
A Computational Algorithm for Creating Geometric Dissection Puzzles

Yahan Zhou Rui Wang
University of Massachusetts Amherst

Abstract

Geometric dissection is a popular way to create puzzles. Given
two input figures of equal area, a dissection seeks to partition one
figure into pieces which can be reassembled to construct the other
figure. While mathematically it is well-known that a dissection al-
ways exists between two 2D polygons, the challenge is to find a
solution with as few pieces as possible. In this paper, we present
a computational method for creating geometric dissection puzzles.
Our method starts by representing the input figures onto a discrete
grid, such as a square or triangular lattice. Our goal is then to parti-
tion both figures into the smallest number of clusters (pieces) such
that there is a one-to-one and congruent matching between the two
sets. Directly solving this combinatorial optimization problem is
intractable with a brute-force approach. We propose a novel hierar-
chical clustering method that can efficiently find an optimal solution
by iteratively minimizing an objective function. In addition, we can
modify the objective function to include an area-based term, which
directs the solution towards pieces with a more balanced size. Fi-
nally, we show extensions of our algorithm for dissecting multiple
2D figures, and for dissecting 3D shapes.

Keywords: Geometric puzzles, dissection, optimization.

1 Introduction

Geometric dissection is a mathematical problem that seeks to cut
one geometric figure into pieces which can be reassembled to con-
struct other figures. For a long time, geometric dissections have en-
joyed great popularity in recreational math and puzzles [Lindgren
1972; Frederickson 1997]. One of the ancient examples of a dissec-
tion puzzle was a graphical depiction of the Pythagorean theorem.
Today, a popular dissection game is the Tangram puzzle [Slocum
2003], which uses 7 geometric pieces cut from a square to construct
thousands of distinct shapes. Geometric dissection is also closely
related to tiling and tessellation, both of which have numerous ap-
plications in computer graphics and computational geometry.

In its basic form, the geometric dissection asks whether any two
shapes of the same area are equi-decomposable, that is, if they can
be cut into a finite number of congruent polygonal pieces [Freder-
ickson 1997]. Mathematically, it is long known that a dissection
always exists for 2D polygons, due to the Bolyai-Gerwien theo-
rem [Lowry 1814; Bolyai 1832; Gerwien 1833]. Although the the-
orem provided a general solution to find the dissection solution, the
upper bound on the number of pieces is quite high. In practice,
many dissections can be achieved with far fewer pieces. Figure 2
gives a simple example. Therefore much recent work has focused
on the challenge of finding the optimal dissections using as few
pieces as possible, and this has inspired extensive research in the
mathematics and computation geometry literature [Lindgren 1972;
Cohn 1975; Frederickson 1997; Czyzowicz et al. 1999; Kranakis
et al. 2000; Akiyama et al. 2003]. While many ingenious analytic
solutions have been discovered for shapes such as equilateral trian-
gles, squares and other regular polygons, finding the optimal solu-
tion for general shapes remains a difficult open research problem.

In this work, our goal is to seek an efficient computational algo-
rithm for the geometric dissection problem, and we use our solver
to facilitate the creation of dissection puzzles. To do so, we employ

Figure 1: Four example sets of dissection puzzles created using our
algorithm. The top two rows show 2D dissections – the first is a 4-
piece dissection, and the second is a 5-piece dissection of a rectan-
gle with a rasterized octagon. The bottom two rows show 3D dissec-
tions – the first is a 6-piece dissection illustrating 33+43+53 = 63,
and the second is an 8-piece dissection between a polycube bunny
model and a cuboid. The inlets show partial constructions. For
each set we show the 3D pieces on the left, and the two shapes
constructed from them on the right.

an optimization approach that operates in a discrete solution space.
Our method assumes that the input figures can be represented onto
a discrete grid such as a square lattice. We rasterize each input fig-
ure into the lattice, and provide a simple editing interface to modify
the rasterized figure or create one from scratch.

Following this step, we can reformulate the dissection into a clus-
ter optimization problem. Specifically, our goal is to partition each
figure into the smallest number of clusters (pieces) such that there
is a one-to-one and congruent matching between the two sets. We
consider two pieces congruent if they match exactly under isomet-
ric transformations, including translation, rotation, and flipping. As
this is a combinatorial optimization problem, a brute-force solution
is intractable even for small-scale problems. Therefore we propose
a hierarchical clustering method that can efficiently find an optimal
solution by iteratively minimizing an objective function. Our main
idea is to start with two clusters in each figure, search for the parti-
tioning that gives the best matching score, then progressively insert
more clusters at each subsequent level until a dissection is found.
The matching score is defined using a distance metric that penalizes
mismatches. During optimization, we prioritize the search towards
directions that are more likely to reach a dissection. Our algorithm
can efficiently converge to a solution with a small number of pieces.
Furthermore, we have found our solutions to be optimal for all test
cases that we can verify optimality (see Section 4).

With the computational approach, we can extended the creation of
puzzles in several ways. First, we can replace the square lattice
with a triangular lattice which can account for 45◦ angled edges in

1



Figure 2: An example of dissecting two shapes (a 7×10 rectangle
with a center hole and a 8×8 square) using only two pieces.

the input figures. Other regular grids, such as the hexagonal lattice,
are also possible. Second, we can modify the objective function to
include an area-based term, which favors pieces with a more bal-
anced size. This can help avoid solutions where some pieces are
significantly larger than other pieces, which can reduce the playa-
bility of the puzzles. Third, we show an extension of our algorithm
to dissecting multiple input figures. We propose a global refine-
ment to simultaneously optimize all input figures, instead of a triv-
ial approach that simply overlays the pairwise dissections. Finally,
we have also extended our algorithm to dissecting 3D shapes, thus
creating 3D geometric puzzles. Figure 1 shows several examples
produced using our method.

It should be noted that as we require the input to be discretized, our
method is not meant to substitute the analytic approaches to many
general dissection problems. Rather, our aim is to find an efficient
computational solution, which provides a convenient tool for users
to create a variety of different dissection puzzles.

2 Related Work

Geometric Dissections. Geometric dissection problems have a rich
history, originating from the explorations of geometry by the an-
cient Greeks [Allman 1889]. One of the earliest examples is a visual
proof of the Pythagorean theorem by using dissections to demon-
strate the equivalence of area. In Arabic-Islamic mathematics and
art, dissection figures are frequently used to construct intriguing
patterns ornamenting architectural moments [Özdural 2000]. Dis-
section figures also provide a popular way to create puzzles and
games. The Tangram [Slocum 2003], which is a dissection puzzle
invented in ancient China, consists of 7 pieces cut from a square
and then rearranged to form a repertoire of other shapes.

In mathematics, an early significant result was the proof that any 2D
polygon can be dissected using a finite number of pieces to other
polygons of equal area [Lowry 1814; Wallace 1831; Bolyai 1832;
Gerwien 1833] (although the same conclusion does not hold for 3D
shapes [Dehn 1900]). This has commonly been referred to as the
Bolyai-Gerwien theorem. Since then, attention has focused on the
more challenging problem of finding optimal dissections that use
the fewest number of pieces. For example, Cohen [1975] studied
economical triangle to square dissections; Kranakis et al. [2000]
studied the asymptotic number of pieces to dissect a regular m-gon
into a regular n-gon; Akiyama et al. [2003] studied the optimality
of a dissection method for turning a square into n smaller squares;
Czyzowicz et al. studied the number of pieces to dissect a rational
rectangle into a square [1999], and under the additional constraints
of glass cuts [2007]. In addition, the popularity of such problems is
culminated in seminal books such as [Lindgren 1972; Frederickson
1997]. Despite extensive research, finding the minimum dissection
solution has so far only been possible for a few special cases, while
the general cases remain an open research problem. Our work is
first to present a computational algorithm to solve a general dissec-
tion problem in discrete domain.

Another research area is dissections with special properties, such as
hinged dissections where all pieces are hinged together at vertices,
and remain connected as they are rearranged. An early example was
demonstrated by [Dudeney 1902] that turns an equilateral triangle
to square. Such an intriguing construction inspired a number of

(a) square (b) right tri. (c) equilateral (d) hexgon

Figure 3: Examples of several discrete lattice grids.

studies including a well-known book by Frederickson [2002]. Re-
cently, Abbott et al. [2008] proved that any two polygons of equal
area have a hinged dissection, resolving a long-standing open prob-
lem. Other types of hinges have also been studied, including twisted
hinges [Frederickson 2007] and piano hinges [Frederickson 2006].

Tiling. A closely related subject to geometric dissections is tiling
[Grünbaum and Shephard 1986], the basic form of which is to seek
a collection of figures that can fill the plane infinitely with no over-
laps or gaps. The use of tiling is ubiquitous in the design of patterns
for architectural ornaments, mosaics, fabrics, carpets, and wallpa-
pers. It is also seen throughout the history of art, especially in
the drawings of M.C. Escher. In computer graphics, Kaplan and
Salesin [2000] presented a technique called ‘escherization’, which
can approximate any closed figure on the plane into a tileable shape,
simulating Escher-style drawings. A number of well-known tiling
patterns, such as Penrose tiling, polyomino tiling, Wang tiles have
also been cleverly applied in graphics, especially for blue noise
sampling [Ostromoukhov et al. 2004; Ostromoukhov 2007] and
texture synthesis [Cohen et al. 2003; Fu and Leung 2005; Lagae
and Dutré 2006]. An excellent introduction and survey of tile-based
methods in computer graphics can be found in [Lagae et al. 2008].

Tiling can also be used to create puzzles. Lagae and Dutré [2007]
have shown that the tile packing results can be used to create inter-
esting jigsaw puzzles. Another relevant work is a method for cre-
ating 3D polyomino puzzles presented by [Lo et al. 2009]. Their
method aims to find a set of polyomino pieces that can tile a given
parameterized surface, and they designed clever interlocks to make
the puzzles physically realizable. Generally, tile-based puzzles
study how to use a predefined set of pieces to cover a given shape;
in contrast, geometric dissection puzzles study how to solve for a
set of pieces that can simultaneously construct two or more shapes.
Thus their solution methods are considerably different.

Recreational Math and Art. Our work relates to a number of top-
ics in computer graphics that are targeted towards recreational math
and art, such as 3D Burr puzzles [Xin et al. 2011], ASCII art [Xu
et al. 2010], paper popup [Li et al. 2011; Li et al. 2010], camou-
flage images [Chu et al. 2010], shadow art [Mitra and Pauly 2009],
3D polyomino puzzles [Lo et al. 2009], maze construction [Xu and
Kaplan 2007], papercraft models [Mitani and Suzuki 2004], jig-
saw image mosaics [Kim and Pellacini 2002]. Solutions to many
of them involve solving a complex optimization problem. For ex-
ample, Chu et al. [Chu et al. 2010] used a multi-label graph cut
algorithm to solve an pixel labeling problem. In general, our formu-
lation for geometric dissections can be viewed as a label assignment
problem (the label being the index of a piece). However, we haven’t
found any existing solution that can directly benefit our case. This
is mainly because unlike in image domains, our objective function
cannot be defined using a local coherence metric, thus an algorithm
such as graph-cuts is not applicable.

3 Algorithms and Implementation

3.1 Assumptions and Overview

Given two input figures A and B of equal area, our goal is to find
the minimum set of pieces to dissect A and B. To formulate it as

2



an optimization problem, we require both input figures to be repre-
sented onto a discrete grid. The simplest choice is a square lattice
as shown in Figure 3(a), which is naturally suitable for representing
rectilinear polygons. For other shapes, such as discs, we rasterize
them into the grid, resulting in approximated shapes. Note that for
the purpose of creating puzzles, exact representation of the input is
not necessary. At sufficient grid resolution, the discritization typ-
ically produces acceptable shape approximations. Note that after
discretization, the area (number of pixels) covered by each figure
must remain the same. This can be ensured either by the design of
the input figures, or by using a graphical interface (see Section 3.7)
to touch up the rasterized figures. In the following, we use symbols
A and B to denote the two rasterized figures of equal area.

Given the input, we formulate the dissection into a cluster opti-
mization problem. Specifically, our goal is to partition each figure
into the smallest number of clusters (each cluster being a connected
piece) such that there is a one-to-one and congruent matching be-
tween the two sets of clusters. Here congruency refers to two pieces
that match exactly under isometric transformations, including trans-
lation, rotation, and flipping. Since the solution space is discrete,
the possible transformations are also discrete. For example, on a
square lattice with the grid size 1, all translations must be of integer
values, and there are only 4 possible rotations: 0◦, 90◦, 180◦, and
270◦. Thus excluding translation, two congruent pieces must match
under the 8 different combinations of rotation and flipping.

Generally, solving such a clustering problem requires combinato-
rial search, which would impose a very large solution space. As the
dissection requires the solution pieces to fit exactly with each other
in both input figures, leaving no holes or overlaps, standard fitting
or clustering algorithms are unlikely to lead to valid results. To ef-
ficiently solve the problem, we introduce a hierarchical clustering
algorithm that progressively minimizes an objective function until
a solution is found. We start the search from a random initial condi-
tion, and apply refinement steps to iteratively reduce the objective
function value. We use random exploration to keep the algorithm
from getting stuck in local minima. Below we will first describe our
algorithm for dissecting two input 2D figures defined on a square
lattice, then describe its extensions to the triangular lattice, the dis-
section of multiple figures, and finally the dissection of 3D shapes.
Figure 4 provides a graphical overview of the algorithm.

3.2 Dissecting Two Figures on a Square Lattice

Distance metric. Given two pieces on each figure: a ⊂ A, b ⊂
B, we define a distance metric D that measures the bidirectional
mismatches between them under the best possible alignment:

D(a,b) = minTa,b

(∥∥{ p | p ∈ a and (Ta,b × p) /∈ b}
∥∥

+
∥∥{ p | p ∈ b and (T−1

a,b × p) /∈ a}
∥∥) (1)

where Ta,b is an isometric transformation from piece a to b, T−1
a,b is

the reverse transformation, p counts the number of pixels that in one
piece but not the other (i.e. it measures bidirectional mismatches).
As D measures the minimum mismatches under all possible Ta,b,
it will be 0 if the two pieces are congruent.

To simplify the calculation of D, we first set the translation to align
the centers of a and b together, then simply search among the 8
combinations of rotation and flipping to obtain D. While this does
not consider other possible translations, we found it to work well in
practice, and it preserves the crucial property that congruent pieces
must result in zero distance. Note that if the center of a piece does
not lie exactly on a grid point, we need to align it to the 4 nearby
grid points and calculate D for each; the smallest among them is
returned as the distance value.

Matching. Next, assume the two figures A and B have both been
partitioned into k clusters {ai} and {bj}, we need to match the
elements in {ai} to those in {bj} such that the sum of distance
between every matched pair is minimized. We call this a matching
between the two sets, denoted as M . Mathematically,

M = arg min
m∈{{ai}→{bj}}

∑
(ai,bj)∈m

D(ai,bj) (2)

where {ai} → {bj} denotes a bijection from {ai} to {bj}. Ba-
sically we are seeking among all possible bijections the one that
gives rise to the minimum total distance. This is known as the as-
signment problem in graph theory, which is well-studied and can
be solved by a maximum weighted bipartite matching. Specifically,
we create a weighted bipartite graph between the two sets {ai} and
{bj}: every element ai in {ai} is connected to every element bj
in {bj} by an edge, whose weight is equal to the distance D be-
tween the two elements. The goal is to find a bijection whose total
edge weight is minimal. A common solution is based on a modified
shortest path search, for which we use an optimized Bellman-Ford
algorithm [West 2000]. It guarantees to yield the best matching in
O(k3) time, where k is the number of clusters.

We call the total pair distance underM the matching score, denoted
as EM . In other words, EM =

∑
(ai,bj)∈M D(ai,bj). Note that

EM = 0 if M is a dissection solution. Thus the smaller EM is, the
closer we are to reach a dissection solution.

Objective function. Since the minimum number of pieces to
achieve a dissection is unknown in advance, we propose a hierarchi-
cal approach that solves the problem in multiple levels. Each level
` partitions the two input figures into ` + 1 clusters, and outputs
a set of best candidates at that level. The basic definition of such
an objective function is simply the matching score EM . Specifi-
cally, let’s denote with Ck = ({ai}k, {bj}k) a candidate solution
where {ai}k and {bj}k are two given k-piece clusterings ofA and
B respectively; then the objective function Ek(C) is:

E(Ck) = EM ({ai}k, {bj}k) (3)

At the end of each level `, we select a set (Nb) of the best candidate
solutions {S`} which give the smallest values according to Eq 3,
and use the set for initialization in the next level. The algorithm
will terminate when a solution is found such that E(S`) = 0.

In the following we will describe our algorithms for the first and
each subsequent level. Refer to Figure 4 for a graphical illustration.

3.2.1 Level 1 Optimization

Seeding. At the first level, our goal is to compute the best set of 2-
piece clusterings to approximate the dissection. To begin, we split
A into two random clusters a1 and a2. This is done by starting from
two random seeds, and growing each into a cluster using flood-fill.
While we could also use other methods to grow the clusters, the
flood-fill guarantees that each cluster is a connected component.
We do the same for B, resulting in two random clusters b1 and b2.

Compute matching. Now we have the initial sets of clusters {ai}2
and {bj}2, we can invoke Eq 2 to compute the matching M be-
tween them. In Figure 4 we use the same color to indicate a matched
pair. Note that there is no particular ordering of the clusters, so the
colors may flip depending on the output of the matching algorithm.

Forward copy-paste. Our next step is to refine the clusters. As the
solution space is very large, randomly modifying each cluster by
itself is unlikely to result in a better matching score. Therefore we
introduce a more explicit approach that copies and pastes a cluster
ai to its matched cluster bj , in order to force their shapes to become

3



Repeat N times

Sh
ap

e 
1

Sh
ap

e 
2

Best
candidatesSh

ap
e 

1
Sh

ap
e 

2
Initialize

Cluster Seeds
Cluster using
Voronio diag.

Calculate
Matching

Forward
Copy-paste

Backward
Copy-paste

Random Label 
Switching

Level 1
Final Results

Le
ve

l 1

Initialize
Sub-clusters

Sub-cluster
Refinement

Calculating 
Matching

Forward
Copy-paste

Backward
Copy-paste

Random Label 
Switching

Level 2
Final Results

Le
ve

l 2

Loop R times

Best
candidates

Loop R times

Random Label 
Switching

Re-calculate
Matching

Random Label 
Switching

Re-calculate
Matching

Repeat N times

Figure 4: An overview of our hierarchical optimization algorithm for dissecting two input figures: one is a 15×10 rectangle with an off-center
hole, and the other is a 12×12 square. At each level, we show the steps being performed, and visualize the changes in one of the candidate
solutions after each step. This example requires 3 pieces to dissect, which was found by our algorithm at the end of level 2.

similar. This is called a forward copy-paste. To do so, we apply the
transformation which yields the distance between ai and bj (Eq. 1)
to ai, and pastes the result to B. Note that if the two matched clus-
ters are not congruent yet, the paste may overwrite neighbor pixels
that belong to other clusters. This is allowed, but we randomize the
ordering of clusters for copy-paste in order to avoid bias. Pixels
pasted outside the boundary of a figure are ignored.

Following the above step, some pixels in B may have received no
pasted pixels from A, thus they become holes. We use a random
flood-fill to eliminate the holes. Specifically, we randomly select
already pasted pixels and grow them outward to fill the hole.

Random label switching. As mentioned above, during copy-paste,
some clusters may overlap with each other, resulting in conflicts.
Therefore our next step is to reduce such conflicts by modifying the
cluster assignments for some pixels at the boundary of two clusters.
To do so, we first recompute the matching between the current two
sets of clusters, then simulate a copy-paste in the backward direc-
tion, i.e. from B to A. During this process we record the pixels
that would have overlapped after pasting. For each such pixel x,
we randomly relabel it to the cluster of one of its four neighbor-
ing pixels. This is called random label switching. Note that if x
is surrounded completely by pixels of its own cluster, its label will
remain the same. Thus only pixels on the boundary of a cluster can
potentially be switched to a different label.

Intuitively, the motivation of the forward copy-paste is to encourage
the clusters in B to be shaped similarly to A, and the motivation of
the random label switching is to modify the cluster boundaries in
B to reduce cluster conflicts/overlaps. The two steps combined is
called a forward refinement step.

Backward refinement. The backward refinement performs exactly
the same steps as the forward refinement, except in the reverse di-
rection (i.e. a copy-paste from B toA, followed by a random label-
ing switching inA). At this point, we have completed one iteration
of back-and-forth refinement.

Convergence. We repeat the back-and-forth refinement iteration
for R times (the default value of R is 100). This typically reaches
convergence very quickly, upon which we obtain a candidate solu-
tion C2, whose associated objective function value is E(C2).

Random seed exploration. The refinement process can be seen
as a way to find local minimum from the initial seeds. Thus small

changes to the initial seeds do not significantly affect the converged
result. In order to seek global minimum, we apply random explo-
ration, where we re-compute the the candidate solution N times
(the default value ofN is 400), each time with a different set of ini-
tial seeds. After random exploration, the best Nb = 30 candidate
solutions (i.e. those with the smallest objective function values) are
selected and output as the level 1 final results, denoted as {S1}.

At this point, if there exists a candidate solution whose matching
score is 0, we have reached a perfect dissection. Otherwise we con-
tinue with subsequent levels. The top portion of Figure 4 illustrates
all steps in level 1. Note how the candidate solution refines follow-
ing each step. The red outlines on some pixels indicate unmatched
pixels between a pair of clusters which are not congruent yet.

3.2.2 Level ` Optimization

In each subsequent level `, we start from one of the best candi-
date solutions S` from the last level. Our goal is to insert a new
cluster to S`, and then search for the best (`+ 1)-piece approxima-
tion using the same back-and-forth refinement process as in level 1.
Intuitively, as the output of the previous level are some of the clos-
est `-piece approximations to the dissection, they serve as excellent
starting points for the new level.

The main difference between level ` and level 1 is in creating the
initial clusters. Note that we cannot use completely random seed
initialization as in level 1, because doing so will completely aban-
don the results discovered in previous levels, and hence will not
reduce the problem complexity. Instead, we introduce two heuris-
tics to create initial clusters by exploiting the previous results, and
we consider them both during the random exploration step.

Splitting an existing cluster. In the first heuristic, we select a pair
of pieces {ai,bj} from S` that has the largest (worst) matching
score, and split each into two sub-clusters. We refer to the pair as
the parent clusters. The splitting introduces an additional cluster
for each figure; the remaining clusters which were not split remain
unchanged for now. Next we need to decide how to perform the
split. A straightforward way is random split, but as the parent clus-
ters are not well matched, a random split can create difficulties for
convergence in subsequent steps. Therefore we need to optimize
the splitting to create better matched sub-clusters to begin with.

It turns out that we can optimize the splitting by using the same

4



(a) without area-based term (3 pcs) with area-based term (3 pcs)

(b) without area-based term (8 pcs) with area-based term (8 pcs)

Figure 5: Comparing solutions computed with and without area-
based term. In both examples (a) and (b), two solutions are shown
which achieve the dissection with equal number of pieces. Note how
the area-based term leads to results where the size of each piece is
more balanced, which is usually more preferrable.

approach as level 1 optimization. To do so, we treat the parent clus-
ters ai and bj as two input figures, and apply level 1 optimization
to obtain the best 2-piece dissection between them. We have found
this approach to work well in practice, creating sub-clusters that are
matched as well as it can. Experiments show that this can signifi-
cantly improve the quality of the subsequent refinement results.

Creating new clusters from mismatched pixels. Our second
heuristic is to create a new cluster from the currently mismatched
pixels. For example, assume {ai,bj} are a matched pair but not
yet congruent, then transforming ai to bj will result in some pixels
that are not contained in bj . These pixels will be marked in ai as
mismatched pixels. In Figure 4 the mismatched pixels are indicated
with a red outline. After marking all mismatched pixels in A and
B, we randomly select a seed from them and perform a flood fill to
grow the seed into a cluster, which then becomes a new cluster to
be inserted to the current level.

Comparing the two heuristics. The rationale behind the first
heuristic is that priority should be given to splitting the worst
matched pair, as this is most likely to result in reduced matching
score. The rationale behind the second heuristic is that when a can-
didate solution is very close to reaching a dissection, priority should
be given to the few pixels that remain unmatched. In practice, we
account for both of them during our random exploration: among
the N random tries, 75% will use the first heuristic to initialize the
sub-clusters, and 25% will use the second heristic. This way we
can combine the advantages of both.

Global refinement and random exploration. Once the sub-
clusters are created, we perform the same back-and-forth refine-
ment process as in level 1. Now all clusters will participate in the
refinement, therefore we call this step global refinement. Upon con-
vergence, we obtain a candidate solution C`+1.

In addition, we perform random exploration for N times similarly
to level 1, the goal of which is to seek global minimum. Each explo-
ration starts from a randomly selected best candidate S` from the
previous level, applies one of the two heuristics to insert a new clus-
ter, and computes refinement. Again, after random exploration, the
best Nb candidate solutions are output as the final results {S`} of
level `. Figure 4 shows an example of level 2 optimization. For this
example, our algorithm discovered a perfect dissection at the end of
level 2, thus the program terminates with a 3-piece dissection.

3.3 Area-Based Term

So far we have described a computational algorithm for finding the
minimum dissection of two figures. However, there is no constraint
on the size or shape of the resulting pieces. Thus a solution may
contain pieces that are significantly larger than others. This is often
undesirable, both for aesthetic reasons and for reducing the diffi-
culty of the puzzles (since large pieces are easier to identify and
place on a target figure). For better control of the solution, we in-
troduce an area-based term into our objective function in order to
favor a solution where the size of each piece is more balanced. To
do so, we modify Eq 3 to include the area-based term Eα:

E = EM ({ai}k, {bj}k) + λ · [Eα({ai}k) + Eα({bj}k)] (4)

where λ is a weight adjusting the relative importance of the two
terms. Here Eα is the total area penalty. It is defined by summing
up the area penalty α(ai) of each piece, which is calculated as:

α(ai) =

 A(ai)/Ā− 1 if A(ai) > 2 Ā
Ā/A(ai)− 1 if A(ai) < Ā/2
0 otherwise

(5)

In the above equation, A denotes the area of a piece, and Ā denotes
the average area (i.e. the total area divided by the number of pieces).
Essentially α(ai) penalizes a piece if it is either more than twice
the average area, or less than half of the average area; otherwise we
consider a piece to be within the normal range of size variations and
assign a zero penalty.

Figure 5 shows an example comparing solutions computed with and
without applying the area-based term. Note that while both solu-
tions achieved equal number of pieces, enabling the area penalty
leads to pieces of a more balanced size, which is often preferable.
In addition, more uniformly sized pieces also tend to be symmetric
with each other, which is a desirable property.

Note that the preference towards balanced area and the preference
towards smaller number of pieces are often conflicting goals. For
example, if the area weight factor λ is set too large, the solution will
be heavily biased towards area uniformity, and will deviate from the
goal of seeking the smallest number of pieces. To address this issue,
we gradually decrease λ as the level ` increases. This will reduce
the effect of area penalty over levels, encouraging the solver to fo-
cus more on finding the minimum solution as the level increases.
Our current implementation sets λ = 1

2
0.8`−1.

Avoiding split pieces. Another improvement we made to the objec-
tive function is to include a term that penalizes split pieces. A split
piece is one that contains disconnected components. While these
components transform together in the same way, they are not phys-
ically implementable. Thus we simply add a large penalty to such
pieces in order to eliminate them during best candidate selection.
Note that we do not actively prevent them because there are cases
where split pieces are temporarily unavoidable, such as during the
first several levels of processing when the input figures themselves
are fragmented (see Figure 11 (c)-(f)).

3.4 Extension to the Triangular Lattice

Besides using a square lattice, our method can also be extended to
other lattices including the ones shown in Figure 3 (b,c,d). Cur-
rently we have implemented the right triangular lattice shown in
(b), which is constructed by splitting each grid on a square lattice
to four isosceles triangles along the diagonals. Using this lattice,
we can represent input figures with both rectilinear edges as well as
45◦ angled edges. This usually makes the discrete representation
more expressive. Figure 9 shows several examples.

5



With the triangular lattice, our algorithms remain almost the same,
because the possible transformations, including translation, rota-
tion, and flipping, remain the same with a square lattice. The main
difference is that a triangle pixel has three neighbors (those con-
nected to it along the three edges) while a square pixel has four.

3.5 Extension to 3D Shape Dissection

We can also extend our algorithm to dissecting 3D shapes that are
represented onto a cubic voxel grid. In this case, each voxel has
six neighbors, and the transformation of each piece considers 24
different 3D rotations. However, unlike 2D, a piece is not allowed
to be mirrored (which is analogous to flipping in 2D), because in
general mirroring is not physically plausible in 3D. The area-based
term is correspondingly modified to a volume-based term. Several
examples of 3D dissection are shown in Figure 1, 6 and 7. Note
that our implementation currently does not consider how the pieces
can be locked together to form a stable 3D structure. If a piece has
no sufficient support underneath it, the structure will not be phys-
ically stable. Although the examples shown in this paper have not
encountered such issue, it remains a direction for future research.

3.6 Dissecting Multiple Figures

Finally, we present an extension of our algorithm to simultaneously
dissecting multiple figures. Note that a trivial approach is to simply
overlay the pairwise dissection solutions, and output the intersec-
tions of all pieces. Unfortunately this will produce a large number
of pieces that are overly fragmented – the upper bound is exponen-
tial with respect to the pairwise dissection results.

Here we achieve multi-figure dissection by adapting our optimiza-
tion based algorithm. From Figure 4 we can see that the primary
steps at each level of the algorithm consist of 1) cluster initialization
and 2) cluster refinement. Below we discuss how these two steps
are modified for a multi-figure setting respectively. The matching
M is still computed from a bipartite graph between a pair of fig-
ures. It is possible to redefine M based on the complete k-partite
graph among all k figures, but computing the maximum weighted
matching for such a graph is known to be an NP-hard problem.

Multi-figure cluster initialization. At level 1, the initial two clus-
ters for each figure are created in the same way as before, i.e. each
figure independently creates two random clusters using a flood-fill
on random seeds. At each subsequent level, the initial clusters are
computed using pairwise sub-cluster refinement. Specifically, we
first pick a random figure as the pivot figure. Without loss of gen-
erality, let’s assume the pivot figure is A. Next, we select a piece
from A that has the worst total matching scores with all other fig-
ures, and split it as well as its matched pieces in all other figures
into two sub-clusters. These sub-clusters then need to be refined,
for which we use the same back-and-force process as before, except
that we now perform one iteration of refinement at a time, between
the pivot figure and other figures in a round-robin fashion.

Multi-figure cluster refinement. As before, during global refine-
ment, our goal is to modify the clusters in order to achieve improved
matching result. To do so, we again select one figure as the pivot
figure, then perform the matching and copy-paste from the pivot
figure to all other figures. Next, we loop over all figure to perform
random label switching. Here the candidates for label switching in
a given figure is the set of all pixels that have at least one mismatch
with any other figure. Once this is done, we proceed to the next
figure as the pivot. Thus the original forward vs. backward refine-
ment in the two-figure setting is now generalized to the multi-figure
setting, where each figure will be used as the pivot once to perform
a forward refinement with other figures.

Figure 8: Examples of three-figure dissections. The top row shows
a 6-piece dissection of a square, a rectangle with a cross hole, and
a solid rectangle. The bottom row shows a 13-piece dissection of a
square, the Chinese character for ‘person’, and a figure of a person.

Figure 8 shows two examples of three-figure dissection results.
Note that these results achieve perfect dissections between all three
figures. Since the computation for multi-figure dissection is more
expensive, the running time is considerably longer than before.

3.7 Implementation Details

Algorithm implementation. A 2D figure is loaded from a binary
image and stored as a 2D array. We represent a piece using the
STL’s set data structure. The matching M between two clus-
ters needs to be evaluated frequently, and we employ an optimized
Bellman-Ford algorithm to quickly compute it. It is stored as a bidi-
rectional list together with the transformations defined for each pair
of pieces. We store the triangular lattice using a 2D array as well,
where an array element stores the four triangle pixels, each at a dif-
ferent orientation. A 3D shape is loaded from a binary image that
represents each slice of the shape, and is stored a list of 2D arrays.
Finally, we parallelize the random exploration step using multiple
threads, since each exploration is independently computed. This
allows us to achieve linear speedup using a multicore CPU.

Figure editing interface. As our method requires the two input
figures to contain equal number of pixels (or equal number of voxels
in 3D), we implemented a simple user interface to assist the editing
of input figures if necessary. For a user-provided figure, we first
rasterize it onto the lattice grid, then allow the user to directly edit
each pixel individually. Alternatively, the user can create a figure
from scratch in the interface, similar to editing a standard binary
image. The program reports the total number of pixels covered by
each figure to facilitate pixel counting.

Physical implementations. There are several ways to manufacture
the dissection puzzles we created. If a square lattice is used, we
can build the resulting pieces using Lego bricks, which are easy
to construct. For triangular lattice or 3D dissections, we produce
the puzzles using 3D printing. Figure 1 shows several examples of
physically produced puzzles.

4 Results and Discussions

Optimality. To examine the optimality of our algorithm, we com-
pared our solutions for several representative dissection problems
with the reference solutions described in Frederickson’s book en-
titled Dissections: Plane and Fancy [1997]. These examples are
demonstrated in Figure 11. As shown in the left column, all input
figures are rectilinear polygons of integer coordinates, which can
be exactly represented using a square lattice. Thus they provide a
direct evaluation of our method. The optimal solutions for these

6



Figure 6: An example of 3D shape dissection. The first input is a 43 cube with a 23 cavity at the center, and the second is a 7x4x2 cuboid.
The solution contains 4 pieces shown on the right. The two sets of images on the left show the assembly of the pieces into each input shape.

Figure 7: A 3D shape dissection that illustrates 33 + 43 + 53 = 63. The solution contains 6 pieces that are shown in Figure 1 example three.

examples are known and are listed in the right column of the figure.
The middle column shows our solutions. Several inputs contain
disconnected components, for which our algorithm can handle suc-
cessfully. For all examples we achieve the same number of pieces
with the reference. Note also that for many of them, our solutions
are different from the reference (i.e. in the shape of the resulting
pieces). The examples in Figure 2 and 4 were also produced using
our algorithm, and the results are known to be the optimal.

Performance. Our results were obtained on an Intel Core i7 2.66
GHz CPU with 6 GB RAM and 8 hyperthreads. For relatively sim-
ple shapes, such as the 2D examples in Figure 1 and Figure 11, the
total computation time is within 20 minutes. The figures in these
examples generally contain 50∼160 pixels. Higher resolution in-
put will result in increased computation time, but we have found
that the cost is more dependent upon the number of levels (hence
the number of pieces) required to solve a dissection and less depen-
dent on the number of pixels. This is mainly because each higher
level needs to process more clusters. In addition, multi-figure dis-
sections generally take much longer time to run. For example, our
longest computation time is 5 hours for the three-figure Chinese
character dissection in Figure 8, which produced 13 pieces. All
other 2D examples were computed within half an hour. For 3D dis-
section, the example in Figure 6 took 7 minutes to run, and the one
in Figure 7 took about an hour.

Two-figure dissections. Figures 2, 4, 5, 11 all demonstrate exam-
ples of two-figure dissections using a square lattice. In Figure 1, the
first row shows a dissection between a rectangle and a square with a
cross hole, and the second row shows a dissection between a rectan-
gle and a rasterized octagon. Figure 9 shows two-figure dissections
computed using a triangular lattice.

Area-based term. In Figure 5 we have shown that enabling the
area-based term often leads to results where the size of each piece
is more balanced. In Figure 10 we shown an additional example
where our algorithm has found multiple solutions at the final level.
The best solution can be selected as the one that gives rise to the
smallest area variance of the pieces. Other criteria can also be used
to define the best solution.

Three-figure dissections. Figure 8 shows two examples of three-
figure dissections. The first is a 6-piece dissection of a 12×12
square, a 16×12 rectangle with a cross hole in the center, and a
16×9 solid rectangle. The second is a three-figure dissection of
a square, a Chinese character meaning ‘person’, and a simple fig-
ure of a person. Our algorithm found a 13-piece dissection of this
example. Many Chinese or Japanese characters are hieroglyphic,
thus they are suitable for creating dissection puzzles as the charac-
ter look similar to the figure it represents.

input var(area)=17.8 var(area)=19.8

var(area)=45.5var(area)=31.8 var(area)=53.5

Figure 10: An example where the algorithm found multiple solu-
tions with equal number of pieces. The input are a 9× 9 Serpenski
carpet and a 8 × 8 square. Five selected solutions are shown, all
of which are 7-piece solutions. We calculate the area variance for
each. Smaller variance corresponds to a more uniform/balanced
size, which is generally preferable for aesthetic reasons.

3D dissections. Figures 1, 6 and 7 demonstrate 3D puzzles cre-
ated using our algorithm. In particular, the third row in Fig-
ure 1 is inspired by the 2D Pythagorean triples and demonstrates
33 + 43 + 53 = 63; and the fourth row is the dissection of a poly-
cube Bunny model and a 6 × 6 × 7 cuboid. We have found these
puzzles to be quite enjoyable and challenging to play with. Some of
them look deceptively simple, but can take a considerable amount
of time to solve.

Limitations. One of the main limitations of our method is that due
to discretization, many input figures cannot be exactly represented
onto a discrete lattice grid. They have to be rasterized, resulting
in approximate shapes. Therefore our method is not meant to sub-
stitute analytic approaches to many dissection problems, especially
those involving regular polygons. Nonetheless, for the purpose of
generating puzzles, we have found the approximate shapes are suf-
ficient in many cases. Furthermore, our results may provide insights
and useful initial solutions for discovering an analytic dissection.

Another limitation is that the user is currently given little control
over the algorithm, other than adjusting the area-based term. Thus
it’s difficult to constrain the solution to have certain desirable prop-
erties. One example is the symmetry of the pieces, which is often
desirable from an aesthetic point of view. We have not considered
such properties during the solution process. However, as a dissec-
tion problem often has multiple solutions, such as shown in Fig-
ure 10 and 11, it’s possible to account for these properties when
selecting the final best solution. An alternative way is to include a
symmetry-based term in the objective function in order to actively
enforce such constraints.

7



(a) Heart to Key (6 pcs) (b) H to House (6 pcs) (c) C to Cat (8 pcs)

Figure 9: Three examples of two-figure dissections using the triangular lattice. The examples in (b) and (c) dissect an English letter with an
object figure whose name starts with that letter.

5 Conclusions and Future Work

In summary, we have presented an efficient computational algo-
rithm to compute geometric dissections. We extended our algo-
rithm to incorporating area-based weight, to triangular lattice, to
dissecting multiple figures, and finally to dissecting 3D shapes. We
believe our algorithm and extensions provide a convenient tool for
users to design a variety of different geometric puzzles.

In terms of applications, the ability to create dissection puzzles it-
self presents an interesting application for educational and enter-
tainment purposes. There are other practical applications. For ex-
ample, the 3D extension of our algorithm may be used to solve
manufacturing problems, such as decomposing a furniture into as
few pieces as possible to fit in a specific packaging box. Another
example is to design furniture that can transform between different
shapes to provide multiple functions.

In future work, besides addressing some of the limitations discussed
in Section 4, we plan to explore a few additional directions. First,
we plan to investigate how to design 3D puzzles that can be inter-
locked with each other, providing a stable physical structure. Sec-
ond, we plan to incorporate user-specified constraints into the de-
sign. For example, we can allow the user to specify certain parts
of the input that must remain integral pieces, thus preventing them
from splitting. It is also possible to include a symmetry-based term,
similar to our area-based term, in order to favor solutions with more
symmetric pieces. Finally, by implementing the algorithm on mod-
ern GPUs, we hope to gain significant performance speedup to-
wards interactive design of puzzles.

References

ABBOTT, T. G., ABEL, Z., CHARLTON, D., DEMAINE, E. D.,
DEMAINE, M. L., AND KOMINERS, S. D. 2008. Hinged dis-
sections exist. In Proc. of SCG, 110–119.

AKIYAMA, J., NAKAMURA, G., NOZAKI, A., OZAWA, K., AND
SAKAI, T. 2003. The optimality of a certain purely recursive
dissection for a sequentially n-divisible square. Comput. Geom.
Theory Appl. 24, 1, 27–39.

ALLMAN, G. J. 1889. Geometry from Thales to Euclid. Hodges,
Figgis, Dublin.

BOLYAI, F. 1832. Tentamen juventutem. Typis Collegii Reformato-
rum per Josephum et Simeonem Kali. Maros Vasarhelyini.

CHU, H.-K., HSU, W.-H., MITRA, N. J., COHEN-OR, D.,
WONG, T.-T., AND LEE, T.-Y. 2010. Camouflage images.
ACM Trans. Graph. 29, 4, 51:1–51:8.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. ACM Trans. Graph.
22, 3, 287–294.

COHN, M. J. 1975. Economical triangle-square dissection. Ge-
ometriae Dedicata 3, 4, 447–467.

CZYZOWICZ, J., KRANAKIS, E., AND URRUTIA, J. 1999. Dis-
sections, cuts, and triangulations. In Proc. of the 11th Canadian
Conference on Computational Geometry, 154–157.

CZYZOWICZ, J., KRANAKIS, E., AND URRUTIA, J. 2007. Rec-
tilinear glass-cut dissections of rectangles to squares. Applied
Mathematical Sciences 1, 52, 2593–2600.

DEHN, M. 1900. Über den rauminhalt. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, 345–354.

DUDENEY, H. E. 1902. Puzzles and prizes. Weekly Dispatch,
April 6–May 4.

FREDERICKSON, G. N. 1997. Dissections: Plane and Fancy.
Cambridge University Press.

FREDERICKSON, G. N. 2002. Hinged Dissections: Swinging and
Twisting. Cambridge University Press.

FREDERICKSON, G. N. 2006. Piano-hinged Dissections: Time to
Fold! A K Peters.

FREDERICKSON, G. N. 2007. Unexpected twists in geometric
dissections. Graph. Comb. 23, 1, 245–258.

FU, C.-W., AND LEUNG, M.-K. 2005. Texture tiling on arbitrary
topological surfaces using wang tiles. In Proc. of EGSR, 99–104.

GERWIEN, P. 1833. Zerschneidung jeder beliebigen anzahl von
gleichen geradlinigen figuren in dieselben stücke. Journal für die
reine und angewandte Mathematik (Crelle’s Journal) 10, 228–
234.

GRÜNBAUM, B., AND SHEPHARD, G. C. 1986. Tilings and pat-
terns. W. H. Freeman & Co.

KAPLAN, C. S., AND SALESIN, D. H. 2000. Escherization. In
Proc. of SIGGRAPH, 499–510.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. ACM
Trans. Graph. 21, 3, 657–664.

KRANAKIS, E., KRIZANC, D., AND URRUTIA, J. 2000. Efficient
regular polygon dissections. Geometriae Dedicata 80, 1, 247–
262.

LAGAE, A., AND DUTRÉ, P. 2006. An alternative for wang tiles:
colored edges versus colored corners. ACM Trans. Graph. 25, 4,
1442–1459.

LAGAE, A., AND DUTRÉ, P. 2007. The tile packing problem.
Geombinatorics 17, 1, 8–18.

8



(a) Input: square 42 + 32 = 52 (split) Our solution (4 pieces) Reference (4 pieces)

(b) Input: square 122 + 52 = 132 (joined) Our solution (3 pieces) Reference (3 pieces)

(c) Input: cross 12 + 22 = square 52 Our solution (5 pieces) Reference (5 pieces)

(d) Input: cross 22 + 12 + 22 = 32 Our solution (7 pieces) Reference (7 pieces)

(e) Input: cross 32 + 42 = 52 Our solution (7 pieces) Reference (7 pieces)

(f) Input: square 62 + 62 + 72 = 112 Our solution (5 pieces) Reference (5 pieces)

Figure 11: A comparison of our solutions with reference solutions described in [Frederickson 1997]. Some of these examples are visualiza-
tions of the Pythagorean triple numbers. The left column shows the input, the middle shows our solution, and the right shows the reference
solution. For all examples we achieve the equal number of pieces with the reference.

LAGAE, A., KAPLAN, C. S., FU, C.-W., OSTROMOUKHOV, V.,
AND DEUSSEN, O. 2008. Tile-based methods for interactive
applications. In ACM SIGGRAPH 2008 classes, 93:1–93:267.

LI, X.-Y., SHEN, C.-H., HUANG, S.-S., JU, T., AND HU, S.-M.
2010. Popup: automatic paper architectures from 3D models.
ACM Trans. Graph. 29, 4, 111:1–111:9.

LI, X.-Y., JU, T., GU, Y., AND HU, S.-M. 2011. A geometric
study of v-style pop-ups: Theories and algorithms. ACM Trans.
Graph. 30, 4, to appear.

LINDGREN, H. 1972. Recreational Problems in Geometric Dis-
sections and How to Solve Them. Dover Publications.

LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D polyomino puzzle.
ACM Trans. Graph. 28, 5, 157:1–157:8.

LOWRY, M. 1814. Solution to question 269, [proposed] by mr.
w. wallace. Leybourn, T. (ed.) Mathematical Repository 3, 1,
44–46.

MITANI, J., AND SUZUKI, H. 2004. Making papercraft toys from
meshes using strip-based approximate unfolding. ACM Trans.
Graph. 23, 3, 259–263.

MITRA, N. J., AND PAULY, M. 2009. Shadow art. ACM Trans.
Graph. 28, 5, 156:1–156:7.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004.
Fast hierarchical importance sampling with blue noise proper-
ties. ACM Trans. Graph. 23, 3, 488–495.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. ACM
Trans. Graph. 26, 3.

ÖZDURAL, A. 2000. Mathematics and arts: Connections be-
tween theory and practice in the medieval islamic world. His-
toria Mathematica 27, 2, 171–201.

SLOCUM, J. 2003. The Tangram Book. Sterling.

WALLACE, W. 1831. Elements of Geometry (8th ed.). Bell &
Bradfute, Edinburgh.

WEST, D. B. 2000. Introduction to Graph Theory (2nd Edition).
Prentice Hall.

XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND
DANIEL, C.-O. 2011. Making Burr puzzles from 3D models.
ACM Trans. Graph. 30, 4, to appear.

XU, J., AND KAPLAN, C. S. 2007. Image-guided maze construc-
tion. ACM Trans. Graph. 26, 3.

XU, X., ZHANG, L., AND WONG, T.-T. 2010. Structure-based
ascii art. ACM Trans. Graph. 29, 4, 52:1–52:10.

9


