
Disambiguation of Residential Wired
and Wireless Access in a Forensic Setting

Sookhyun Yang Jim Kurose Brian Neil Levine
Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA, 01003

{shyang, kurose, brian}@cs.umass.edu

Abstract—Law enforcement investigates thousands of cases each
year of trafficking in images of child exploitation on P2P file
sharing networks, such as BitTorrent. These and many other
Internet-based crimes lead back to a home from an IP address
by way of subpoenaed ISP billing records. Having identified the
home associated with a specific IP address, investigators enter with
a search warrant. An informative first step is to determine if the
user’s open Wi-Fi access network or the closed wired Ethernet
network was likely used for trafficking, and therefore, in the latter
case, whether a resident user is the responsible party.

In this paper, we propose methods that use remotely measured
traffic to disambiguate wired and wireless residential medium
access. We place our work in a practical forensic setting by
evaluating our approaches using only data that can be gathered
legally from p2p networks before a warrant or wiretap is required.
Our techniques work across the Internet by estimating the per-flow
distribution of inter-arrival times for different home access network
types, as well as the location at which remote measurements are
made. We observe that the change of inter-arrival time distribution
is subject to several residential factors, including wireless channel
contention and differences between OS network stacks. We propose
a model to explain the observed patterns of inter-arrival times,
and we study the ability of supervised learning classifiers to
differentiate between wired and wireless access based on remote
traffic measurements.

I. INTRODUCTION

Law enforcement investigate thousands of cases each year of
trafficking in images of child sexual abuse on P2P file sharing
networks, such as BitTorrent and Gnutella [15, 16]. The goal
of these and related network-based criminal investigations is
to gather sufficient evidence to support a court-issued warrant
to enter and search an associated residence.

Having identified the home associated with a specific IP
address, investigators must determine if a wired Ethernet
network was used, and therefore whether a resident user is
more likely to be the responsible party, or if the home’s open
Wi-Fi access forms a justifiable alibi. Indeed, the ubiquity of
open APs has created a new avenue for persons to act with
anonymity in many crimes. Those who wish to possess digital
contraband can simply drive around looking for open access,
download, and then leave; this has been a documented practice
for years [8, 12].

In this paper, we investigate methods that use remotely
measured traffic to disambiguate wired and wireless residential
medium access. Our techniques work across the Internet
by estimating the per-flow distribution of inter-arrival times
of packets transmitted over different types of home access

networks, as measured by an investigator at a remote Internet
P2P client. Our goal is to provide information to investigators
as they execute a search warrant inside a home. Homes today
typically contain many computers and networked devices;
limiting the search to a smaller set of computers (for example,
only those connected by Ethernet) can save valuable time
on scene. Off-scene, backlogs of six months are typical for
criminal forensics labs, and the easiest way to reduce the queue
is to not add to it using good triage [10]. Similarly, having
information about the type of access network used can be
beneficial for the interview of a suspect. Solving a crime by an
admission is the most efficient resolution; investigations that
can leverage knowledge beyond what is expected by a suspect
are more likely to achieve such an outcome.

We place our work in a practical forensic setting by
constraining our analysis to only plain view data that can
be gathered legally from P2P networks before a warrant or
wiretap is required (in the US) [17]. However, our results are
intended to inform and improve the search and seizure process
and not to obtain evidence, not even to support the warrant
application itself.

To address these challenges, we offer a number of con-
tributions. We present a model of traffic sent from a wired
or wireless device, via a cable modem, and received by a
remote measurement endpoint. Our model illuminates and
explains the results of using several different classifiers to
disambiguate traffic being sent via wired and wireless access
networks. We evaluate the efficacy of these classifiers using
real network traces in a variety of settings. Our results show
that our approach for classifying wired from wireless traffic
can work well but is subject to several residential factors,
including differences between OS network stacks, cable modem
mechanisms, and wireless channel contention. Our analysis
reveals the following.

• We use a simple classifier that uses only measurements
of a flow’s (i) packet inter-arrival time entropy and (ii)
inter-arrival time at the median or 25th percentile. For
Linux end-points, the classifier achieves a true positive rate
of TPR=1.0 and false positive rate of FPR=0.0. For some
file-sharing Windows applications, we can classify with
TPR=1.0 and FPR=0.0. For other Windows applications,
our results achieve TPR=0.9 and FPR=0.0 but can be poor
sometimes, though we understand the cause.

• Our classification accuracy is indirectly affected by
the amount of burstiness at the traffic source. Bursts



2

of packets that arrive at the cable modem are likely to
be concatenated into a single, large link-layer frame sent
to the headend of a cable network. This concatenation
removes all inter-packet delay information, lowering
classification accuracy using median or 25th percentile
but improving classification accuracy using entropy.

• The primary cause of burstiness in our experiments
was the very small, 8KB send buffer enforced by
default on Windows1. With default socket settings, un-
fortunately, we see FPR=0.8 for Windows if concatenation
occurs less. However, because the small buffer impedes
bulk-transfer performance, some file sharing applications,
such as eMule and ktorrent, set the send buffer higher,
which increases our accuracy to FPR=0.0.

• Our classifier must be trained for the upstream
throughput at the target. We can select the correctly
trained classifier according to the observed upstream
throughput. We consider the case of both single and
multiple P2P flows from the source, but finds that this
distinction does not affect our results; only the upstream
throughput of each flow has an impact on the classifier.

• Higher contention for a wireless channel at the target
greatly affects classification accuracy, though this can
be overcome. High wireless contention allows a remote
peer to clearly distinguish wired and wireless traffic. The
amount of contention is unknown to a remote investigator,
but our results show that training the classifier with the
more challenging, low-contention scenario allows high
accuracy in the high contention case.

• Measurements from points “near” the target do not
guarantee better classification results. For example,
remote measurements taken at another home attached
to the same cable network as the source actually performs
worse than measurement performed from a well-connected
server 13 Internet router hops away from the source.

These findings suggest that it is difficult at best to find a
foolproof classifier that works well in all scenarios for remotely
identifying a target’s network access type. Our goal is thus
to determine the scenarios in which network access type can
be accurately determined, and to understand when and why
these techniques cannot be reliably used in other scenarios.
Moreover, we demonstrate both the restrictions and advantages
provided by the setting of criminal investigations.

The remainder of this paper is organized as follows. In
Section II, we discuss the legal and practical issues that
provide the background and motivation for the particular
problem addressed in this paper. We also discuss related past
research in the network measurement community. In Section III,
we define the problem setting, the classification problem,
and the application, network, protocol and environmental
factors impacting our work. In Section IV, we describe
the classification algorithms evaluated and the experimental
environment in which our evaluation is made. Section V
analyzes classification results for the case that the measurement

1See http://support.microsoft.com/kb/214397/EN-US.

point is a well-connected remote server; we identify and discuss
a set of predictive features that can be used to infer network
access type, and the scenarios in which they can be accurately
applied. We also conduct experiments by locating a monitoring
point on the same cable network as the target, and again discuss
the classification accuracy. In the last section, we summarize
our conclusions.

II. BACKGROUND

Our techniques and goals are related to many previous works
on network measurement, which we review below. Unlike much
related work, we meet the requirements of practical criminal
investigations. And our design and evaluation are in the context
of forensics and relevant U.S. law. In particular, the mechanisms
we use are within the restrictions placed on law enforcement
before a warrant is issued.

A. Legal and Practical Issues

The problem we address is motivated by thousands of investi-
gations of P2P trafficking of child pornography (CP) performed
by law enforcement using our forensic tools [9]. The general
procedure for these cases is as follows. Investigators search
for content on P2P networks. Items found are downloaded
and typically a sufficient foundation for probable cause for a
magistrate-issued search warrant of a residence associated with
the IP address. Once on scene, a search begins for evidence
associated with child pornography, which might not be the
previously downloaded content. The new evidence found is
then used to support a criminal trial for receipt, possession, or
distribution of CP.

The process of searching a home is time consuming. Homes
have an increasing number of devices that can contain evidence,
including Xboxes and ebook readers with Web browsing, smart
phones, desktops, and laptops. Investigators have three main
triage aims: (i) reducing the numbers of devices that must
be examined on-scene since warrants are time-limited; (ii)
reducing the number of devices that must be sent to an off-
site central forensics lab for in-depth examination since work
queues are months-long; and (iii) quickly locating a subset of
evidence, if it exists, so as to obtain an admission of guilt by
a suspect via an interview. All of these practical goals are met
more efficiently by knowing whether a computer used over the
Internet is likely wired or wireless.

Our goal is to examine whether it is possible to remotely
infer the target’s access type. Because our work is posed for
use during the execution of a search warrant, it makes sense
to train the classifiers only once in the home. The collection
of data can take place when CP is downloaded as evidence
supporting the warrant. The training process can takes minutes
with a preconfigured program and a laptop with both wired and
wireless interfaces. It would only reduce accuracy to pre-train
a classifier from general Internet scenarios.

A number of legal issues restrict the initial process of
gathering the data we use to infer a target’s medium access
type [5, 7]. First, US courts have found consistently that users
of P2P networks have no such reasonable expectation in a p2p



3

file sharing network; see U.S. v. Breese, 2008 WL 1376269
Such networks can be investigated by law enforcement without
a warrant or 4th Amendment protections when acting as a
peer. If instead of being a peer, investigators intercepted this
traffic from anywhere else on the Internet, it would violate the
Wiretap Act (18 U.S.C. §2510-2522).

Second, prior to obtaining a warrant, law enforcement
cannot use technology that is not in “general public use”
to obtain information that would otherwise be unavailable.
This restriction is a result of Kyllo v. U.S., 533 U.S. 27
(2001). Recently, in U.S. v. Gabel, 2010 WL 3927697 the
court ruled that software designed for law enforcement to
monitor activity on P2P networks does not violate Kyllo since
if it follows the protocol as any peer on the network does.
Similarly, in Massachusetts v. Karch (2011), the court ruled
that law enforcement programs that do not search the remote
computer, but “merely gather and evaluate publicly available
information with greater efficiency and with an eye toward
obtaining evidence of criminal activity” do not violate Kyllo,
even if the software itself is unavailable for general public use.

Related work, below, that has been motivated by network
monitoring and measurement is also governed by several US
federal laws. Sicker et al. [13] provide an excellent overview
and discussion of these laws and their consequences for the
network traffic measurement research community. Criminal
investigations are not included in that analysis since they lack
the provider protection motive, which is measurement with the
aim of protecting the network infrastructure, e.g., detecting or
characterizing network attacks. In monitoring settings, clients
typically consent to monitoring by the provider as part of an
acceptable use policy.

Finally, we note that we expect that the techniques we
introduce in this paper are most useful as simple, practical
information to inform the process of search and triage, as noted
above, rather than as evidence.

B. Related Work

Several past studies have addressed the problem of classify-
ing a sender’s access network type using traffic measurements.

Wei et al. [20] classified sender network access types
into 802.11b, Ethernet, and low-bandwidth access (i.e., dial-
up, cable modem, ADSL) categories, using cooperatively
transmitted back-to-back UDP packet pairs between sender
and receiver. Like our work, Wei et al. took measurements of
packet inter-arrival times at the receiver. However, unlike our
work, they assume UDP packet pairs are sent by a cooperative
sender; instead we perform classification using only (P2P
application) TCP traffic, with the sender potentially engaging
in multiple TCP sessions with multiple receivers.

In subsequent work, Wei et al. [18, 19] monitored ACK
packets exiting a university gateway and built a classifier for
distinguishing between Ethernet and 802.11b/g traffic. They
used expectation maximization (EM) inference and sequential
hypothesis testing and examined TCP traffic generated from
within the university. Gateway measurement is not possible in
our forensic setting, as this would violate the Wiretap Act.

Fig. 1. An illustration of our expected network topology.

In contrast, we are focused on measurements taken from
outside the source’s network domain. Additionally, we see
our problem as more challenging: we expect bottleneck links
in a heavily managed and shaped residential cable modem
network to more often obscure distinctions between wired and
wireless, as compared to a high-capacity university network.

More recently, Chen et al. [6] address the problem of
identifying a suspect’s mobile device despite being located
behind a wireless AP/NAT router. As we do, Chen et al. start
from the assumption that an investigation results in discovery
of a public IP address associated with some crime, which
leads to a residence via billing records. To determine which
of several devices behind the AP is the computer they seek,
they mark the traffic flow and sniff the wireless traffic. This
monitoring of traffic broadcast by the router without a warrant
is a violation of the Wiretap Act. Even if the traffic is
unencrypted, a warrant is required [7]. But if a warrant is
obtained, then the marking is unnecessary: with a warrant in
hand, law enforcement can inspect machines directly, or install
spyware (covertly) on machines to track live traffic without
inference [17]. Moreover, courts require that applications to
sniff traffic otherwise protected by the Wiretap Act meet a
significantly higher standard than warrants issued to allow
search and seizure of machines located in a residence.

III. PROBLEM STATEMENT

Our problem setting is illustrated in Fig. 1. We begin by
assuming that investigators have already identified a peer
sharing CP or involved in some other crime. The peer, denoted
as A in the figure, is now a target that uploads illegal content
to the investigator. The target accesses the Internet through an
access point (AP) located in the home. Our challenge is to
determine whether A is connected to the home AP via a wireless
802.11 network or via a wired Ethernet. Investigators, denoted
as B in the figure, can make this determination using only
information gathered from measurements made at a location
remote to A.

We assume the AP used by A is connected to the Internet
via a cable modem (CM). The CM communicates with the
coordination system of a regional head-end known as a Cable
Modem Termination System (CMTS). The standard protocol
stack specifying communication between the CM and CMTS is
Data Over Cable Service Interface Specification (DOCSIS) [4].
The DOCSIS protocol supports full-duplex communications. In
the downstream direction, a CMTS broadcasts data to a set of



4

CMs, but the upstream channel is modeled as a stream of time
slots; the CMTS grants time slots to each CM. The CMTS
regulates the use of upstream and downstream bandwidth based
on A’s level of contracted service with the cable network
service provider.

We evaluate two locations from which the investigator, B,
can legally make measurements. Moreover, to provide the
most general solution, we assume measurement is from a
typical Internet end-point, and not a gateway router or other
specialized device. Accordingly, the two locations we examine
are as follows (see Fig 1.)

• Blocal: In this case, the remote peer is connected to the
same residential cable network as A, but at a different
residence (e.g., access purchased by the investigator). The
remote measurement point is thus “near” A, both in terms
of the number of intervening router hops and in terms of
physical distance. Traffic from A to Blocal will be routed
through a small number of cable network routers (and a
final CM) before reaching Blocal.

• Bremote : In this case, the remote peer is located outside
of the cable ISP network. A’s traffic will be transmitted
through the cable network and then through a number
of additional networks before arriving at Bremote. In our
evaluation scenarios, we assume Bremote has rich, high-
speed connectivity to the Internet.

In both cases, B simply records the inter-arrival times of TCP
packets sent from A. We expect the TCP stream to be offered
by A as part of a p2p file sharing application. We discus the
amount of traffic and measurement duration in Section IV.C.

A. Factors Affecting Accurate Classification

In this setting, a number of critical application, protocol,
network, and environmental factors might affect the inter-
arrival time distribution of A’s TCP segments as measured
by B. Below, we list these factors, and denote which must
be accounted for by a classifier. The order is based on the
sequence of protocol mechanisms encountered as data flows
from the application and into the Internet.

• A’s application data rate. Our setting involves file
sharing applications that attempt to maximize transfer rates
(i.e., always have data to send), and in these cases, the TCP
transmit queue plays an important role in determining the
outgoing inter-spacing of packets. Some P2P applications
use rate-limit algorithms [14], and in these case, if
throughput is severely and purposefully limited by the
application, we expect to encounter the same challenges
we face with purposefully small TCP send buffers, as
discussed later.

• OS’s TCP/IP network stack. TCP’s sliding window
algorithm typically results in “flights” of packets that are
sent back-to-back with only short inter-departure times.
These flights appear at the local cable modem as burst of
packets, affecting the CM’s upstream transmission policy
and shaping the distribution observed by B.

• Multiple flows in node A. P2P applications typically
exchange data with multiple peers simultaneously. These

competing TCP flows can affect the inter-arrival time
distribution of packets within each individual flow due to
multiplexing at routers. However, we find that we only
need to determine (by measurement) the data rate of the
of flow being monitored in order to perform accurate
classification; the number of interfering flows need not
be known.

• Wireless channel contention Packets ready for departure
from A must gain access to a wired or wireless medium
in order to reach the local CM. Significant differences
between the medium and access protocols result in
distinguishable distributions of inter-frame arrival (and
therefore inter-packet arrival) at the CM; these differences
can survive through the Internet as we show in the next
section. These differences are easier to detect when local
contention for the medium increases: wireless MACs
introduce much greater delays between frames during
contention than Ethernet MACs.

• Cable network’s characteristics. At the CM, packets
will enter a queue while waiting for upstream bandwidth.
The inter-arrival time distribution will be affected most
significantly by the upstream transmission policy of the
DOCSIS protocol [2, 4]. A CM does not transmit a
DOCSIS frame until it has acquired time slots from the
CMTS. Therefore, a CM might increase the time between
two successive TCP segments (in two separate Ethernet
frames) if a delay occurs before a transmission time-slot is
granted. The CMTS grants time-slots using MAP messages
every 2ms, and therefore packets containing TCP segments
experience at least a 2ms time-slot-granting delay. The
time-slot-granting delay can be more than 2ms for high
upstream loads. Furthermore, a CM can decrease the inter-
packet spacing by concatenating multiple TCP segments
into a single DOCSIS frame. The maximum number of
concatenated TCP segments in a DOCSIS frame is limited
by the maximum burst size of a cable network, with the
modulation and frequency deciding the maximum burst
size. When back-to-back TCP segments are concatenated
into a single DOCSIS frame, their inter-arrival time (at
the CMTS) becomes effectively zero.

IV. EXPERIMENTAL ENVIRONMENT AND METHODOLOGY

In this section, we describe the different classification
algorithms that we use to distinguish wireless from wired
access at a target A. The classifiers use packet inter-arrival
times measured at a remote point B. We then describe the
experimental setting in which we obtained the measurement
traces. In the following two sections, we evaluate these
classifiers using the traces.

A. Classification Algorithms

The decision tree (DT) classification algorithm [11] builds a
tree using the concept of information entropy. A decision tree
consists of attributes, branches, and predicted output values.
Each node (except for leaf nodes) represents an attribute, and
each branch descending from an attribute node corresponds



5

Fig. 2. Our measurement network topology for experiments.

to one of the possible values for that attribute. Leaves denote
the predicted output values. Decision trees take as input data
described by a set of attributes and return the predicted output
value for the input by following the branch condition from
the root to a leaf node. The predicted output value can be
discrete or continuous. Learning a discrete-valued function is
called classification; learning a continuous function is called
regression. A decision tree is built by selecting the best attribute
(making the most difference to the classification) at the root
and testing a path to a leaf using training sets. Decision-tree
classification is best suited to problems of classifying data
having nonlinear relationships and useful for learning functions
having more than two predicted output values.

In the course of our research, we also ran logistic regression
(LR), and support vector machine (SVM) classifiers. The LR
classification produces linear decision boundaries between data
using a logistic function when the predicted output has only
two possible values. SVM projects data into a new space using
a kernel function that seeks to make a clear gap between two
possible values for the predicted output and builds a hyperplane
to classify data. We found that LR and SVM typically provided
similar classification accuracy as DT and thus due to space
limitations, we do not report the classification results for LR
and SVM here; see Appendix for these details.

B. Experimental setting

Fig. 2 illustrates the experimental setting for our packet
measurements. We have three monitoring points: Bsniff, Blocal,
and Bremote. Node A generates TCP traffic to Blocal and
Bremote using iPerf to transmit TCP data at the maximum
rate possible; hence the TCP transmit queue is never starved
for data. At Bsniff we place a sniffer that captures frames before
they are transmitted via the CM. We stress that Bsniff is used
here only for experimental purposes; as discussed above, our
practical forensic setting would preclude making measurements
at this point in practice. We measure packet inter-arrival times
at Bsniff so that we can better understand how packet inter-
arrival times change from their transmission from A to their
reception at Blocal or Bremote. Classification is performed
using only traces gathered at either Blocal or Bremote.
A and Blocal are located in a house in Amherst, MA using

Comcast’s residential cable network. Bremote is located at the
Univ. of Massachusetts Amherst. Blocal was 3 hops from A;
and Bremote was 13 hops away from A, as determined via
traceroute. We used a node C as the sink for TCP flows

originating at A that compete with traffic to B. Node C was
located at Purdue University. AP0 is the link type we seek to
classify. A’s connection to AP0 was either IEEE 802.11g or
1 Gbps Ethernet in our study. For emulating contention traffic
for the wireless network, we setup an independent subnet near
A as shown in Fig. 2. The subnet consisted of nodes E, F
and AP1, all using the same wireless channel as AP0.

The Comcast cable network supports DOCSIS v2.0; the
upstream and downstream capacities of a contract are 3 Mbps
and 11 Mbps, respectively. The cable network’s upstream modu-
lation uses 4 ticks per time-slot and supports the maximum burst
size of 8,160 bytes. (The maximum burst size can be verified
by incrementally putting UDP traffic until it reaches maximum
burst size.) The peak upstream throughput is therefore roughly
10Mbps: one tick is equal to 6.25 microsec, and one tick
transfers 8bytes. Five 1,460-byte TCP segments can therefore
be concatenated in a single DOCSIS frame during such bursts.

We varied the experimental environment as follows.

• Single or multiple flows. In order to understand the
effects of competing flows at A, we evaluate single and
multiple flows cases separately. In the single flow case,
A generated a single TCP flow destined for Blocal or
Bremote. In the multiple flow case, A generated one TCP
flow destined for Blocal or Bremote and four competing
TCP flows in parallel that were sent to C.

• Wireless channel contention (0 Mbps or 10 Mbps). F
continuously received 0 Mbps or 10 Mbps TCP traffic
from E on the same channel as A.

• Linux vs. Windows. For evaluating the effects of different
OS network stacks, we used either Ubuntu with Linux
Kernel 2.6.22 or Windows Vista at node A. Linux Kernel
2.6.22 uses the Cubic TCP algorithm and has maximum
send buffer size of 4MB by default. Windows Vista uses
its own TCP/IP stack [1] and supports receive window
auto-tuning: a sender determines the optimal receive
window size by continually measuring the bandwidth-
delay product. Windows Vista has TCP send buffer size
of 8 KB by default; the same 8 KB default is also found
in Windows XP and Windows 7 beta. Since some P2P
applications such as eMule and ktorrent override the send
buffer size with their own default size, we performed
Windows Vista’s experiments with send buffer sizes of
8KB and 4MB. (We verified these applications’ behavior
by examining the source code.)

• P2P application rate limiting algorithm. For some
experiments, instead of iPerf, we ran our own emulator that
generates TCP data with different inter-departure delays
between application chunks and with different chunk sizes.

To characterize wireless channel contention caused by
in-range, third-party interfering wireless transmitters in our
experimental environment, we measured background traffic
near A in monitor mode [3]. In monitor mode, all traffic using
the same or overlap wireless channels across different SSIDs
is captured. The measured background traffic was commonly
between 60 and 120Kbps.



6

C. Experimental procedure

Each experiment consisted of running iPerf or a simple
application-rate-limit emulator for 10 seconds and gathering
trace data as discussed above. We ran each such experiment ten
times. Then, we computed per-flow inter-arrival time datasets
using tcpdump at the monitoring point. We calculate the inter-
arrival time as the time interval between the first bit of a first
packet and the first bit of a second packet of two sequential
TCP segments. We considered only segments that experienced
neither retransmission nor loss.

For each dataset across all scenarios, we evaluated each
classifier as follows.

1) Training phase. We trained classifiers using datasets
of wired and wireless (without interference) traffic for
different experimental settings. We investigated various
features such as 25th, 50th, 75th percentiles, entropy
of inter-arrival times datasets and various combinations
of multiple features. For different features, we ran 10-
fold stratified cross validation2 in order to reduce the
data dependency of evaluation results on features. The
values we report in the following sections are each an
average of ten classification results. We hypothesized
that classification of wireless access with no interference
would be the most difficult case to distinguish from wired
access, since the gap between wireless and wired access
features would only increase as the amount of interfering
wireless traffic increased. Therefore we used wireless
traces with no interference for classifier training.

2) Test phase. We evaluated the trained model using several
testsets: (i) test sets that had the same characteristics
(defined in section V, e.g., the burstiness of a packet
arrival process to a CM, concatenation rate, and upstream
throughput) as the models training sets but being gen-
erated with10Mbps of wireless contention, (ii) testsets
having the same characteristics as the models training
sets but being generated with P2P rate limiting, and (iii)
testsets having completely different characteristics. We
also report an average of ten classification results for test
cases.

We will quantify training accuracy using the True Positive
Rate (TPR) and False Positive Rate (FPR) as metrics. TPR
denotes the fraction of cases where the access network type
is classified as wired given that it is wired. FPR denotes the
fraction of cases when the access network type is classified as
wired given that it is actually wireless.

V. EVALUATION OF CLASSIFIER PERFORMANCE

In this section, we present our results of evaluating the
efficacy of DT classification. We use the set of inter-arrival
times measured at Bremote and Blocal to distinguish between
senders whose access to the network is either via wireless

2For stratified cross validation, the filtered feature set is randomly reordered
and then split into 10 folds of equal size, and the folds contain the same
proportions of wired and wireless classification features. In each round, one
fold is used for testing and the other nine folds are used for training the
classifier.

802.11 or wired Ethernet, identifying the best feature sets to
precisely build parametric classifiers.

A. Metrics for characterizing datasets

We denote as α the burstiness of a packet arrival process to
a CM on average. We calculated α for datasets measured at
a sniffer at A, allowing us to characterize the sender’s traffic
before it reaches the CM but after leaving the host computer.
Based on our observation that most of inter-arrival times of
packets in a burst measured at a sniffer were less than 1ms, α
is defined as follows:

α =

(
number of inter-arrival times less than 1ms at Bsniff

total number of inter-arrival times at Bsniff

)
To characterize how the cable network shapes inter-arrival

times distributions, we denote β as the concatenation rate.
The concatenation rate is the fraction of packets that were
concatenated in a single DOCSIS frame. A receiver can easily
identify concatenated TCP segments as those segments having
an inter-arrival times of less than 1ms, since a CM must wait
for at least 2ms to obtain a time slot from the CMTS. β is
defined as follows:

β =

(
no. of inter-arrival times below 1ms at Bremote

the total number of inter-arrival times at Bremote

)
We use upstream throughput as the third metric. The

upstream throughput is the average throughput over a 10-
second interval. We calculate β and the upstream throughput
on datasets measured at a receiver only.

The value of α monotonically increases with the growth of
the TCP congestion window size and the application chunk
size, unless they are constrained by a capped send buffer
size (or a receiver window constraint). We observed different
values of α for different operating systems and different chunk
sizes. Linux with iPerf attempts to transmit maximum chunks
that are not greater than 1,460 bytes. It produced α values
of 0.29, 0.50, and 0.77 when the upstream throughputs of
the observed flow were 0.5 Mbps, 2.3 Mbps, and 3.5 Mbps,
respectively. For large application chunks of 5 Kbytes per
15 ms, Linux produced α = 0.88 with the upstream throughput
of 2.3 Mbps; Windows with a default send buffer size of
8 KB, commonly produced around α ≈ 0.8 for different
upstream throughputs and different application chunk sizes. For
Windows with a large send buffer size of 4 MB, we observed
using iPerf that α = 0.66 with an upstream throughput of
3.5 Mbps. Windows transmits 8 KB data in flight by splitting
five 1,460 byte-sized and one 892 byte-sized TCP segments,
where the maximum transmission unit (MTU) of an Ethernet
frame is 1,500 bytes. We see five short inter-arrival times and
a long inter-arrival time at a sniffer; here, α is equal to 5/6
on average.

Fig. 3 shows the remotely measured inter-arrival times dis-
tributions of three cases: two flows with upstream throughputs
of 2.3 Mbps and 3.5 Mbps from a Linux machine with wired
access, and a third flow of 2.5 Mbps upstream throughput for
Windows with wired access. The distribution of the 2.3 Mbps



7

Fig. 3. Bremote: PDF of wired access for Linux with the upstream
throughputs of 2.3 and 3.5Mbps and PDF of wired access for Windows
with the upstream throughput of 2.5Mbps (bin size = 1ms)

case with α = 0.50 shows that concatenation does not occur
as there are no interarrival times of less that 4 ms in this
case. The distributions for 2.5 Mbps and 3.5 Mbps flows show
two different concatenation cases. The distribution for the
2.5 Mbps flow has β = 0.16 under the same conditions as the
2.3 Mbps flow except that the value of α here is exceedingly
high - α = 0.82 . In the case of 3.5 Mbps, a CM experiences
at least 6ms time-slot granting delay before transmission and
concatenates roughly 80% of TCP segments. Three or four full-
sized segments concatenated in a DOCSIS frame need 3.6 ms
or 4.8 ms for transmission time-slots; a 10 ms interarrival-time
means that a CM received time-slots only after at least three
MAP messages of 6ms. This delay happens because at high
upstream loads,the CMTS reduces the number of contention-
based request time-slots and a CM experiences a longer waiting
time for time-slots with consequently higher concatenation.

B. Classification results

Tables I and II show DT classification results for Linux
and Windows, respectively, for varied datasets measured in
different experimental settings. The columns in the tables are
datasets with different values of α, β, and upstream throughput.
Each column is labeled as showing experiments for single or
multiple flows. For the multiple flows cases, we show the
total upstream throughput of multiple flows and the upstream
throughput of the observed flow destined to Bremote. Each
entry in the table is an average over ten experiments. The rows
in the tables are for different sets of different classification
features and feature combinations. We investigated the 25th
and 50th percentile value of the inter-arrival time distribution as
features, as shown in Tables I and II. Though we tested it, we
do not show results for the 75th percentile, as it does not work
well as a classification feature for Linux or Windows. We also
investigated the entropy of the inter-arrival time distribution as
a feature, also shown in Tables I and II, as well as combinations
of these features.

Tables I and II, excluding columns (4), (5), show the
effect of wireless channel contention on classification results
for different datasets. Each dataset’s column is divided into
the cross validated classification results of a trained model
with wired and wireless (without interference) datasets, as
well as the the classification results of 10Mbps wireless test
sets using the model. Table II(4) shows the classification
results of testsets with P2P rate-limiting using the model in

Table II(3) and investigates whether we can use the same
classifiers for a multiple flows case and a P2P rate-limited case
when they have equivalent values of α, β, and an upstream
throughput. The model column in Table II(5) shows the cross
validated classification results of wired and wireless (without
interference) datasets with large send buffer of 4MB.

The evaluation of the DT classifiers shown in Tables I and II
results in the following observations:

1) The best performing features for Linux and Windows
are different. For Linux, Table I shows that 25th
percentile generates the best classification performance
and entropy does not work well. For Windows with
a default send buffer size of 8KB, Table II shows
entropy achieves best but observing the difference of
individual inter-arrival times (percentiles) does not work
well. However, if we change Windows’s send buffer size
to 4MB, the classification results for different features
show a similar pattern as with Linux; percentiles give
the best classification performance but entropy does not
work.

2) The classification model trained with wireless fea-
tures under lower contention can perform well
for distinguishing wireless access under higher con-
tention. Tables I and II (except for Table II(1)) show that
the gap between wired and wireless becomes obvious and
classification accuracy becomes better (TPR=1, FPR=0)
as the amount of interfering traffic increases.

3) For Linux and Windows without a capped send
buffer size, concatenation at the CM causes 25th
percentile’s classification performance to degrade
(TPR=0.7) as shown in Tables I(2) and II(5).

4) For Windows with a send buffer capped at 8 KB,
classification results improved when there is a large
amount of concatenation. When the amount of concate-
nation is small (β = 0.16) as shown in Table II(1), clas-
sification performance is severely degraded (FPR=0.8).
Otherwise, if concatenation largely occurs as shown in
Table II(2), (3), and (4), the classifier using entropy
performs well.

5) For multiple flows cases, we can get accurate clas-
sification results if we choose the model having the
same values of α, β, and the upstream throughput of
an observing flow with test sets, as shown in Table I(3)
and II(3).

6) The datasets with P2P rate limiting can have the same
values of α, β, and upstream throughput with the
datasets with multiple competing flows. Since a receiver
cannot distinguish those cases, we investigate whether
to interchangeably use a model. Table II(4) shows the
evaluation results of testsets Table II(4) using the model
of Table II(3).

7) The trained model did not work if we used test
sets with different values of α, β, and an upstream
throughputs from those of training sets. Due to space
limitations, we do not report classification results; see



8

(1) (2) (3)
2.3Mbps 3.5Mbps 2.3Mbps as multiple flows;

as a single flow as a single flow the observing flow of 0.5Mbps
α = 0.50, β = 0.00 α = 0.77, β = 0.79 α = 0.29, β = 0.00

send buffer: 4MB send buffer size: 4MB send buffer: 4MB
Model Test set Model Test set Model Test set
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 1.0 0.1 1.0 0.0 0.7 0.1 1.0 0.0 1.0 0.0 1.0 0.0
50th percentile 0.9 0.2 0.9 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0

entropy 0.6 0.1 1.0 1.0 0.5 0.1 0.6 0.1 0.0 0.0 0.0 0.0
25th percentile w/ entropy 1.0 0.1 1.0 0.0 0.5 0.1 1.0 0.0 1.0 0.0 1.0 0.0
50th percentile w/ entropy 0.9 0.2 0.9 0.0 0.5 0.1 0.6 0 0.0 1.0 0.0 0.0

TABLE I
DECISION TREE CLASSIFICATION RESULTS FOR Linux. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES REPRESENT THE

BEST-PERFORMING CLASSIFICATION FEATURE.

(1) (2) (3) (4) (5)
2.5Mbps 3.5Mbps 3.5Mbps as multiple flows; 0.9Mbps 3.5Mbps

as a single flow as a single flow the observing flow of 0.9Mbps as a single flow as a single flow
α = 0.82, β = 0.16 α = 0.83, β = 0.78 α = 0.83, β = 0.65 α = 0.83, β = 0.65 α = 0.66, β = 0.79

send buffer: 8KB send buffer: 8KB send buffer: 8KB send buffer: 8KB send buffer: 4MB
Model Test set Model Test set Model Test set Test set Model
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 0Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 0.5 1.0 1.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.8 0.0
50th percentile 0.6 0.1 0.6 0.8 0.8 0.4 1.0 0.9 0.9 0.3 1.0 0.7 0.5 0.2 1.0 0.0
entropy 0.9 0.3 1.0 0.8 0.9 0.1 1.0 0.0 0.9 0.0 1.0 0.1 1.0 0.1 0.0 0.2
25th percentile
w/ entropy

0.9 0.3 1.0 0.8 0.9 0.1 1.0 0.0 0.9 0.0 1.0 0.1 1.0 0.1 0.8 0.0

50th percentile
w/ entropy

0.9 0.3 1.0 0.8 0.9 0.1 1.0 0.0 0.9 0.0 1.0 0.1 1.0 0.1 1.0 0.0

TABLE II
Bremote : DECISION TREES CLASSIFICATION RESULTS FOR Windows. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES

REPRESENT THE BEST-PERFORMING CLASSIFICATION FEATURE.

Appendix for these details.
Except for the worst datasets Table II(1), the classifier can

perform well if it satisfies the following three conditions: 1) the
proper feature sets should be chosen according to the values of
α and β, 2) wireless (without interference) datasets are adopted
for training sets, and 3) the classifier’s upstream throughput, α
and β match those of test sets. In our forensic setting, α cannot
be known, unlike β and upstream throughput. In Windows,
which uses a capped 8 KB send buffer, α is almost fixed and
can be known to a receiver by observing a series of five full-
sized TCP segments and a single 892-byte TCP segment at a
receiver. Therefore, we need to only match β and upstream
throughput for finding the correct classifier. For Linux (and
Windows without a large send buffer), we need a method to
remotely estimate α for selecting a correct classifier.

C. Analysis

Percentiles work well as classifier features if packet inter-
arrival times are shaped mainly by network limitations. Fig. 4(a)
and (b) show that the PDF of inter-arrival times for Linux
of 2.3 Mbps and 3.5 Mbps. The figure shows that the 25th
percentile gives the best classification performance as the
distribution of wireless access have longer inter-arrival times
than wired.

(a) Table I(1) (b) Table I(2) (c) Table II(2)

(bin size = 1ms) (bin size = 0.1ms) (bin size = 0.1ms)

Fig. 4. Bremote: PDFs of inter-arrival times for Linux of 2.3 and 3.5Mbps,
and Windows of 3.5Mbps

The 25th percentile of wired and wireless inter-arrival times
is located at the least overlapping area of PDFs of wired and
wireless access. Fig. 4(c) shows the PDF of inter-arrival times
for a 3.5 Mbps Windows flow with the send buffer limitation.
The figure indicates that the PDFs of wired and wireless access
are almost overlapped and the distinction of 25th percentile
between wired and wireless is lost.

Now we look at the case when entropy gives the best results.
Fig. 5 shows the entropy of ten experiments for wired and
wireless (without interference) access of Windows and Linux



9

(a) entropy at Bsniff (b) entropy at Bremote

5 10
1

1.5

2

Sequence

E
nt

ro
py

 

 

Win w/ wired
Win w/ wireless
Linux w/ wired
Linux w/ wireless

5 10
1

1.2

1.4

1.6

Sequence

E
nt

ro
py

 

 

Win w/ wired
Win w/ wireless
Linux w/ wired
Linux w/ wireless

Fig. 5. Entropy of inter-arrival times for Linux and Wiindows of wired and
no interfering wireless access at Bsniff and Bremote

with 3.5Mbps upstream throughput as shown in Tables I(2) and
II(2). Fig. 5(a) and (b) are the entropy of inter-arrival times at
Bsniff and Bremote, respectively.

Fig. 5(a) shows that Windows with burst packet transmission
has stable and low entropy over ten experiments but Linux’s
entropy is high and variable over ten experiments. For both
Bsniff and Bremote, the entropy difference between wired and
wireless for Windows is obvious over ten experiments as
opposed to Linux’s small gap. This happens since for burst
packet transmission in 802.11 and Ethernet, a sender may
transfer several packets without contending for the channel in
between and packets via 802.11 experiences more randomness
than Ethernet. Especially the entropy difference between
wired and wireless can be more clearly preserved if packets
are concatenated and do not experience randomness at a
cable network. Thereby, we can observe that entropy-based
classification results with large β get improved as α increases
in Tables I and II.

D. Local measurement results

We discuss the classification results of traces measured at
Blocal. We focus on the concatenation-free case for Linux with
a single flow of 2.7Mbps upstream throughput, α = 0.52,
and β = 0.00. We compare with Bremote’s concatenation-free
dataset, Table I(1). At Blocal, the classification result using
25th percentile degrades as TPR=0.7, and the entropy performs
best for 10Mbps wireless test sets (classification results with
other features are found in [?]). We conjecture that this happens
because packet transmission between A and Blocal experiences
the upstream time-slot granting procedure of a cable network
in both directions, making the inter-arrival times more exposed
to randomness and obscuring the gap in the inter-arrival times
between wired and wireless.

VI. LOCAL MEASUREMENT RESULTS

This section discusses the classfication results of traces
measured at Blocal when a sender uses Linux and generates
a single flow of 2.7Mbps upstream throughput, α = 0.52,
and β = 0.00 and compares with Bremote’s concatenation-
free dataset, Table I(1). The classifcation result using 25th
percentile at Blocal degrades as TPR=0.7, and the entropy
performs best for 10Mbps wireless test sets (classification
results with other features are found in [?]). We conjecture

that this happens because packet transmission between A and
Blocal experiences the upstream time-slot granting procedure
of a cable network in both directions, which makes inter-arrival
times more exposed to randomness and obscure the gap of
inter-arrival times between wired and wireless.

VII. CONCLUSIONS

In this paper, we proposed methods that use remotely
measured traffic to disambiguate wired and wireless residential
medium access in a practical forensic setting. Our methods
leverage the difference in inter-arrival times in the wired
and wireless access networks. We observed that the inter-
arrival times changed with several residential factors, including
wireless channel contention, differences between OS network
stacks, and P2P applications. We identified several character-
istics of the measured traces that influenced the inter-arrival
times: the burstiness of a packet arrival process to a CM (α),
the concatenation rate (β), and the upstream throughput. For
different parameter values, we separately built classifiers using
wired and wireless datasets, identified the best feature sets for
classification, and evaluated the trained model using test sets
having the same values of α, β, and upstream throughput but
different values of residential factors such as wireless channel
contention, intervention of P2P rate-limit algorithms. We also
discussed why classification using 25th percentile or entropy
worked well for datasets with particular values of α, β and
upstream throughput.

REFERENCES

[1] http://technet.microsoft.com/en-in/library/bb878127(en-us).aspx.
[2] Understanding data throughput in a docsis world. http://www.cisco.com/

application/pdf/paws/19220/data thruput docsis world 19220.pdf.
[3] Network monitor 3.4. http://blogs.technet.com/b/netmon/archive/2010/

06/28/network-monitor-3-4-has-released.aspx, 2011.
[4] CableLabs. Data-Over-Cable Service Interface Specifications

(DOCSIS). http://www.cablelabs.com/cablemodem/downloads/specs/
CM-SP-RFI2.0-I11-060602.pdf.

[5] E. Casey. Digital evidence and computer crime: forensic science,
computers and the Internet. Academic Pr, 2004.

[6] Y. Chen, Z. Liu, B. Liu, X. Fu, and W. Zhao. Identifying Mobiles Hiding
behind Wireless Routers. In Proc. IEEE INFOCOM, 2011.

[7] O. Kerr. Computer Crime Law. Thomson/West, 2006.
[8] D. Kravets. Wi-Fi–Hacking Neighbor From Hell Sentenced to 18 Years.

Wired Magazine (Threat Level) http://www.wired.com/threatlevel/2011/
07/hacking-neighbor-from-hell/, July 2011.

[9] M. Liberatore, R. Erdely, T. Kerle, B. N. Levine, and C. Shields. Forensic
Investigation of Peer-to-Peer File Sharing Networks. In Proc. DFRWS
Annual Digital Forensics Research Conference, August 2010.

[10] R. P. Mislan, E. Casey, and G. C. Kessler. The growing need for on-scene
triage of mobile devices. Digital Investigation, 6(3-4):112–124, 2010.

[11] S. Russell and P. Norvig. Artificial intelligence: a modern approach.
Prentice Hall, 1995.

[12] R. Shore. Pedophiles exploiting wireless loopholes. The Van-
couver Sun, http://www.canada.com/vancouversun/news/story.html?id=
cff3073b-ceea-4ba4-877f-d020715358e9, February 13 2007.

[13] D. Sicker, P. Ohm, and D. Grunwald. Legal issues surrounding monitoring
during network research. In Proc. ACM IMC, pages 141–148, Oct. 2007.

[14] M. Siekkinen, D. Collange, G. Urvoy-Keller, and E. Biersack. Per-
formance limitations of adsl users: A case study. Passive and Active
Network Measurement, pages 145–154, 2007.

[15] U.S. Dept. of Justice. National Strategy for Child Exploitation Prevention
and Interdiction: A Report to Congress. http://www.projectsafechildhood.
gov/docs/natstrategyreport.pdf, August 2010.



10

[16] U.S. General Accounting Office. File-Sharing Programs. Child Pornog-
raphy Is Readily Accessible over Peer-to-Peer Networks. GAO-03-537T.
Statement Before Congress of Linda D. Koontz Director, Information
Management Issues, March 2003.

[17] R. J. Walls, B. N. Levine, M. Liberatore, and C. Shields. Effective
Digital Forensics Research is Investigator-Centric. In Proc. USENIX
Workshop on Hot Topics in Security (HotSec), August 2011.

[18] W. Wei, S. Jaiswal, J. Kurose, and D. Towsley. Identifying 802.11 Traffic
from Passive Measurements Using Iterative Bayesian Inference. In Proc.
IEEE INFOCOM, April 2006.

[19] W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, and D. Towsley. Passive
online rogue access point detection using sequential hypothesis testing
with TCP ACK-pairs. In Proc. ACM Internet Measurement Conference
(IMC), pages 365–378, Oct. 2007.

[20] W. Wei, B. Wang, C. Zhang, J. Kurose, and D. Towsley. Classification
of access network types: Ethernet wireless LAN, ADSL, cable modem
or dialup? In Proc. IEEE INFOCOM, pages 1060–1071, March 2005.

APPENDIX

In the appendix, we show LR and SVM classification
results at Bremote, DT, LR and SVM classification results at
Blocal using all the considered features, and DT classification
results for the third test case (i.e., testsets having completely
different characteristics) as explained in section IV. Tables III
and IV show LR classification results for Linux and Windows,
respectively. Tables V and VI show SVM classification results
for Linux and Windows, respectively. Table VII shows DT,
LR, and SVM classification results at Blocal. Table VIII shows
DT classification results for different models and testsets. In
Table VIII(1), we used a trained model of Table II(5) and
evaluated the dataset of Table I(2) when the values of α for
the trained model and testset are different and the values of β
and uptream thoughput for the trained model and testset are
equivalent.



11

(1) (2) (3)
2.3Mbps 3.5Mbps 2.3Mbps as multiple flows;

as a single flow as a single flow the observing flow of 0.5Mbps
α = 0.50, β = 0.00 α = 0.77, β = 0.79 α = 0.29, β = 0.00

send buffer: 4MB send buffer size: 4MB send buffer: 4MB
Model Test set Model Test set Model Test set
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 1.0 0.1 1.0 0.0 0.5 0.8 0.7 0.1 1.0 0.0 1.0 0.0
50th percentile 0.8 0.1 0.9 0.0 0.7 0.7 0.8 1.0 1.0 0.0 1.0 0.0

entropy 0.7 0.3 0.0 0.0 0.7 0.4 0.8 0.1 0.5 0.3 0.5 0.3
25th percentile w/ entropy 0.9 0.1 1.0 0.3 0.7 0.4 0.7 0.0 1.0 0.0 1.0 0.0
50th percentile w/ entropy 1.0 0.0 1.0 0.0 0.7 0.4 0.7 0.0 1.0 0.0 1.0 0.0

TABLE III
LR CLASSIFICATION RESULTS FOR Linux. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES REPRESENT THE BEST-PERFORMING

CLASSIFICATION FEATURE.

(1) (2) (3) (4) (5)
2.5Mbps 3.5Mbps 3.5Mbps as multiple flows; 0.9Mbps 3.5Mbps

as a single flow as a single flow the observing flow of 0.9Mbps as a single flow as a single flow
α = 0.82, β = 0.16 α = 0.83, β = 0.78 α = 0.83, β = 0.65 α = 0.83, β = 0.65 α = 0.66, β = 0.79

send buffer: 8KB send buffer: 8KB send buffer: 8KB send buffer: 8KB send buffer: 4MB
Model Test set Model Test set Model Test set Test set Model
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 0Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 0.5 0.3 0.5 1 0.7 0.4 0.7 0.3 0.8 0.1 0.9 0.6 0 0 0.9 0.1
50th percentile 0.6 0.4 0.6 1 0.6 0.2 0.8 0.8 0.1 0.6 0.4 0 0.2 0 1 0
entropy 0.7 0.3 0.7 0.8 0.9 0.1 0.9 0 1 0.1 1 0.1 1 0.1 0.4 0.3
25th percentile
w/ entropy

0.7 0.4 0.7 0.8 1 0.2 1 0 1 0 1 0 0.4 0 0.9 0.2

50th percentile
w/ entropy

0.7 0.4 0.7 0.5 0.9 0.1 0.9 0 1 0 1 0 1 0.1 1 0

TABLE IV
LR CLASSIFICATION RESULTS FOR Windows. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES REPRESENT THE

BEST-PERFORMING CLASSIFICATION FEATURE.

(1) (2) (3)
2.3Mbps 3.5Mbps 2.3Mbps as multiple flows;

as a single flow as a single flow the observing flow of 0.5Mbps
α = 0.50, β = 0.00 α = 0.77, β = 0.79 α = 0.29, β = 0.00

send buffer: 4MB send buffer size: 4MB send buffer: 4MB
Model Test set Model Test set Model Test set
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 0.9 0.0 0.9 0.0 0.6 0.8 0.7 1.0 1.0 0.3 1.0 0.0
50th percentile 0.9 0.2 0.9 0.0 0.7 0.9 0.8 1.0 0.6 0.2 0.6 0.0

entropy 0.5 0.0 0.6 1.0 0.4 0.0 0.4 0.0 1.0 0.3 1.0 0.0
25th percentile w/ entropy 0.9 0.0 0.9 0.0 0.5 0.8 0.6 0.0 0.9 0.0 1.0 0.0
50th percentile w/ entropy 0.9 0.2 0.9 0.0 0.4 0.0 0.4 0.0 0.9 0.1 0.9 0.0

TABLE V
SVM CLASSIFICATION RESULTS FOR Linux. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES REPRESENT THE BEST-PERFORMING

CLASSIFICATION FEATURE.



12

(1) (2) (3) (4) (5)
2.5Mbps 3.5Mbps 3.5Mbps as multiple flows; 0.9Mbps 3.5Mbps

as a single flow as a single flow the observing flow of 0.9Mbps as a single flow as a single flow
α = 0.82, β = 0.16 α = 0.83, β = 0.78 α = 0.83, β = 0.65 α = 0.83, β = 0.65 α = 0.66, β = 0.79

send buffer: 8KB send buffer: 8KB send buffer: 8KB send buffer: 8KB send buffer: 4MB
Model Test set Model Test set Model Test set Test set Model
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 0Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 0.3 0.1 0.3 0.1 1.0 0.8 1.0 0.9 1.0 0.6 1.0 0.6 0.0 0.0 0.6 0.0
50th percentile 0.4 0.0 0.4 0.7 0.6 0.2 0.6 0.8 0.3 0.6 0.5 0.0 0.4 0.1 0.6 0.0
entropy 0.5 0.0 0.5 0.7 0.9 0.1 0.9 0.0 1.0 0.1 1.0 0.5 1.0 0.1 0.6 0.5
25th percentile
w/ entropy

0.4 0.1 0.4 0.8 0.9 0.1 1.0 0.0 1.0 0.3 1.0 0.5 1.0 0.1 0.6 0.0

50th percentile
w/ entropy

0.4 0.0 0.4 0.8 0.9 0.1 0.9 0 1.0 0.1 1.0 0.5 1.0 0.2 0.7 0.3

TABLE VI
SVM CLASSIFICATION RESULTS FOR Windows. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES REPRESENT THE

BEST-PERFORMING CLASSIFICATION FEATURE.

2.7Mbps as a single flow
α = 0.52, β = 0.00

send buffer: 4MB
Decision tree Logistic regression SVM

Model Test set Model Test set Model Test set
0Mbps 10Mbps 0Mbps 10Mbps 0Mbps 10Mbps

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
25th percentile 0.7 0.1 0.7 0.0 0.9 0.4 0.9 0.2 0.9 0.4 0.9 0.2
50th percentile 0.6 0.0 0.7 0.0 0.7 0.4 0.8 0.1 0.3 0.0 0.3 0.0

entropy 0.8 0.5 1 0.1 0.5 0.4 0.6 0.0 0.5 0.4 0.5 0.0
25th percentile w/ entropy 0.7 0.1 0.7 0.0 0.8 0.3 0.9 0.2 0.9 0.4 0.9 0.2
50th percentile w/ entropy 0.6 0.0 0.7 0.0 0.7 0.3 0.9 0.1 0.3 0.0 0.3 0.0

TABLE VII
DT, LR AND SVM CLASSIFICATION RESULTS FOR Linux ALL TEST AND TRAIN DATA IS CAPTURED AT Blocal . GREYED ENTRIES REPRESENT THE

BEST-PERFORMING CLASSIFICATION FEATURE.

Model: Table II(5)
Testset: Table I(2)
TPR FPR

25th percentile 0.4 0.4
50th percentile 1 0.5

entropy 0.0 0.0
25th percentile w/ entropy 0.4 0.4
50th percentile w/ entropy 1 0.5

TABLE VIII
DT CLASSIFICATION RESULTS FOR THE THIRD TEST CASE. ALL TEST AND TRAIN DATA IS CAPTURED AT Bremote . GREYED ENTRIES REPRESENT THE

BEST-PERFORMING CLASSIFICATION FEATURE.


