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Relapse is the chief problem of drug addiction where a successfully abstinent patient 

returns to seemingly extinct manners of drug consumption. While various parameters 

were identified as affecting relapse, the general dynamics of drug consumption is yet to 

be understood. We introduce a model that describes addiction focusing on a single state-

value factor, mediated in the Nucleus Accumbence (NAC) that subsequently affects the 

likelihood of drug consumption. Various parameters influence and change the state-value 

factor. These parameters represent afferent extracellular neurotransmitter levels affecting 

the cortico-striatal loops that determine behavior.  This provides an interesting 

combination where the dynamics described by the model can describe the dynamic of 

drug consumption, including consumption, abstinence and relapse, and the model’s 

details are based on extracellular neurotransmitter levels. Thus, our model can provide 

not only a more complete description of addiction as a dynamical decision biased process 

but may also turn useful for studying and evaluating possible treatments on individual 

basis. 

 

 

Introduction 
We propose to view addiction as a malfunction of the decision-making process, where 

addiction patients make choices although their negative consequences on their personal 

life [REF].  Most current computational models focus on one component, usually 

acquisition of drug addiction or craving, or on the monotonicity during the transition 



from light to heavy addiction (Redish, 2004; Gutkin and al., 2006), although some new 

efforts were put on describing the fluctuating behavior of this condition (Levy and al., 

2009). A main point which makes it so hard to model addiction is that the condition is 

affected by numerous parameters, from genetic predisposition, psychological conditions, 

environmental affects, and more. We here propose a new way to combine the different 

parameters affecting the cyclic dynamic of addiction by providing a unifying platform: 

the extracellular levels of neurotransmitters in the reward system, during different drug-

addiction related states and behaviors.   

 

These neurotransmitter levels are combined into a hidden parameter n(t) (0<n<1) 

which describes globally the ongoing change in neuronal activity within the ventral 

striatum (nucleus accumbence - NAC in rats). This parameter n(t) models the influence of 

the thalamo-cortical loops on the decision making processes in the prefrontal cortex 

(PFC)  (Mogenson et al., 1980; Koob and Le Moal, 2001; Carelli and Wightman, 2004; 

Deadwyler et al., 2004; Day and Carelli, 2007). It represents the total effects of the main 

brain areas projecting to the NAC, which are known to be important for reward-related 

behaviors and drug addiction. For simplicity of the model, we focus only on several brain 

areas projecting to the NAC and only on dopamine (DA) and glutamate extracellular 

levels measured by microdyalisys techniques in rats and analogously on the activity in 

reward-related brain areas in humans based on imaging studies. We take into account the 

glutamate innervations towards the NAC from the PFC, amygdala and hippocampus and 

the DA transmission from the VTA (Voorn et al., 1986; Groenewegen et al., 1999; 

Kalivas and Nakamura, 1999; Zahm, 1999, 2000). For simplicity, we ignore neuronal 

firing and membrane potentials although it is recognized that they are important. In 

principle, they can be included in our model in future work as the model is defined in a 

way that enables the addition of mean neuronal firing in combination with extracellular 

transmitter levels. We suggest that this simple version model as it is now can already 

deepen our understanding regarding drug addiction (Fig. 1). 

 



 
Figure1 

The Model. A diagram describing the anatomical connections used in the model and the different signals 

representing extracellular levels of neurotransmitters in the nucleus accumbence. G(t) is the global variable 

representing the inverse-likelihood for a drug consumption. Red and blue rectangles represent a positive 

and negative influences on n(t), respectively. Discrete harmful events represent acute events that causes 

relapse. GL – glutamate; DA – dopamine; b – basal; p – phasic; c – cue; ic – inhibitory control; S – stress; 

DC – discrete cue; DP – discrete priming; Amg – amygdala; HPC – hippocampus; 

 

The parameters influencing n(t), which will be described in the next section, are 

not static themselves and they have their own physiological dynamics. The internal 

variables are affected by the different states the agent might be experiencing, for 

example, intoxication, chronic drug consumption, early withdrawal and long-term 

cessation. The external variables are pertaining to environmental influences. All these 

will be described by the extracellular neurotransmitters levels, which are represented to 

gain uniformity in describing the drug addiction process. 

 



In this paper we do not describe new data but rather use existing data from both 

rat models of addiction and humans addicts with cocaine or amphetamine. We argue that 

the similarities in the consumption dynamics are larger than the differences between 

various classes of drugs of abuse and that within the levels of abstractions taken here the 

mechanisms are sufficient similar to create a common model. 

 

 

Methods 
On the highest level, the main two parameters are G(t) and n(t), the latter as described in 

the introduction. G(t) (G(t) ∈ [0,1]), is the inverse-likelihood for a drug consumption (an 

action-taking parameter): The lower G(t) is the higher is the likelihood for drug 

consumption, and vise versa. The affect of n(t) on G(t) is described by the formula: 

 

€ 

G(t) = tanh α ⋅G(t −1) + β ⋅ n(t) − γ( )  (1) 

 

Where α, β, γ are fixed values in α, β, γ ∈ [0,1]. This formula means that the behavior is 

affected by both behaviors in previous time steps and by the parameter n(t) of the NAC. 

The other parts are added for bounding the functions and achieving correct values. 

 

Parameters influencing the value-state factor n(t) 
We next describe the parameters we included in the function n(t), see Table 1 for a brief 

mathematical description and supplementary materials for the full description. 

 

 
Table 1 



Effects on G(t) and n(t). A simplified mathematical description of the effect of each of 

the signals in the model on n(t) and subsequently on G(T). 

 

Basal extracellular DA from the VTA: DAb 
There is ample evidence demonstrating that acute administration of drugs of abuse cause 

elevated levels of DA transmission in the NAC, for reviews see (Wise, 2002, 2004). 

However, repeated administration of drugs induces different effects on basal and phasic 

DA. The basal (tonic activity) DA level is defined here as the intrinsic extracellular DA 

activity not related to any external stimuli such as drug administration, encountering 

drug-associated cues etc. (Grace, 2000). In humans, repeated drug administration resulted 

in decreased basal activity in the PFC (Volkow et al., 1988) and striatal DA response 

(Volkow et al., 1993) as measured by PET. Upon repeated drug administration the basal 

level decreases (Gerrits et al., 2002), which corresponds to the gradual increase in 

depressed feelings while the addict is not presently intoxicated. If the addict is not taking 

drugs for some time then the basal levels recovers and gradually increases (Rossetti et al., 

1992; Weiss et al., 1992; Chefer and Shippenberg, 2002; Mateo et al., 2005). Therefore, 

we’ve modeled the basal DA transmission from the VTA to the NAC, denoted DAb. The 

function of DAb is decreasing while G(t)<0 and it is increasing while G(t)>0. DAb 

positively affects the level of n(t) because depressed feelings (low DAb) increases the 

probability for a subsequent drug administration (low G(t)) serving as a negative 

reinforcer.  

 

Basal extracellular glutamate from the PFC: GLPFC,b 
Upon repeated drug administration in rats the basal glutamate level in the NAC decreases 

(Pierce et al., 1996; Bell et al., 2000; Hotsenpiller et al., 2001; Smith et al., 2003), while 

it continues to decrease during early withdrawal (Pierce et al., 1996; Hotsenpiller et al., 

2001; McFarland et al., 2003). Due to lack of data, we assumed that it subsequently 

recovers after a long period of abstinence. Therefore, we’ve modeled the basal glutamate 

transmission from the PFC to the NAC, denoted GLPFC,b. The function of GLPFC,b is 

decreasing while G(t)<0 and at the early stages of G(t)>0 while during late stages of 

G(t)>0 the function starts to increase. GLPFC,b positively affects the level of n(t). 



 

Drug-induced DA from the VTA: DAp 
The literature is not in agreement about the detail of this parameter. There is a 

discrepancy between the rat data and the primate and human data. We chose to model the 

human and primate data because we wanted the model to be as closest to human behavior 

as possible, however it is fair to model it according to the rat data as well. In primates 

(Bradberry and Rubino, 2006) and in humans (Volkow et al., 1997) it has been shown 

that DA transmission in the NAC is not sensitized following repeated cocaine self-

administration. On the other hand, it has been shown in rodents that after repeated drug 

administration there is an increase in extracellular DA in the NAC as a response to a 

subsequent drug administration (Pettit and Justice, 1989, 1991; Kiyatkin and Stein, 1995; 

Ranaldi et al., 1999; Bradberry, 2000). This heightened response continues even during 

withdrawal (Hooks et al., 1994; Ito et al., 2000; Chefer and Shippenberg, 2002; Zapata et 

al., 2003). This discrepancy between rodents and primate data could be attributed to the 

greater cortical development in primates, and strong evidence of a cortical role in 

addiction (Porrino and Lyons, 2000; Goldstein and Volkow, 2002). This suggests that in 

the primate, other components of incentive motivational circuitry, such as glutamate in 

the NAC could mediate the ability of drugs to control behaviour (Wolf, 1998; 

Vanderschuren and Kalivas, 2000). Therefore, it is possible to simulate the agent in two 

possibilities. First, that the phasic DA system is sensitized and second, that it is not. Here 

we describe the rodent data because it is more complete. Taking into account the 

incubation of craving during withdrawal found in rats (Lu et al., 2004a), we assumed that 

the function of drug-induced extracellular DA from the VTA to the NAC, termed DAp, 

increases while G(t)<0 and continues to increase during G(t)>0 including long-term 

abstinence. The effect of the drug-induced DA on n(t) is negative. Whether this effect 

eventually decreases is not known. In the model we can decide if eventually after a 

significant amount of time the function starts to decline or stays in a high value. 

 

Drug-induced glutamate from the PFC: GLPFC,p 
Similar data has been demonstrated regarding the levels of drug-induced extracellular 

glutamate in the NAC originating from the PFC. It has been shown that after repeated 



drug administration in rats there is an increase in extracellular glutamate in the NAC as a 

response to a subsequent drug administration (Pierce et al., 1996; Baker et al., 2003), 

which continues to increase during withdrawal (Reid and Berger, 1996). Again, this is 

consistent with the incubation effect.  Therefore, the function of drug-induced glutamate, 

termed GLPFC,p, increases while G(t)<0 and continues to increase during G(t)>0 including 

long-term withdrawal. The effect of GLPFC,p on n(t) is negative. As mentioned for DA, 

whether this effect eventually decreases is not known. In the model we can decide if 

eventually after a significant amount of time the function starts to decline or stays in a 

high value. 

 

Saliency of drug-associated cues: GLPFC,c, GLAmg,c, GLHPC,c DAc  
Addiction is hypothesized to represent the pathological usurpation of neural processes 

that normally serve reward-related learning and that the persistence nature of it involves 

long-term associative memories in reward related brain areas such as the NAC and PFC 

(Hyman et al., 2006). Repeated learning results in a stronger association between the 

stimuli and the rewards, causing enhanced saliency for drug associated cues, which 

increases with repeated drug consumption (Robinson and Berridge, 2003). It was 

suggested that the amygdala is subserving the information about discrete drug associated 

cues while the hippocampus subserves the contextual cues and the PFC is involved in 

both types of information (Everitt and Wolf, 2002). It has been demonstrated that 

presentation of drug associated cues increased extracellular glutamate levels in the NAC, 

which led to the conclusion that the glutamate signal probably reflects inputs from limbic 

structures (Hotsenpiller et al., 2001). We modeled these learning related neural processes 

as the dynamics in extracellular levels of glutamate originating from the PFC, amygdala 

and hippocampus termed GLPFC,c, GLAmg,c, GLHPC,c, respectively and DA originating from 

the VTA termed DAc on the activity in the NAC. Therefore, while G(t)<0 the signals 

GLPFC,c, GLAmg,c, GLHPC,c increase over time and continue to do so during G(t)>0. When 

the signals increase they reduce n(t), resulting in a higher probability to consume drugs.  

 

We hypothesize that the value of these signals while G(t)>0 stays high for a 

relatively long time because cue-induced craving and relapse may occur even after long 



abstinence (See, 2002). However, Shaham and colleagues showed in rats that the 

incubation effect on cue-induced relapse reduces after 6 months (Lu et al., 2004b). 

Therefore, these signals eventually decrease after the agent is in G(t)>0 for a relatively 

long time. The DA signal towards the NAC related to drug associated cues is relatively 

steady during drug intake (Bradberry, 2000; Ito et al., 2000). During early withdrawal, 

extracellular DA in the NAC increases in response to drug-associated cues exposure and 

gradually decreases over time (Ito et al., 2000). Therefore, while G(t)<0 the signal, 

termed DAc, is steady over time and when G(t)>0 the signal increases and then decreases. 

An increase in the signal results in a decrease in n(t) and a higher probability for drug 

consumption. 

 

Harmful consequences caused by repeated drug consumption 
Most drug addiction models do not address the issue of why some addicts succeed to 

abstain from taking the drug and even manage to totally quit after long-term 

consumption. It is known that long-term drug consumption has strong harmful health 

consequences, disrupts normal social relations, increases unemployment and may lead to 

economical problems and in some cases induce crime (De Alba et al., 2004; Saitz, 2005). 

However, as drug addiction persists for a long time there are addicts who are gradually 

becoming aware of these harmful consequences of their behavior. In some cases this 

knowledge drives the addicts and motivates them to seek help or to quit voluntarily 

(Melnick et al., 1997; Lancaster and Stead, 2005). A common aspect in many people who 

succeed to stop using drugs seems to be long-term increased rationality that enables the 

control of inhibition over compulsion. Some of these factors are family or social support 

in the form of economic help, rehabilitation programs, and anonymous meetings such as 

Alcoholics Anonymous (Ferri et al., 2006), psychological support and even religion 

(Galanter, 2006). In addition, there are some pharmacological substances that in some 

cases prevent addicts from relapsing such as methadone (Amato et al., 2004) or nicotine 

replacement therapy (Silagy et al., 2004).  

As far as we know there is no microdialysis experimental data regarding this 

notion or any human imaging data. Therefore, in our model we assumed that these 

harmful events are mediated or manifested by extracellular glutamate signals associated 



with cognitive inhibitory control pathways such as the cognitive corticostiratal loop, 

which involves the PFC, anterior cingulate cortex (aCC) and the NAC (Haber, 2003). The 

harmful consequences the agent faces initiate a signal that acts to reduce the high state-

value drugs posses. The function of this signal termed, GLPFC,ic, increases while G(t)<0 

and the effect on n(t) is positive, leading to a reduced probability to take drugs. While 

G(t)>0 the function decreases over time as the agent’s condition gradually becomes 

better. Usually, in addicts this signal is always very low and does not affect behavior. As 

some people do manage to quit, our model assumes that in some agents or in specific 

circumstances this signal could increase enough in order to have control over behavior. 

The longer the agent is addicted (longer in G(t)<0) the value of GLPFC,ic is bigger. This 

means that as the agent becomes more addicted, he “accumulates” more harmful 

consequences, like an ongoing deteriorating health condition, etc. This accumulation 

increases the possibility that the agent will stop taking drugs; it is the signal that drives 

quitting. 

 

Acute external events that cause relapse via changes to some of the above 
neurotransmitters 
Up till here addictive behavior was described as continuous: gradually accumulating and 

escalating levels. However, there are occasions in which a sudden discrete acute event 

may influence the patient’s behavior at once. Acute events influence the parameters for a 

definite amount of time. We propose that they also have a “memory” component in the 

sense that if a consecutive event occurred before the previous one ended then their joint 

influence on n(t) is temporarily lengthened. This "memory" of the events represents the 

notion that repeated harmful acute events are more powerful than events occurring in a 

sporadic manner. While one can think of acute events that can affect G(t) in either 

direction, we follow the literature and focus in this paper on these events that lead to 

relapse to drug during abstinence periods (Shaham et al., 2003). Three such major acute 

events are drug priming such as social drinking (Schmidt et al., 2005), a stressful event 

such as divorce (Ahmed and Koob, 1997; Shaham et al., 2000; Fox et al., 2007) and 

exposure to drug-associated cues, such as visiting a particular friend (See, 2002). In our 

model the signals modeling these events occur during withdrawal when G(t)>0 and 



increase strongly and instantly, causing n(t) to decrease, shifting G(t) to become 

immediately negative and the agent undergoes a relapse episode. 

 

Drug priming 
Drug priming in humans resulted in increased cerebral blood flow (CBF) measured by 

PET in the PFC, aCC, and orbitofrontal cortex (OFC) (Volkow et al., 1999; Volkow et 

al., 2005) and in the BOLD signal measured by fMRI in the PFC, aCC, NAC, 

hippocampus, and VTA (Breiter et al., 1997). Importantly, these elevated activities where 

correlated with the feeling of high and craving. A drug priming event in rats during 

withdrawal from repeated drug intake resulted in an increase in extracellular DA in the 

NAC originating from the VTA (Kalivas and Duffy, 1993; De Vries et al., 1999) and in 

the extracellular glutamate in the NAC originating from the PFC (Cornish and Kalivas, 

2000; McFarland and Kalivas, 2001; Park et al., 2002; Baker et al., 2003; McFarland et 

al., 2003). As described above, the signal, termed DAp, will model the effect of a drug 

priming on the extracellular DA levels in the NAC from the VTA and the signal termed, 

GLPFC,p, will model the effect of a drug priming on the extracellular glutamate levels in 

the NAC from the PFC. Upon exposure to a drug priming there will be a strong and rapid 

elevation in these signals resulting in a strong decrease in n(t) causing G(t) to instantly 

shift toward negative values and the agent undergoes a relapse episode. 

 

Drug-associated cues 
There is ample evidence using fMRI and PET demonstrating that upon presentation of 

drug associated cues there is increased activity in reward-related brain areas such as the 

PFC, aCC, amygdala and dorsal striatum, which is correlated with the sense of craving 

(Grant et al., 1996; Maas et al., 1998; Childress et al., 1999; Garavan et al., 2000; Wexler 

et al., 2001). In rats, exposure to drug-associated cues during withdrawal from repeated 

drug intake results in an increase in extracellular glutamate in the NAC originating from 

the PFC (Weissenborn et al., 1997; Neisewander et al., 2000; Ciccocioppo et al., 2001; 

Hotsenpiller et al., 2001), hippocampus (Neisewander et al., 2000), and amygdala (Meil 

and See, 1997; Neisewander et al., 2000; McLaughlin and See, 2003). As described 

above, the signals GLPFC,c, GLAmg,c, GLHPC,c model the effect of exposure to drug-



associated cues on extracellular glutamate in the NAC from the PFC, amygdala and 

hippocampus, respectively. Upon exposure to drug-associated cues there will be a strong 

and rapid elevation in these signals resulting in a decrease in n(t) causing G(t) to instantly 

shift toward negative values and the agent undergoes a relapse episode.  

 

The data regarding the effect of drug-associated cues on extracellular DA in the 

NAC is inconsistent. There are reports demonstrating an increase (Gratton and Wise, 

1994; Di Ciano et al., 1998; Weiss et al., 2000; Phillips et al., 2003), decrease (Meil et al., 

1995; Neisewander et al., 1996) and no change (Bradberry et al., 2000) of extracellular 

DA in the NAC following exposure to drug-associated cues. Because most of the data 

supports an increase in the signal, we modeled therefore, an increase in the signal, termed 

DAc, which is described above resulting in a decrease in n(t) causing G(t) to instantly 

shift toward negative values and the agent undergoes a relapse episode. However, in 

principle, this effect could be ignored in the model. 

 

Stress 
Exposure to a stressful event during withdrawal from repeated drug intake results in an 

increase in extracellular glutamate in the NAC originating from the PFC (Capriles et al., 

2003; McFarland et al., 2004) and it is dependent on DA transmission in the NAC (Xi et 

al., 2004). As described above, the signal DAp and GLPFC,p, will model the effect of stress 

on extracellular DA and glutamate in the NAC from the VTA and PFC, respectively. 

Upon exposure to stress there will be a strong and rapid elevation in these signals 

resulting in a decrease in n(t) causing G(t) to instantly shift toward negative values and 

the agent undergoes a relapse episode. In the present model we have ignored the effect of 

stress hormones on relapse.  

 

 

Results 
Simulation with the Model 
Each simulation we’ve made modeled behavioral attributes relevant to drug addiction. 

Each actual simulation was a 2000 time-step window that approximately is equivalent to 



2000 hours (83 days) in real life. Thereafter, we have made 50 repetition runs for the 

same behavioral scenario to obtain a long-term expected behavior. The first scenario 

simulated a simple behavior in which an agent was never addicted before the time of the 

beginning of the simulation (t=0) and stays that way all the time (Fig. 2). That is, an 

agent that never uses drugs. The second scenario simulates the acquisition of drug 

addiction; an agent that was never addicted before t=0 but gradually becomes addicted 

due to occasional consumptions, which gradually affects extracellular levels and lowers 

G(t), increasing the likelihood to consume drugs. The agent stays addicted the whole time 

without recovering (Fig. 3). Note how the parameters dynamically change as a function 

of G(t) and how they recurrently influence G(t) via their influence on n(t). 

 

a   



b  

 

Figure 2 
Agent not addicted. The agent was never addicted before the time in the model (before t=0) and is never 

taking drugs during the entire time window. a) One run of the simulation. b) Excepted behavior of the 

agent in the long term following fifty runs of the simulation. The graphs represent means ± S.E.M.    

a   



b  

 

Figure 3 
Agent becomes addicted. The agent was never addicted before the time in the model (before t=0) but starts 

to consume drugs and gradually becomes addicted when G(t)<0. a) One run of the simulation. Note that 

there is a recurrent influence of the various signals on G(t) and that there is a change in the various signals 

as a function of the change in G(t). b) Excepted behavior of the agent in the long term following fifty runs 

of the simulation. The graphs represent means ± S.E.M. 

 

The third scenario describes an agent that was addicted before t=0, but has temporarily 

recovered and is abstain at t=0. However, at some point (black line at t=~400) he 

encounters an acute stressful event that causes him to relapse and the likelihood of drug 

consumption is very high once again. In this case we have assumed that the level of 

inhibitory control is very small and do not affect behavior at all (Fig. 4).  



a   

b  

 

Figure 4 
Relapse. The agent was addicted in the past but is not taking drugs at the beginning of the time in the model 

(t=0). At some point (~t=400) the agents encounters an acute event that causes relapse (black line that 

represents a stressful event). Due to very low inhibitory control signal the agent stays addicted through the 

time in the model. a) One run of the simulation. b) Excepted behavior of the agent in the long term 

following fifty runs of the simulation. The graphs represent means ± S.E.M. 

  



This scenario is similar to the previous one but we have assumed that the inhibitory 

control signal is influencing n(t). Therefore, after relapse, due to a priming event in this 

case, the agent is addicted for some time but eventually the inhibitory control signal is 

strong enough to override the positive addiction signals and the agent stop taking drugs 

(Fig. 5). This scenario rarely occurs in real life, but sometimes do occur. There are cases 

that addicts do manage to overcome their addiction. We emphasize the fact that a good 

model has to account for all behavioral possibilities in order to model life more 

accurately. 

a   

b  



 

Figure 5 
Relapse and recovery. The agent was addicted in the past but is not taking drugs at the beginning of the 

time in the model (t=0). At some point (~t=400) the agents encounters an acute event that causes relapse 

(green line that represents a drug priming event). Due to a high inhibitory control signal the agent gradually 

recovers and eventually stops taking drugs through the time in the model. a) One run of the simulation. b) 

Excepted behavior of the agent in the long term following fifty runs of the simulation. The graphs represent 

means ± S.E.M. 

 

The last scenario models the sad reality of most addicts; a vicious cycle between active 

states of drug consumptions, abstinence and relapse. When the agent is abstinent, acute 

events cause him to relapse and to consume drugs again, while thereafter, the inhibitory 

control drives him back to an abstinent period and vise versa. This is the full cycle of 

addicted behavior (Fig. 6). 

a  



b  

 

Figure 6 
The vicious cycle of addiction. The agent was addicted in the past but is not taking drugs at the beginning 

of the time in the model (t=0). At some point (~t=400) the agents encounters an acute event that causes 

relapse (green and blue lines that represent a drug priming and encountering a drug associated cue events, 

respectfully). Due to a high inhibitory control signal the agent gradually recovers and eventually stops 

taking drugs for some time. However, additional acute events causes relapse once again represnting the 

cyclic nature of addiction. a) One run of the simulation. b) Excepted behavior of the agent in the long term 

following fifty runs of the simulation. The graphs represent means ± S.E.M. 

 

 

Discussion 
The model computationally demonstrates why addiction is so persistent, as well as its 

cyclical dynamics of activity. Previous models do not explain the maintenance phase of 

addiction, the ability to quit, abstinence periods and the propensity to relapse after drug 

cessation, which are the most important factors in addictive behavior and rehabilitation. 

The prediction of most current computational models {Redish, 2004 #4;Gutkin, 2006 

#79}is that addiction can be modeled by a monotonic function, deterministic in nature 

and unidirectional. Our alternative computational theory of drug addiction described here 

takes into account that the main problem of addiction is the tendency to relapse and the 

hardship to remain abstain. Yet, our model does not doom addicts to a bad end but rather 



includes the possibility that addicts can cease using drugs depending on their neuronal 

state. 

 

In our model we introduced the value-state factor n(t) that determines the balance 

between drug taking and abstinence. The value-state factor n(t) is a general principle, 

which serves for describing the pattern of neuronal activity in the striato-cortical loops 

that assigns values to states and eventually determines behavior. To our knowledge this is 

the first time that there is an attempt to model drug addiction in a framework of a well 

defined anatomical circuit combined with a comprehensive description of the dynamics 

of extracellular neurotransmitter levels in specific synapses between well defined brain 

areas, as identified in the literature. This is an attempt to recurrently connect dynamics in 

the neurotransmitter level through anatomy up to the behavioral level and back to model 

a complicated behavior such as drug addiction. 

 

The model provides some testable hypotheses regarding addictive behavior. We predict 

that the value-state factor n(t) is elastic and could be influenced by various factors, such 

as deep brain stimulation, transcranial magnetic stimulation, pharmacology, and 

behavioral and cognitive treatments. Various available treatments target and affect one or 

more of the parameters described in the model that influence n(t). This model, and more 

elaborative models of its kind as planned for future work, may turn to help us simulate 

the effects that potential treatments have on the different parameters and brain areas in 

the reward system and on behavior. We can introduce an external input, simulating a 

treatment, to the model and examine how n(t) changes and how it affects the agent’s 

behavior. Moreover, it will help us iterate and modify a specific treatment by allowing us 

to examine its effect on each of the different parameters, saving time and money on real 

experiments by first redirecting efforts to specific promising paths. Finally, using fMRI to 

measure the level of activity in brain areas related and influencing the value-state factor 

may serve as a tool for evaluating the severity of the addiction. This knowledge may 

serve as a method to identify people who have a predisposition for addictive behaviors 

and provide clues for treatment strategies. 
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