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ABSTRACT
This paper presents an approach that considers variation in systems
and system architectures according to the kind of relation among
the variants in the software family. The approach highlights why it
is beneficial to consider such different variation relations separately
and gives examples of what these relations may be.

Two main categories of variation relations are presented, based
on whether the system architecture remains constant (architecture-
based variation), or whether the architecture itself is variable, i.e.
the variants do not share a common architecture. The paper in-
troduces several different kinds of variation families that seem to
belong to these two categories, as well as yet other families com-
prising variants that do not neatly fit in either category, with only
a subset of the variants sharing a common architecture. Each kind
of variation relation is illustrated with an example software family
from different domains, including operating systems (OS).

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—descrip-
tion, interconnection, definition; D.2.9 [Software Engineering]:
Software Management—software configuration management

Keywords
software families, software product lines, system architectures, vari-
ation, variability

1. INTRODUCTION
A successful software development project rarely aims to pro-

duce a single piece of software. If the project is successful, then its
product will be a capability that will need to run on many different
platforms, is likely to present itself to different types of users in
different ways, may need to run faster for some users, and have dif-
ferent sets of features for different kinds of users. In such cases it
can be very ungainly to respond to differing requirements by build-
ing a single piece of software that is capable of meeting all of these
needs. Instead these needs are typically met by building different
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variants of the software, with each of the variants being developed
to meet different combinations of these needs. Increasingly com-
plex and demanding requirements can be expected to cause the cre-
ation of ever larger sets of such variants, but it is important, never-
theless, that the different variants retain well-understood relations
to each other. If such a well-understood relationship exists, the
variants comprise what we refer to as a software family.

There are many reasons why it is important to have a firm un-
derstanding of how the variants in a software family are related to
each other. If there are well-understood relations that define what
variants are members of the software family (i.e. some collection
of relations that define membership constraints and criteria), then
it may be straightforward to create new variants as transformations
of existing variants. Moreover, if there are formally and rigorously
defined semantic relations that determine how variants are related,
then it may be possible to safely conclude that newly created vari-
ants are guaranteed to have certain desirable properties. Once the
relations among all variants in a software family are well defined
and understood, then it may be possible to go a step further and
make assurances about the entire collection of variants and whether
the family itself has certain properties that would by construction
be true of all its variants.

For these reasons there seems to be considerable value in identi-
fying the kinds of relations that define families that have these sorts
of desirable properties. The goal of this paper is to demonstrate
that there are numerous kinds of variation relations that might be
helpful in supporting such reasoning, and to indicate that different
kinds of variation lead to families having different kinds of proper-
ties. As suggested above, some kinds of variation relations define
families whose members differ only in speed. Other kinds of varia-
tion define families whose members offer functionality that differs
only in relatively small, well-circumscribed ways. Still other kinds
of variation relations define families whose members all achieve
similar, or identical, goals, but do so in very different ways.

This paper identifies several kinds of variation that characterize
families whose existence in the world is rather familiar and com-
mon, and describes them informally. We note that many of the dif-
ferent kinds of variation seem to arise directly from different com-
ponents of a requirements specification. Often this need for vari-
ation is not stated explicitly, but can be readily identified as being
implicit. We suggest that it is important for such variation require-
ments to be explicit, as this would seem to facilitate being explicit
and precise about the variation relations that define the families that
can respond successfully to these needs. Ideally the result should
be a family in which the members are characterized formally and
rigorously. Such rigorous characterizations are not presented in this
paper, although the value in being able to do so is described and is



suggested as an important goal for ongoing research.
While it may be quite challenging to define rigorously the vari-

ation relation that defines some important kinds of families, it ap-
pears that it might be relatively easy to define other kinds of fami-
lies, especially when variability requirements are suitably clear and
precisely stated. Initial attempts to characterize some kinds of soft-
ware families have suggested that some of these characterizations
might be based upon a shared architecture that underlies the family,
where the different family members could be viewed as different
implementations all based upon such a shared architecture. These
kinds of variation are referred to as architecture-based variation in
this paper.

However, the paper also identifies other kinds of software fami-
lies that do not seem to be easily defined in terms of architecture-
based variation, but rather arise from making modifications to un-
derlying architectures. Some of the challenges and rewards of deal-
ing with software families that fall in these two different categories
of variation are outlined in the paper. The paper presents examples
of families for which the variants share a common architecture and
for which they do not. In addition that paper identifies other variant
families that do not fit neatly into either category.

The rest of this paper is organized as follows. Section 2 enu-
merates some of the different kinds of variation the authors have
observed, presenting examples from different domains of how each
kind of variation relation may manifest. Section 3 revisits these
different kinds of variation, and provides some discussion and in-
tuition on how each kind of variation may be best managed and
implemented. Sections 4 and 5 contain brief discussions of related
work and future research directions, respectively. Finally, Section
6 presents some conclusions.

2. CATEGORIZING VARIATION
In this section, different kinds of variation are presented. What

follows is not an exhaustive list but rather is intended to suggest that
the range of kinds of software families is quite wide. Nevertheless,
emphasis is placed upon how frequently families of variants seem
to arise quite naturally in response to variation in different compo-
nents of a requirements specification. A hypothetical software fam-
ily of operating systems (OS) is used as a source for some of the
examples to illustrate the different kinds of variation. But each sub-
section also provides other examples illustrating the specific kind
of variation.

Terminology
The terminology used in this paper strives to follow conventional
terminology used in the software product line engineering (SPLE)
community. Specifically in this paper the term “software family” is
used to denote a collection of software systems that are determined
to be closely related based on a specific variation relation. More-
over, each member of a software family is called a “variant.” Vari-
ants differ from one another in the functionality they provide, their
speed, robustness, or any of a number of other aspects; this differ-
ence between variants is called “variation.” When multiple variants
all share some common features (e.g. sets of components, services,
architecture specifications, or other artifacts), these commonalities
will be referred to as “core assets.” The process of determining
what variants best fit together in a software family and how to most
effectively design the family in order to maximize reuse is known
as “commonality and variability analysis.”

2.1 Functional Detail Variation
The members of a Functional Detail Variation family differ from

each other in the amount of detail with which different functional

capabilities are specified. Thus, different variants of a system may
need to provide different levels of functionality based on the re-
quirements for variation in the functionalities of different system
variants.

For example, a high-end OS variant may have to satisfy a re-
quirement for providing easy, elaborate built-in remote access so
that its professional customers would have no problem accessing
their files and applications when away from their computers, while
a lower-end variant might be required only to provide more rudi-
mentary functionality for remote access or less guidance on how to
use such functionality.

Outside of the OS domain, an online web service may require a
customer to provide certain information. But different variants of
the service may be required to provide more assistance than others
in assuring that the information provided is correct and adequate.
Similarly, the requirements for a verification system might specify
that an artifact is to be analyzed and certified as being suitable for
use. But different variants of this system might specify the need for
the application of different specific regimes by which this analysis
and certification is to be done.

In all of these cases, the variants all support the provision of
the same high-level functionality, but the requirements also man-
date that different variants are needed. Some of these variants
are required to offer additional functional capabilities, sometimes
through implementations for which the specific details are speci-
fied.

It is reasonable to suggest that a Functional Detail Variation fam-
ily might well consist entirely of members that share the same high
level architecture. This seems reasonable as this kind of family
is intended to respond to a fixed high level functional requirement
specification. A key advantage of this is that the common high-
level architecture might then be exploited as the basis for reasoning
that could result in establishing assurances about the nature of the
entire family. Under some circumstances it might be possible to be
assured that an analysis of the common architecture provides re-
sults that hold for all family members. In other circumstances, it
might be possible to build upon testing or analysis results applied
to the common architecture to reduce (perhaps substantially) the ef-
fort required to verify a new member of the family. This could lead
to an amortization of testing and analysis costs and faster develop-
ment, with less risk of unknowingly introducing errors in variants.

2.2 Robustness Variation
The members of a Robustness Variation family differ from each

other in the extent to which they are able to recover from incorrect
or abusive use. Thus, for example, an operating system may simply
crash when a user inputs an unknown command. Different variants
of this operating system, however, might reply that the command
is unknown and request that the user try again. Still other variants
might try to prompt the user, might limit the number of retries, etc.

A high-end variant of the OS software family may boast auto-
matic document backup so that automatic recovery over a local net-
work is possible when certain failures have occurred. A lower-end
variant may lack these capabilities, or may only provide document
backup and recovery options to and from a local storage device and
not a remote network server. Additionally, variants of the operat-
ing system targeting professional users may provide yet more so-
phisticated functionality assuring better system robustness, such as
complete system backups, including user and system files and OS
settings, in order to better protect users against hardware failures,
for example.

Similarly, a safety-critical system such as a medication infusion
pump might require that requests for medication dosage always fall



within prescribed ranges. Some variants of the infusion pump soft-
ware might simply refuse to provide any medication in response to
an out-of-range request, while other variants might send diagnos-
tic replies of varying degrees of thoroughness and utility, and still
others might infuse some kind of default level of medication.

In all of these cases, the variants provide the same capabili-
ties under nominal operating circumstances, but provide different
kinds and levels of support when non-nominal conditions are en-
countered. Note that different subsets of the family will probably
deal with different non-nominal situations, and different members
of such a subset will presumably deal with the same non-nominal
situations differently. Robustness variation tends to be driven by
different robustness requirements that each variant needs to meet.

The Functional detail variation examples presented in section 2.1
were driven by requirements for variation in the nominal flow of
events, rather than variation in exceptional flow. However, a rigor-
ous, detailed, and precise specification of possible exceptions and
how they are to be handled should also be an integral part of the
specification of the requirements for any complicated software sys-
tem. Such specifications of the need for different exceptional flow
might well be met by a Robustness Variation family.

Robustness variation might seem intuitively to be quite differ-
ent from functional detail variation. Although these two kinds of
variation relations are clearly interrelated, they may be quite differ-
ent from each other, depending upon how these two variation re-
lations are formally defined. The examples of robustness variation
we have described here might be included as a special case of func-
tional detail variation instead of separately as robustness variation
families. For example different variants from a functional detail
variation family may produce identical robustness variation fami-
lies, if the functional detail variation does not affect those points
of the nominal flow where intervention is necessary for exception
handling purposes. Including Robustness Variation as a subkind
of Functional Detail Variation seems to have both advantages and
disadvantages. If Robustness Variation families are simply special
kinds of Functional Detail Variation families, then it may become
possible to apply all of the results concerning how to reason about
the family in order to assure that all of its members have certain de-
sirable properties. On the other hand, by including this large set of
kinds of variants in the scope of what could constitute a Functional
Detail variation family, it seems to become harder to identify which
kinds of reasoning can be applied, and how hard it might be to ap-
ply that reasoning. Creating a larger number of kinds of variation
relations that define families with relatively more restrictive mem-
bership characterizations seems to open the possibility for more ef-
fective technologies for reasoning about those families. Therefore,
formally and precisely defining the variation relations that define
each of these kinds of families is important, and a key goal of new
research.

2.3 Performance Variation
The members of a Performance Variation family all provide the

same functionality, but differ from each other in the speed with
which they execute. For example, in the OS domain, commercial
operating systems nowadays are typically offered as families of (at
least) two variants: a 32-bit variant and a 64-bit variant. Because
of the additional addressing space, the 64-bit variants typically of-
fer great performance gains for native 64-bit applications and for
computation-intensive, memory-hungry tasks.

Another common example is a file search capability that may
require a great deal of time to locate a requested file, or may be
able to do so very quickly. Differences in performance may be
noted only in some circumstances (e.g. only when large numbers

of files are being managed), or under all (or most) circumstances.
Note that some performance variation can be achieved through

functional detail variation, for example by providing different vari-
ants with different sorting and searching capabilities. Other vari-
ants might well differ from each other in far more substantive ways,
as in the previous example of operating systems having both 32-bit
and 64-bit variants, or whenever there may be a need for basing the
structure of different variants upon different decisions about how
to distribute needed modular capabilities across a range of platform
components.

It is interesting to note that although performance variation may
sometimes manifest as functional detail variation, in other cases
it be quite different, and may require changes to the underlying
architecture–i.e. the family of variants may no longer share a core
asset architecture. This suggests that there is an interesting relation-
ship between functional detail variation families and performance
variation families, and they may sometimes intersect one another.
To precisely understand and manage such relationships, it seems
necessary that all variation relations under consideration are care-
fully and formally defined.

2.4 Service Variation
The members of a Service Variation family differ from each

other in the service providers they utilize to provide different ser-
vices. For example, different variants of a system may need to pro-
vide different quality of service (QoS) based on the requirements
for variation in the service level agreements of different variants.

A lot of modern operating systems focus heavily on providing
external services as a way to add additional value to their prod-
ucts. Some examples include services for synchronizing the files
on multiple computers over a network, or backing up documents to
a secure remote server, or different technologies for editing docu-
ments simultaneously online with a team of collaborators. Often,
these services can be composed and choreographed together as part
of a system designed and built using the service-oriented architec-
ture (SOA) paradigm. Each service can then be switched in and
out as the system evolves and needs to provide slightly different
functionality or new services can be added in to provide additional
capabilities.

Outside the OS domain, many web-based enterprises also offer
variants with varying services for different market segments. Based
on whether the website is being accessed by a commercial client or
a home user, different variants may provide varying QoS or built-in
guidance to the services that users interact with directly. Service
variation may result in variants that provide differing functionality
as well: for example, SOA-based systems for professional users
may employ more sophisticated services to provide more exten-
sive functionality for some tasks than the functionality provided by
more rudimentary services for home users.

2.5 Interaction-Based Variation
An Interaction-Based Variation software family comprises vari-

ants that provide identical functionality but interact with users in
different ways. For example, variants of the system may need to
employ different interface technologies, or provide different inter-
action modes on different platforms.

In the OS domain, premium, high-end variants of operating sys-
tems will often provide capabilities for interacting with the OS in
many different natural languages. Even though the presentation of
a different language to a user does not affect the architecture, ef-
ficiency, or functionality of the system, it may result in a different
experience for the user.

Another example of interaction-based variation is the necessity



to develop different user interfaces (UIs) for the OS based on the
platform on which it needs to run, such as a desktop computer, a
laptop computer, a tablet, a cell phone, or another portable device.
The need to run satisfactorily on different platforms may very well
impose different performance requirements, but there is a more fun-
damental need for the system to interact with its users differently
on different platforms. The need to meet interaction needs across
a range of platforms (e.g. text input versus point-and-click) is met
most naturally by a family of interaction-based variants.

It is interesting to note that here too (as was in the case of Perfor-
mance Variation families) some of the variation might be covered
by an appropriately broad definition of Functional Detail Variation.
That is, some of the variants needed to achieve some interaction-
based variation may be able to do so simply by elaborating on some
functions differently. But it seems that not all needs for interac-
tion variation are likely to be met in this way. More exotic plat-
forms will potentially offer opportunities for interaction that are
simply not possible in more conventional platforms. Thus, vari-
ants intended to support such platforms would presumably offer
more or different functionality, and indeed might require different
architectures than those used by variants that will run on other plat-
forms. Finally, we note that the need for this kind of variation is
relatively commonplace, especially in cases of systems that bene-
fit from providing a client-specific UI for different platforms, such
as web-enabled interfaces, downloaded clients, or iPhone applica-
tions.

2.6 Functional Invariance
Member variants of a Functional Invariance software family pro-

vide exactly the same functionality (including all of the details of
all subfunctions), but this functionality is implemented in different
ways. That is, the variants look identical when they are considered
as black boxes, but their implementations may differ, and they may
possibly be based on different underlying architectures.

As systems grow larger and more complex in the course of nor-
mal evolution, sometimes there is a need to reconsider the original
architecture as it may no longer be suitable for the efficient im-
plementation of projected new functionality. When this happens,
it can leads to the creation of a new architecture that continues to
support exactly the same functionality as was used to support an
earlier version of the system, but is now better positioned for future
evolution. This is most often achieved through approaches such
as “refactoring,” or restructuring already written code to conform
to a new, changed architecture and design. Sometimes, refactor-
ing may also be guided by a desire to simplify an overly complex
implementation. In any of these cases, when refactoring occurs,
the goal is to change the structure of the code without changing its
functionality. Therefore, functional invariance might be considered
as internal structural variation. In this case, the core asset among
variants would be some specification of the functionality while the
architecture of each variant may be variable.

Formally considering functional invariance as a special kind of
variation has its advantages; because the program variants are ex-
pected to be functionally equivalent, this kind of variation suggests
the possibility of amortization of analysis and testing costs (e.g.
black box test case generation) for those situations where the same
test suites should still be applicable and appropriate for all vari-
ants. Although functional invariance does not fall into the tradi-
tional definition of variation as it has been considered within the
SPLE community in the past, we suggest that its potential to sug-
gest approaches to amortization of some kinds of testing and analy-
sis costs indicate that there may be benefits to consider it as another
formal kind of variation

2.7 Goal Invariance
The variants in a Goal Invariance software family all share a

common goal, but variants may achieve this goal differently from
one another. As with functional invariance, goal invariance families
are defined based on a consideration of the aspects of the variants
that remain the same (in this case the fact that they all share a com-
mon goal), as opposed to the aspects that vary. The goal shared
by the members of a Goal Invariance family may be specified as
a collection of requirements that the system must satisfy, or a set
of constraints that must be met, either with respect to the output or
deliverable of the system, or some intangible results when some of
the outputs may not be tangible.

In the OS domain, a good example of goal invariance is the abil-
ity of a device to connect to the internet through ethernet cable,
modem, or wifi seamlessly to the user. In this case, the user may
not care about the mode of connection, as long as the device suc-
cessfully establishes a connection. Therefore, getting online may
be considered the software family’s goal, and the different variants
of the system may utilize different hardware or software function-
ality or both to connect.

Another example is a software family whose goal is to complete
a system backup successfully. In such a family, one variant may
provide backing up functionality to a local drive, while another
variant may support backing up to a network drive.

3. VARIATION IMPLEMENTATION AND
MANAGEMENT

In this section, each of the several kinds of variation presented is
revisited with a brief discussion of how it may be implemented and
effected, and, where appropriate, parallels to existing methods and
approaches.

3.1 Functional Detail Variation
Functional detail variation is perhaps the most familiar kind of

variation discussed, and it is often exemplified by families that
consist of the different software products that comprise a software
product line (e.g. as defined by [7]). Such a software product line
can be modeled or implemented by using feature-based approaches
(e.g. as described in [5,10,16]) that use commonality and variabil-
ity analysis to identify core assets. The different members of the
software product line could then be built by combining different
features in different ways, based on a common underlying archi-
tecture. Thus such a software product line may be considered an
example of what we have described as a Functional Detail Varia-
tion family.

We note that a Functional Detail Variation family might also be
implemented by the appropriate application of aspect-oriented pro-
gramming at the code level. Specifying cross-cutting changes in
functionality, or specifying the binding of different concrete im-
plementations of an interface, are two such ways in which aspect-
oriented programming approaches could be used to generate mem-
bers of a functional detail variation family.

3.2 Robustness Variation
Because of the similarities outlined in earlier sections between

functional detail variation and robustness variation, the latter could
perhaps be thought of as a special case of the former, address-
ing the variation in the handling of exceptional situations (instead
of the nominal flow), and typically driven by robustness require-
ments (instead of functional requirements) variation. Whether or
not one kind of variation relation subsumes the other would depend
on how both relations are formally defined. However, formulating



suitable relation definitions requires careful consideration because
these definitions may well determine how easy or difficult it is to
reason about a functional detail variation family, a robustness vari-
ation family, or a family formed by the intersection of the two.

It is interesting to note that this relationship also means that the
generation of a robustness variation family could be based upon the
use of a core asset architecture that defines the nominal flow of all
of the members of the family. Thus, one can imagine performing
variability management in several steps, where a Functional Detail
Variation family may be created first, then a separate Robustness
Variation family might be created for different variants within that
Functional Detail Variation family.

3.3 Performance Variation
Performance variation may under different circumstances lead

to a family of variants sharing a common underlying architecture,
a family of variants based on different architectures, or a family
that comprises both a subset of variants that share an architecture
and a subset of others that do not. Such complex variation rela-
tions clearly elucidate the need for formally understanding how all
variants in a family are related. Furthermore, understanding the
variation relation within a family may also facilitate understand-
ing the relationship between software families. Families based on
different kinds of variation relations may intersect, as in some of
the suggested examples, such as a performance variation software
family intersecting with a functional detail variation software fam-
ily. Therefore, one variant may be a member of both families, and
that variant may need to be subjected to different analyses depend-
ing on which family, and therefore which variation relation, is cur-
rently under consideration.

Such interactions between families based on different variation
relations may have interesting implications for variation manage-
ment and implementation. It may, for example, lead to a spec-
ification of precedence among different variation kinds such that
assurances about one variation kind hold for other kinds as well;
it may facilitate the navigation between multiple families that are
interconnected through some common variants; or it may lead to
easier generation of variants in a family, if this family is known to
be related to some other families in well-defined ways.

3.4 Service Variation
In traditional systems, parallels could be drawn between com-

ponents and services. That is, a component that is only respon-
sible for providing some kind of utility can be thought of as a
service provider, and then variations in this utility can be accom-
modated accordingly. From a technical standpoint, this may be
achieved with aspect-oriented programming, where the service may
be defined as an aspect whose behavior can easily be changed even
though it is cross-cutting the entire system. However, such vari-
ation should likely be modeled differently from functional detail
variation because SOA systems are often architected and designed
sufficiently differently from traditional software systems and differ-
ent requirements unique to the SOA domain may lead to different
variation relations.

3.5 Interaction-Based Variation
Interaction-Based Variation families focus on modeling the rela-

tion that determines how different variants interact with users, even
if this variation necessitates other kinds of variation. For example,
to accommodate the processing of different modes of user interac-
tions (e.g. command line input or mouse events), some functional
modification of the software system may be required. However, this
modification would presumably be contained mostly within the in-

terface and controller components of the system, therefore being
very different from typical functional detail variation.

Interaction-based variation is important because the way in which
different tasks or different artifacts are presented can matter a great
deal and can have a measurable influence on the behavior and sat-
isfaction of users–especially in the case of human-intensive, highly
distributed collaborative systems. This presentation aspect is of-
ten overlooked and is frequently not included in formal specifi-
cations of the requirements for variation. Moreover, the user in-
terface is often considered to be an aspect of software that is not
easily amenable to quantitative evaluation. Therefore, UIs are of-
ten evaluated qualitatively, using user studies, surveys, and focus
groups–techniques that are beneficial for evaluating the usability of
the system, but may only provide subjective results. A more careful
modeling approach that takes into account the specific variation re-
lations in Interaction-Based Variation families may help to ensure
that the UI components satisfy the same requirements as the rest
of the system and are amenable to the same kinds of quantitative
analyses. Such quantitative analysis can then be combined with
traditional qualitative metrics to make objective determinations on
what variants are the most effective for what user groups.

3.6 Functional Invariance
Functional invariance is challenging because of the need to en-

sure semantic equivalence between variants, which is in general
an undecidable problem. Although some progress has been made
in trying to determine the absolute functional equivalence of some
programs with formal analysis techniques, e.g. [14], in most cases
the verification of equivalence falls on the developer and is achieved
only approximately through repeated testing to ensure that the func-
tional behavior of the software has remained unchanged.

By formally defining a set of properties that determine and con-
strain the behavior of the system so that two variants need only be
equivalent with respect to these properties, it becomes much easier
to check for equivalence. Note, however, that equivalence in this
case is ascertained only with respect to these predefined properties,
which the developer would have to specify. For example, the de-
veloper may formally specify certain functional requirements in a
form suitable for static analysis, and then perform such analysis on
many variants of the system. Even though these variants may be
structurally quite different, they should all satisfy the same func-
tional requirements.

3.7 Goal Invariance
Goal invariance is an interesting relation as it is not orthogonal to

the other variation relations described in this paper. This presents
a clear conceptual problem–variation among variants in the fam-
ily may be more far-reaching and spread out than the other kinds
of variation presented in this paper, and may affect all components
of the system. In some cases, goal invariance seems to encom-
pass several of the other kinds of variation discussed in this paper,
such as functional detail variation, robustness variation, and func-
tional invariance. If there is a demonstrable composition relation
between goal invariance and some of the other kinds of variation,
then goal invariance may provide a higher-level abstraction for rea-
soning about variation.

As noted, however, it is not only families defined using a goal
invariance relation that seem to be interrelated with other kinds of
variation relation software families. Understanding the meaning of
these different family interrelations and devising effective strate-
gies for variation management in such cases may facilitate analysis,
since reasoning about goal invariance and other such possibly com-
positional variation relations may entail simultaneously reasoning



about more than one kind of variation.

4. RELATED WORK
There has been extensive work on creating, using, and managing

software product lines and software families [7, 15, 17]. Different
approaches for variability management suggest handling variability
at different stages in the software development lifecycle. For ex-
ample, [4] propose explicit modeling and management of architec-
ture variability, since the architecture stage is very ripe for address-
ing variation; this work also outlines different sources of variation,
some of which correspond to some of the kinds of variation that we
have observed and outlined here in this paper. Conventional mod-
eling approaches, such as the use of UML to identify patterns in
architectures [9], have also been applied to model variation in sys-
tem architectures. There are clear benefits to such approaches for
modeling variation and variability throughout the development life
cycle. However, note that some of the kinds of variation presented
in this paper seem to be inherently different from those addressed
in previous literature. Moreover, some of the kinds of variation ad-
dressed here may be difficult to model using a single approach. In
fact, they may necessitate the application of several different mod-
eling and accommodation techniques. The approach presented in
this paper is also being extended to comprise a way to formally de-
fine and classify the different kinds of software variation. One goal
in doing this is to improve classification and communication about
software variation and software families. Another goal is to be able
to show that formal analysis and verification approaches may be
effective in assuring that all members of a family must always nec-
essarily have certain kinds of desirable properties.

Feature diagrams (e.g. [10, 18]) are widely used to model dif-
ferent feature configurations through variation points and different
semantics for composing and combining features based on prede-
fined constraints. Domain-specific feature graphs for specifying
variability within a model, such as FORM [10] have conceptual
goals that are similar to ours. Similarly, decision models (e.g. Ko-
brA [3] and FAST [25]) can be used for instance generation and
variant modeling, where variation points are indicated as decisions
and, based on the selection, the model is extended with different
sets of features. But in our work we suggest representing fami-
lies implicitly, by means of formalisms such as Boolean functions
that define a family without needing to enumerate all of its mem-
bers. Feature graphs and decision models, on the other hand, are
explicit enumerations of all possible mandatory and optional fea-
tures. Such approaches can lead to very large feature graphs when
all elaborations are included. And, indeed, some families may have
an infinite number of members. The approach presented in this
paper could likely benefit by being augmented with explicit enu-
meration approaches in some cases to enunciate how each product
within a software family can be derived. Since the underlying goal
of our work, however, is to better understand the different kinds of
variation that exist in systems, we suggest the potential necessity to
model these different kinds of variation both implicitly and explic-
itly, especially since our preliminary work suggests that specific
techniques and methodologies may be more effective in defining
and managing families characterized by different kinds of varia-
tion.

Other approaches focus on supporting variability modeling and
management throughout different stages of the software develop-
ment lifecycle. For example, the COVAMOF variability modeling
framework [20] promotes the careful modeling of variation points
and the different dependencies that may exist among variants. Hy-
brid approaches have successfully combined feature-oriented pro-
gramming (FOP) and model-driven development to demonstrate

how software product lines can be modeled (with a focus on fea-
tures), and then products can be derived from these models using
FOP [22]. The Koala framework [23, 24] has also been applied
to support the reuse of components for different products within
a family, and between different software families. Apel et al [1]
have shown how model superimposition can be applied to different
UML models: models are first decomposed into features, then ap-
propriate model are composed together using superimposition to
produce models for single variants within a product line. Such
approaches provide important support for understanding how dif-
ferent variability management choices interact to produce different
variants. Instead, our work focuses on understanding the underly-
ing differences in the variation relations between all the variants in
the family.

There are also several approaches for supporting variability man-
agement and software family realization at the implementation level,
such as using component-based and generation approaches to spec-
ify initial configuration specifications of components and then to
apply generation techniques for parameterization within the soft-
ware domain [6, 8, 13]. There are also techniques and tools that
have been successfully used for software family or product line im-
plementation at the code level, such as feature-oriented program-
ming [5], superimposition [2], aspect-oriented programming [12],
mixin layers [21], or annotation and pruning approaches [11]. Al-
though such techniques and tools are clearly useful and applicable
during the implementation of different members of a software fam-
ily, the code alone is only one of several components of a member
of a software family. The approach presented here advocates care-
ful modeling and reasoning based upon pre-code artifacts that seem
particularly useful as they become available for exploitation earlier
in the software development life cycle.

5. FUTURE WORK
As outlined, an approach for identifying different kinds of soft-

ware variation could lead to better variability management and fa-
cilitate identification of appropriate constructs for the accommoda-
tion of variation. In order for a variation taxonomy such as the one
suggested by the examples provided in this paper to be truly use-
ful, however, the underlying relations that define family set mem-
bership need to be defined formally in a way that would support
automatic construction of new architectures and canonical trans-
formations from one variant to another. A conceptual framework is
currently being developed and used to rigorously define the differ-
ent kinds of software variation relations presented here.

Additionally, formal definitions of the variation relations that de-
fine different software families would encourage and perhaps fa-
cilitate reasoning about how different families that share variant
members may interact, especially in the case of variation relations
that are not orthogonal (such as composite functional elaboration
variation and robustness variation families discussed in this paper).
Such interfamilial interactions may also inform architectural deci-
sions since some kinds of variation relations seem to accommodate
the sharing of a common architecture, while others seem to result
in variants that are structurally different and require different archi-
tectures.

The examples presented in this paper are from operating systems
and other software system domains, but the authors originally ob-
served these different kinds of variation relations in the context of
process-guided application software. An approach for dealing with
process variation was previously proposed in [19], and this work is
a continuation of those efforts. In the course of studying variation
in processes, it has become more apparent that there are few differ-
ences between process variation and general system variation, so



the authors intend to continue exploring both domains to identify
more variation relations and to validate the applicability of the for-
mal relation definitions within the conceptual framework currently
under development.

In addition to providing benefits to variability management and
variant generation, such a conceptual framework could also be the
basis for formal reasoning that could provide analytic results ap-
plicable to all the different variants in a software family. Future
research is needed to understand better which kinds of analysis can
provide which sorts of assurances about different kinds of software
families. In particular, as noted earlier in this paper, a very broad
definition of a kind of software family might offer the benefit of
conceptual uniformity, but the disadvantage of making reasoning
more difficult. Future research is needed to explore this tension.

6. CONCLUSION
This paper presents an approach for classifying different kinds

of variation based on needs that arise from requirement for vari-
ation in order to meet diverse needs. The paper provides several
examples of these kinds of variation, and then suggests the kinds of
formal relations that might be used to define criteria for inclusion
of variants in such software families. The classification of different
kinds of needs for variation and different approaches to achieving it
are important because it would allow software architects and devel-
opers to precisely model the variation and then reason about it. Do-
ing so as early as the requirements specification, and carrying the
formal modeling and classification of different variation relations
through to the architecture specification and beyond could allow
for better planning and could facilitate analysis of entire software
families early on. In addition, early identification of mistakes in the
modeling of variation could lead to timely remedial action.

Great strides have been made in the SPLE community to iden-
tify approaches that facilitate the generation and management of
software families and product lines, leading to better utilization,
increased effectiveness, and reduced costs. Carefully and formally
defining the different variation relations that exist between variants
in a software family may lead to even further gains in ease of vari-
ability management, variant generation, and reasoning about entire
families of products as a whole, making assurances about safety,
robustness, or performance requirements, among others.
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