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Abstract

Compressive sensing has been rapidly growing as a non-adaptive dimensionality
reduction framework, wherein high-dimensional data is projected onto a randomly
generated subspace. In this paper we explore a paradigm called compressive rein-
forcement learning, where approximately optimal policies are computed in a low-
dimensional subspace generated from a high-dimensional feature space through ran-
dom projections. We use the framework of oblique projections that unifies two pop-
ular methods to approximately solve MDPs – fixed point (FP) and Bellman residual
(BR) methods, and derive error bounds on the quality of approximations obtained
from combining random projections and oblique projections on a finite set of sam-
ples. We investigate the effectiveness of fixed point, Bellman residual, as well as
hybrid least-squares methods in feature spaces generated by random projections. Fi-
nally, we present simulation results in various continuous MDPs, which show both
gains in computation time and effectiveness in problems with large feature spaces
and small sample sets.

1 Introduction
This paper explores a paradigm called compressive reinforcement learning, analogous to
recent work on compressed sensing, wherein approximation spaces are constructed by
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measurements representing random correlations with value functions. A random projec-
tion is a simple but elegant technique that has both a strong theoretical foundation and a
wide range of applications including signal processing, medical image reconstruction, ma-
chine learning, data mining and so forth. Its theoretical foundation rests on the Johnson-
Lindenstrauss lemma [16]. Briefly, given a set of samples S in a high-dimensional feature
space Rn, if we construct an orthogonal projection of those sample points onto a ran-
dom d-dimensional subspace, then if d = O( log|S|

ε2
), the projection is Lipschitz, that is,

pairwise distances are preserved with high probability up to a distortion factor of 1 ± ε.
Intuitively, this process can be thought of as applying a spherically random rotation to a
high-dimensional manifold and then reading off the first d coordinates [1]. Compared with
other linear dimension reduction methods, like PCA (Principal Component Analysis), FA
(Factor Analysis), etc, random projections are data-independent, which significantly re-
duces the computational cost of both representation discovery and control learning.

Two popular least-squares approaches for approximately solving MDPs are fixed-point
(FP) or temporal-difference (TD) methods, and Bellman residual (BR) methods. A unified
view of BR and FP methods can be constructed using oblique projections [12]. Hybrid
least-squares methods interpolate between FP and BR approaches [5], and can also be
viewed as computing oblique projections. Lazaric et al. [8] recently developed a finite-
sample analysis of fixed point methods and provides new error bounds, which is based on
the former work of [10]. One of the key ideas behind such error bound analysis is the
contraction mapping property of the Bellman backup operator T . For any nonexpansive
projection Π, if v̂ = ΠT v̂, then ‖ΠT v̂ − ΠTv‖ ≤ γ ‖v̂ − v‖, for some 0 ≤ γ < 1, a
property used in the error analysis of FP methods. The advantage of the oblique projection
viewpoint is that it enables extending the finite-sample analysis to BR, FP, and hybrid
least-squares methods in a unified manner.

In this paper, we use the framework of oblique projections as a geometric framework
for error bound analysis, and derive theoretical results showing the loss that results from
combining random projections with oblique projections in solving MDPs. In particular,
we derive error bounds showing the approximation error introduced as a result of com-
pressing the original (high-dimensional) feature space using a combined oblique projector
and random projections, extending the previous results in [3] and [8]. In addition, we em-
pirically demonstrate the effectiveness of Least-squares Policy Iteration [7] (LSPI) with
random projections using experiments on various benchmark domains with the specific
problem setting wherein a relatively small sample size and overcomplete basis set creates
a challenging task for most state-of-the-art reinforcement learning algorithms. We also
provide a comparison with L1 regularization methods, such as LARS-TD [6].

Here is a brief roadmap to the rest of our paper. We begin by providing some back-
ground on projections in MDPs, summarizing the state of the art. We describe oblique
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projections and finite-sample analysis, and how they are useful in characterizing solution
methods for MDPs. We then give a detailed error analysis, building on the work discussed
previously. Subsequently, we report on some simple numerical experiments where sev-
eral comparison studies are carried out to show the effectiveness of LSPI with random
projection. Finally, several promising potential research directions are discussed in the
concluding section.

2 Approximate Solutions of Markov Decision Processes
A Markov Decision Process (MDP) [11] is defined by the tuple (S,A, P a

ss′ , R, γ), com-
prised of a set of states S, a set of (possibly state-dependent) actions A (As), a dy-
namical system model comprised of the transition kernel P a

ss′ specifying the probabil-
ity of transition to state s′ from state s under action a, and a reward model R. A pol-
icy π : S → A is a deterministic mapping from states to actions. Associated with
each policy π is a value function vπ, which is a fixed point of the Bellman equation:
vπ(s) = T π(vπ(s)) = Rπ(s) + γ

∫
P π(dy|s)vπ(y), where 0 ≤ γ < 1 is a discount factor,

and P π is the state transition function under fixed policy π. In what follows, we often drop
the dependence of vπ on π, for notational simplicity. When the set of states S is large, it
is often necessary to approximate the value function v using a set of basis functions (e.g.,
polynomials, radial basis functions, wavelets etc.). In linear value function approxima-
tion, a value function is assumed to lie in the linear span of a basis function matrix Φ of
dimension |S| × k. Hence, v ≈ v̂ = Φw.

One approach to approximately solving the Bellman equation is the fixed point (FP)
solution, often referred to as the TD approach, which is defined as finding a set of weights
wFP such that

wFP = arg min
w

‖ΠΦT (Φw)− Φw‖2
ξ

where ΠΦ is an orthogonal projection onto the column space of Φ given by Φ(Φ′ΞΦ)−1Φ′Ξ.
Here, Ξ is a diagonal matrix whose entries are specified by a weighted norm ‖·‖ξ such that
‖f‖2

ξ =
∑
s

ξ(s)f 2(s) = f ′ξf , where ξ(·) is a measure over the state space. Fixed point so-

lutions, therefore, look for a fixed point of the combined projected back up operator ΠΦT .
Bellman residual methods, in contrast, find a set of weights wBR under which the dif-
ference between the approximated value function and the backed up approximated value
function T (Φw) is minimized. That is,

wBR = arg min
w

‖T (Φw)− Φw‖2
ξ
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Least-squares policy iteration (LSPI)[7] is a well-known reinforcement learning method
that can be combined with either the FP or BR projection method to find the optimal
(approximate) value function that lies in the linear space of value functions spanned by
Φ. LSPI focuses on iteratively improving policies by applying LSTD to the problem of
estimating the value function, representing policies implicitly, and uses approximate policy
iteration to find close to optimal policies.

3 Oblique Projection
Recently, the framework of oblique projections has been proposed as a way of unifying
fixed point and Bellman residual methods [12, 17]. The oblique projection tuple (Φ, X) is
defined as follows:

Definition 1 [12]: The Oblique Projection ΠΦ
X

is the projection defined as ΠΦ
X

=
Φ(X ′Φ)−1X ′, which specifies a projection orthogonal to span(X) and onto span(Φ).

Lemma 1 [12] : The BR, FP and H2 solutions [5] can be unified under the framework
of oblique projections with two properties:

v̂ = ΠΦ
X
T v̂ = ΠΦ

(I−γP )′X
v, where X = Ξ(I − βγP )Φ (1)

(1): the fixed point solution v̂ of equation Y = ΠΦ
X
TY .

(2): the oblique projection of v onto subspace span(Φ) orthogonal to span((I − γP )′X),
i.e., v̂ = ΠΦ

(I−γP )′X
v, where v is the solution of Bellman equation Y = TY , and X =

Ξ(I − βγP )Φ, where β is the mixing coefficient in the hybrid H2 projection method pro-
posed in [5] which controls the direction of oblique projection. Setting β = 0 gives rise to
the FP method, and β = 1 results in BR projection.

Remark: The two perspectives offer two ways to find the solution of oblique projec-
tion: either by solving the fixed point equation w.r.t ΠΦ

X
T , or by first finding the solution

of the Bellman equation Y = TY , and then projecting v onto span(Φ) with oblique pro-
jection ΠΦ

(I−γP )′X
, which will be used in Proposition 2 later.

Definition 2: ΠΦv is defined as the “best” approximation of v onto subspace span(Φ),
i.e., ΠΦv = arg inf

f∈span(Φ)

‖v − f‖2
ξ , and the best approximation can be computed as:

ΠΦv = Φ(Φ′ΞΦ)−1Φ′Ξ(I−γP )−1R. (2)

Lemma 2 [12]: For any choice of subspace X , the approximation error satisfies:∥∥v − ΠΦ
Xv

∥∥
ξ

= ‖ΠL′X‖ξ

∥∥v − ΠΦv
∥∥

ξ
=

√
σ(G1G2)

∥∥v − ΠΦv
∥∥

ξ
.
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Here, σ(G1G2) is the spectral radius of product of two Gramian matrices, where L =
I − γP .

G1 = (
√

ΞΦ)′(
√

ΞΦ), G2 = (
√

Ξ−1(L′X)(Φ′L′X)−1)′ · (
√

Ξ−1(L′X)(Φ′L′X)−1) (3)

4 Finite-sample Analysis
A modified assumption of the martingale difference εt is proposed based on [8]. The
difference between Assumption 1 and the one in [8] is that there are, per se, two filtrations
defined here. The adaptation filtration is the whole trajectory {xi}n

i=1, which means that εt

is adapted to the whole trajectory {xi}n
i=1; The expectation filtration is the past trajectory

{xi}t
i=1, which means that the expectation should be centered conditioned on the filtration

of only the past. Assumption 1 is required so that εt is a martingale difference sequence
and thus Azuma’s inequality can be applied to error bound analysis in Proposition 3.

Assumption 1: (Modified Markov Design Setting) The sample path {(xt, yt)}n
t=1 is

generated by a Markov chain, where the corresponding filtration is F = {xi}n
i=1. The

regression model is yt = f(xt) + εt, f is the target function, and the noise term εt is
F −measurable, and is bounded so that |εt| ≤ C and satisfies the martingale difference
property E [εt|x1, · · · , xt] = 0.

In [8], the definition of Pathwise Bellman Operator is introduced, which can be con-
sidered a core concept of the finite-sample analysis framework.

Definition 3: The Pathwise Bellman Operator [8] is computed based on the trajectory
of a single path {(xt, yt)}n

t=1, which yields the one-step “empirical” Bellman operator
T̂ : <n → <n:

T̂ yt = rt + γP̂ yt, 1 ≤ t ≤ n (4)

P̂ : <n → <n is defined as the operator P̂i,j = I(j = i+ 1, i 6= n) such that P̂ yt =

yt+1, 1 ≤ t < n and P̂ yn = 0. In a single trajectory, P̂ can be set as a nilpotent upper shift
matrix [2, 15].

P̂ =

[
~0′ In−1

0 ~0

]
, ~0 =

[
0, · · · , 0

]
1,n−1

(5)

Likewise, the k-step (k > 1) Bellman backup operator T̂ k over sample xt is derived in a
similar way as in [14]:

T̂ k(yt) = (T̂ )k(yt) =

{
rt + · · ·+ γk(yt+k), 1 ≤ t < n− k
rt + · · ·+ γn−trn + γn−tyn, t ≥ n− k

One nice property of the pathwise Bellman operator is that it is a γ-contraction mapping
in l2 norm.
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Definition 4: Given the pathwise Bellman operator T̂ and oblique projection ΠΦ
X , the

pathwise Bellman solution is defined as the solution of the Bellman equation Y = T̂ Y ,
and the pathwise LSPI solution is defined as Y = (ΠΦ

X T̂ )Y .
Proposition 1: (Pathwise Bellman Solution) Given the pathwise Bellman operator T̂

and the Bellman equation Y = T̂ Y , (T̂ )nv is the solution of the equation.
Proof: First let us fix t and prove that for ∀i > n − t, T̂ i = T̂ n−t. According to the

definition above, ∀i > n − t, T̂ iyt = rt + · · ·+ γn−trn + γn−tyn, so we have ∀t,∀i >
n, (T̂ )i = (T̂ )n. Then we have T̂ (T̂ nv) = (T̂ nv), which shows that T̂ nv is the solution of
the Bellman equation. It is easy to prove that the true value function v does not satisfy this
equation unless T̂ = T , so we have T̂ v 6= v if T̂ 6= T . T̂ nv is the unique solution since T̂
is a γ−contraction mapping in l2 norm.

Remark: This means that given the biased pathwise empirical Bellman operator T̂ ,
what is finally learned is not the true value v, but the biased value T̂ nv.

Now we can combine the Markov design bound with the multi-step Bellman backup
operator.

Proposition 2: (Pathwise LSPI Solution) Given the Pathwise Bellman Operator T̂ ,
and oblique projection ΠΦ

X , the pathwise LSPI solution is ΠΦ
(I−γP̂ )′X

(T̂ nv).

Proof: Given the Pathwise Bellman Operator T̂ , solving the equation can be divided
into two steps:

(1): Solve the pathwise Bellman solution of Y = T̂ Y . From Proposition 1, the solution
is biased T̂ nv.

(2): Project T̂ nv onto span(Φ) with oblique projector ΠΦ
(I−γP̂ )′X

, which is actually

ΠΦ
(I−γP̂ )′X

(T̂ nv), where X = Ξ(I − βγP̂ )Φ .
Proposition 3: Given the trajectory of the Markov chain satisfying Assumption 1, let

v be a vector whose components are the true values at {xi}n
i=1. Then with probability 1−δ,

we have ∥∥∥ΠΦT̂ nv − ΠΦv
∥∥∥ ≤ γVmaxL

√
d

vn

(

√
8

n
log(

4d

δ
) +

1

n
) (6)

where vn is the smallest strictly-positive eigenvalue of the sample-based Gramian matrix
1
n
Φ′Φ.

Proof: In our proof, to extend Assumption 1 to the reinforcement learning setting,
the target function f is replaced by value function V , and εt is replaced by the multi-step
temporal difference along eligible traces, i.e., εt = (T̂ n)(V (xt))−V (xt). The value V (xt)
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at sample xt w.r.t the true state transition kernel P can be represented as

V (xt) = rt + γ

∫
P (dy|xt)V (y) (7)

= rt + γrt+1 + · · ·+ γk

∫
P k(dy|xt)V (y), 1 < k ≤ n− t

Now we prove εt is still a martingale difference sequence. Replace y(t), y(n) by V (xt), V (xn),
respectively and introduce (7) to the definition of multi-step temporal difference, and set
k = n− t

εt = (T̂ n)V (xt)− V (xt) (8)

= rt + γrt+1 + · · ·+ γn−tV (xn)− rt − γrt+1 − · · · − γn−t

∫
P n−t(dy|xt)V (y)

= γn−t

[
V (xn)−

∫
P n−t(dy|xt)V (y)

]
≤ γ

[
V (xn)−

∫
P n−t(dy|xt)V (y)

]
,

1 ≤ t < n (9)

and εn = −γ
∫
P (dy|xt)V (y). Thus, εt is martingale difference noise whose expecta-

tion depends on {xi}t
i=1 and xn. Since given the sample, information about xn can be

considered as a constant, thus εt satisfies |εt| ≤ 2γVmax, E [εt|x1, · · · , xt] = 0. Applying
concentration inequality here, it follows (6) holds with probability 1 − δ. Details are not
given here due to limited space, but the proof generally follows that given in [8].

5 Error Bound Analysis
In this section a new error bound analysis is given which extends the results in [3] from
several perspectives. Firstly, results in [3] are limited to the fixed point/LSTD solution,
whereas the analysis in our paper broadly extends to any oblique projection, including FP,
BR and hybrid least square methods proposed in [5]. More importantly, we point out given
the biased pathwise Bellman operator, the solution is not the true value v but a biased
solution T̂ nv. Here we introduce the notion of random space. Given a D-dimensional
linear space F spanned by basis set Φ, i.e., F = {f |f(·) = Φ(·)′α, α ∈ <D}, where
Φ(·) = [φ1(·), φ2(·), · · · , φD(·)]′ is the feature vector. A d−dimensional random space G
(d < D) is generated by G = {g|g(·) = Ψ(·)β, β ∈ <d}, where the feature vector is
Ψ(·) = [ψ1(·), ψ2(·), · · · , ψd(·)]′ and Ψ(·) = CΦ(·) with C = [ci,j]d×D , ci,j ∼ N(0, 1

d
).

KF = 1
n
Φ′Φ, KG = 1

n
CΦ′ΦC ′ are sample-based Gramian matrices w.r.t space F,G re-

spectively. If the Markov chain admits a stationary distribution ρ, then the Gramian matrix
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H,G can also be defined via ρ as

KF i,j =

∫
φi(x)φj(x)ρ(dx), KGi,j =

∫
ψi(x)ψj(x)ρ(dx)

vn is denoted as the smallest eigenvalue of the sample-based Gramian KG.
Lemma 3 [3]: For any vector v in the random projection space g ∈ G, if d ≥

15 log(4n
δ

), we have with probability 1− δ

∥∥ΠGv−ΠFv
∥∥ ≤

√
8 log(8n

δ
)

d
m(ΠFv), (10)

where n is the number of samples, d is the dimension of compressed feature space, m(f)
is defined as m(f) = sup

x∈X
‖φ(x)‖2 . With this background in place, we can now turn to

characterizing our main theoretical results.
Theorem 1: Given value function v, finite sample set S, high-dimensional feature

space F and low-dimensional feature space G generated by random projections, and the
oblique projection ΠG

X orthogonal to span(X) onto the random projection space span(G),
and the pathwise LSPI solution v̂ = (ΠΦ

X T̂ )v̂

‖v − v̂‖ ≤
∥∥v − ΠFv

∥∥ +

√
8 log(8n

δ
)

d
m(ΠFv) (11)

+γVmaxL

√
d

vn

(

√
8 log(4d

δ
)

n
+

1

n
) +

√
σ(G1G2)− 1

∥∥∥T̂ nv − ΠGT̂ nv
∥∥∥

Proof: Consider the illustration shown in Figure 1. First, the error between the true value
v and the finite-sample based pathwise LSPI solution v̂ is bounded by the other three sides
of the triangle (v, v̂, T̂ nv,ΠGT̂ nv),

‖v − v̂‖ ≤
∥∥v − ΠGv

∥∥ +
∥∥∥ΠGv − ΠGT̂ nv

∥∥∥ +
∥∥∥ΠGT̂ nv − v̂

∥∥∥ (12)

We have developed bounds on each of these three sides.
((1)

∥∥v − ΠGv
∥∥: From Lemma 3, we have:

∥∥v − ΠGv
∥∥ ≤ ∥∥v − ΠFv

∥∥+
∥∥ΠFv − ΠGv

∥∥ ≤ ∥∥v − ΠFv
∥∥+

√
8 log(8n

δ
)

d
m(ΠFv) (13)
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Figure 1: Finite-sample Analysis of Oblique Random Projections

(2)
∥∥∥ΠGv − ΠGT̂ nv

∥∥∥: According to Proposition 3,
∥∥∥ΠGv − ΠGT̂ nv

∥∥∥ is bounded as fol-
lows: ∥∥∥ΠGv − ΠGT̂ nv

∥∥∥ ≤ γVmaxL

√
d

vn

(

√
8 log(4d

δ
)

n
+

1

n
) (14)

(3)
∥∥∥ΠGT̂ nv − v̂

∥∥∥: Next,
∥∥∥T̂ nv − v̂

∥∥∥ is bounded with the results in Lemma 2:∥∥∥T̂ nv − v̂
∥∥∥ ≤ √

σ(G1G2)
∥∥∥T̂ nv − ΠGT̂ nv

∥∥∥ (15)

G1, G2 are defined as in (3), where X is defined in (1). The following inequality arises
from using the Pythagorean theorem and the triangle inequality over the triple, which is
(v̂,ΠGT̂ nv, T̂ nv): ∥∥∥ΠGT̂ nv − v̂

∥∥∥ ≤ √
σ(G1G2)− 1

∥∥∥T̂ nv − ΠGT̂ nv
∥∥∥ (16)

Finally, from (12) to (16), (11) can be proved. In (11), the first term
∥∥v − ΠFv

∥∥ is the
model-based error which only depends on the capacity of the function space F , namely,
how well the function space F can approximate the value function v. The second term,
which is called estimation error [3], is primarily generated by inherent “noise” due to sam-
pling, which reflects the difference between the true Bellman backup operator T and the
Pathwise Bellman operator T̂ . As the number of samples n increases, the estimation error
will decrease to zero. The complexity of the model will also help increase the estimation
error. Theorem 1 extends the results in [3] from the following perspectives. Firstly, the
results in [8, 3] are limited to the fixed point/LSTD solution, whereas the analysis in our
paper broadly extends to any solution generated by oblique projection.

The existence of vn is a problem since the sample-based Gramian matrix 1
n
CΦ′ΦC ′

may not be invertible. In [3], it is shown that given a large enough set of samples, the
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smallest eigenvalue vn of the sample-based Gramian KG is strictly positive with high
probability (w.h.p), and also w.h.p vn is bigger than the smallest eigenvalue ω of the Gram
matrix 1

n
Φ′Φ of the high-dimensional space F . [3] also proved that the number of samples

needed for the empirical Gram matrixKG in subspaceG to be nonsingular is less than that
for its counterpart KF in high-dimensional space F w.h.p under some conditions. Here
we give an alternative way to understand this, which is much more explicit. The analysis
relies on a result in [4], that is, in a high-dimensional space, there exists a much larger
number of almost orthogonal than orthogonal directions.

Theorem 2: If the high-dimensional Gramian matrix 1
n
Φ′Φ satisfies rank( 1

n
Φ′Φ) ≥ d, the

low-dimensional Gramian matrix 1
n
CΦ′ΦC ′ will be nonsingular, i.e., rank( 1

n
CΦ′ΦC ′) =

d, where C is the randomly generated compression matrix, and its smallest eigenvalue vn

is strictly positive.

Proof: First denote KF = 1
n
Φ′Φ. If rank(K) ≥ d, there exists a d ∗ d square sub-matrix

Ksub of K such that rank(Ksub) = d. Next draw arbitrary d rows and columns from C,
which forms d ∗ d square matrix Csub such that

rank(CsubKsubC
′
sub) ≤ rank(CKFC

′) ≤ d (17)

Since each column of C is approximately orthogonal, so is Csub. Also since the rank of
a matrix is invariant by left-multiplying a full column-rank matrix or right-multiplying a
full row-rank matrix, we have rank(CsubKsubC

′
sub) = d. So, from above two equations

we have rank( 1
n
CΦ′ΦC ′) = d and thus its smallest eigenvalue vn is strictly positive.

6 Experiments
Finally, we report on some simple experiments on two benchmark domains to illustrate the
theoretical analysis. Hybrid [5] of LSTD-RP and BR-RP is used at each iteration of the
Compressed Reinforcement Learning algorithm. The algorithm description of LSTD-RP
is identical to the one in [3]. The algorithm is sketched as follows,
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Algorithm 1: General Framework of Compressive Reinforcement Learning
Input: (D, d, {xt}n

t=1, φ, γ, β)
Compute:

• Compute high-dimensional matrix Φn×D

• Generate projection matrix C = [ci,j]d×D , ci,j ∼ N(0, 1
d
)

• Compute low-dim feature matrix Ψn×d = Φn×DC
′

• Compute P̂Ψ =
[
Ψ(x2)

′; Ψ(x3)
′; · · · ,Ψ(xn)′;~0′

]′
• Compute AH2 = (Ψ− βγP̂Ψ)′(Ψ− γP̂Ψ), bH2 = (Ψ− βγP̂Ψ)′r

Return: w = A+
H2
bH2

The inverted pendulum [7] is a standard continuous-state MDP, where the state space
is defined by the vertical angle θ and the angular velocity θ̇. The three discrete actions are
applying a force of −50, 0, or 50 Newtons. In the experiment, a run is deemed successful
if it can balance the pole for 500 steps. In our experiment, D = 1200, d = 240, N =
1500, i.e., 1200 RBF kernels are used in the high-dimensional space and this dimension
is compressed to 240 in the low-dimensional space, and the kernels are generated from
the collected samples via the k-means algorithm. Figure 2 shows comparison study of
Compressive Reinforcement Learning(BR solution, i.e., hybrid factor β = 1), LARS-TD,
and LSPI on number of episodes the pendulum can balance with the number of iterations
based on average of 100 runs for each number of iteration. LARS-TD performs the best,
whereas LSPI performs the worst.

Trial # Noise Setting
1 5% uniform action noise
2 10% uniform action noise
3 Gaussian action noise N(0, 0.1)
4 Gaussian action noise N(0, 0.2)
5 5% uniform sensor noise
6 10% uniform sensor noise
7 Gaussian sensor noise N(0, 0.1)
8 Gaussian sensor noise N(0, 0.2)
9 Noise free

Table 1: Noise Trial Setting of Acrobot
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In the Acrobot domain [9], the goal is to raise the tip of the second link of the Acrobot
above a certain height in minimum time. The parameters are set as D = 1200, d = 216,
3000 samples are collected from 15 episodes with 250 steps in each episode. Figure 3
shows the comparison of computation time of the three methods. Compressive Reinforce-
ment Learning’s computation time is roughly 2.4 second per iteration, whereas that of
LARS-TD and LSPI are around 12 and 18 seconds per iteration. Success of Compressive
Reinforcement Learning is evident here as it remarkably reduces the computation time
with very little burden of computation cost. Figure 4 and 5 shows a comparison of LARS-
TD and Compressive Reinforcement Learning (FP solution, i.e., hybrid factor β = 0) over
50 runs. 4 shows the number of steps to swing up the Acrobot in terms of different number
of iterations. When the number of iterations is 5, both methods failed. The average num-
ber of iterations for LARS-TD to converge is 14, and it takes around 174 steps to swing up
when it converges, whereas that for Compressive Reinforcement Learning is 19 iterations
and 189 steps with FP solution. 5 is simulation under various noise situations to test the
robustness of the algorithm. Both action noise and sensor noise are added where action
noise is added to change magnitude of the force and sensor noise is added on θ1 of the
Acrobot, i.e., the angle measure of the first arm, and the noise type is both Gaussian noise
and Uniform noise. Gaussian noise εG ∼ N(0, σ) with zero mean and specified variance
is added as u = u + εG, where u is either the action or θ1 . Uniform noise εU ∼ U(0, 1)
is added as u = u ∗ (1 + εU), similar as in [13]. There are 9 noise trial situations listed in
Table 1, and the comparison result is shown in Figure 5.

The effectiveness of Compressive Reinforcement Learning, therefore, is clearly demon-
strated by these experiments. First, when dealing with problems with large feature space,
Compressive Reinforcement Learning can effectively reduce the dimension in an alterna-
tive way besides sparsity of the regression solution at the cost of very low extra computa-
tion with the advantage of a linear data-independent projection. Secondly, the computation
time at each iteration is sharply reduced compared with ordinary LSPI, and is at the same
level as LARS-TD. It is also noteworthy to mention that combining random projection for
feature compression and LARS-TD for feature selection can improve the performance and
reduce the computation time even further. The details of these additional experiments is
not reported here due to space.
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Figure 2: Pendulum: Comparison of Compressive Reinforcement Learning, LSPI and
LARS-TD

7 Summary
In this paper we analyzed a framework called compressive reinforcement learning, which
investigates the use of random projections in approximately solving Markov decision pro-
cesses. Here, the approximation subspace is generated by a random projection of the
original high-dimensional feature space. Compressed sensing is one of the most active
areas in signal processing and our paper represents one of the first studies that combines
both theoretical analysis and experiments. We used the framework of oblique projection to
obtain error bounds that cover both fixed point and Bellman residual solutions, as well as
hybrid least-squares methods. A novel error analysis, which integrates finite sample anal-
ysis, random projections and oblique projections, is derived. Finally, simulation results
on benchmark MDP domains was provided to demonstrate the validity of the proposed
approach. Overall, the proposed framework provides an interesting alternative to feature
compression/selection and an alternative to L1 penalization techniques such as LASSO.

Much remains to be explored in this new framework. On the experimental side, we
need to evaluate the scalability of the proposed approach in larger domains. On the theo-
retical side, we intend to exploit bounds known for sample trajectories generated by sta-
tionary and non-stationary β-mixing Markov chains. In our approach, the designer can
choose a random projection subspace of lower dimension and reduce the estimation error
(sample-based error) at the cost of a controlled increase in model-based error. How to
determine d of random projection is a key issue to be investigated further.
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