
Leveraging Failures to Enhance Hierarchical Concept Learning
when Training and Testing are Limited

Huzaifa Zafar & Daniel D. Corkill
University of Massachusetts Amherst

Computer Science Department
{hzafar,corkill}@cs.umass.edu

Abstract

Hierarchical concept learning constructs higher-level con-
cepts using previously learned prerequisite concepts. We are
working in an especially challenging context where only a
small number of training instances for each concept are pro-
vided to the learning system. This limited instruction forces
even the most skillful learner to make assumptions about
the concept being taught—assumptions that can be incorrect.
Given this uncertainty, multiple candidates may be proposed
for the concept, each stemming from different assumptions
that are consistent with the training.
We present a control strategy for managing the use of hy-
pothesized concept candidates in higher-level learning. The
strategy is based on three key ideas: 1) limiting prerequisite-
candidate combinatorics by operating with a single selected
candidate for each concept at any time, 2) using learning
failure to select a different candidate for a direct or indi-
rect prerequisite concept, and 3) using differences observed
as candidates are used to guide candidate selection. We im-
plemented and evaluated this novel Concept Candidate Man-
agement (CCM) strategy in MABLE, an electronic student
that performs bootstrapped concept learning. Using the CCM
strategy, MABLE learned concepts that were not successfully
learned otherwise—without any additional training or testing
and without any changes to learning algorithms.

Introduction
An automated system for hierarchical concept learning
(Rivest and Sloan 1994; Nguyen et al. 2004) uses one
or more learning algorithms (“learners”) that learn higher-
level target concepts using prerequisite concepts that were
learned previously or provided to the system as primitive,
base-knowledge concepts. We are working with an open, ex-
tensible learning system where any number of learners can
be added to the system. When this system is given a new
concept to learn, it is told which prerequisite concepts are
to be used in learning the concept.1 Concept instruction (in
the form of training instances or other teaching modalities)
is conveyed to the learning system using a formal interac-
tion language (Mailler et al. 2009). When invoked to learn

1Therefore, the learning system does not need to identify the
concepts to be learned or the precedence relationship between
them, which is a major focus of work such as that of Datta and
Kibler (Datta and Kibler 1993).

a target concept, a learner uses the instruction to incorporate
(compose) the specified prerequisite concepts into a com-
posable procedure performing the learned target concept.

Limited instruction & multiple concept candidates We
are working in an especially challenging context where
the learning system is provided with limited instruction
(such as a few training instances) for each concept. This
causes even the best of learners to make assumptions about
the concept being taught (Hoffbeck and Landgrebe 1996;
Zhou and Huang 2001; Zhang, Lin, and Zhang 2001). Those
assumptions can be incorrect, forcing a learner to either hy-
pothesize a single candidate for the target concept or avoid
premature elimination of reasonable assumptions by propos-
ing multiple candidates. Each of these proposed concept
candidates stems from different assumptions made that are
consistent with the instruction. As a very simple example,
consider the blocks-world concept of a stack. A few la-
beled examples of stack and non-stack block arrangements
are provided, all using blue blocks. A learner could assume
that block color does not matter, that a stack must consist of
blocks of the same color, or that stacks must be blue. Since a
learner cannot eliminate any of these assumptions given the
instruction, it could choose to propose a color-unimportant
candidate, a monochrome candidate, and a blue-only candi-
date.

The main contribution of this work is a strategy for man-
aging these multiple concept candidates effectively through-
out open-ended concept learning (where new target concepts
may be supplied and taught to the system at any time in the
future). This strategy is important because multiple concept
candidates are inherent given such limited instruction, no
matter how much we try to improve the learners.2

The remainder of the paper is as follows. We first continue
describing the challenging context imposed on our learning
system and how failures can be recognized (even with very
limited testing) and used to eliminate problematic concept
candidates. Then we present our concept-candidate man-
agement (CCM) strategy and describe why it is effective.

2For example, ensemble methods (Ali and Pazzani 1996; Diet-
terich 2000; Zhang et al. 2009) could be used to combine weak
learners into a stronger learner, but given such limited training,
multiple candidates representing alternative reasonable assump-
tions would still be needed.



LEVERAGING FAILURES WHEN TRAINING AND TESTING ARE LIMITED 2

Next we evaluate the performance of CCM in four learning
domains as implemented in MABLE, an electronic student
that performs bootstrapped concept learning. We conclude
with a discussion of unexplored research directions and po-
tential future work.

Leveraging Failures
In addition to the limited instruction provided for each con-
cept, the learning system is given a concept mastery exam
consisting of small number of test “questions” (as few as
one).3 A mastery exam involves answering a question or
performing a skill that demonstrates the concept has been
learned. For example a mastery exam question could be
“Is this a stack?” Only a single candidate’s answers to the
exam questions for the target concept can be submitted by
the learning system for grading. This one-time-only-per-
concept grading is the only supervised testing that is avail-
able. Therefore, it is important that the learning system use
grading to the best advantage.

The concept exam can be used to eliminate some of the
candidates generated for the concept. If an answer is graded
as incorrect, all candidates that produce that incorrect an-
swer can be discarded. Answers graded as correct, on
the other hand, only eliminate candidates if the question is
known to have a single correct answer (based on the concept
type or background knowledge), in which case all candidates
that answered differently can be discarded.

Another constraint on our learning system is that its learn-
ers can use only the provided instruction for the concept. So,
the graded answers and other candidate-use information (to
be discussed later) cannot be given to a learner in an attempt
to improve the candidates that it generates. The only change
allowed is to invoke learners with the same instruction, but
with different prerequisite concept candidates.

Prerequisite candidate use failures Candidates that are
not eliminated by the concept exam can still cause problems
when used to learn higher level concepts. Learners can fail
to learn given a prerequisite candidate, producing no can-
didates for the target concept. Or, target candidates can be
learned, but all of them are eliminated by the target con-
cept’s exam. Such prerequisite candidate use failure can be
addressed only by learning the target concept again using a
different candidate for one or more of the target concept’s
(direct or indirect) prerequisite concepts. An important in-
sight in our work is that use failures provide an indirect av-
enue for eliminating problematic candidates. In other words,
use failures (especially those encountered early in the use of
a candidate) can be appreciated, rather than disparaged.

Compensatory learning Some learners are able to “fix”
prerequisite-candidate problems by learning to compensate
for the prerequisite’s undesired behavior. For example, sup-
pose a candidate for the concept of multiplying two inte-
gers incorrectly produces a negative result if both integers

3Exam “questions” and “answers” to them are used loosely in
this paper. A “question” might be a command to perform an action
that demonstrates mastery of the concept and its “answer” would
be the sequence of primitive low-level actions to be executed.

are negative. A learner, using the incorrect candidate when
learning a higher-level arithmetic operation, could compen-
sate by changing the sign of the result when both num-
bers are negative. Such compensatory learning can pro-
duce a short-term benefit of learning the target concept and
even passing the concept exam. Unfortunately, compen-
satory learning masks use failures, allowing problematic
candidates to be used longer than they would be otherwise.
Because compensatory learning is internal to a learner, it
cannot be prevented by any candidate-management strategy.
Our CCM strategy, however, limits its effect by using can-
didates broadly, making it difficult for concept learners to
compensate for problematic candidates consistently.

The CCM Strategy
The Concept Candidate Management (CCM) strategy con-
trols the learning of a hierarchy of concepts in which mul-
tiple candidates are proposed by learners for each concept.
The objective is to maintain a single selected candidate for
each concept that does not have any observed failures in an-
swering concept exam questions or when the candidate is
used as a prerequisite in high-level-concept learning. Ex-
ploring all possible combinations of prerequisite concepts,
and the concept candidates generated from them, is expen-
sive. CCM limits this exploration without overlooking any
viable candidates. The CCM strategy is based on three key
ideas: 1) limiting the number of candidates generated by op-
erating with a single selected candidate for each prerequisite
concept at any time, 2) using failures in learning high-level
concepts to select a different candidate for direct or indirect
prerequisite concepts, and 3) using differences observed as
candidates are used to guide candidate selection.

Differentiating candidates
CCM uses observed behavioral differences to guide the se-
lection of candidates when answering concept exam ques-
tions and in selecting prerequisites for learning higher-level
concepts. Every learned candidate takes the concept exam,
and the answers are used to place every candidate into an
equivalence set where the observed behavior of all candi-
dates is identical.

Further differentiation can be made as candidates are used
as a prerequisite of higher-level concepts. Although we
would have liked to record all uses, in our setting we only
had access to the inputs and outputs of prerequisite candi-
dates calls when a high-level concept candidate answered
an exam question. Each input given to the candidate was
recorded as an unsupervised test question for the prerequi-
site concept, while the output was recorded as the candi-
date’s answer. In addition, each newly recorded test ques-
tion is answered by all other candidates of the prerequisite
concept, and those answers are used to differentiate them
further.

Leveraging learning failures
The CCM strategy leverages two kinds of use failures: exam
failures and prerequisite use failures.

University of Massachusetts Amherst Computer Science Techical Report #2011-026



LEVERAGING FAILURES WHEN TRAINING AND TESTING ARE LIMITED 3

Exam failures When a concept is first learned, CCM se-
lects a candidate at random for grading from the equivalence
set with the most number of candidates. By selecting from
the largest set, CCM maximizes the number of candidates
that will be eliminated if an answer is graded as incorrect. If
a submitted answer is graded as incorrect, the entire equiva-
lence set containing the selected candidate is eliminated, and
an alternate candidate is selected randomly from one of the
remaining equivalence sets.

Prerequisite use failures When learning a target concept,
the selected candidate for each of the target’s prerequi-
site concepts is used by the learners. When a prerequisite
use failure occurs, CCM goes into failure-resolution mode,
changing one or more of the selected (direct or indirect) pre-
requisite candidates of the target concept being learned in
an attempt to resolve the failure. Whenever a selected can-
didate is replaced with an alternate, all concept learning that
used the previously selected prerequisite-concept candidate
(directly and indirectly) will be discarded and those concepts
must be learned again.

In failure-resolution mode, CCM first chooses the prereq-
uisite concept in which to change the selected candidate.
CCM prefers to choose the highest-level prerequisite con-
cept that has previously unused candidates. Once all alter-
nate candidate combinations have been tried at a level, al-
ternate candidate combinations are tried for lower-level pre-
requisite concepts. This is for two reasons: 1) less work has
been done with candidates at higher levels so fewer concepts
have to be learned again and 2) the conjecture that the more
a candidate has been used, the less likely it will cause a pre-
requisite use failure. If multiple prerequisite concepts are at
the same level, ties are broken by preferring the prerequisite
concept with the most number of equivalence sets contain-
ing no previously used candidates, since it provides more
choices of alternate candidates to select from that are likely
to behave differently when used. If ties still persist, one of
them is chosen randomly.

When selecting an alternate candidate for a prerequisite
concept, CCM selects one at random from a different equiv-
alence set than any previously selected candidate. If all
equivalence sets have at least one previously used candi-
date, the set with the most number of candidates that have
not been determined to be unsuccessful (defined shortly) is
selected first, and one of the previously unused candidates in
that set is selected randomly. If all candidates have been pre-
viously used, one of those candidates is selected randomly.
When a use failure occurs, CCM records the combination of
prerequisite candidates as previously used and will not use
that particular combination again. A prerequisite candidate
can still be used, however, with different combinations of
other prerequisite candidates.4

Once an alternate candidate is selected, higher-level con-
cepts that were learned using the previously selected prereq-
uisite candidate are learned again, potentially resulting in
additional concept exam or prerequisite use failures. Those

4If a candidate is re-selected, previously learned high-level can-
didates that were learned using it and the other selected prerequisite
candidates do not need to be learned again.

are resolved in the same way as the original use failure but
within the initial failure-resolution mode. Once all use fail-
ures have been resolved, CCM exits failure-resolution mode
and all candidates that do not use the current selected candi-
dates as prerequisite are discarded.

If the use failure is resolved, all previously used combi-
nations are determined to be unsuccessful and never used
again. A concept candidate is unsuccessful based on use
failures if all combinations of direct or indirect prerequisite
candidates have been determined unsuccessful.

If CCM is unable to resolve a use failure, the concept that
triggered the failure-resolution mode is determined to be a
failed concept because no combination of prerequisites can
be used to successfully learn the concept. The failed concept
is removed from the concept hierarchy, and CCM continues
learning as many other concepts as possible. In this case,
CCM reverts to the same state of selected candidates from
before entering failure-resolution mode (continuing as if the
use failure never occurred).

Evaluation
Experiments with concept-candidate management strategies
were conducted using MABLE (Modular Architecture for
Bootstrap Learning Experiments) (Mailler et al. 2009), an
electronic student for learning a curriculum of multi-level
concepts.5 Each learner in MABLE generated a single can-
didate for the target concept (a limitation we could not con-
trol).

We compared the CCM strategy with three alternative
strategies: 1) a baseline strategy that does not change the
selected candidate once higher-level learning begins; 2)
a “learner selects candidate” (LSC) strategy where each
learner is allowed to select the candidate for each prereq-
uisite concept that it uses when learning a concept; and 3)
CCM using no candidate differentiation (CCMno) beyond
the initial elimination of candidates based on the concept
exam.

The baseline strategy The baseline strategy obtains an-
swers to the mastery exam from each candidate generated
for the concept by the learners. It then selects one candi-
date at random and submits its answers for grading, and the
graded answers are recorded. If that candidate’s answers
pass the exam, it remains the selected candidate for the con-
cept thereafter. If the candidate fails the exam, the selected
candidate and all others whose answers were also incorrect
are eliminated as unsuccessful. One of the remaining candi-
dates, if any remain, is chosen at random to be the concept’s
selected candidate thereafter. If all candidates are eliminated
as incorrect, learning of the concept fails.

The LSC strategy The LSC strategy is an improved ver-
sion of the control strategy originally used in the MABLE
electronic student. The original MABLE strategy eliminates
only the concept candidate whose submitted answer fails the
mastery exam. The improved LSC version eliminates all

5We used curriculums, learners, and the control strategy from
the 12/22/2010 version of MABLE for evaluation

University of Massachusetts Amherst Computer Science Techical Report #2011-026



LEVERAGING FAILURES WHEN TRAINING AND TESTING ARE LIMITED 4

(a) Number of candidate selections (b) Number of times concept learning was performed

Figure 1: Additional Work Performed by CCM and CCMno Strategies (normalized to the baseline strategy)

candidates whose answers to the exam are incorrect (iden-
tical to the exam-failure elimination used in the baseline
strategy). Both LSC and the original MABLE strategy al-
low each learner to select any single candidate (from those
that have not been eliminated by the concept mastery exam)
for each prerequisite concept when learning a higher-level
concept. The graded mastery exam answers for each prereq-
uisite concept are also available to the learner. The learner
creates a single candidate for the higher-level concept (using
any combination of prerequisite candidates it deems appro-
priate), but other learners can select different prerequisite
candidates in producing their candidate for the same higher-
level target concept.

Performance of each strategy
Table 1 shows the number of concepts learned successfully
by MABLE using the baseline, LSC, and CCM strategies in
each of four learning domains:
• ATF (Advanced Tactical Fighter), learning military for-

mation strategies
• ISS (Instruction Set Simulator), learning to simulate

computer machine instructions
• ISS2, learning to simulate a larger and more complex set

of computer machine instructions
• UAV (Unmanned Aerial Vehicle), learning to operate a

UAV for monitoring suspect behavior
The number of concepts learned unsuccessfully (i.e., all can-
didates learned for the concept were unsuccessful) and the
number of concepts where learning failed (no candidates
could be generated by the learners) are also shown. (Both
CCM and CCMno learn the same concepts successfully, so
only the CCM values are shown in the table.) The learners
in MABLE did a fairly good job of generating successful
candidates in all domains except ISS2, where the learners
failed to generate any candidates (even unsuccessful ones)
for over one-third of the concepts (this generation-failure

Concepts Learned Runtime
Domain Successfully/Unsuccessfully (Failed) Factor

Baseline LSC CCM LSC CCM
ATF 25/8 (5) 35/3 38/0 1.2 1.9
ISS 28/7 (2) 31/6 32/5 1.1 1.8

ISS2 10/13 (13) 13/11 (12) 14/10 (12) 1.2 3.0
UAV 40/7 (4) 48/3 50/1 1.3 2.0

Table 1: Concepts Learned in each Learning Domain

count is shown in parentheses in the table). The additional
runtime required by LSC and CCM compared to the baseline
strategy is also shown. The additional runtime required with
the LSC strategy is due to the extra work performed by each
learner in selecting the prerequisite concepts used in learn-
ing. The additional runtime required with CCM stems from
the work that must be performed when a candidate that has
been used as a prerequisite becomes unsuccessful. This ad-
ditional runtime with CCM includes the effort spent exhaus-
tively searching all combinations of prerequisite candidates
(direct and indirect) when no learner is able to generate a
successful candidate using any of them.

When the CCM strategy replaces a selected prerequisite
candidate (direct or indirect), concepts that were learned
using that unsuccessful candidate are learned again using
each proposed replacement candidate. Figure 1 shows the
total number of candidates that are selected by the base-
line, CCM, and CCMno strategies and the number of times
concept learning was performed. (The LCS strategy is not
shown in Figure 1 because all candidate selection beyond
that of the baseline strategy is performed internally by each
learner and, as with the baseline strategy, concepts are not
learned again.) In each learning domain, the CCM strategy
performs nearly twice as many candidate selections as the
baseline strategy (Figure 1(a)) and, due to learning again us-
ing newly selected prerequisite candidates, about four times
as many concept learning invocations (Figure 1(b)). These
totals exclude counts associated with the effort spent exhaus-
tively searching all combinations of prerequisite candidates
(direct and indirect) when no learner is able to generate a
successful candidate using any of them.

Benefit of candidate behavior differentiation
Figure 1 shows that CCM is able to significantly reduce
the amount of additional work, as compared with CCMno,
by taking into account concept candidate behavior differ-
ences obtained as selected candidates are used as prerequi-
site candidates in higher-level concept tests. Figure 2 shows
how candidate differentiation helps when selecting alterna-
tive candidates for a concept and when deciding which pre-
requisite concept should be considered first when the candi-
date of a higher-level concept becomes unsuccessful.

Selecting an alternative candidate for a concept from a
different equivalence set than the one containing an unsuc-
cessful candidate increases the likelihood that the differently
behaving candidate will be successful. In each of the four

University of Massachusetts Amherst Computer Science Techical Report #2011-026



LEVERAGING FAILURES WHEN TRAINING AND TESTING ARE LIMITED 5

Figure 2: Effect of Differentiation in Selecting Alternate Success-
ful Candidates

learning domains, observed behavior differences enable a
successful alternative candidate to be selected from a dif-
ferent equivalence set about 80% of the time (as shown by
the leftmost bar for each strategy). In the remaining 20%
of the cases, no behavior differences had been observed to
aid in selecting a successful alternative candidate (requiring
a random search for successful alternatives from all remain-
ing candidates).

As shown by the middle bar for each strategy, in approx-
imately 20% of the cases when a choice needed to be made
as to which prerequisite concept should be explored next for
alternative prerequisite candidates, exactly one of the pre-
requisite concepts contained multiple equivalence sets. In
these cases, that prerequisite concept was explored next and
an alternate successful candidate was found in one of that
concept’s other equivalence sets.

Finally, as shown by the rightmost bar for each strategy, in
approximately 20% of the cases when an alternate candidate
was selected and used for learning, additional differentiating
use cases were obtained for a sibling concept, further differ-
entiating the sibling’s prerequisite concepts.

Measuring extended use of training and tests
The CCM strategy takes advantage of higher-level concept
tests and instruction to help identify unsuccessful (direct and
indirect) prerequisite candidates and to differentiate them
based on their use-case behavior. We next present measures
of this extended candidate use.

Identifying unsuccessful candidates Figure 3 shows the
amount of candidate use in higher-level training and tests
that was required to identify them as unsuccessful. Figure
3(a) shows how many levels of higher-level use was required
to identify a prerequisite candidate as unsuccessful. In all
four domains, 70% of the unsuccessful candidates are iden-
tified by the concept exam and are not shown in the figure.
The remaining 30% are shown in the figure, and the major-
ity of those 30% were identified as unsuccessful when used
directly as a prerequisite concept during learning or testing
at the next level (+1L or +1T). However, the remaining can-
didates were identified as unsuccessful only when used in-
directly as prerequisites at higher levels. The higher a pre-
requisite is used before it is identified as unsuccessful, the
more work is required to select a successful alternative can-
didate and to learn concepts again using the newly selected
prerequisite candidates.

Figure 3(b) shows how many uses of a prerequisite candi-
date (irrespective of usage level) was required to identify as
unsuccessful the 30% that are not identified by the concept
exam. Again, a majority of the remaining 30% were iden-
tified as unsuccessful within a few uses. However, close to
5% required 10 or more uses before they were identified as
unsuccessful.

Identifying behavior differences Use of prerequisite can-
didates provides additional use-cases that can expose differ-
ences among all candidates of the prerequisite concept. Fig-
ure 4 shows how the use of a prerequisite candidate at higher
levels and how the number of uses enabled further differen-
tiation of candidates. In the ISS2 domain, the majority of the
differentiation occurred with the concept exam. This is due
to the large number of failed concepts where no candidates
were generated.

Summary and Future Work
We presented Concept Candidate Management (CCM) as an
effective strategy for managing the generation and selection
of concept candidates using information gained as the can-
didates are used in learning higher-level concepts. By dif-
ferentiating candidates based on their behavior and by asso-
ciating unsuccessful learning of higher level concepts with
the prerequisite candidates used to learn them, CCM can
thoughtfully select alternative prerequisite candidates and
control when unsuccessfully learned concepts have to be
“learned again.” Using the CCM strategy, MABLE learned
concepts that were not successfully learned otherwise—
without any additional training or testing and without any
changes to learning algorithms.

The learners used in our MABLE-based CCM experi-
ments were produced by other researchers and were used un-
modified. (To us, these learners were truly “black boxes.”)
This limited exploration of several interesting research di-
rections. First, uses of prerequisite candidates during learn-
ing was invisible to the CCM strategy (only the inputs and
outputs as prerequisite candidates were used in answer-
ing higher-level concept examination questions could be
recorded). We would have liked to obtain the inputs and out-
puts of prerequisite candidates as they were used by learn-
ers as they learned higher-level concepts. This additional
source of candidate differentiation might improve CCM’s
ability to select successful alternative candidates. Second,
each MABLE learner proposed only a single “best” can-
didate when invoked to learn a concept. If each MABLE
learner could return multiple candidates for a concept—
especially when the learner’s confidence among those candi-
dates is close—concepts that are currently unlearnable (due
to the lack of a suitable prerequisite candidate) might be
learned successfully given the additional candidates. Fi-
nally, if learners could annotate the candidates that they gen-
erate with their confidence in them, CCM could use those
confidence values in candidate selection (replacing the ran-
dom choices used in the absence of such information).

Another interesting, unexplored research direction is al-
lowing a learner to use the inputs and outputs that CCM has
recorded for a concept’s candidates when the learner is in-

University of Massachusetts Amherst Computer Science Techical Report #2011-026



LEVERAGING FAILURES WHEN TRAINING AND TESTING ARE LIMITED 6

(a) Number of levels that a prerequisite is used (b) Number of uses as a prerequisite

Figure 3: Percentage of Unsuccessful Prerequisite Candidate Detection by Use

(a) Number of levels that a prerequisite is used (b) Number of uses as a prerequisite

Figure 4: Percentage of Prerequisite Candidate Differentiations by Use

voked to learn the concept again. This information could be
used by the learner as an additional source of unsupervised
instruction (Stone 2000; Whiteson and Stone 2003) stem-
ming from how previously generated candidates were used
in learning and testing higher-level concepts.

Acknowledgment
This effort was performed under the DARPA Bootstrapped Learn-
ing Program. It was sponsored in part by SRI International under
agreement number 27-001251. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or SRI.

References
Ali, K. M., and Pazzani, M. J. 1996. Error reduction through
learning multiple descriptions. Mach. Learn. 24(3):173–
202.
Datta, P., and Kibler, D. 1993. Concept sharing: A means
to improve multi-concept learning. In In: Proc. of the 10th
ICML, 89–96.
Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In MCS ’00: Proceedings of the First International
Workshop on Multiple Classifier Systems, 1–15. London,
UK: Springer-Verlag.
Hoffbeck, J. P., and Landgrebe, D. A. 1996. Covariance ma-
trix estimation and classification with limited training data.
IEEE Trans. Pattern Anal. Mach. Intell. 18:763–767.
Mailler, R.; Bryce, D.; Shen, J.; and O’Reilly, C. 2009.
MABLE: A framework for learning from natural instruc-
tion. In AAMAS ’09: Proceedings of The 8th International

Conference on Autonomous Agents and Multiagent Systems,
393–400. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Nguyen, S. H.; Bazan, J.; Skowron, A.; and Nguyen, H. S.
2004. Layered learning for concept synthesis. In Peters,
J. F.; Skowron, A.; Grzymala-Busse, J. W.; Kostek, B.;
Swiniarski, R. W.; and Szczuka, M. S., eds., Transactions
on Rough Sets I, volume 3100 of Lecture Notes in Computer
Science, 187–208. Springer Berlin / Heidelberg.
Rivest, R. L., and Sloan, R. 1994. A formal model of hier-
archical concept learning. Inf. Comput. 114:88–114.
Stone, P. 2000. Layered Learning in Multiagent Systems: A
Winning Approach to Robotic Soccer. MIT Press.
Whiteson, S., and Stone, P. 2003. Concurrent layered learn-
ing. In Rosenschein, J. S.; Sandholm, T.; Wooldridge, M.;
and Yokoo, M., eds., Second International Joint Conference
on Autonomous Agents and Multiagent Systems, 193–200.
New York, NY: ACM Press.
Zhang, X.; Yoon, S.; DiBona, P.; Appling, D.; Ding, L.;
Doppa, J.; Green, D.; Guo, J.; Kuter, U.; Levine, G.;
MacTavish, R.; McFarlane, D.; Michaelis, J.; Mostafa, H.;
Ontanon, S.; Parker, C.; Radhakrishnan, J.; Rebguns, A.;
Shrestha, B.; Song, Z.; Trewhitt, E.; Zafar, H.; Zhang, C.;
Corkill, D.; DeJong, G.; Dietterich, T.; Kambhampati, S.;
Lesser, V.; and et al. 2009. An Ensemble Learning and
Problem-Solving Architecture for Airspace Management. In
Proceedings of Twenty-First Annual Conference on Innova-
tive Applications of Artificial Intelligence (IAAI-09), 203–
210.
Zhang, L.; Lin, F.; and Zhang, B. 2001. Support vector
machine learning for image retrieval. In Proc. IEEE Int.
Conf. on Image Processing, 721–724.

University of Massachusetts Amherst Computer Science Techical Report #2011-026



LEVERAGING FAILURES WHEN TRAINING AND TESTING ARE LIMITED 7

Zhou, X. S., and Huang, T. S. 2001. Small sample learning
during multimedia retrieval using biasmap. IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition 1:11.

University of Massachusetts Amherst Computer Science Techical Report #2011-026


