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ABSTRACT
A process model, namely a formal definition of the coordination
of agents performing activities using resources and artifacts, can
aid understanding of the real-world process it models. Moreover,
analysis of the model can suggest improvements to the real-world
process. Complex real-world processes, however, exhibit consid-
erable amounts of variation that can be difficult or impossible to
represent with a single process model. Such processes can often
be modeled better, within the restrictions of a given modeling nota-
tion, by a family of models. This paper presents an approach to the
formal characterization of some of these process families. A va-
riety of needs for process variation are identified, and suggestions
are made about how to meet some of these needs using different
approaches. Some mappings of different needs for variability to
approaches for meeting them are presented as case studies.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; D.2.9
[Software Engineering]: Software Management—variation

General Terms
Design, Languages, Management

Keywords
process families, system variation, software product lines

1. INTRODUCTION
Software systems must often meet stringent requirements for

variation across several dimensions. Thus, for example, software
may need to run on different platforms, exhibit different ranges of
functional behavior for different customers, meet different robust-
ness requirements based on different deployment scenarios, and
present capabilities to different users in different ways. When these
requirements become very diverse and stringent, they are often met
most successfully by producing a family of systems, rather than a
single system into which elaborate kinds of flexibilities have been
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built. Such families of software systems are often referred to as
software product lines, or software families [5, 15]. Our previous
research has demonstrated that models of real-world processes have
requirements for variation that are similar and indeed may be still
more diverse and challenging [17]. In this paper we identify several
examples of the kinds of variation that are needed in processes, and
suggest approaches to meeting such needs through a variety of pro-
cess family approaches. We suggest, further, that many of the kinds
of needs for variation presented here are needed for other kinds of
software systems as well, suggesting that these approaches should
be of interest to system developers as well as process modelers.

In earlier work [18], we suggested that there are different canon-
ical approaches that are useful in meeting different kinds of re-
quirements for variation, and we suggested that any such approach
should facilitate: Generation—the creation of new family mem-
bers, Navigation—the identification of family members that best
satisfy a set of given needs, and Analysis—reasoning about an en-
tire family to prove that all family members have desired proper-
ties. A particular approach to creating a family might facilitate only
some of these desiderata. Thus, for example, some approaches may
make it easy to generate a new family member but may impede nav-
igation or analysis. Conversely, a family might be defined in such a
way that it is easy to reason about certain properties of the family as
a whole thereby supporting the generation of future variants that are
known to be “safe,” but this may require onerous restrictions on the
size and nature of the family. We believe that there is considerable
value in identifying different approaches to generating families, and
to understanding which types of variation requirements they meet
and what advantages they offer. In this paper, we present a con-
ceptual framework that considers variation in different dimensions
derived directly from a requirement specification. Some mappings
to different approaches for meeting such dimensions of variation
are also presented, along with indications of the how well families
generated by these approaches can be expected to meet the three
goals of generation, navigation, and analysis.

2. PROPOSED APPROACH

Terminology. This paper strives to use the terminology used in
software product line engineering (SPLE), with appropriate paral-
lels to the process definition domain. Specifically the term process
family is used to denote a collection of process definitions that are
closely related based on a specific variation relation. Each member
of a process family is called a variant. Variants may differ from one
another in the functionality they provide, their speed, robustness, or
any of a number of other aspects; this difference between variants
is called variation. When multiple variants all share some com-
mon features (e.g. sets of subprocesses, agent behaviors, or other



artifacts), these commonalities are referred to as core assets. The
activity of determining what variants best fit together in a process
family and how to most effectively design the family in order to
maximize reuse is known as commonality and variability analysis.

2.1 Classification
Below, different kinds of variation are presented and placed into

a proposed classification. This list is not exhaustive, but is intended
to suggest the range of variation observed in such diverse process
modeling domains as elections, dispute resolution, and health care.

• Functional Variation: Variants differ in the details of one or
more of the different functional capabilities specified.

• Functional Invariance: Variants provide exactly the same
functionality (including identical behavior of all subfunctions),
but this functionality is implemented in different ways.

• Goal Invariance: Variants all share a common goal, but they
may achieve this goal differently. As with functional invari-
ance, goal invariance families are defined based on an aspect
that stays constant (in this case a common goal), as opposed
to aspects that differ. Goals may be specified as a collection
of requirements to be met, or constraints to be satisfied.

• Robustness Variation: Variants differ in the ways in which
they are able to recover from incorrect or abusive use.

• Performance Variation: Variants all provide the same func-
tionality, but differ in the speed with which they execute.

• Agent1 Variation: Variants differ from each other in the agents
they utilize to provide different functional capabilities.

• Interaction-Based Variation: Variants provide identical func-
tionality but interact with users in different ways.

2.2 Conceptual Framework
To aid understanding, management, and implementation, varia-

tion can be viewed from two perspectives, namely a problem or re-
quirements perspective and a solution or system perspective. This
dichotomy is illustrated in Figure 1. From the problem perspec-
tive, variation is a collection of requirements for variation in per-
formance, robustness, functionality, etc. These requirements may
overlap, and may even be inconsistent. The way in which these
requirements might be met is to be addressed from the system per-
spective. The system perspective focuses on studying how different
approaches to achieving variation help to generate new variants, to
support the navigation of a family, and to support analyses that ap-
ply to all variants in a family. A key contribution of our work is
its suggestion of a problem-level variation meta model that can be
used to connect different needs for requirements variation to appro-
priate solution-level family implementation approaches.

For example, consider an election process requirement for func-
tional variation based on jurisdiction, where casting a ballot may
entail different steps, involve different technology, and necessi-
tate different levels of assistance from an election official. The
variants in this functional variation family correspond to different
elaborations of a ballot-casting subprocess that are invoked in spe-
cific higher-level election process execution contexts. Note that
each elaboration of the ballot-casting subprocess can be thought of
1A direct parallel can be drawn between agents in a process and
service providers in a system built using Service-Oriented Archi-
tecture principles. Hence, we also use the term Service Variation.
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Figure 1: Example mappings from the abstract problem space
to a solution space in a process definition language.

as a component since it defines a well-encapsulated set of proce-
dures, it takes well-defined inputs, and produces well-defined out-
puts. Thus, the different elaborations correspond to different com-
ponents that can be substituted in the overall election process, and
steps or activities within a subprocess could be likened to method
invocations. Such different elaborations of the ballot-casting sub-
process entail differences in the nominal flow of the high-level elec-
tion process definition. Hence in Figure 1 we connect the Func-
tional variation dimension in the problem space to the Nominal
flow change dimension in the solution space. The use of a solid
arrow to make this connection denotes that this mapping from the
problem level to the solution level facilitates two goals, in this case
both the generation of new variants and also expedited navigation.

The dashed arrows in Figure 1 indicate mappings that may sup-
port only one of the three goals of navigation, generation, and anal-
ysis. For example, the dashed arrow from the problem-level dimen-
sion of Goal invariance to the solution-level approach of Agent be-
havior change indicates that in some cases it may be appropriate to
use different agent behavior specifications to create process variants
that achieve the same goal. Therefore, this mapping would help
with the generation of new variants, but may not facilitate naviga-
tion as agent behavior specifications may be external to the process
(this would also impede analysis). Due to space limitations, only
the mappings from the Functional variation problem-level varia-
tion dimension are discussed in detail in this paper. Most of the re-
maining mappings, however, follow intuitively from the type of re-
quirements the problem-level variation dimension covers and how
those requirements are usually addressed; for example, as Robust-
ness variation focuses on exception recovery, it naturally maps to
Exceptional flow change, and other mappings follow similarly.

Another mapping that does not address all three goals is an in-
ductive approach that facilitates solution-level family generation
and navigation, but impedes analysis. To build families by induc-
tion, one can specify an initial common process definition core C,
and a set of elaborators, E, and define a family Φ to be all process
definitions that can be generated by a sequence of applications of
elaborators from E to C initially, and inductively to any variant
generated by applying a sequence of elaborators to C. E.g., let C
be a single high-level process definition, and E be the replacement
of any unelaborated step in C by any elaborating subprocess. Such
a family may contain a variant in which a core function fA, is re-
placed with a set of subprocesses, say fA1, fA2, and fA3, whose
combined capabilities achieve the required functionality of fA (i.e.
fA → fA(fA1, fA2, fA3)). Although such a process family can



easily be generated, and the generation procedure suggests how to
facilitate navigation, it is not clear what analysis approaches could
readily be used to ascribe properties to all members of this fam-
ily. Depending on C and E, it may indeed be possible to construct
variants that violate the well-formedness rules of the language in
which C was written. This difficulty could be addressed by re-
stricting family membership only to those generated processes that
are well-formed. This approach complicates variant generation, but
can facilitate analyses whose results are applicable to all variants.

Thus, consider using induction to generate process family mem-
bers, but also using trace-equivalence to decide when generated
variants are to be allowed to become family members. Specifi-
cally consider a functional variation process family Φ to be a col-
lection of process variants pi, determined to be trace-equivalent
with respect to some event sequence property, T . Thus, for ex-
ample all elaborations that can never cause an event included in T
will qualify as members of the family. Then clearly all members of
the family have the same attribute of adherence (or not) to T . I.e.
∀pi, pj ∈ Φ, p′

i uT p′
j (uT denotes trace equivalence with respect

to T ). This is so because only events pertinent to the property are
considered in determining trace equivalence, and thus two variants
should reduce to trace-equivalent if and only if none of the elab-
orations in their variation contain events of interest with respect
to the property, or the order of events coincides for both variants
over all elaborations. More complex rules for rapidly determining
family membership can be developed for cases where elaborations
incorporate the possibility of certain kinds of event sequences that
demonstrably cannot lead to differences in adherence to T .

3. RELATED WORK
There has been extensive work on creating and managing soft-

ware product lines and software families [5,15]. Several approaches
handle variation at what we refer to as the problem level, e.g. [14]
proposes architecture templates for product lines and suggests that
some templates facilitate creating new products (i.e. generation)
or better analysis, but these goals are usually in conflict; [2] pro-
pose explicit modeling and management of architecture variability
and outline different sources of variation with some similarities to
the kinds of variation that we have observed in this paper, such as
functional variation, performance variation, and agent/service vari-
ation. UML has been used to identify patterns in architectures and
model variation in system architectures [7]. To facilitate quality as-
surance in the domain engineering phase of SPLE, which closely
corresponds to the problem-level variation needs discussed in this
paper, [8] focus mostly on what is referred to as functional variation
in this paper, although they use UML activity diagrams augmented
with formal Petri net semantics that allow for the careful and pre-
cise documentation of variability. A similar approach to address
analysis at the domain engineering level is presented in [13], where
the authors formalize domain artifacts as I/O-automata which are
then model-checked against formally specified properties. This
work focuses mostly on the problem level; our approach is similar,
but contributes additional, and important, dimensions of variation,
and strives to provide support for solution-level mappings to effect
variability management and facilitate generation, navigation, and
analysis. Additionally, some of the kinds of variation presented
here, such as robustness variation and both invariance relations,
seem to be inherently different from those addressed in previous
literature, which mostly focuses on the use of features and on vari-
ation relations most closely related to functional variation.

Feature diagrams (e.g. [9,16]) model different feature configura-
tions through variation points and different semantics for compos-
ing and combining features based on predefined constraints. Fea-

tures closely correspond to the functional variation presented here.
There are several approaches that focus on the problem-level speci-
fication of variation through features, such as using domain-specific
feature graphs [9] or decision models [1]. Feature graphs and de-
cision models tend to explicitly enumerate mandatory and optional
features. The approach presented in this paper could likely benefit
by being augmented with explicit enumeration approaches in some
cases to enunciate how each product or process variant within a
family can be derived. The underlying goal of our work, however,
is to better understand the different kinds of variation that exist in
systems and determine what approaches may be most effective in
defining and managing families characterized by different kinds of
variation. Hence, features may be insufficient for addressing vari-
ation driven by non-functional requirements, such as robustness,
performance, or agent variation. Indeed, some of the kinds of vari-
ation presented here may necessitate the application of several dif-
ferent problem- and solution-level specification approaches.

At the solution level, component-based and generation approaches
have been used to specify initial configuration specifications of
components and then to apply generation techniques for parameter-
ization within the software domain [6,12]; there are also techniques
for product line implementation such as feature-oriented program-
ming (FOP) [3], component reuse [20], aspect-oriented program-
ming [11], or annotation and pruning approaches [10]. Although
such techniques and tools are clearly useful for generating different
members of a software family, the code alone is only one of several
components of a member of a software family. Moreover, these
approaches do not explicitly address process families and manag-
ing variation in processes. The approach presented here advocates
careful modeling and reasoning based upon different process arti-
facts; some of these artifacts have clear parallels to artifacts pro-
duced in the software development lifecycle.

Other approaches focus on supporting variability modeling and
management throughout different stages of the software develop-
ment lifecycle through combining problem-level modeling of vari-
ation with solution-level product derivation. The COVAMOF vari-
ability modeling framework [19] promotes carefully modeling vari-
ation points and dependencies that may exist among variants. In
[4], label transition systems are extended with features to describe
the behavior of a family of systems and support model checking.
These approaches are similar to the conceptual framework pre-
sented in this paper, and some of them map closely to both the
problem-level functional variation (which most closely resembles
features), as well as the solution-level nominal flow change. How-
ever, we would like to be able to reason about more than feature
variation; considering features as the defining difference between
variants may be necessary to address functional variation but may
not be sufficient for the other dimensions.

4. FUTURE WORK
There are many research directions suggested by this work. Space

limitations restrict us to discussing only a few. One obvious direc-
tion is to develop a more complete list of types of problem space
variations and to devise an approach to classifying them. In ad-
dition, we are particularly interested in understanding the ways in
which these different problem space variation families overlap and
intersect with each other. We are also interested in identifying a
range of approaches to generating solution space families. This
paper has suggested a conceptual framework for generating such
families, and indicated some possible specific approaches. Subse-
quent research will identify other approaches. For these different
approaches we will investigate which of the three goals of genera-
tion, navigation, and analysis are facilitated.



Navigation facilitation is of particular interest because when in-
tersecting families facilitate navigation, it should be relatively easy
to traverse through multiple families via shared variants to reach
variants satisfying specified combinations of requirements. For ex-
ample, if a variant is a member of both a functional variation family
and a performance variation family, then by specifying some func-
tionality criteria, a developer should be able to navigate to this vari-
ant in the functional variation family, and then use it as a starting
point to navigate to its performance variants. Such “chaining” of
variants that may belong to more than one family could occur mul-
tiple times until a developer finds a suitable variant. Because the
chain specifies a path that provides important information about not
only the characteristics of the final variant, but also all the transfor-
mations that were applied to get to it, we call this operation naviga-
tion to distinguish it from a search operation that would not include
any understanding of the provenance of the variant.

Analysis facilitation is another key direction of our research,
aimed at identifying generation approaches that support specific
kinds of reasoning about whole families of variants. In Section 2,
we described how induction constrained by trace equivalence can
be used to generate families whose members are all equivalent with
respect to a pre-specified property. We also suggest that dynamic
approaches such as simulation may be suitable for supporting ana-
lytic reasoning about performance variation families.

We plan to implement the tool suggested in Section 2. The pro-
posed tool will support variation among processes defined using
the Little-JIL process definition language. Little-JIL is a flexible
process definition language that supports a considerable amount of
variation within a single process definition, as it supports specifi-
cation of complex coordination and concurrency, abstraction, re-
sources, and agents, among other features [21]. But these features
also seem useful as the basis for creating families that provide still
broader amounts of variation. Providing initial support for creat-
ing families of Little-JIL process variants, which cover many com-
monly used process language features, should lead to useful in-
sights about supporting variation in different process definition lan-
guages and other system representations.
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