µs 50 µs 1615 nJ
RN16 16 641 µs 2390 µs 422 nJ
Ack 18 660 µs 36 µs 508 nJ
Req RN 40 1616 µs 51 µs 1241 nJ
EPC 128 2450 µs 2360 µs 1615 nJ
CRC16 – 452 µs – 307 nJ

Table 1. An CRFID must emulate a protocol in software; this
leads to widely varying amounts of energy consumption de-
pending on the command message the sensor decodes or the
data it sends. Decoding a read message consumes twice the en-
ergy of decoding a query.

trum of the encoded signal contains less low-frequency energy than
a conventional non-return-to-zero signal and less high-frequency
energy than a biphase signal.

3 The Implications of EPC for Sensors
In this section, we discuss several implications the EPC Gen 2

protocol has on designing a bulk data transfer protocol that transfers
data from a CRFID sensor to a reader.

3.1 Read vs EPC for burst data transfer
The first question in designing a burst data transfer protocol is

which EPC Gen 2 message primitive to use as the building block for
transferring data. In the previous section we, introduced the EPC
protocol and showed how tags use protocol messages to backscatter
a 12-byte EPC identification code. Two options present themselves
in terms of adapting the EPC Gen 2 protocol for bulk data transfer
from the sensor to the reader. The first option is to use the EPC
message, and send the data instead of the 12 byte identifier within
this message. The second solution would be to use the EPC read
command. The read command allows an arbitrary amount of data
to be sent from a tag to a reader after it is selected in a normal
communication round.

At first glance, the Read message appears to be the best choice.
It can support variable length messages, thereby easily supporting
variable amounts of sensor data transfer from the tag to the reader.
In contrast, an EPC message is always 12 bytes. In addition, Read
messages are directly compatible with the EPC Gen 2 protocol and
therefore needs no further modifications to use on existing RFID
readers. But, as we show below, Reads are inefficient in terms of
energy consumption and channel utilization, making this the wrong
choice for CRFIDs.

Energy comparison: We compare the energy efficiency of reads
vs EPC messages using a set of energy benchmarks. The energy ef-
ficiency of the read command varies with the length of the data sent
in response to the read request, while an EPC message is always 12
bytes. Table 1 shows a breakdown of the energy consumed for each
message in the EPC Gen 2 protocol exchange. These benchmarks
were captured using the Intel WISP tag [15] (more details in §5).

From this breakdown, we can compute the amount of energy
consumed per byte of data transferred. Each Read command incurs
a total energy overhead of 5163 nJ for the steps 1–8 from Figure 1
that precede the read payload. The energy consumed for each EPC
command varies a small degree based on whether it is in response to
a Query, QueryRep or QueryAdjust since they have different sizes;
it is 1885 nJ for a Query, 1447 nJ for a QueryRep and 1556 nJ for
a QueryAdjust.

We can see from the numbers that for a payload size of 12 bytes,
an EPC message in sent in response to a QueryRep is 3.7 × more

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10

G
o

o
d

p
u

t
(b

y
te

s
/s

)

Distance (m)

Standard EPC Gen 2
Read cmd with 12 byte payload

Figure 2. A read command that requests 12 bytes achieves half
the throughput of EPC-based messages as a result of additional
protocol overhead.

efficient than a read of the same size; EPCs are more efficient be-
cause the number of message exchanges in the protocol are a strict
subset of those that occur in a read as shown in Figure 1. In order
to break-even, a read message would need to have a payload greater
than 57 bytes.

Goodput comparison: We now turn to the goodput achieved by
transferring data using Reads vs EPC messages. There are two fac-
tors to consider: a) Read messages require more time due to addi-
tional rounds of initiation, and b) Read messages are longer than
EPC messages and experience different loss rates.

First, we look at the break-even point between EPC and Reads
due to protocol overhead. As shown in Table 1, the overhead for
setting up each read command is 11.425 ms whereas the overhead
for setting up a Query, QueryRep or QueryAdj is 4.762 ms, 4.05 ms,
or 4.193 ms respectively. Thus, assuming that both Reads and EPC
messages experience the same loss rate, a read message would need
a payload larger than 30 bytes to obtain the same goodput as of that
using EPC messages.

We now empirically validate these results. In Figure 2, we plot
measured goodput of standard EPC Gen 2 messages compared to
the goodput of 12 byte Read payloads. These experiments were
conducted within line of sight of an Impinj Speedway reader across
varying distances. Our results match the performance predicted by
our previous calculations, showing that Reads consistently get only
half the throughput of EPCs for similarly sized messages.

Longer read messages: While using long read messages might
seem like a solution, we run into several other considerations that
make this difficult to implement. On an Intel WISP, we found that
reliability dropped to be close to zero once the read payload ex-
ceeded 16 bytes. While lack of visibility on the reader side makes
it difficult to precisely attribute the sharp goodput drop to a specific
cause, we hypothesize that this results from a combination of chan-
nel error and timing drift for long messages. In addition, message
length has a dramatic impact on loss rate — even a 12 byte mes-
sage incurs about a 10% loss rate on a backscatter link; increasing
the message size by 5× to get to the breakeven point for a read
command is certain to dramatically increase losses.

In conclusion, these results show that the Read command is a
bad option for designing a data transfer protocol from CRFIDs to
a reader, and implies that we should build a protocol using EPC
messages.

 0

 0.2

 0.4

 0.6

 0.8

 1

Query QueryRep QueryAdjust

F
ra

c
ti

o
n

 o
f

M
e
s
s
a
g

e
s

Message Type

1m
7m

Figure 3. Communication slots are biased towards Queries at
short range (1m). At a longer range (7m) losses result in the
reader sending more QueryAdjust messages.

3.2 EPC Protocol Inefficiency
The Gen 2 RFID protocol is designed around inventorying large

numbers of tags that need only report a static identifier. It is there-
fore primarily focused on collision avoidance when there are large
numbers of passive tags.

A key parameter that controls the efficiency of the EPC Gen 2
protocol is the window size, Q. The window size is a parameter that
is set by the reader based on the tag population that it observes, as
described in §2; during a round a number of slots are chosen such
that the probability of collision between two tag responses is neg-
ligible. The EPC Gen 2 standard provides some general guidelines
as opposed to a specific algorithm for how to set Q, so the specifics
of the algorithm depends on the vendor and is not available to us. In
addition, there is often no way to control the Q values set by a reader
since modern RFID readers are designed with convenience of oper-
ation in mind and abstract low-level protocol parameters from the
operator. This means that the window size, Q, cannot be controlled
through the exposed API, which in the case of the reader we used
was the Low Level Reader Protocol (LLRP).

The efficiency of the EPC protocol clearly depends on the value
of Q set by a reader in each round. For example, if a reader picks
Q = 3 and there is only one tag present, then there are 8 slots in a
round, including the Query, of which only one slot is responded to
by a tag. In addition to the obvious throughput inefficiency, this is
also inefficient energy-wise as a tag incurs the energy overhead of
listening to the QueryRep or QueryAdjust messages for the empty
slots, which incurs non-trivial energy cost as shown in Table 1.

To quantify EPC Gen 2 inefficiencies, we place a single tag (In-
tel WISP) programmed to respond with its EPC code at two differ-
ent distances from the reader (1m and 7m). We then measure the
number of Query messages, QueryRep messages, and QueryAd-
just messages received by the tag. Clearly, the throughput and
energy efficiency is maximized if the reader chooses Q = 0 since
there is only one tag, and this avoids any wasted slots. Figure 3
shows a breakdown between the number of Query, QueryRep, and
QueryAdjust messages received by the tag at the two distances; if
Q = 0, the tag would only receive Query messages, therefore the
fraction of other messages received gives us an estimate of the in-
efficiency.

The results show that only about 65% of the messages are
Query messages, and the remaining messages are slots wasted
for QueryRep and QueryAdj messages due to the reader choosing
Q > 0. A log of the Q value chosen by the reader shows a dis-

triution between 1 and 6, with a mean of 2.5. Based on numbers
from Table 1, we can see that this translates to a 33.2% reduction
in throughput and 17.5% increase in energy consumption. This de-
sign is unfortunate for CRFIDs that may have large amounts of data
to transmit. Because reader contact events last only a few seconds,
each communication slot should be utilized to send data. If tags
implement the protocol verbatim, throughput and energy-efficiency
will be poor.

Thus, one of the central challenges that we face is designing an
efficient burst transfer protocol while not being able to control low
level operational parameters within the RFID protocol.

3.3 Asymmetric Link Quality
The RFID communication channel consists of two components:

the forward link (reader to tag) and the backscatter link (tag to
reader). One communication round consists of multiple message
exchanges in both the forward and backscatter links, as shown in
Figure 1. An understanding of the forward and backscatter links is
critical to a link quality estimation algorithm that is at the core of
any data transfer mechanism.

Intuitively, it would appear that the backscatter link is the bot-
tleneck for an RFID data transfer protocol. The signal to noise ra-
tio (SNR) for typical backscatter communication decays with the
square of distance for the forward link and to the fourth power of
distance for the backscatter link [19]. The significantly lower SNR
at the reader would suggest that the backscatter link should be the
key emphasis for a link quality estimation mechanism for CRFIDs.

But there are two other factors to consider: a) The antenna sen-
sitivity at the receiver, and b) The modulation and encoding scheme
chosen for the communication links.

Antenna sensitivity: To understand antenna sensitivity, we com-
pare an Impinj Speedway RFID reader and an Intel WISP as the tag.
The Impinj reader uses a mono-static antenna for sending and re-
ceiving data, which has a sensitivity of -80 dBm. In contrast to the
highly sensitive antenna used by the reader, the WISP uses a dipole
antenna for data transfer because of its simplicity. The dipole an-
tenna found on the WISP comprises two horizontally aligned cop-
per wires, embbeded in a printed circuit board. While it is hard to
measure the precise sensitivity of the WISP antenna, it is clear that
the sensitivity of the Impinj reader’s mono-static antenna is much
higher than the dipole antenna of WISP, which causes asymmetry in
the perceived signal of the forward and backscatter links. Because
the reader has a more sensitive antenna, it can receive a backscatter
signal that has a considerably lower SNR than what the RFID tag
can decode.

PHY encoding: In addition to different antenna sensitivities, the
physical layer encoding scheme also has significant impact on chan-
nel quality. As mentioned previously in §2.2, pulse interval encod-
ing (PIE) is used in sending information from the reader to the tag.
While PIE is simple to implement on a CRFID, it lacks robustness
in dealing with interference. If the width of a pulse is smaller than
the defined pulse width because of interference, the decoding pro-
cess will fail and result in an increase of the overall bit error rate.

In contrast, Miller-4 encoding is used for the backscatter com-
munication link. signal voltage levels to distinguish a logical 0 and
1. As compared to PIE, more pulses are required to encode one
bit of information. In addition, multiple rounds of voltage detec-
tion are required, which introduces additional complexity and en-
ergy consumption. Considering the additional level of coding, the
backscatter link should have higher link quality than the forward
link, because of its insensitivity to pulse timings.

Comparison of forward and reverse links: To provide an em-
pirical comparison of the effects of the above-described factors, we
now measure the packet loss rate of the forward and backscatter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
a
c
k
e
t

lo
s
s
 r

a
te

Distance (m)

Forward link

Backscatter link

Figure 4. The bottleneck of communication for the Intel WISP
is the forward link, whose loss rate increases with distance. The
backscatter link loss late remains constant as a result of reader
antenna sensitivity.

link at different distances. A 22 bit query message is used to mea-
sure the packet loss rate of the forward link and the 12 byte EPC
code, which includes 2 bytes of header and a 2 byte CRC, is used
to measure the packet loss rate of the backscatter link. Although
the EPC response is much longer than a query message, as shown
in Figure 4, the loss rate of the forward link increases with distance
while the loss rate of backscatter link remains below 10% across
distance. Considering the relative link qualities of the forward and
reverse channel links, the bottleneck of goodput in our system lies
in the forward link. This observation impacts our system design, as
we focus our efforts on measuring the forward communication link
and assume the backscatter link is strictly superior.

4 Design Methodology of a Burst Protocol
There are a number of factors to consider when designing a data

transfer mechanism around the use of EPC messages. A protocol
built around the EPC message response as a communication prim-
itive must strive to: 1) maximize data transfer rates so that sensor
tags can transfer their data quickly and efficiently to a reader dur-
ing short contact events, 2) minimize power consumption so that
an CRFID sensor can maximize the amount of data transferred us-
ing the small energy buffer, and, and 3) inter-operate with standard
commercial RFID readers, so that our tags can leverage existing
RFID reader infrastructure.

To address these goals, we present the design of a burst protocol
for CRFID sensors. First, we demonstrate how sensors can achieve
high levels of goodput using burst-mode data transfer that lever-
ages unused slots in the EPC Gen 2 protocol. Second, we show a
coordination mechanism that uses burst notifiers to avoid collisions
among bursting tags. Third, we present a duty-cycling mechanism
that minimizes the energy lost to idle listening. Finally, we discuss
implications of the design choices that we make when there are a
mix of sensor tags that are bursting and standard EPC Gen 2 tags
that are only transmitting their identifier.

4.1 Burst-Mode EPC Transfer
Previously, we showed that a single tag responding in only one

slot within a round of communication achieves goodput propor-
tional to the number of slots chosen by the reader. Thus, a key ques-
tion is: how can we improve protocol efficiency when a tag needs
to respond across several rounds of communication. This is par-
ticularly important since messages are limited to 12 byte payloads,
necessitating a large number of rounds before several hundreds of

bytes of sensor data can be transferred.
To address the problem of minimizing protocol efficiency, we

use a simple approach wherein a CRFID sensor uses all slots within
one round of communication. In other words, a tag responds to
each Query, QueryRep, and QueryAdjust message regardless of the
value of its slot counter. We now discuss the implications of such a
strategy on energy-efficiency and goodput.
Implications on energy-efficiency: To understand how energy
efficiency is affected by the number of slots reserved for commu-
nication, we must understand the implications of a single tag re-
sponding within all communication slots. As specified, a reader
implementing the EPC protocol expects an individual tag to occupy
a single communication slot. As a result of seeing many slots filled
by different EPC messages, the reader decides that many tags are
present and increases Q to avoid collisions amongst the perceived
tags. The reader will continue to increase Q to its maximal value
of 15, as it always finds the slots it previously allocated filled to
capacity.

One may expect that causing the reader to react in such a way
could result in confusion and result in poor efficiency; however, we
argue that increasing the number of communication slots also in-
creases energy efficiency. We justify this claim using Table 1. As
we previously showed, a query message will be followed by a com-
bination of 2Q−1 reps and adjusts. A subtle benefit of QueryReps
and QueryAdjs, as opposed to queries, is their brevity. Based on
protocol specs query, rep and adjust have lengths of 4, 9, and 22 bits
respectively. As Q grows, the energy expended during a round of
communication becomes dominated by round trips involving reps
and adjusts; this cost is quantified in the following equation:

Eround = Equery +
(

2Q+A−1
)
·Erep +n · Eadjust (1)

Equation 1 shows that the total energy spent on a round of com-
munication (Eround), is the sum of the energy spent on listening
and replying to queries(Equery), reps(Erep), and adjusts(Eadjust).
In the simplest case, the reader assigns Q within the intial query
message, followed by the corresponding number of reps; however,
the reader may decide to send an adjust message to increment or
decrement Q after a round has already begun. In Equation 1, n rep-
resents the number of adjust messages sent, while A indicates these
messages’ net impact on Q.

Taking into account the bits required to decode the initial com-
mand (Query, QueryRep, or QueryAdj), the RN16 value transmit-
ted and received by the tag, and finally the transmission of the EPC
code itself, we find that rep and adjust round trips take 90.2% and
92.9% of the energy of a query round trip. Thus, for sensors that
cause Q to become large by adopting burst transmissions should
potentially acheive 9.8% energy savings as compared to a round
containing only a query.
Implications on Goodput: A similar equation may be derived
that quantifies the goodput, in bytes per second, of the channel as a
function of the distribution of messages sent by the reader within a
round:

Goodputround =
12

Timequery
+

12 ·
(
2Q+A−1

)
Timerep

+
12 ·n

Timeadjust
(2)

By similar analysis, we look at the distribution of queries, reps,
and adjusts within a round; this time, we take the 12 bytes of data
transmitted by the sensor (Length of EPC message) and divide by
the total time each message type requires. Because inter-frame
times are fixed independently of Q, the shorter messages will re-
sult in slightly improved goodput. For large Q, sensors using burst

Reader

CRFID

R
N

16
(B

ur
st

 N
ot

ifi
er

)

ACK

(Burst Notifier)

AC
K

(B
ur

st
 N

ot
ifi

er
)

A
C

K
(B

urst N
otifier)

CRFID Gen 2 Tag

Figure 5. A tag that wishes to send a burst sends a burst noti-
fier as its RN16. The reader broadcasts this value to all tags in
range.

transmissions can achieve a potential 8% higher goodput over a
round containing only a query.

4.2 Coordination via Burst Notifier
Responding in every slot has a severe limitation: if more than

a single sensor is present, many sensors will suffer from collisions
and see reduced energy efficiency and goodput, instead of the im-
provements we previously quantified. To address this issue, we de-
sign a coordination mechanism that avoids most collisions intro-
duced by our burst-mode data transfer mechanism. Because RFID
sensors are highly constrained in terms of hardware resources and
energy, this coordination strategy needs to be effective while re-
maining simple. The primary challenge for such a coordination
scheme is staying within the constraints of the Gen 2 protocol so
existing hardware may be used for implementation. Thus, we ask
the question: How can CRFID sensors use the existing EPC proto-
col to efficiently coordinate bursts?

A system using an active radio could solve this problem using
control messages such as RTS/CTS or an overhearing-based ap-
proach such as CSMA to coordinate transfers between peer nodes.
These approaches are not suitable for backscatter communication
circuits found in RFIDs because RFIDs are unable to decode mes-
sages originating from peers. Therefore, any co-ordination mech-
anism should rely on the reader, and in particular, should use an
existing message from the EPC Gen 2 protocol.

Due to this limitation, we use an approach designed to be com-
patible with EPC Gen 2. As we showed in Step 3 of Figure 1, the
reader echoes the RN16 of the RFID it chooses to occupy a par-
ticular communication slot. Our strategy is to overload the RN16
to signify that a particular CRFID is currently bursting. We ac-
complish this by providing a special interpretation of a segment of
reserved RN16s; we partition the space of RN16s as 0 < n < 216,
where n is the number of CRFID sensors deployed and values less
than n are considered burst notifiers. A sensor that wishes to send a
burst of EPC messages will use its statically selected burst notifier
chosen from the available pool, instead of a random value. This
mechanism is illustrated in Figure 5, where we show that a burst
notifier sent by a CRFID is overheard as the reader’s acknowledge-
ment by other tags in the reader’s RF field. Note that the sensor
selects a notifier just once for an entire burst, rather than once per
slot as is done by a standard tag.

The RN16 burst notifier is used in the following way: prior to
initiating a burst, a CRFID sensor listens to the channel after de-
coding a query, rep, or adjust message. If the sensor observes an
RN16 within the range of burst RN16s, it should remain silent to
avoid colliding with an ongoing burst. If the slot contains an RN16
outside of this range, it can go ahead and start a burst transfer af-
ter the current round using its own burst notifier, as non-burst EPC

messages occupy only one slot.
It is, of course, possible that another CRFID sensor is in the mid-

dle of its burst and either the reader might have missed the burst
notifier or the listening sensor might have not received the noti-
fier echoed by the reader due to channel error. Both cases would
lead the listening sensor to conclude that the channel is free and
start to burst, resulting in collisions at the reader. A collision at the
reader typically results in the reader receiving the stronger signal
among the colliding tags due to capture effect. The reader echoes
the burst notifier that it receives, which results in only the sensor
with stronger signal continuing to burst. While a collision could
also result in neither signal being received by the reader, we find
that this is extremely uncommon due to the high sensitivity of the
reader antenna.

To prevent the sensor from holding the channel indefinitely, the
burst will terminate after a small, fixed amount of time; this time
should be set to a value large enough to amortize coordination over-
heads, but small enough to allow mobile tags with limited com-
munication opportunities a chance to offload a burst of data to the
reader.

4.3 Duty-cycled Coordination
Employing burst notifiers minimizes collisions between burst-

ing nodes, but a burst tag expends energy by listening idly during
another node’s burst. Because nodes will occupy hundreds of slots
during a single burst, they can incur significant overhead and is a
problem that needs to be addressed.

The evident solution to this problem is to duty-cycle RF subsys-
tem of a sensor tag when it is waiting for another tag to complete its
burst. The RF subsystem comprises two components: a) the analog
comparator that senses the channel to detect the presence of a bit,
and b) the microcontroller that wakes up upon each interrupt from
the comparator to process the bit and check if a valid message is
present. The duty-cycling strategy is straightforward — shutting
off the comparator avoids any energy lost from responding to inter-
rupts and therefore idle listening.

If a waiting sensor tag knew precisely how much longer a burst
from another tag would last, it could sleep for exactly that duration.
However, this information is unavailable since a sensor tag relies on
the burst notifier from the reader to detect a burst, which provides
no information on the time remaining for the burst. Thus, a tag
needs to periodically wakeup to check the channel and detect if a
burst has ended. Thus, a key challenge for a duty-cycling strategy
is to efficiently find the end of a burst so that sensors can capture
the channel from another sensor between bursts and react quickly
to mobility dynamics while avoiding most of the energy wastage
caused by overhearing.

Thus, there are two questions that remain regarding how to duty-
cycle an CRFID sensor: a) how much amount of time a sensor
should probe the channel and b) how much time a sensor should
sleep.

Probe Duration: The probe duration should be long enough such
that a tag can detect whether another tag is continuing to burst. This
duration is equivalent to a single slot in a query round. A sensor tag
wakes up, listens to the first Query, QueryRep, or QueryAdjust slot,
and sees whether a burst notifier is echoed by the reader during this
slot. If so, it concludes that another tag is bursting and goes to
sleep; if not, it concludes that it can initiate its own burst and starts
transmission in the next slot. In the middle of a burst, if a tag detects
that the reader has echoed a different burst notifer it concludes that
another CRFID sensor is bursting and goes to sleep to save energy.

A potential issue here is that the the duration of a slot can vary
because a) Query, QueryRep, and QueryAdjust messages are of dif-
ferent lengths, b) a slot can terminate at different times depending
on whether the reader times out after the RN16, Ack or EPC steps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Interval (ms)

Close range
Connection edge

Continous mobility
Random mobility

Figure 6. The vast majority of valid message frames arrive
within intervals smaller than 5 ms for a variety of mobile and
static communication scenarios.

in its state machine and c) mobility can introduce additional dy-
namics. To address this, we look at the probe duration empirically
by measuring the duration between Query, QueryRep or QueryAd-
just messages for a continuous exchange between an Intel WISP
programmed with the EPC Gen 2 protocol and a reader. We look
at this distribution for different distances from the reader, as well
as for different mobility patterns. Figure 6 shows the CDF of the
inter-message duration.

The results show that the inter-query intervals do not depend
significantly on the distance, and are impacted a little ,but not a lot,
by mobility. The knee of the curves are in the 3-6ms range; we pick
5ms as our probe duration since in 90% of the cases, this results in
a query being received by the CRFID.

Sleep Interval: There are several considerations in determining
the comparator sleep interval. First, the sleep interval must be long
enough that we get significant energy benefits from duty-cycling.
Second, it should be short enough that a tag can quickly react to
mobility-induced channel dynamics. Third, it should have sufficient
randomization so that we avoid unwanted synchronization issues
that can result from multiple tags waking up at the same time.

In terms of the energy consumption, we want a duty-cycle of
lower than 10%, hence the sleep duration should be at least 50ms
when the probe duration is 5ms. To understand the typical contact
duration at walking speed, we use 1 reader in a corridor, and walk
in circles around it. The resulting contact duration CDF is shown
in Figure 7. As can be seen, a typical contact duration is a few
seconds, hence the sleep duration should be much smaller than this
number. To prevent synchronization issues, the tag can random-
ize the sleep time within a tolerable range that provides a desired
amount of energy savings and reactivity to expected mobility pat-
terns for a given deployment.

4.4 Co-existence with Non-burst Tags
While our discussion thus far has assumed the tag population

comprises solely of sensor tags that have to transfer data in a burst,
we now look at the implications when a mix of sensor tags and
standard EPC Gen 2 tags are communicating with the same reader
infrastructure. Not surprisingly, the net effect is that standard EPC
Gen 2 tags incur more delay in communicating with a reader in-
frastructure. However, there are mitigating factors that can enable
better co-ordination across tags.

The burst mode transfer mechanism that fills up all slots of a
round impacts standard Gen 2 tags in two ways. First, a standard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Connection time (s)

Figure 7. For human-scale mobility rates, the connection time
between a tag and reader typically lasts several seconds.

tag which picks a slot within a round will collide with a burst tag,
resulting in loss of one of the messages. In practice, we find that be-
cause of reader sensitivity, the reader gets one of the CRFID’s mes-
sages with high probability (capture effect), hence it is still possible
that the standard tag gets its data through. However, if the burst tag
has the stronger signal, the standard tag suffers. Second, the burst
transfer approach results in large Q values, which makes a round
long; since standard tags only respond in one slot within a round,
this makes their response slow. This effect is mitigated by the fact
that a burst lasts only for a short duration of time (1s in our imple-
mentation), after which a tag goes to sleep for a short window of
time before bursting again. The duration between bursts is suffi-
cient for a few short communication rounds, enabling standard tags
to get their data through.

The use of burst notifier facilitates co-ordination across CR-
FIDs, however, passive tags are free to choose any value from 0
to 216 as its RN16, so it is possible that a passive tag could choose
an RN16 that conflicts with a burst notifier. However, we choose a
small part of the space for burst notifiers since we expect the num-
ber of sensors in the vicinity of a reader to be in the tens (equivalent
to the number of objects in the vicinity of a reader) as opposed to
thousands. Thus, the probability of collision is low. In addition, the
RN16s are chosen anew in each round, hence a standard tag would
likely choose a non-colliding RN16 in the next round.

5 Implementation
Our bulk transmission protocol is well suited for implementa-

tion on CRFID sensors because it is a modification of the EPC Gen
2 protocol they already support. CRFID sensors that want to imple-
ment the protocol need only modify their state machine to properly
handle burst-mode transmission, burst notifers, and duty cycle ap-
propriately in response to received message frames from a reader.
In this section, we show the state machine we used to implement
our Bulk Transmission Protocol for the Intel WISP. Next, we de-
scribe how state machine parameters can be defined based on results
from channel measurements and mobility experiments. Finally, we
describe the methodology used for performing channel measure-
ments, as well as the strategies used for testing and evaluating our
firmware modifications.

5.1 State Machine
Figure 8 shows the state machine used to implement our Bulk

Transmission Protocol for the Intel WISP. Sensors that have data
to send initialize a timer interrupt and begin operation in the Sleep
state. After this timer expires, the sensor activates its compara-

Frame
Check

Sleep

Receive Message Frame /
Comparator Active

Buffer == Empty || Timeout ||
4 Slots Empty /

Comparator Disable

C
ha

nn
el

 Id
le

 /
C

om
pa

ra
to

r D
is

ab
le

Tim
eout /

C
om

parator A
ctive

Burst

RN16
Probe

R
ec

ei
ve

 M
Y_

N
O

TI
FI

ER
 /

Tr
an

sm
it

D
at

a

!Receive
BURST_NOTIFIER /
Comparator Active

Tim
eout ||

 Receive BURST_NOTIFIER/

Comparator D
isable

Buffer != Empty /
Transmit Data

Figure 8. A coordinated bursting protocol for CRFID sensors
can be implemented as a state machine. The protocol uses sleep
states to both avoid contention and achieve energy efficiency.

tor and enters state Frame Check; after initializing another time-
out value, the microcontroller enters a low-power mode, only wak-
ing up to handle an incoming message frame. Upon receiving a
valid message frame, the sensor will enter state RN16 Probe; else,
if the sensor does not hear a valid delimiter from a reader, it goes
back to state Sleep after timing out. While in state RN16 Probe,
the sensor initializes its timer with another timeout value; af-
ter hearing at least one empty frame from the reader, in which
the sensor does not hear another sensor’s BURST NOTIFIER, it
will send its own BURST NOTIFIER in response to a Query,
QueryRep, or QueryAdjust message. If the sensor hears its
own BURST NOTIFIER, it enters state Burst; if another sensor’s
BURST NOTIFIER is heard, instead of an empty slot or if the
timeout value is reached, the sensor enters state Sleep. Upon en-
tering state Burst, the sensor will again initialize a timer, then begin
transferring the contents of its buffered data as an EPC message in
response to Query,QueryRep, or QueryAdjust messages; the sen-
sor uses its BURST NOTIFIER to send every message within the
burst. Upon completion, timeout, or detecting 4 slots during which
it finds no acknowledgement, the sensor will disable its comparator
and return to state Sleep.
5.2 Parameter Selection

While the state machine we previously described is a useful
framework to constuct our protocol, it would not function well if
the parameters were blindly selected without regard to real system
constraints or channel characteristics. Here we provide some intu-
ition in how to choose parameters based on experience with a real
implementation:
Timeouts: The timeout values used in our state machine are cho-
sen based on Figures 6 and 7 in §4 that give good insight into ex-
pected connection intervals and message inter-arrival times respec-
tively. In practice, these timeout values are used as comparison val-
ues for Timer A 1 on the WISP’s MSP430 microcontroller. When
considering hardware constraints and initialization overheads, one

Figure 9. A Telos mote is used to gain visibility into communi-
cation measurements obtained from a mobile WISP

must also be careful to not choose a set of timeout values that gen-
erate too many interrupts that interfere with the WISP’s ability to
timely respond to reader messages. In practice, timeout values > 2
ms give the WISP sufficient time to listen for messages, while also
providing the time needed to for timer initialization.

Burst Length: The maximum time that allow a WISP to continu-
ously burst data in reader slots is another parameter that depends on
hardware constraints. When considering how to bound the amount
a tag can burst, we considered two strategies: one that bounds the
total amount of data to burst, and another which bounds the time a
tag can burst. Beause tags can see vastly different versions of the
wireless channel, in practice the amount of time required to send
a fixed amount of data varies widely. In a benchmark experiment
we found that it took anywhere from 7.1 and 11.7 seconds to send
12kB of data. Conversely, by fixing the amount of time a tag can
burst causes the amount of data sent will vary. Because tags use
time constants to coordinate, it is important to keep the amount of
burst time fixed to minimize the likelihood of overlapping bursts.
Although this could cause different tags to deliver data at differ-
ent rates, they will still get equal opportunities to use the channel
and their data delivery rates will vary according to their respective
channel conditions.

Burst Notifiers: The final parameter we consider is the burst no-
tifier used by tags to coordinate their burst transfers. When mod-
ifying the WISP firmware, we found it can be difficult to get the
state machine to stay within the tight timing constraints specified
by EPC Gen 2 protocol. Complex operations in the firmware will
diminish responsiveness and in the end manifest as a reduction in
goodput. For example, choosing a poor ordering of comparisons
while looking for a burst notifier can lead to a 30% reduction in
goodput. We also found that messages sent from the reader to the
WISP can contain bit errors; one example is the RN16 field, which
in actuality contains only 15 bits of consistent data.

5.3 Debugging and Evaluation Methodology
Finding a set of good parameters for use in our protocol is part

of a challenging development and evaluation cycle because of the
Intel WISP’s limited visibility, energy, and tight timing constraints.
We highlight how we overcame each of these challenges below:

Visibility: To overcome visibility issues, a WISP can be tethered
to a JTAG debugging tool to observe its internal state. In many
mobile scenarios, JTAG tethering in not a viable option; in these
cases, software state of interest can be transmitted to a reader as an
EPC code. To understand timing-related phenomena, such as inter-
message times, Timer A1, which is unused by the firmware, can be
used to capture the intervals which again are sent as EPC messages.
In many cases, we found the cycle overhead in initializing a timer
when decoding reader message frames was large enough to vio-
late the timing requirements of EPC Gen 2 and result in the reader

being unable to decode tag message frames. To solve this particu-
lar problem, we use a Telos mote [3] to count the time between two
GPIO interrupts generated by the WISP and log the resulting timing
information to its internal flash using a simple application written
for the TinyOS-2.x [12]. The Telos platform is well-suited for the
scale of timings typically present between protocol messages; the
platform itself does not significantly impact mobility because of its
small size.
Energy Limitations: Evaluating a burst mode transfer mecha-
nism with a limited energy supply is difficult. Because our work
assumes tags have some amount of buffered energy when initiat-
ing contact with a reader, it is difficult to refresh a capacitor-based
energy store to a consistent level while running experiments; this
is especially bothersome when multiple tags are involved. To re-
move measurement dependencies on harvested power, we power
tags directly with batteries; this setup assumes they have a plentiful
store of energy while in contact with a reader. Seperately, we col-
lected a series of energy benchmarks that carefully measured the
amount of energy required for sending and receiving protocol mes-
sages and quantified non-trivial computation overhead. By combin-
ing these two mechanisms in our evaluation, we were able to design
a burst mechanism that minimzes energy consumption, while adapt-
ing accurately because performance measurements depended only
on channel conditions and not energy.
Channel Measurements: Another evaluation challenge lies in
only having the ability to measure the channel indirectly. The pro-
tocol used to communicate with the Impinj reader, LLRP, does not
provide an interface to directly modify and observe messages or
set message rates sent by the Impinj reader. This makes it im-
possible to get a completely accurate picture of channel charac-
teristics, such as loss rate, from the reader to a tag. To over-
come this obstacle, we embed counters that indicate the number of
Query/QueryRep/QueryAdjust messages received into EPC mes-
sages, giving us limited visibility of the forward link. These mes-
sage counters assist in determining the rate of messages sent in the
forward link, as well as the contribution each type of message has
on data delivery. Because an EPC code transfer happens directly
after receiving ACK messages from the reader, the ratio of ACKs
to EPC codes received at the reader gives us a measure of the losses
present in the backscatter link. Additionally, the counter informa-
tion we send allows us to align messages recorded at the reader,
with GPIO timing triggers on the Telos mote.

6 Evaluation
In this section, we evaluate the implementation of our bulk trans-

mission protocol. The evaluation consists of four parts: 1) quantify-
ing the goodput achievable by burst-mode EPC transfer, 2) showing
that our burst notifier based coordination mechanism retains most
of the goodput achieved by bursts by avoiding collisions, 3) demon-
strating the energy benefits of duty-cycling, and 4) evaluating the
interaction between bursting tags and standard EPC tags.

6.1 Burst mode transmission
The burst mode transmission protocol that we described in Sec-

tion 4 ensures that all slots created for a round of communication
are utilized by CRFIDs. In this section, we evaluate our burst trans-
mission protocol in three ways: 1) We measure the window size al-
located by Impinj reader when burst mode transmission is utilized,
2) We evaluate the goodput benefit gained by burst mode transmis-
sion, and 3) We provide a breakdown to show where the goodput
benefits comes from.
Window size: In §4.1, we argued that the burst mode trans-
mission strategy results in an RFID reader choosing a large win-
dow size (Q value) within a round of communication, leading to
greater opportunities for using shorter messages, such QueryRep or

 0

 5

 10

 15

 20

 0 2 4 6 8 10

Q
 v

a
lu

e

Distance from reader (m)

Standard EPC Gen 2
Burst

Figure 10. Window size parameter Q is heavily impacted by
burst mode operation. The reader chooses larger Q in response
to bursting tags, leading to more opportunities to use shorter
messages for transfer.

QueryAdjust, for data delivery. To validate this argument, we de-
sign an experiment that compares the Q value chosen by an Impinj
reader for standard EPC transfer vs burst transfer. Our experiment
setup places an Intel WISP in line-of-sight of an Impinj reader’s an-
tenna. The WISP piggybacks the Q value in place of the EPC code
that it backscatters to the reader.

Figure 10 shows that the Impinj reader consistently selects a
considerably larger Q value (Q ≈ 10) for burst transmission inde-
pendently of distance. As described in §4.1, a large Q value is good
for burst transmission. In contrast, the Impinj reader selects Q ≈ 2
when the standard EPC Gen 2 protocol is used. Any Q value larger
than 0 leads to un-utilized slots, therefore, this choice results in a
significant fraction of wasted slots.

Goodput: To quantify how burst-mode transfer of EPC codes
better utilizes slots, we design an experiment that compares the
goodput of a burst-optimized version where a tag responds within
every slot versus EPC Gen 2. In this experiment, we measure the
goodput of an Intel WISP tag programmed to act as a conventional
EPC Gen 2 tag vs a WISP programmed for burst mode operation.
We log the average throughput observed by the reader at different
distances for several minutes and compare the results. Figure 11
shows that burst mode communication achieves 60% higher good-
put than standard EPC Gen 2, and that these benefits are sustained
across different distances. It is also notable that, in practice, the
benefits of burst transfer are considerably larger than those that we
predicted in §4.1. These additional gains are a result of the reader
over-allocating slots for passive tags, resulting in comparatively low
goodput.

Goodput breakdown: The increase in goodput for burst trans-
missions stems from two factors. First, we utilize every slot rather
than one slot in each inventory round to transmit data. As shown in
Figure 12, a standard EPC Gen 2 protocol only utilize only 64.84%
of slots in each inventory round at 1m and 68.05% at 7m since it re-
sponds only to either a Query message or a QueryRep message but
not both. In contrast, a burst sensor tag utilizes 100% of the slots.
Second, in burst mode, we get more opportunities to exploit shorter
inventory messages, QueryReps and QueryAdjusts, for data deliv-
ery. Shorter messages in the forward link have lower loss rates; this
leads to tags succesfully capturing slots for data transfer with higher
probability. For large Q, communication is dominated by slots that
are initiated by QueryRep and QueryAdjust messages; as shown

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16 18

G
o

o
d

p
u

t
(b

y
te

s
/s

)

Distance from reader (m)

Standard EPC Gen 2

Burst

Figure 11. RFID-scale sensors can achieve a 60% improvement
in goodput by utilizing all slots in a communication round. The
amount of improvement that can be extracted depends on the
window size chosen by the reader.

 0

 0.2

 0.4

 0.6

 0.8

 1

Query QueryRep QueryAdjust

F
ra

c
ti

o
n

 o
f

M
e
s
s
a
g

e
s

Message type

Standard EPC Gen 2 (1m)
Burst (1m)

Standard EPC Gen 2 (7m)
Burst (7m)

Figure 12. Bursting CRFIDs cause the number of slots in a
round to increase. We observe this as an increase in the fraction
of QueryReps received.

in Figure 12, the percentage of QueryReps at 1 m while bursting
increases to 76.56%, as compared to the 34.18% slots in standard
EPC Gen 2. A similar breakdown holds true for QueryReps at 7 m
and QueryAdjusts across both distances. With more QueryRep and
QueryAdjust messages exploited, tags get more opportunities for
data transfer that contribute to higher goodput.

6.2 Coordinating bursts
While burst-mode transfer provides significant improvements to

goodput, it also introduces problems when multiple RFID sensors
wish to use the channel simultaneously. In this experiment, we
evaluate how much the co-ordination mechanism benefits goodput
when multiple tags are transmitting.

We consider a baseline case when a single CRFID is present, a
low-contention case when three CRFIDs are simultaneously trans-
ferring data and a high-contention case when five tags are simulta-
neously transferring data. All tags are placed in a linear configura-
tion parallel to the Impinj reader within line-of-sight of the antenna
at a distance of 1 meter. Figure 13 shows a breakdown of the good-
put for three protocols: a) standard EPC Gen 2, b) Burst mode with-
out coordination, and c) Burst mode transfer with cooordination.

Single node case: First, we look at the case where there is a
single tag. We see that the standard EPC Gen 2 tag performs sig-
nificantly worse than the bursting sensor tags, as expected. We also
see that the co-ordination scheme performs about 9.17% worse than
the case without co-ordination. This is because of the overhead re-
quired for coordination. After finishing a burst transmission, a co-
ordinated tag releases the channel for a 50 ms to allow other wait-
ing tags to acquire the channel, which reduces goodput. Also, the
code required to check for burst notifiers results in slightly slower
reaction times of the state machine running on Intel WISP which
occasionally results in violating the timing requirements specified
by Gen 2. We believe that the latter problem can be overcome with
a careful re-structuring of the Intel WISP radio stack to minimize
timing jitters.

Three node case: When we increase the tag population to three,
we see a similar behavior in terms of overall goodput, but the split
across nodes is very different. Overall, we see that burst mode
transfer with coordination is still a little lower (7.67%) in total
goodput than the uncoordinated case. However, the un-coordinated
case gives out more than 87.3% of the channel to one of the three
tags. The higher goodput achieved by one of the tags is a result of
the capture effect. This tag’s RSSI is 7.5 dBm higher than other tags
in the experiment, and it therefore dominates transmissions when
there is no co-ordination mechanism. Because of their lower RSSI
values, other tags cannot capture the channel effectively, leading to
highly skewed goodput distributions across the three nodes. The
burst protocol with co-ordination is considerably fairer — all three
tags receive a good chunk of the overall goodput.

Five node case: When the tag population reaches five, the impact
of collisions becomes significant and adversely impacts the perfor-
mance of the non-coordination mechanism. For bursts without co-
ordination, the total goodput reduces by 65.7% as compared to the
single tag and the three tag cases. In addition, the uncoordinated
scheme is highly unfair and allocates 89.98% of the goodput to one
of the five tags.

Table 2 shows the Received Signal Strength Indicator (RSSI)
values logged at the reader for the backscattered data from the five
tags, and how that influences goodput. Even though all tags are
placed at the same distance from the reader with similar orientation,
different tags observe different RSSI values as a result of small, un-
controllable deviations in antenna orientation. It can be seen that
for uncoordinated bursts, the tag with strongest RSSI captures the
channel entirely and completely swamps the other tags. One par-
ticular tag, Tag A, achieves the highest RSSI of -39 dBm, which in
turn has the highest measured goodput of 540.5 bytes/second. The
other four tags cumulatively get 10.02% of the total goodput, each
less than 30 bytes/second.

In contrast, coordinating bursts results in much better perfor-
mance as the tag population increases to five. The total goodput
remains almost exactly the same as the totals for the three and one
tag case, showing that co-ordination manages to avoid collisions
and serialize transfers across nodes. The RSSI breakdown in Ta-
ble 2 shows the co-ordination mechanism doesn’t necessarily favor
the tag with highest RSSI — in fact although Tag D’s RSSI is lower
than Tag A, it gets a large fraction of the goodput. Overall, the co-
ordination mechanism also results in fairer allocation across nodes.

To understand the dynamics of co-ordination, and how fre-
quently nodes switch among each other, we look at the a breakdown
of the duration that each tag holds the channel in a burst. We define
a burst period as a contiguous period when a single tag is burst-
ing; at the end of the period, some other tag acquires the channel
and starts bursting. These results are plotted in Figure 14. The re-
sults show that bursts are not always 1 second, even though that is
the maximum length of a burst according to our parameter settings.

 0

 500

 1000

 1500

 2000

 2500

1 3 5

G
o
o
d
p
u
t
(b

y
te

s
/s

)

CRFID population size

B
u

r
s

t+
C

o
o

r
d

in
a

ti
o

n

B
u

r
s

t

S
ta

n
d

a
r
d

 E
P

C
 G

e
n

 2

Tag A
Tag B
Tag C
Tag D
Tag E

Figure 13. Coordination improves throughput and fairness as
more bursting CRFIDs compete for the channel. For small
tag populations, coordination incurs a small protocol overhead.
burst

Tag ID Coordination No Coordination
RSSI (dBm) Goodput RSSI (dBm) Goodput

A -41.7 78.9Bps -39.6 540.5 Bps
B -37.7 571.1Bps -45.1 21.5 Bps
C -39.9 258.8Bps -47.2 16.9 Bps
D -46.0 238.2Bps -45.9 17.8 Bps
E -50.1 112.8Bps -54.9 4.0 Bps

Table 2. Breakdown of the five tag results from Fig 13, showing
RSSI and goodput for each tag for the two burst cases (with and
without co-ordination).

In fact, nodes switch transfers at a considerably finer granularity.
Such switching can happen for several reasons. Sometimes a query
message is not received by a bursting tag leading to an empty slot;
another tag which listens in this slot assumes that the channel is
empty and starts bursting. This results in capture effect resulting
in a switch between nodes. Despite such switching across nodes,
we see that overall goodput does not suffer at all, and the protocol
gracefully splits channel time across the five tags.

6.3 Coordination-Aware Duty-Cycling
Coordination allows tags to avoid collisions between each others

bursts, but does nothing to prevent energy consumed due to idle lis-
tening. We now evaluate our duty cycling mechanism which duty-
cycles the comparator to reduce energy consumed due to idle lis-
tening. Our evaluation answers two questions: a) how much energy
is saved due to duty-cycling? and b) does duty-cycling result in
degradation in goodput?

To quantify duty-cycling benefits, we use a simple experiment
where five tags transmit a fixed amount of data of 3000 EPCs
(36 kB) using different strategies. We then look at the energy con-
sumed by the different strategies.

Figure 15 shows that duty-cycling reduces energy consumption
by 22.13% to 45.58% across the five tags. The benefits are differ-
ent across different nodes because they complete their transfers at
different times and their idle listening overhead varies. Tag A fin-
ishes last, and therefore it has the maximum energy consumption,
whereas Tag C finishes first and has the least energy consumption.
The use of duty-cycling makes all five nodes have similar energy
consumption since it dramatically reduces the idle listening over-
head across the nodes. Thus, a CRFID sensor that employs duty-
cycling can use its energy buffer more judiciously.

While duty-cycling improves overall energy consumption, a nat-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Burst interval (sec)

Tag A
Tag B
Tag C
Tag D
Tag E

Figure 14. Breakdown of burst time for each of the five tags
when coordination is used.

 0

 5000

 10000

 15000

 20000

A B C D E

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

u
J
)

Tag ID

Burst+Coordination
Burst+Coordination+Duty-cycling

Figure 15. Energy benefits of duty-cycling by reducing idle lis-
tening overhead.

ural question is whether these gains come at the cost of a degrada-
tion in goodput. Figure 16 shows that duty cycle based coordi-
nated bursting tags have the shortest time to finish data transfer,
and therefore have the highest goodput. This demonstrates that our
duty-cycling mechanism does not sacrifice goodput to achieve its
energy gains.
6.4 Co-existence with passive tags

In this section, we investigate the interaction between our burst
protocol and standard EPC Gen 2. We answer two questions when
both bursting tags and standard EPC tags are transmitting to an Im-
pinj reader: 1) How does the goodput of CRFIDs change when they
compete for the channel with multiple standard EPC tags? 2) What
is the time between inventorying standard EPC tag when CRFIDs
are bursting? We setup experiments where both bursting tags and
passive tags are collectively within the field of an Impinj Reader’s
antenna. We measure the goodput achieved by the tags that run the
Flit protocol, and the interval required to inventory passive Gen 2
tags.
Goodput: Our goal in this experiment is to understand how in-
creasing passive tag populations impact the goodput of bursting
CRFIDs. Since we did not have enough Intel WISPs to use as
passive tags, we use commercial passive tags for this experiment.
We deploy five CRFIDs that are continually bursting to a reader,
and increase the commercial passive tag population from 5 to 30.

 0

 100

 200

 300

 400

 500

 600

 700

 800

A B C D E

G
o

o
d

p
u

t
(b

y
te

s
/s

)

Tag ID

Standard EPC Gen 2
Burst

Burst+Coordination+Duty-cycling

Figure 16. Goodput is highest (and time to completion lowest)
for the duty-cycled transfer case.

Passive Tag Num Avg Goodput (B/s) Std of Goodput (B/s)
0 264.4 226.7
5 222.1 228.2
10 238.0 294.9
15 270.7 359.5
20 253.3 307.8
25 184.2 214.0
30 184.9 228.7

Table 3. This table shows the impact of increasing passive tag
population on goodput of bursting CRFID tags.

All commercial passive tags and CRFIDs are placed 1 meter from
reader and spread in a line parallel with the reader antenna. Table 3
shows the average goodput as the passive tag population increases.
The results show that there is only a small effect until about 20
tags (the average goodput is 253.3 bytes/second which is only a bit
lower than 264.4 bytes/second when there are no passive commer-
cial tags). For larger populations of passive tags, there are more
collisions in slots which impacts goodput of burst CRFIDs. How-
ever, we see that despite a relatively large passive tag population,
CRFIDs continue to perform well while bursting.

Time between inventory: In this experiment, we look at how the
time to inventory a passive tag is impacted by the presence of burst
CRFIDs. We use two types of passive tags in our experiments, com-
mercial passive tags and Intel WISPs which follow the EPC Gen 2
protocol. In the first experiment, 4 Intel WISPs are configured with
Flit and one Intel WISP is configured as a passive tag. All tags are
deployed 1 meter from reader and aligned in a linear arrangement,
parallel to the antenna. As Figure 17 shows, although 4 bursting
tags are trying to use all slots in each inventory round, there are still
opportunities for a standard tag to be inventoried. As explained in
§4.4, this is because there are gaps between bursts where passive
tags can transmit. As expected, however, passive tags incur longer
inventory time than they would otherwise, with the median time of
roughly 1 second.

In our second experiment, we look at the inventory time as we
increase the population of commercial passive tags. We consider
two variants of Flit — one with the standard 50 ms sleep period
between bursts, and one where this duration is increased to 100 ms.
Figure 18 shows the average inventory time when there’s a popu-
lation solely comprising commercial passive tags vs a mix of pas-
sive tags and bursting CRFIDs. While the average inventory time
increases with increasing population, the increase is greater when
bursting CRFIDs are in the mix. However, the total time is still

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Gap between reads (s)

CRFID A
CRFID B
CRFID C
CRFID D

Passive tag E

Figure 17. The interval for reader to read bursting tags and a
passive Intel WISP.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

In
v
e
n

to
ry

 i
n

te
rv

a
l
(s

)

Passive tag population

With bursting CRFID (50ms)
With bursting CRFID (100ms)

Without CRFID

Figure 18. The average interval for a passive tag to be read
increases with the tag population.

of the order of a few seconds, showing that passive tags still see
opportunities to get data through. In addition, increasing the sleep
duration between bursts to 100 ms dramatically reduces the inven-
tory time to be only slightly larger than the case when there are only
passive tags. This provides a simple knob in deployments where in-
ventorying time for passive tags needs to be low.

7 Discussion and Future Work
Although our results show that Flit can provide significant ben-

efits for bulk data transfer, there are several possible improvements
and potential opportunities that we have not explored in this paper.

Duty-cycling the hardware subsystem: Our hybrid-powered
CRFID (using the Intel WISP) currently powers the microcontroller
from ambient energy + RF energy, whereas the comparator is pow-
ered solely by RF energy. The advantage of this approach is that it
eliminates static power draw when the device is disconnected from
a reader; the analog comparator is not turned on, and therefore does
not have static draw during times when there is no reader present.
The disadvantage of this approach is that this reduces range, since it
only works for distances where there is enough RF energy to power
the comparator. We believe that enabling the comparator to be pow-
ered by hybrid power can enable another significant bump in the
range of a hybrid-powered CRFID.

However, powering the comparator using ambient energy will

result in the static power draw being a concern when a sensor is not
in the presence of a reader. In this case, it will be critical to duty-
cycle the comparator even when a reader is not present, in contrast
to our current design where we duty-cycle only when other nodes
are bursting. Having a very short wakeup time is critical to duty-
cycling efficiency. In our current work, we use a valid query mes-
sage as the duration of wakeup; for duty-cycling in disconnected
mode, we can use a different strategy. EPC Gen 2 uses a delimiter
to identify the beginning of a message frame. A valid delimiter con-
sists of a pulse of a pre-specfied length; if the pulse length is outside
of a specific range around this lengh, it is considered invalid. Af-
ter a valid delimiter, a tag can decode a message frame containing
one of the commands we explained in §2. Our measurements show
that looking for a delimiter from the reader provides a tighter and
shorter wakeup interval, thereby improving efficiency.

Reliable transport: Our focus in this paper is on the design of a
burst-mode alternative to the standard EPC Gen 2 protocol for high-
throughput transfer. This layer is unreliable, however, in practice,
we find that Flit loss rates are low even when several sensors are
bursting to a reader at the same time. For example, in the experi-
ment with five tags described in §6.3, we found the loss rates to be
only around 10% (similar to the backscatter link loss rate shown in
Fig 4).

While the loss rates will depend on the tag population, envi-
ronment, distance, and other factors, we think that Flit provides an
excellent building block for a reliable transfer protocol. A simple
window-based reliable protocol over Flit would work as follows:
After each burst of messages from the sensor to the reader, the
reader sends a read command that has a bitmap of the messages
that were received by the reader. In the next burst, the sensor can
re-transmit these missing frame in addition to adding other data.
We are currently implementing this protocol over Flit.

8 Related Work
Empirical Wireless Measurements: In recent years there has
been significant work in measuring the characteristics of wireless
communication channels for a variety of communication mecha-
nisms (e.g. [17]). Perhaps most relevant to our work is [7], which
quantifies wireless performance of several state-of-the-art reader
and passive tag technologies through an empirical study that looks
only at messages sent by a reader. In contrast, our focus is on im-
proving tag to reader communications for CRFIDs. In addition, our
measurements provide visibility into the backscatter link by embed-
ding packet statistics in EPC codes and provides timing statistics by
measuring message inter-arrival times using a mobile datalogger.

Bulk Data Transfer: The bulk transmission of data through a
wireless channel has been studied in a variety of contexts includ-
ing hardware and software systems. In an 802.11 setting [13] de-
scribes several mechanisms that together provide a transport layer
optimized for bulk data transmission. Our work looks at RFID
backscatter as opposed to 802.11; specifically, we focus on opti-
mizations at the link layer for improving the throughput of bulk data
transfer. Also of interest is [11], which provides a bulk transport
protocol for 802.15.4 based wireless sensor networks. This work
uses an end-to-end acknowledgement-based protocol to provide re-
liability, a rate control mechanism to minimize transfer time and a
metric derived from combined signal strengths to avoiding hidden
terminal issues. A vastly different approach is needed for CRFIDs
that use EPC Gen 2 for communications, since tags can only hear
a reader and not each other’s transmissions. Therefore, we focus
on detecting other CRFID bursts using reader messages rather than
explicitly avoiding them with a collision avoidance metric; hidden
terminals are a non-issue because tags cannot independently initiate
data transfers.

Hardware approaches towards bulk data transmission at the link
layer are used to improve throughput in in 802.11n [4] and to im-
prove energy-efficiency in low-power radios [1]. Our state machine
is as simple as the EPC Gen 2, so an ASIC version of a burst tag
is certainly feasible. In this work, however, CRFIDs emulate EPC
Gen 2 in software.
Energy Management: There has been some recent work on en-
ergy management or minimizing energy wastage in CRFID sys-
tems. The work presented in [14] instruments code at compile time
with the ability to checkpoint software state to non-volatile stor-
age; the goal is to avoid wasting the energy spent on work that was
lost to power outages. In [6], a run-time system is presented that
adaptively schedules a task to avoid energy wastage. The wastage
is caused by work that does not complete because of energy limi-
tations, as well as by energy lost to a saturated energy buffer. [9],
looks at tradeoffs when ambient harvesting is used with RF har-
vesting, and explores the choice of hardware components to sat-
isfy application requirements given an anticipated amount of har-
vested energy. Our work is complementary to all these efforts in
that we improve the bandwidth and energy-efficiency of communi-
cation whereas other work largely focuses on energy management
in the OS/run-time system.

Looking beyond CRFID research, there has been substantial
work on energy management in harvesting-based sensors. For ex-
ample, [16] achieves perpetual operation by scheduling tasks to
match predicted energy harvesting rates, [10] and [18] looks at
adaptive duty-cycling strategies for harvesting-based systems, [8]
looks at using efficient solar harvesting in combination with an
ultra-wideband impulse radio to balance energy usage at an even
smaller scale, and commercial efforts have looked at micro-energy
harvesting from miniature solar panels, thermal differences, vibra-
tions, and wireless power-over-distance technology (e.g. Powercast
[2]). Such techniques may be useful to ensure a suitable amount of
buffered energy for bursts is available during reader contact periods,
and is complementary to this paper.

9 Conclusion
In this paper we presented the design, implementation, and eval-

uation of Flit, a bulk transmission protocol for RFID-scale sensors.
Through a careful analysis of the EPC Gen 2 protocol for pas-
sive RFIDs, we identified several opportunities for improvements to
both goodput and energy efficiency when considering small num-
bers of CRFIDs that have large amounts of data to send. Through
empirical evaluation, we demonstrated that significant gains in
goodput are possible over a variety of distances when compared to a
tag that implements vanilla EPC Gen 2. To enable the simultaneous
bulk transfer of data from multiple CRFIDs, we design a simple
coordination mechanism that works well in practice and through
an experimental evaluation, show the complete system retains most
of the performance improvements we observed for a single, unco-
ordinated CRFID. Finally, we argue that burst mode transmission
should allow for coexistence between passive RFIDs and CRFIDs
bursting data. Our results show that populations of passive RFIDs
can still be read, but are inventoried with increased latency.

10 References
[1] Nordic nrf24ap2 user guide. http://www.sparkfun.com/

datasheets/Wireless/Nordic/ANT-UserGuide.pdf.

[2] Powercast website. http://www.powercastco.com.

[3] TelosB Datasheet. http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/TelosB_Datasheet.
pdf.

[4] 802.11 specifications amendment 5: Enhancements for higher
throughput. IEEE Std 802.11n-2009 (Amendment to IEEE Std

802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE
Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std
802.11w-2009), pages c1 –502, 29 2009.

[5] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and
D. Wetherall. Revisiting Smart Dust with RFID Sensor Net-
works. In Proc. 7th ACM HotNets Workshop, October 2008.

[6] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: An
energy-aware runtime for computational rfid. In NSDI, 2011.

[7] M. Buettner and D. Wetherall. An empirical study of uhf rfid
performance. In in Proc. 14th ACM Int. Conf. on Mobile Com-
puting and Networking (MobiCom, pages 223–234.

[8] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang,
and G. Zussman. Challenge: Ultra-low-power Energy-
harvesting Active Networked Tags (EnHANTs). In Proceed-
ings of the 15th annual international conference on Mobile
computing and networking (Mobicom), 2009.

[9] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the
limits of effective hybrid micro-energy harvesting on mobile
crfid sensors. In MobiSys, pages 195–208, 2010.

[10] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power
Management in Energy Harvesting Sensor Networks. ACM
Transactions Embedded Computing Systems, 6(4):32, 2007.

[11] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. E. Culler,
P. Levis, S. Shenker, and I. Stoica. Flush: a reliable bulk
transport protocol for multihop wireless networks. In SenSys,
pages 351–365, 2007.

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler.
TinyOS: An Operating System for Sensor Networks. In Am-
bient Intelligence. Springer Verlag, 2004.

[13] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani.
Block-switched networks: A new paradigm for wireless trans-
port. In NSDI, pages 423–436, 2009.

[14] B. Ransford, J. Sorber, and K. Fu. Mementos: system sup-
port for long-running computation on rfid-scale devices. In
ASPLOS, pages 159–170, 2011.

[15] J. R. Smith, A. P. Sample, P. S. Powledge, S. Roy, and
A. Mamishev. A Wirelessly-Powered Platform for Sensing
and Computation. In Proc. 8th International Conference on
Ubiquitous Computing (UbiComp), 2006.

[16] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Cor-
ner, and E. D. Berger. Eon: A Language and Runtime System
for Perpetual Systems. In Proceedings of the ACM Conference
on Embedded Networked Sensor Systems (SenSys), November
2007.

[17] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empiri-
cal study of low-power wireless. TOSN, 6(2), 2010.

[18] C. M. Vigorito, D. Ganesan, and A. G. Barto. Adaptive Con-
trol of Duty Cycling in Energy-harvesting Wireless Sensor
Networks. In The IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), pages 21–30, 2007.

[19] R. Want. RFID Explained. In Synthesis Lectures on Mobile
and Pervasive Computing. Morgan & Claypool Publishers,
2006.

