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Abstract. Approximation of matrices using the Singular Value Decom-
position (SVD) plays a central role in many science and engineering appli-
cations. However, the computation cost of an exact SVD is prohibitively
high for very large matrices. In this paper, we describe a GPU-based
approximate SVD algorithm for large matrices. Our method is based on
the QUIC-SVD introduced by [6], which exploits a tree-based structure
to efficiently discover a subset of rows that spans the matrix space. We
describe how to map QUIC-SVD onto the GPU, and improve its speed
and stability using a blocked Gram-Schmidt orthogonalization method.
Results show that our GPU algorithm achieves 6~7 times speedup over
an optimized CPU version of QUIC-SVD, which itself is orders of magni-
tude faster than exact SVD methods. Using a simple matrix partitioning
scheme, we have extended our algorithm to out-of-core computation,
suitable for very large matrices that exceed the main memory size.
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1 Introduction

The Singular Value Decomposition (SVD) is a fundamental operation in linear
algebra. Matrix approximation using SVD has numerous applications in data
analysis, signal processing, and scientific computing. Despite its popularity, the
SVD is often restricted by its high computation cost, making it impractical for
very large datasets. In many practical situations, however, computing the full-
matrix SVD is not necessary; instead, we often need only the k largest singular
values, or an approximate SVD with controllable error. In such cases, an al-
gorithm that computes a low-rank SVD approximation is sufficient, and can
significantly improve the computation speed for large matrices.

A series of recent work has studied matrix sampling to solve the low-rank
matrix approximation (LRMA) problem. These algorithms construct a basis
made up of rows or linear combinations of rows sampled from the matrix, such
that the projection of the matrix onto the basis has bounded error. Sampling-
based methods include length-squared sampling [4,2] and random projection
sampling [3,11]. In this paper, we focus on a particular method called QUIC-
SVD, recently introduced by [6]. QUIC-SVD exploits a tree-based structure to
perform fast sampled-based SVD approximation with automatic error control.
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The main benefit compared to previous work is that it iteratively selects samples
that are both adaptive and representative.

Our goal is to map the QUIC-SVD algorithm onto the graphics processing
unit (GPU) to further improve its efficiency. Modern GPUs have emerged as
low-cost massively parallel computation platforms that provide very high float-
ing point performance and memory bandwidth. In addition, the availability of
high-level programming languages such as CUDA has significantly lowered the
programming barrier for the GPU. These features make the GPU a suitable and
viable solution for solving many computationally intensive tasks in scientific
computing. We describe how we implemented the QUIC-SVD algorithm on the
GPU, and demonstrate its speedup (about 6~7 times) over an optimized CPU
version, which itself is orders of magnitude faster than exact SVD methods. We
also describe a matrix partitioning scheme that easily adapts the algorithm to
out-of-core computation, suitable for very large matrices. We have tested our
algorithm on dense matrices up to 22,000x 22,000, as reported in Section 3.

Related Work. Acceleration of matrix decomposition algorithms on mod-
ern GPUs has received significant attention in recent years. Galoppo et al. [5]
reduced matrix decomposition and row operations to a series of rasterization
problems on the GPU, and Bondhugula et al. [1] provided a GPU-based imple-
mentation of SVD using fragment shaders and frame buffer objects. Since then,
the availability of general programming language such as CUDA has made it
possible to program the GPU without relying on the graphics pipeline. In [12], a
number of matrix factorization methods are implemented using CUDA, includ-
ing LU, QR and Cholesky, and considerable speedup is achieved over optimized
CPU algorithms. GPU-based QR decomposition was also studied by [8] using
blocked Houserholder reflections. Recently, Lahabar et al. [9] presented a GPU-
based SVD algorithm built upon the Golub-Reinsch method. They achieve up to
8% speedup over an Intel MKL implementation running on dual core CPU. Like
most existing work (including commercial GPU-based linear algebra toolkit such
as CULA [7]), their focus is on solving the exact SVD. In contrast, our goal is to
solve approximate SVD on the GPU, which can provide additional performance
gain for many large-scale problems in practical applications.

2 Algorithm

2.1 Overview

Given an m x n matrix A (where n is the smaller dimension), the SVD factors
the matrix into the product of three matrices: A = UXVT where U and V are
both orthonormal matrices (UTU = I and VTV = I) and ¥ is a diagonal matrix
storing the singular values. An exact SVD takes O(mn?) time to compute and
thus is expensive for large matrices. To approximate the SVD, we can construct
a subspace basis that captures the intrinsic dimensionality of A by sampling
rows or taking linear combinations of rows. The final SVD can be extracted
by performing an exact SVD on the subspace matrix, which is a much smaller
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Fig. 1. (a) shows a single cosine tree; (b) shows a set of cosine trees constructed using
our partitioning scheme, such that all trees collectively build a common basis set. Yellow
arrow indicates the matriz rows that a tree node owns; red arrow indicates a vector
inserted into the basis set, which is the mean vector of the rows owned by a node.

than the original matrix. For example, if the intrinsic dimensionality of A is
approximately k, where k < n, the computation cost is now reduced to O(mnk).

The QUIC-SVD [6] is a sample-based approximate SVD algorithm. It itera-
tively builds a row subspace that approximates A with controlled L2 error. The
basis construction is achieved using a binary tree called cosine tree, as shown in
Figure 1(a), where each node represents a collection (subset) of the matrix rows.
To begin, a root node is built that represents all rows (i.e. the entire matrix A),
and the mean (average) vector of the rows is inserted into the initial basis set.
At each iteration, a leaf node ng in the current tree is selected for splitting. The
selection is based on each node’s estimated error, which predicts whether split-
ting a node is likely to lead to a maximal reduction in the matrix approximation
error. To perform the splitting, a pivot row r, is sampled from the selected node
n, according to the length-squared distribution. Then, ng is partitioned into
two child nodes. Each child node owns a subset of the rows from ng, selected by
their dot products with the pivot row. Specifically, rows closer to the minimum
dot product value are inserted into the left child, and the remaining nodes are
inserted into the right child. Finally, the mean vector of each subset is added to
the basis set, replacing the mean vector contributed by the parent node.

Figure 1(a) shows the cosine tree constructed at an intermediate step of the
algorithm. Each leaf node represents a subset of rows, and contributes a mean
vector to the current basis set. As the tree is split further, the basis set expands.
The process terminates when the whole matrix approximation error is estimated
to fall below a relative threshold:

|A—Al% = |A— AVVT|% < €| A%

where V is the row basis, A = AVVT is the reconstructed matrix with the
approximate SVD, and ||-|| p denotes the Frobenius norm. This error is calculated
using a Monte Carlo estimation routine, which evaluates the projection error of
A on to the row basis set V. The error estimation routine returns an upper
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bound on the error with probability 1 — §, where ¢§ is an adjustable parameter.
This routine is also used to estimate the error contributed by a node, in order
to prioritize the selection of nodes for splitting as described above. Intuitively,
nodes with large error are not well-approximated by the current basis, and thus
splitting them is likely to yield the largest benefit.

Whenever a vector is inserted into the basis set, it is orthogonalized against
the existing basis vectors using Gram-Schmidt orthogonalization. This is neces-
sary for the Monte Carlo error estimation and SVD extraction. Once the tree
building terminates, the current basis set accurately captures the row subspace
of A, and the final SVD can be extracted from the basis set by solving a much
smaller SVD problem.

In summary, the main computation loop involves the following steps: 1) select
a leaf node with the maximum estimated error; 2) split the node and create
two child nodes; 3) the mean vector of each child is inserted into the basis set
and orthonormalized (while the one contributed by the parent is removed); 4)
estimate the error of each child node; 5) estimate the error of the whole matrix
approximation, and terminate when it’s sufficiently small. For more details, we
refer the reader to [6].

2.2 GPU Implementation

We implemented QUIC-SVD using the CUDA programming language, in con-
junction with the CULA [7] library to extract the final SVD. We found that most
of the computation is spent on the following two parts: 1) computing vector inner
products and row means for node splitting; 2) Gram-Schmidt orthogonalization.

When we split a node, we need to compute the inner product of every row
with the pivot row (which is selected by sampling length-squared distribution
of the rows). Since a node does not necessarily span contiguous rows, we could
not use a simple matrix-vector multiplication call to accomplish this step. Re-
arranging the rows of each node into contiguous chunks after each split was not
an option, as this would incur excessive memory traffic. Instead, we maintain
an index array at each node to point to the rows that the node owns, and then
use a custom CUDA kernel to compute all inner products in parallel. This can
be seen as a special case of sparse matrix and vector multiplication. Next, the
rows are split into two subsets based on their inner product values, which can
be done using parallel sorting. For each subset we again use a custom CUDA
kernel to compute the mean vector, which will be inserted into the basis set.

When we add a new mean vector to the basis, it must be orthonormalized
with respect to the existing basis vectors with the Gram-Schmidt process. Given
a set of orthonormal basis vectors v, ..., v and a new basis vector r, the classical
Gram-Schmidt process would compute

r'=r—py,(r)— ... —py,(r), and vi =1/

where py(r) = (r - v) v denotes the projection of r onto v. Both the projection
and subtraction can be done in parallel, but the numerical stability is poor. The
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modified Gram-Schmidt process subtracts the projection vector sequentially:

ri=r—py,(r); r2=r1—py(ry); .. r'=rp=ri_1—py,(Tk-1)

This is mathematically the same, but the numerical stability is improved greatly.
Unfortunately, this formulation serializes the computation and cannot be easily
parallelized.

To exploit the benefits of both, we propose to use a blocked Gram-Schmidt
process, which involves partitioning the basis vectors into x blocks (subsets).
Within each block, we use the classical Gram-Schmidt to gain parallelism; and
across blocks we use the modified Gram-Schmidt to gain numerical stability.
Specifically, assume the current set of basis vectors is partitioned into the fol-
lowing  blocks: Vi, ..., Vi (k < k). We will then compute

u; =r — GS(r, V1), ug = u; — GS(uy, Vo), ...u, =u,_1 — GS(u,_1,Vs) =1

where GS(u, V) denotes the standard Gram Schmidt orthogonalization of u
with respect to basis subset V. Note that when x = 1 or kK = k, the algorithm
degenerates to the classical or the modified Gram-Schmidt respectively. We set
k such that each block contains approximately 20 basis vectors, and we have
found that this provides a good tradeoff between speed and numerical stability.

Among the other steps, the Monte Carlo error estimation is straightforward
to implement on the GPU, and its cost is insignificant. Selecting a splitting node
is achieved with a priority queue [6] maintained on the CPU. The extraction of
the final SVD is performed with the CULA toolkit. Again, the cost of this step
is insignificant as it only involves computing the SVD of a k& x k matrix.

2.3 Partitioned Version

To accommodate large datasets, we introduce a partitioned version of the algo-
rithm that can process matrices larger than GPU or even main memory size.
While the original QUIC-SVD algorithm [6] did not consider out-of-core com-
putation, we found that the structure of the cosine tree lends itself naturally
to partitioning. To begin, we split the matrix A into s submatrices Ay, ..., A,
each containing [m/s] consecutive rows from A. Next, we run QUIC-SVD on
each submatrix A; sequentially. A naive algorithm would then simply merge the
basis set constructed for each submatrix A; to form a basis for the whole matrix.
While this would give correct results, it introduces a lot of redundancy (as each
basis set is computed independently), and consequently reduce efficiency.

We make a small modification to the algorithm to eliminate redundancy. We
build an individual cosine tree for each submatrix A;, but all submatrices share
a common basis set. The algorithm processes the submatrices sequentially in
order. When processing submatrix A;, the corresponding matrix rows are loaded
into GPU memory, and a new cosine tree is constructed. The basis set from
previous submatrices is used as the initial basis. If the error estimated from this
basis is already below the given threshold, the algorithm will stop immediately
and proceed to the next submatrix. Intuitively this means the submatrix A; is
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already well represented by the current basis set, hence no update is necessary.
Otherwise, the algorithm processes A; in the same way as the non-partitioned
version, and the basis set is expanded accordingly. Once we are done with the
current submatrix, the GPU memory storing the matrix rows is overwritten with
the next submatrix.

After a complete pass through every subset, we observe that the whole matrix
approximation error is equal to the sum of the each subset’s approximation error,
which is bounded by the given relative error threshold. In other words:

IA = AllE =320 1Ai — Ally < 307 ell Al = ellAll%

where A\l = AiV‘/}T is the submatrix A; reconstructed using the row basis V.
Thus by controlling the relative error of each submatrix, we can guarantee the
error bound on the whole matrix in the end. Figure 1(b) shows an example of
three cosine trees sharing a common basis.

Note that by using partitioning, only a fraction of the matrix data is loaded
to the GPU memory at a time, thus allowing for out-of-core computation.

SVD Extraction Given a matrix A € R™*" and a basis V € R™** QUIC’s
SVD-extraction procedure first projects A onto the basis, resulting in an m x k
matrix P = AV. It then computes an exact SVD on the k x k matrix PTP,
resulting in U’'X'V'T = PTP. Finally, the approximate SVD of A is extracted
as V=VV,Y=+vX and U = PV' YL

We assume that P can fit in memory, since k& < n. The matrix A cannot fit
in memory, so we once again load A into memory a block at a time. Given a
block A;, the corresponding block of P; C P is A;V. After we have completed a
pass over all of A, the entire P is in memory. We then proceed with the rest of
the computation as described above.

3 Results

For testing and evaluation, we compared results of our GPU-based algorithm
to the following three implementations: 1) a highly-optimized, multi-threaded
CPU version of QUIC-SVD implemented using Intel Math Kernal Library; 2)
MATLAB svds routine; and 3) the Tygert SVD [10], which is a fast CPU-based
approximate SVD algorithm built upon random projection. In each test case,
we plot the running time as well as the speedup over a range of matrix sizes
and ranks. We use random matrices for testing. Given a rank k and size n, we
first generate an n x k matrix and a k x n matrix filled with uniform random
numbers between [—1, 1]; we then multiply them to obtain an n x n matrix of
rank k. Our experimental results were collected on a PC with an Intel Core i7
2.66 GHz CPU (with 8 hyperthreads), 6 GB of RAM, and an NVIDIA GTX
480 GPU. Both the CPU and GPU algorithms use double-precision arithmetic.
For QUIC-SVD, we set the relative error threshold e = 107!2, and § = 107!2
(in Monte Carlo error estimation) for all experiments. All timings for the GPU
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(b) Plots of speedup factors comparing each pair of algorithms.

Fig. 2. Performance and speedup comparison for the following three algorithms: CPU
QUIC-SVD, GPU QUIC-SVD, and MATLAB svds. The input matrices are randomly
generated with size ranging from 1000% to 7500% and rank ranging from 100 to 1000.

implementation includes both the data transfer time (to and from the GPU) and
actual computation time (on the GPU).

Figure 2(a) shows a performance comparison of our GPU implementation vs.
the CPU implementation of QUIC-SVD as well as MATLAB svds. The matrix
size ranges from 1,000 to 7,500% (the largest that svds could handle on our
system), and the matrix rank ranges from 100 to 1000. All three algorithms were
run with the same input and similar accuracy. Figure 2(b) plots the speedup
factor for the same test cases. In addition, we show the speedup factor of the
CPU version of QUIC-SVD over svds. We observe that the CPU QUIC-SVD
is up to 30 times faster than svds, and our GPU implementation is up to 40
times faster. In both cases, the maximum speedup is achieved under a large and
low-rank matrix. This makes sense because matrices with lower ranks favor the
QUIC-SVD algorithm. From this plot we can see that the speedup primarily
comes from the QUIC-SVD algorithm itself. If we compare the GPU and the
CPU versions of QUIC-SVD alone, the maximum speedup of the GPU version
is about 3 times (note that the two have their peak performances at different
points). Although this is a moderate speedup, it will become more significant for
larger matrices (shown below), as the GPU’s parallelism will be better utilized.
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(b) Plots of speedup factors comparing each pair of algorithms.

Fig. 3. Performance and speedup comparison for the following three algorithms: CPU
QUIC-SVD, GPU QUIC-SVD, and Tygert SVD. The input matrices are randomly
generated with size ranging from 10002 to 220002 and rank ranging from 100 to 1000.

Figure 3(a) shows a performance comparison of our GPU and CPU imple-
mentations to Tygert SVD [10], which is a very fast approximate SVD algorithm
that exploits random projection. Here we set the size of the test matrices to range
from 1,000% to 22,0002, and the rank to range from 100 to 1000. As 22,0002
matrix (double precision) is too large to fit in GPU memory, we used our par-
titioned version with 4 partitions. Again all three algorithms were run with the
same input and comparable accuracy. Figure 3(b) plots the speedup factor for
each pair of the test cases. Note that the CPU version and Tygert’s algorithm
have comparable performance, while the GPU version is up to 7 times faster
than either algorithm. While the GPU version does not perform as well on small
matrices due to its overhead, its benefits are evident for large-scale matrices.

4 Conclusions and Future Work

In conclusion, we have presented a GPU-based approximate SVD algorithm.
Our method builds upon the QUIC-SVD algorithm introduced by [6], which
exploits a tree-based structure to efficiently discover the intrinsic subspace of
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the input matrix. Results show that our GPU algorithm achieves 6~7 times
speedup over an optimized CPU implementation. Using a matrix partitioning
scheme, we have extended our algorithm to out-of-core computation, suitable for
very large matrices.

In ongoing work, we are modifying our GPU algorithm to work with sparse
matrices. This is important as large-scale matrices tend to be sparse. We will also
test our algorithm in practical applications. One application we are particularly
interested in is exacting the singular vectors of large graph Laplacians. This is
instrumental for certain machine learning problems such as manifold alignment
and transfer learning. Finally, we have found that the Monte Carlo error estima-
tion is taking a considerable amount of overhead. We would like to investigate
possible way to reduce or eliminate this overhead.
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