
Int J Software Informatics, Volume 5, Issue 3 (2011), pp. 457–474 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2011 by ISCAS. All rights reserved. Tel: +86-10-62661040

A Process Programmer Looks at the Spiral Model:

A Tribute to the Deep Insights of Barry W. Boehm

Leon J. Osterweil

(University of Massachusetts, USA)

Abstract This paper elaborates on implications of Barry W. Boehm’s Spiral Model of

software development. The paper notes that the Spiral Model presents a compelling view

of software development, evocatively represented by a visual image that appeals strongly

to intuition, and notes that the view and image have motivated and justified a range of

important views of how software development should be done. This paper enhances and

elaborates on the intuitions by supplementing them with a definition of the Spiral Model

that is enunciated in terms of a rigorously defined language. The rigorous enunciation

and accompanying alternative visual depiction are then used to provide clarification and

formalization of some of the clearly-indicated elaborations of the Spiral Model. Both the

Waterfall Model of software development and the Scrum agile method are presented as

possible elaborations of the Spiral Model. Still other elaborations are indicated. Similarities

in the visualizations of these development approaches suggest some underlying similarities in

the approaches themselves, suggesting the potential value of effective process visualizations.

The breadth of these elaborations is also used to suggest how the Spiral Model seems to

provide a strong focus on some of the quintessential aspects of what comprises effective

software development.

Key words: process programming; spiral model; software process; waterfall model; scrum

process definition

Osterweil LJ. A process programmer looks at the spiral model: A tribute to the deep

insights of Barry W. Boehm. Int J Software Informatics, Vol.5, No.3 (2011): 457–474.

http://www.ijsi.org/1673-7288/5/i96.htm

1 Introduction

Software development continues to be one of the most challenging problems that
humans have attempted to solve. It seems well-agreed that software is a real (albeit
intangible) product that must conform to certain rules and structural constraints. Yet,
the invisible, intangible, non-Newtonian nature of software renders it a frustratingly
difficult type of product to build. While unique in some ways, software is, however,
at least somewhat analogous as a product to other more conventional products. As a
consequence for at least the past 50 years there has been general agreement that, as
with most conventional products, software should be developed in stages, starting with

This work is supported by the U.S. National Science Foundation under Award Nos. IIS-0705772,

and CCF-0820198
Corresponding author: Leon J. Osterweil, Email: ljo@cs.umass.edu

Paper received on 2011-03-08; Revised paper received on 2011-03-29; Paper accepted on 2011-03-30;

Published online 2011-04-08.



458 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

requirements specification, proceeding through one or more design stages, continuing
through actual implementation, and then on to evaluation and, ultimately, evolution.
This view was captured diagrammatically most famously in the Waterfall Model,
generally attributed to Winston Royce[10].

The most immediate problem with the classical Waterfall Model view of software
development was its marginalization of the role of iteration. Experienced practition-
ers knew then, as now, that software development (indeed the development of any
complex artifact) cannot be expected to proceed monotonically forward, but must
from time to time reconsider earlier decisions and their manifestations in the context
provided by previously developed artifacts, and the outcomes of previous decisions.
Early attempts to modify the Waterfall Model were largely clumsy and unsatisfying.
Backward pointing edges were introduced to indicate the possibility of such recon-
siderations (e.g. Fig.1 in Ref.[10]), but generally with no indications of when such
back-edges were to be taken, how reconsideration was to be done, and so forth. In
failing to capture adequately the rationale for returning to earlier stages and arti-
facts, these approaches failed to grasp and illuminate the essential insight that the
development of software (and most other complex systems) is inherently an iterative
process.

With his brilliant enunciation of the Spiral Model[1,2], Barry Boehm made it
clear that iteration is the essence of software development, and specified what it is
that makes the iterations go around. In his paper, Boehm specifies that each iteration
is driven by a risk analysis activity, which then leads to the development of an artifact
(often a prototype) whose purpose is to evaluate and mitigate identified risks.

Boehm’s original 1988 paper specifies that there be a series of three iterations,
each leading to the development of a prototype that leads ultimately to the devel-
opment of a requirements specification, a specification of a design, and ultimately
to the generation of an implementation in code, followed by testing and analysis. In
Boehm’s 1988 paper a series of prototypes aimed at risk reduction is specified to come
first, then followed by the successive development of requirements, design, code, and
testing. Subsequent discussions of the Spiral Model then suggested that each of these
artifact types was produced as the consequence of a separate iteration of the Spiral.
In fact still other elaborations by Boehm and others have suggested a multitude of
modifications and enhancements of the original details of the Spiral Model. Some have
suggested that each stage may require multiple iterations of the spiral. Others have
suggested that some spiral iterations may entail returning to earlier lifecycle stages
for reconsideration. Still others have suggested that spiral iterations may indeed skip
some of the traditional stages.

The real genius of the Spiral Model, however, is not these specific details of
iteration. The real genius of the Spiral Model is that it elucidates the essential nature
of software development as being iterative, with iterations driven by the need to
understand and contain risk, and with each iteration yielding the increasingly deep
and complete understandings upon which successful software development must rest.
The Spiral Model makes these things clear. Although others may have had intuitions
along these lines, Boehm crystallized these thoughts and underscored them with a
wonderfully evocative visualization.

While the Spiral Model itself, as originally presented and subsequently elabo-



Leon J. Osterweil: A process programmer looks at the spiral model: ... 459

rated upon, is strongly suggestive and evocative of these various development process
approaches, the informality of the Spiral Model means that it can provide only sugges-
tions about how to perform them, and indeed about precisely what these approaches
entail. And, indeed, the very form of the Spiral Model diagram, while highly evoca-
tive, does pose challenges to making clear the nature of many of these interesting and
important elaborations. From the perspective of a process programmer, one who is
interested in the formal specification of processes using programming language rigor,
the absence of details of the different interpretations and elaborations of the Spiral
Model represents a challenge and an opportunity. The purpose of this paper is to
add precision and detail to the definition of the Spiral Model and to use the greater
semantic power of an appropriate process definition language to develop a representa-
tive sample of some possible elaborations and interpretations. In doing so the paper
will provide details of how to perform these processes, and will also provide clear
demonstrations of the generality of the Spiral Model. It is hoped that in doing this,
the paper may also provide a glimpse of the essential nature of software development
as an iterative process of gaining knowledge, reducing risk, and maintaining intellec-
tual control over the act of developing what is perhaps the most complex and elusive
kind of product ever undertaken by humans, namely computer software.

To begin, this paper summarizes the key features of the Spiral Model. The paper
then introduces a process definition language that seems to lend itself well to explo-
rations of key ramifications of the Spiral Model. The paper then continues by using
the process definition language as a vehicle for providing some precise specifications of
different Spiral Model-based development processes. The paper then concludes with
some summary remarks about the Spiral Model and the nature of software develop-
ment.

2 The Spiral Model Summarized briefly

Figure 1 is a reproduction showing the key features of Boehm’s Spiral Model,
as originally published in his 1988 paper. The diagram indicates that software de-
velopment proceeds through four iterations, each beginning with the development of
a carefully considered prototype. Each prototype has a specific purpose, with the
prototypes being aimed at providing understandings of (successively) the project’s
requirements, high-level design (architecture), and low-level design. A last proto-
type is intended to deliver essentially a blueprint for the code. These prototyping
iterations are then followed by the actual development of requirements, design, and
implementation, and the performance of a testing regimen.

Boehm and the larger community, however, quickly grasped the truth that the
importance of the Spiral Model was not its specification of the exact number of it-
erations, nor the specific annotations of the purposes of the specific iterations shown
in this original diagram (e.g. Refs.[2, 3, 4, 8, 11, 15]). Quickly it became clear that
the Spiral Model should be taken as a representation of a number of more abstract
truths. One of these truths is that software development is inevitably an iteration
though a sequence of cycles. Moreover, the key to determining whether and how to
proceed to a subsequent iteration is to focus on strategies for determining risk and
mitigating risk. Further, the Spiral Model specifies that each iteration consists of four
phases aimed successively at 1) determining objectives, alternatives and constraints,



460 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

2) evaluating alternatives and risks, 3) developing next products, and 4) planning for
the next iterations. From a distance these phases of the Spiral Model are reminiscent
of the four phases of the Shewhart/Deming Cycle[7] often referred to as the “Plan-Do-
Check-Act” cycle, which also counsels the need to proceed carefully and iteratively in
addressing complex tasks, making progress by taking carefully measured steps. But
the Spiral Model adds to the Shewhart/Deming Cycle the important intuition that
as the cycles proceed, the “mass” of the project grows. The Spiral Model shows this
by depicting successive spiral cycles as having increasingly greater diameters, which
is indicated by marking the Y-axis with the notation Cost (cumulative). Indeed the
mass of a software development project certainly grows with each iteration, not only
in cost but also in knowledge accumulated, risks better understood, and artifacts pro-
duced. The Spiral Model visualization makes this point graphically in a most natural
and compelling way.

Figure 1. A rendering of the original 1988 diagram depicting the Spiral Model

The community understanding of the key messages of the Spiral Model is perhaps
better captured by the rendering shown in Fig.2, in which the details of the iterations
are omitted and indeed the size and number of the iterations is suggested to be
indeterminate. We refer to this version as the Abstract Spiral Model and note that this
is the version that has been elaborated upon variously by different thinkers, authors,
and innovators. It has been used as a justification for the fundamental soundness of
a number of different proposed approaches to software development. The manner in
which these various authors have cited the Spiral Model as a key justification for their
work is a tribute to the esteem in which Barry Boehm and his ideas are held by the
community. But it also reinforces the point that the essential ideas behind the Spiral



Leon J. Osterweil: A process programmer looks at the spiral model: ... 461

Model are remarkably robust and fundamental.
The purpose of this paper is to indicate some of the elaborations of Figure 2 that

have been suggested, noting their remarkable cogency and breadth, and also noting
the ways in which they are clear elaborations of Fig.2. Using these very diverse
elaborations, the paper will then attempt to distill some fundamental understandings
that can be derived from how readily the diagram in Fig.2 lends itself to all of these
plausible instantiations.

Figure 2. An abstraction showing the key underlying ideas behind the Spiral Model

3 The Little-JIL Process Definition Language

To support the goal of specifying the Spiral Model and its elaborations precisely,
we will use the Little-JIL process language[5,16,17] to support the definition of various
Spiral Model-based development processes.

The basic philosophy of the Little-JIL approach to process definition is that a
process should be viewed as a hierarchical structure of steps. The hierarchy supports
iterative decomposition of process details, and also provides a structure of scopes
within which the steps reside. Within that structure, the individual steps can gener-
ally be regarded to be instances of invocations of procedures, where the step definitions
have parameter lists, and arguments are passed in the course of invocations of these



462 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

steps. Upon execution of a step, the artifacts that are passed to it as arguments are
bound, and upon completion of step execution output artifacts are bound to their
associated calling arguments.

A Little-JIL step may incorporate a pre-requisite and/or a post-requisite. Each
requisite is considered to be a step, and thus capable of definition by means of an
arbitrarily deep hierarchy of substeps. But a requisite is also a predicate, and thus
returns a value of either True or False. If the value is False, then an exception is
thrown. The requisite, in that case, identifies the type of the exception and may
also bind arguments that describe the nature of the condition causing the exception.
The requisite structure that can be associated with a Little-JIL step also can provide
the basis for the formulation of invariants that could be useful in supporting formal
reasoning about Little-JIL process definitions.

As just noted, Little-JIL incorporates support for the handling of exceptions.
Exceptions may be thrown by any step in response to any situation that requires
special handling. It has already been noted that the violation of a requisite is one
such situation that causes the throwing of an exception. In addition, the definer of a
process may also provide the agent of a step with facilities for throwing an exception.
This is done by providing a handler for the type of exception that the definer believes
might be needed.

Exception handlers are substeps of a parent step. The parent step defines a scope,
consisting of all of its descendants, and in doing so indicates that handlers attached
to the parent step are in place to handle exceptions thrown within its scope. As noted
above, exceptions in Little-JIL are typed, and thus a step may have more than one
exception handler, where each different handler is in place to deal with exceptions of
a different type. Each exception thrown may, moreover, be accompanied by a set of
arguments that describe the nature of the exceptional situation in further detail.

The most noticeable feature of a Little-JIL process definition is its coordination
structure. typically represented visually as a hierarchical structure of steps, each of
which is represented as a collection of badges surrounding a black rectangular “step
bar” (see Fig.3). Each step has a name that appears above its step bar, and a set of
badges that surround the step bar and are imbedded within the step bar. The badges
represent such step features as control flow among the step’s substeps, the step’s
interface, which includes its parameters (i.e. the step’s input and output artifacts),
the exceptions the step handles, etc. A step with no substeps is called a leaf step and
represents an activity to be performed by an agent, without any guidance from the
process.

Figure 3. The iconic representation of a Little-JIL step

Substep Decomposition: Little-JIL steps may be decomposed into substeps of
two different kinds, ordinary substeps and exception handlers. The ordinary substeps
define the details of just how the step is to be executed. The substeps are connected



Leon J. Osterweil: A process programmer looks at the spiral model: ... 463

to the parent step by edges, which may be annotated by specifications of the artifacts
that flow between parent and substep, and also by cardinality specifications. Cardi-
nality specifications define the number of times the substep is to be instantiated and
may be a fixed number, a Kleene * (for zero or more times), a Kleene + (for one or
more times), or a Boolean expression (indicating whether the substep is to be instan-
tiated or not). Exception handlers define the way in which exceptions thrown by the
step’s descendants are to be handled. The edge connecting an exception handler to
its parent is annotated with the type of the exception being handled.

Step sequencing: Every non-leaf step has a sequencing badge (an icon embedded
in the left portion of the step bar; e.g., the right arrow in Fig.3), which defines the
order in which its substeps execute. For example, a sequential step (right arrow)
indicates that its substeps are to be executed sequentially from left to right and is
only considered completed after all of its substeps have completed. A parallel step
(equal sign) indicates that its substeps can be executed in any (possibly arbitrarily
interleaved) order. It too is considered completed only after all of its substeps have
completed. A choice step (circle slashed with a horizontal line) indicates that the
agent executing the step is to make a choice among any of the step’s substeps. A try
step (right arrow with an X on its tail) mandates a sequence in which substeps are
to be tried in order until one completes successfully.

Artifacts and artifact flows: An artifact is an entity that is used or produced by
a step. Parameter declarations are specified as part of the interface to a step as lists of
the artifacts used by the step (IN parameters) and the artifacts produced by the step
(OUT parameters). The flow of artifacts between parent and child steps is (as noted
above) indicated by attaching to the edges between parent and child identification of
the artifacts as well as arrows indicating the direction of flow of each artifact.

Requisites: As noted above, requisites are optional and enable the checking of a
specified condition either as a precondition for step execution or as a postcondition
check to assure that the step execution has been completed acceptably. A downward
arrowhead to the left of the step bar represents a prerequisite, and an upward arrow-
head to the right of the step bar represents a post-requisite. If a requisite fails, an
exception is triggered.

Exception Handling: A step in Little-JIL can define exceptional conditions when
some aspects of the step’s execution fail (e.g., one of the step’s requisites is violated).
This violation triggers the execution of a matching exception handler associated with
an ancestor of the step that throws the exception. An exception handler is represented
as a step attached by an edge to an X on the right of the step bar (as shown in Fig.3).

Scoping and Recursion: The parent step and all of its descendants represent a
scope, specifying what artifacts are considered local to that scope. Little-JIL also
supports recursive execution of steps, which specifies the iterative application of a
process step to specified inputs.

Abstraction: A Little-JIL step can be referred to from more than one location in
a process definition. One such reference includes such details as the step’s parameters
and resource requirements, as well as any information about the step’s exception
handling facilities and substep decomposition details. This reference thus serves to
define the step as an abstraction. Subsequent references, denoted by specifying the
step’s name in italics, then correspond to different instantiations of the step. Each



464 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

such reference results in the binding of the arguments presented to the step by its
parent to the step’s parameters, and comprises essentially an instantiation of the step
as a procedural abstraction.

4 Elaborations of the Spiral Model Provide Diverse Software Develop-
ment Processes

We now present a variety of elaborations of the Abstract Spiral Model (as sug-
gested by Fig.2), using the Little-JIL process language to support precision in the
descriptions of these elaborations. The breadth and diversity of these elaborations
suggests that there may be more similarity than is commonly believed among the
many different suggested approaches to developing software. This in turn suggests
that perhaps more is understood and agreed upon about how to approach this critical
and challenging problem. If so, then the Spiral Model incorporates some very deep
and fundamental understandings of the essential nature of software development.

4.1 Little-JIL renderings of different Elaborations of the Abstract Spiral Model

Figure 4 depicts a Little-JIL definition of the Abstract Spiral Model, shown in
Fig.2. The name of the process is Develop Software, but this consists of invoking
Iterate, the step that captures the essence of software development. The very name,
Iterate, suggests that iteration is indeed the essence of the process, and shows clearly
that an iteration is the sequential execution of the four successive sequential phases, 1)
Determine Objectives, Alternatives, Constraints 2) Evaluate Alternatives,
Identify and Resolve Risks, 3) Develop and Verify Next Level Product,
and 4)Plan Next Phases. The fourth phase, Plan Next Phases, is followed by a
postcondition, labeled Review, which represents the Spiral Model mandated review
of the outcome of the preceding iteration in order to determine if more iterations are
needed. A failure of this Review throws an exception, which triggers the execution
of the exception handler specified by the parent Iterate step. The exception handler
is a recursive execution of the Iterate step itself. This clearly underscores that the
process is iterative, and provides more detail about the nature of the iteration.

Figure 4. A representation of the Abstract Spiral Model in Little-JIL

Of particular interest is the way in which each iteration builds upon the previous
iterations. Specifically note that all of the substeps of the Iterate step are annotated



Leon J. Osterweil: A process programmer looks at the spiral model: ... 465

to indicate that they receive as input the state artifact, which is intended to represent
the evolving state of progress in developing the final software product. At the abstract
level of this process representation, the state artifact is regarded as a kind of summary
of all of the insights, accomplishments, and intermediate artifacts that have resulted
from all of the preceding executions the Iterate step and its substeps. In subsequent
processes that use Iterate, it will be possible to specify more fully and precisely the
nature and content of state. The fact that state is denoted to be both an input to,
and an output from, each of the four substeps of Iterate indicates that each phase
is expected to build upon what has previously been done and what is now known
about the software product that is being developed. The information contained in
state is also input to the evaluation of the postrequisite that is used to determine
whether or not any subsequent iteration(s) might be needed, making it explicit that
the content of state is essential to the determination of the outcome of this review.
If the review concludes that the artifact development is now complete, then this
postrequisite will succeed, ending the spiral development, with state containing the
final product. If the postrequisite fails, the current value of state is passed to the
recursive invocation of Iterate, indicating that the next iteration is to build upon
what has been done previously, and what has been determined previously about
risks, their proposed mitigations, and the outcomes of these previous attempts at
risk mitigation. This representation of the Abstract Waterfall Process makes clear
the mechanism by which the “mass” of the evolving software product is continually
growing, although it admittedly lacks the visual and intuitive impact that is provided
by the expanding loops of the Abstract Spiral representation.

As an abstract representation of the iterative nature of software development,
the process defined in Fig.4 does not yet describe in specific detail any particular
software development process. But different development processes can be defined
through different elaborations of different details of this process, thereby defining
various specific software development processes. Thus, for example, different versions
of the Waterfall Model can be constructed by adapting and combining the Iterate
process shown in Fig.4 into different software development configurations.

More specifically, note that Fig.5 depicts a model of a Waterfall Process in which
each of the four canonical software development stages, Requirements, Design, Im-
plementation and Testing, is implemented as an instance of the Iteration process.
The process in Fig.5 shows that software development proceeds by executing these
four traditional stages sequentially, each stage implemented by the performance of the
Iteration process. More specifically the four stages are represented by a cascade of
steps called, Requirements Stage, Design Stage, Implementation Stage, and
Testing Stage. Each step consists of first completing the development of an artifact
and then initiating the development of the next artifact. Thus, the Requirements
Stage step consists of first developing the requirements artifact (by executing the
Iteration step, using the requirements artifact as its input and output), and then
beginning the development of the design artifact (by executing the Design Stage
step using the requirements artifact as input). Iteration is not shown here to
save space, but it is identical to the Iterate step shown in Fig.4, except that Itera-
tion as used here in Fig.5 (and in Fig.6 below) is modified by deleting the exception
handler shown as a key feature of the Iterate step in Fig.4. Because of that modifi-



466 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

cation, when an exception is thrown by the fourth substep of Iteration in all of its
uses in Fig.5, the exception is not handled locally by Iteration, but instead propa-
gates to its parent. Thus, Figure 5 shows that an exception thrown by the execution
of a Requirements Stage Iteration step is handled by recursively reinvoking Re-
quirements Stage, but an exception thrown by the execution of a Design Stage
Iteration step is handled by reinvoking Design Stage, and so forth. Thus, the fail-
ure of Review during Requirements Stage causes Requirements Stage to be
repeated, until Review succeeds, the failure of Review during Design Stage causes
the Design Stage step to be repeated, etc. Each of these development stages is now
seen to be a Spiral development iteration process itself, and so the entire software
development process consists essentially of four successively nested spirals.

Figure 5. A rendering of a Spiral development process in which the four principal phases of software

development are performed sequentially, with each being carried out as a Spiral Model iteration

Note also that the process shown in Fig.5 specifies that each of these develop-
ment phases is executed using a different artifact as input. Thus, Requirements
Stage is an Iteration that operates on the requirements artifact, which is then
passed as input to Design Stage. Design Stage is an Iteration that operates



Leon J. Osterweil: A process programmer looks at the spiral model: ... 467

on the design artifact (using requirements as input), and passes design as input
to Implementation Stage. This is an overly strict and narrow interpretation of
the Waterfall Process that suggests that any development stage uses only the arti-
fact developed in the previous stage as input and focuses its attention only on the
artifact developed during the current stage. Thus for example the output of Design
Stage namely the design artifact, would be the only input to the Implementation
Stage step, which would disadvantage the performers of Implementation Stage
by making requirements unavailable to them. Defining a Waterfall Process that
enabled the performers of later stages to see all outputs of previous stages is easy
to specify simply by annotating the in-edges of the different stages with the outputs
of all previous stages, rather than with just the immediately previous stage. Note
that the difference between these two processes is thus quite clear and apparent using
this sufficiently precise process notation. The relative difficulty with which this is
expressed using the more familiar spiral iconic representation seems to be one good
motivator for using more precise notation to supplement the definition, and foster
better understanding, of such processes.

Still more enlightened and realistic explanations of the Waterfall Process em-
phasize not only that each stage of software development proceeds using as input all
the artifacts and understandings of all previous stages, but also that the failure of
Review during one of the later stages might well trigger the recursive reinvocation
of any previous stage, not just the immediately previous stage. A precise definition
of this version of the Waterfall Process is more difficult to define and depict. This
interpretation of the Waterfall Process is depicted in Fig.6.

In this process development is nominally considered to be the sequential execution
of the traditional stages, Requirements Stage, Design Stage, Implementation
Stage, and Testing Stage, with each of these stages being performed iteratively as
specified by the process in Fig.5. But, as suggested by several authors (e.g. Boehm in
Fig.1 of his 1988 paper) the Review carried out at the end of any development iter-
ation might cause the reconsideration of any of the artifacts that had been developed
during any prior iteration. Thus, Review after an Implementation Stage Itera-
tion might trigger reconsideration of a previously developed requirements artifact
(by performing Requirements Stage), or design artifact (by performing Design
Stage), or implementation artifact (by performing Implementation Stage). Fig-
ure 6 uses Little-JIL process notation to specify this, by providing each development
stage step with a different exception handler to support the possible performance of
any previous stage. It is interesting to note that the process shown in Fig.6 is es-
sentially the same as the process shown in Fig.5, except that the exception handlers
for each development phase now allow any of the previous phases are to be revisited,
while the handlers in the process shown in Fig.5 allow revisiting only the immediately
previous stage. This software development process also emphasizes the fact that the
state artifact, an abstract representation of all of the knowledge and artifacts pre-
viously developed, continues to grow as the process continues through the continued
aggregation of newly developed and acquired information with previously acquired
information and artifacts. Because the pattern of repeating previous steps is deter-
mined dynamically, however, it is impossible to be as precise about the nature of the
artifacts that are passed into and out of the different stages. Thus Fig.6 indicates



468 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

that state is the artifact that is passed around in this process whereas it was possible
to be more specific about the artifacts passed to the different stages in the process
depicted in Fig.5.

Both processes also underscore the critical importance of the Review activity.
We have noted that every Spiral iteration ends with a Review, aimed at determining
whether or not to continue on to a next iteration, and providing evaluative information
aimed at helping to guide how the next iteration is to proceed. At an abstract level,
that Review activity is analogous in its central importance to programming language
loop iterators. As such the Review activity would seem to merit particular attention.
Thus it is not surprising that, in subsequent work, Barry Boehm has addressed the
Review activity, making it the focus of his work on the Incremental Commitment
Model (ICM). The Incremental Commitment Model advocates that the goals of each
Spiral iteration be kept modest and provides guidance on how this might be done. As
such the ICM provides elaborative details of how the Review activity, central to all
Spiral Model development processes, is to proceed.

Figure 6. An interpretation of the Waterfall Process, based upon Spiral Model Iteration, in which a

review of a software artifact may trigger the recursive execution of any previously developed software

development stage

4.2 Other Elaborations of the Abstract Spiral Model

All of the processes elaborated in section 4.1 can be seen to be different kinds
of iterations of the four Spiral Model phases. The differences between the two pro-
cesses presented are entirely differences in the sequencing of the types of artifacts



Leon J. Osterweil: A process programmer looks at the spiral model: ... 469

considered. The process shown in Fig.5 mandates that the Requirements Stage,
Design Stage, Implementation Stage, and Testing Stage are performed strictly
in that order with each being performed as a sequence of iterations. Each of these
four development stages is focused entirely on the development of a different type
of software development artifact, guided by state information about the previously
developed artifacts. Figure 6 presents a more liberalized, and realistic, software devel-
opment process, suggesting that earlier stages and artifacts may need to be revisited
and reconsidered as the development of later-stage software artifacts proceeds. But
each revisitation and reconsideration is an iteration of the four stages prescribed as
a Boehm-style loop around the Spiral. It is only the order in which software artifact
types are considered and reconsidered that differentiates the processes shown in Figs.
5 and 6.

We now suggest that this kind of liberalization of the order in which software
development artifacts and activities are undertaken opens the door to the possibility
of considering many other kinds of software development processes to be elaborations
of the Spiral Model. The possibilities here become still more numerous if we consider
that the emphasis placed on the four different phases of a Boehm Spiral iteration will
inevitably vary. Even in the processes depicted in Figs. 5 and 6, it must be expected
that different developers at different times and under different circumstances will
spend different amount of time and attention on the four different phases of the
Boehm Spiral.

All that being the case, we now suggest that even an agile software development
approach such as the Scrum[6,12,13,14] can readily be recast as an interpretation of
Boehm’s Spiral Model. Figure 7 suggests why that is the case.

Figure 7. A Little-JIL definition of the Scrum process in which the activities that characterize the

Scrum process are shown as elaborations of the phases of the Boehm Spiral Model, suggesting that

the Scrum process can be thought of as a Spiral process

Figure 7 depicts the Scrum process as a sequence of iterations, each of which
is called a sprint. Each sprint uses state information accumulated in the course of
executing previous sprints, and adds to that body of state information in a way



470 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

that is little different from what was depicted in Fig.4. In addition, Figure 7 shows
that a sprint is performed as a sequence of four phases, Sprint Planning Meeting,
Sprint, Sprint Review, and Sprint Retrospective. The natures of these phases
match closely the natures of the four phases of the Boehm Spiral Model. In particular,
Sprint Planning Meeting seems strongly similar in goals and character to what
Boehm describes as Determine Objectives, Alternatives, Constraints. Hence
Sprint Planning Meeting is shown as the implementation of Determine Ob-
jectives, Alternatives, Constraints. It seems particularly appropriate that this
identification be made, as the literature for each emphasizes that a central goal is the
identification and mitigation of key product development risks. A sprint is the process
of performing Develop and Verify Next Level Product, and thus is shown as
the implementation of that Boehm Spiral phase. And the sequence of Sprint Re-
view and Sprint Retrospective essentially comprise the Boehm activity of Plan
Next Phases, and thus are shown as its elaboration. It is noteworthy that literature
describing the Scrum process does not identify the need for the explicit performance
during a sprint of activities that would comprise Boehm’s Evaluate Alternatives,
Identify and Resolve Risks. But it is unreasonable to suggest that this activity
is not carried out in the course of planning and executing a sprint. Thus, this would
seem to be an example of a Boehm Spiral phase that is at most simply deemphasized
in this process, although it can hardly be expected that this phase and activity would
not be carried out at all.

Thus, we suggest that Fig.7 is a demonstration of the way in which the Scrum
process can also be viewed as an elaboration of Barry Boehm’s Spiral Model. Both
emphasize the centrality of iteration, both emphasize the growth of the final product
as the iterative accumulation of knowledge and artifacts. Both emphasize the need
for planning prior to doing, and evaluation subsequent to doing.

Having identified the way in which an agile method such as Scrum can be viewed
as a series of Spiral Model-style iterations, it is now possible to conjecture that many
other sorts of development processes might be synthesized by casting them as dif-
ferent elaborations of the Spiral Model. For example, the substitution of the Scrum
process depicted in Fig.7 for the Iteration process used centrally in the development
process depicted in Fig.6 suggests a Scrum-like approach to more traditional software
development. Other mix-and-match combinations of agile and non-agile methods are
also clearly possible.

5 Conclusions

Barry Boehm’s enunciation of the Spiral Model presented a highly intuitive and
evocative image of the nature of software development. Over the years the Spiral
Model’s idioms have been used widely to describe, motivate, and justify various ap-
proaches to software development. This paper supplements those intuitions about
the Spiral Model with definitions of various development approaches that make their
relations to the more abstract characteristics of the Spiral Model explicit. The paper
suggests that a wide range of different approaches to software development can be
viewed as different interpretations and instantiations of the Spiral Model.

What is perhaps most important is that the way in which this wide range of
development approaches seem to be elaborations of the Spiral Model supports a view



Leon J. Osterweil: A process programmer looks at the spiral model: ... 471

that the Spiral Model captures some of the key essences of software development.
Among those essences are that software development is quintessentially iterative, that
it is a disciplined accumulation of an ever-growing body of knowledge, insights, and
artifacts, that it should be driven by a continual quest to understand and mitigate
risks, and that software artifact creation should be preceded by careful planning and
consideration, and followed by careful evaluation and reconsideration.

These insights seem nicely supported by the diagrams presented in this paper.
These diagrams themselves suggest some features of a process definition notation that
seem particularly effective in making the above points clear. We noted above that
Boehm’s original Spiral Model diagram is intuitive and evocative. But subsequent
discussions in this paper also made it clear that Boehm’s original diagram was a
less effective basis for supporting a clear understanding of the relations of various
elaborations of the Spiral Model to each other. Thus, for example, while the processes
depicted in Figures 5 and 6 are both clearly elaborations of the Spiral Model, neither
is clearly enunciated by the Spiral Model diagram, which seems equally descriptive of
both. Figures 5 and 6 make the differences quite clear, and also clarify their relations
to each other. In particular, both figures show the cascading phases of the traditional
Waterfall model in the familiar diagonal positioning on the left of the two figures. But
in place of the imprecise and unclear back-edges in the Waterfall model, Figures 5
and 6 now show on the righthand side which waterfall phases can be revisited during
the reworking of each waterfall stage. Figure 5 makes it clear that, for example, only
Design can be revisited during the design stage, and only Coding can be revisited
during the coding stage. Figure 6 makes it immediately clear, however, that in that
process any prior development stage can be returned to from any later stage. While
the two processes depicted in these two figures are both clearly possible elaborations
of the Spiral Model, it is far harder to depict each of them clearly, in such a way
as to make them distinguishable from each other, with the traditional Spiral Model
visualization. Depicting the elaboration shown in Fig.6 would be particularly difficult.

Figures 5 and 6 also suggest that the essence of the processes depicted is actually
recursion that makes important use of contextual information provided through the
use of scoping, rather than simple iteration that makes little or no use of context.
The nature of both recurrences is made quite clear by the figures, and indeed the
role of scoping in indicating how the recursions work is also made clear. Recursive
calls to the different development stages are clearly (and correctly) shown as different
instantiations of the same process activities, but in different contexts. The hierarchi-
cal nature of Little-JIL makes this depiction particularly clear. In contrast note that
the Scrum process depicted in Fig.7 is defined as an iteration, with successive sprints
shown as sequential iterations. It might be argued that successive sprints do indeed
take place in the context of all prior sprints, as knowledge of these prior iterations
certainly resides in the heads of participants. Little-JIL would have no difficulty in
using recursion to present such a depiction. But the culture and folklore surrounding
the Scrum development philosophy encourages more a view that a sprint is a new un-
dertaking, more focused on future goals and directions than on prior history. Thus,
Figure 7 seems to be truer to the Scrum philosophy. Both views of the Scrum ap-
proach to software development are coherent with Boehm’s Spiral Model of software
development, but it would be difficult to use Boehm’s visualization to distinguish be-



472 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

tween them. Little-JIL on the other hand supports the clear visual distinction of one
from the other, thereby supporting a visual emphasis on the underlying philosophy
of the Scrum.

The preceding discussion suggests that there are some process definition language
features that seem particularly useful in defining these processes and underscoring
their relations to each other. Procedural abstraction is clearly one such language
feature, as it supports the specification of process step recursion in a particularly
elegant way. The use of hierarchical elaboration is perhaps even more fundamental,
enabling the specification of lower and lower levels of detail, but also providing a
vehicle for the specification of scopes. Scoping the extent of artifacts is particularly
important in supporting the effective specification of recursion, in particular.

Also of fundamental importance is the very integration of artifact flow with pro-
cedural specification. A particular weakness of Boehm’s visualization of the Spiral
Model is its marginalization of the specification of artifacts. As noted earlier, the
increasing radii of the successive loops of the spiral suggest intuitively that each iter-
ation has produced more knowledge and greater amounts of software artifacts. But it
is hard to identify just which artifacts are produced where and how previously devel-
oped artifacts are the basis for the creation of subsequent artifacts. Language facilities
for specifying artifact flow through process activities seems essential for supporting
the ability to be precise and specific in this way.

And finally, it should be noted that strong support for exception management also
seems to be a particularly important feature of a language to be used as the basis for
defining software development processes. The examples in this paper make it clear
that there must be strong capabilities for specifying what to do when, inevitably,
development activities are shown to have produced flawed results. The well-known
Ripple Effect is often used to describe how changing one identified software defect
may incur the need to then find and fix other defects, as well as still other defects
created by making changes to still other defects. A powerful exception management
facility in a process language can model orderly processes for dealing with such ripple
effects and for specifying how to return to nominal development flow after dealing
with these kinds of cascading defects.

Thus, this work has also helped to identify process definition language semantic
features that seem particularly important and adept in supporting development of
precise specifications of real-world software development processes.

Acknowledgments

The Spiral Model has served as a strong and continuing inspiration for my own
personal musings over the years and decades about the nature of effective software
development practice. From its very first enunciation, coming almost simultaneously
with my own enunciation of the idea of process programming[9], the Spiral Model
has been an important test of the effectiveness and expressiveness of my ideas about
software process definition. This paper seems to provide perhaps the strongest demon-
stration yet of the effectiveness and validity of my ideas about process programming,
while simultaneously also underscoring the wisdom and robustness of Barry Boehm’s
ideas about the fundamental nature of software development. It is now crystal clear
that Barry was right in emphasizing that software development, and indeed the de-



Leon J. Osterweil: A process programmer looks at the spiral model: ... 473

velopment of all large and complex systems, must be iterative, and focused on incre-
mental acquisition of knowledge, reduction of risk, and accretion of ever-larger and
better integrated bodies of software artifacts. As such the Spiral Model must stand
as one of the most fundamental and far-reaching contributions of Barry Boehm to
software engineering.

This paper owes a very strong debt to the ideas and contributions of Sandy
Wise. The work has evolved through numerous conversations with Sandy over the
years. Most recently Sandy has also made enormously important contributions to
this paper by drafting, discussing, and iterating the diagrams that are the core of the
contributions of this paper.

Finally, I gratefully acknowledge that research funding provided by the U.S.
National Science Foundation under Award Nos. IIS-0705772, and CCF-0820198 was
essential to the support of this research. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied of the U.S. National Science
Foundation or the U.S. Government.

References

[1] Boehm BW. A Spiral Model for Software Development and Enhancement. IEEE Computer,

May 1988. 61–72.

[2] Boehm BW, Belz F. Experience with the Spiral Model as a process model generator. Proc. of

the 5th International Software Process Workshop: Experience with Software Process Models.

Kennebunkport, ME, October 1989, D. Perry, Editor; IEEE Computer Society Press, 1989.

43–45.

[3] Boehm BW, Bose P. A collaborative Spiral Process Model based on Theory W. Proc. of the

1994 International Conference on the Software Process. IEEE Computer Society Press, Los

Alamitos, CA, 1994. 59–68.

[4] Boehm BW, Hansen W. The Spiral Model as a tool for evolutionary acquisition. Cross Talk,

May 2001. 4–11.

[5] Cass AG, Lerner BS, McCall EK, Osterweil LJ, Sutton SM Jr., Wise A. Little-JIL/Juliette: A

process definition language and interpreter. 22nd International Conference on Software Engi-

neering (ICSE 2000). Limerick, Ireland, June 2000. 754–757.

[6] Cohn M. Succeeding with Agile: Software Development Using Scrum. Pearson Education, Inc.,

Boston, MA, 2010.

[7] Deming WE. Out of the Crisis. MIT Press, Cambridge, MA, 1982.

[8] Hansen WJ, et al. Spiral Development: Building the Culture; A Report on the CSE-SEI Work-

shop. February, 2000, CMU/SEI-2000-SR-006, Pittsburgh PA, Software Engineering Institute,

2000.

[9] Osterweil LJ. Software Processes are Software Too. 9th International Conference on Software

Engineering (ICSE 1987). Monterey, CA, March 1987. 2–13.

[10] Royce WW. Managing the development of large software systems. Proc., IEEE Wescon August

1970. 1–9. Also, Proc. of the 9th International Conference on Software Engineering, Monterey,

California, United States, 1987, IEEE Computer Society Press, 1987. 328–338.

[11] Royce WE. TRW’s Ada process model for incremental development of large software systems.

Proc. of the 12th International Conference on Software Engineering, IEEE Computer Society

Press, Los Alamitos, CA, pp. 2–11.

[12] Schwaber K, Beedle M. Agile Software Development with Scrum. Prentice Hall, Upper Saddle

River, New Jersey, 2002.



474 International Journal of Software and Informatics, Volume 5, Issue 3 (2011)

[13] Schwaber K. Agile Project Management with Scrum. Microsoft Press, Redmond, WA, 2004.

[14] Scrum Alliance, Inc. http://www.scrumalliance.org/

[15] Software Productivity Consortium. Process Engineering with the Evolutionary Spiral Process

Model: Version 01.00.06, Technical Report SPC-93098-CMC, Herndon, VA 1994.

[16] Wise A. Little-JIL 1.0 Language Report, Department of Computer Science, University of Mas-

sachusetts: Amherst, Amherst, MA, 1998.

[17] Wise A. Little-JIL 1.5 Language Report, University of Massachusetts Amherst, 2006.


