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Abstract

The utility of including loops in plans has been long recognized by the plan-
ning community. Loops in a plan help increase both its applicability and the
compactness of representation. However, progress in finding such plans has
been limited largely due to lack of methods for reasoning about the correct-
ness and safety properties of loops of actions. We present novel algorithms for
determining the applicability and progress made by a general class of loops of
actions. These methods can be used for directing the search for plans with
loops towards greater applicability while guaranteeing termination, as well as in
post-processing of computed plans to precisely characterize their applicability.
Experimental results demonstrate the efficiency of these algorithms. We also
discuss the factors which can make the problem of determining applicability
conditions for plans with loops incomputable.

Keywords: Automated planning, plans with loops, plan verification,
reachability in abacus programs, generalized planning

1. Introduction

The problem of planning in AI is to compute a plan, or a procedure which can
be executed by an agent to achieve a certain goal. This paper presents methods
which can be used for the computation of generalized, algorithmic procedures
for solving this problem.

In the classical formulation of AI planning, the agent’s state is assumed to
be completely observable, and effects of actions are assumed to be determined
entirely by this state. Classical plans consist of linear sequences of actions which
lead to a goal state from a particular initial state. Even in this restricted for-
mulation, the planning problem is PSPACE-complete (Bylander, 1994). More
general formulations which allow the agent to possess only partial information
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about its current state, and its actions to be non-deterministic make the prob-
lem significantly harder (Rintanen, 2004). Consequently, numerous approaches
have been proposed for reusing sequences of actions computed for related prob-
lems (Fikes et al., 1972; Hammond, 1986) and for computing generalized plans
which can be used to solve large classes of planning problems (Shavlik, 1990;
Levesque, 2005; Winner and Veloso, 2007; Srivastava et al., 2010c).

Approaches for the latter formulation of this problem build extensively upon
the power of including loops of actions for representing cyclic flows of control in
plans. Not only are such constructs necessary when the input problem instances
can be unbounded in size, but they also allow significant reductions in plan sizes
for larger problems—particularly when contingent solutions are required in order
to deal with partial observability (Srivastava et al., 2010b). Plans with loops
therefore present two very appealing advantages: they can be more compact,
and thus easier to synthesize, and they often solve many problem instances,
offering greater generality.

Loops in plans, however, are inherently unsafe structures because it is hard
(and even impossible, in general) to determine the general conditions under
which they will terminate and achieve their intended goals. It is therefore cru-
cial to determine when a plan with loops can be safely applied to a problem
instance. Unfortunately, there is currently very little understanding of when
the applicability conditions of plans with loops can even be found, and if so,
whether this can be done efficiently. This limitation significantly impacts the
development and usability of approaches for finding generalized plans.

In this paper, we present methods for efficiently determining the conditions
under which plans with some classes of simple and nested loops can solve a
problem instance. We initially assume that planning actions come from a simple,
but powerful class of action operators, which can only increment or decrement
a finite set of registers by unit amounts. Although this class of actions appears
to be too primitive for planning domains, in Section 7 we show that plans with
loops for many interesting planning problems can be automatically translated
into plans with such actions.

The class of actions considered in this work is captured by abacus programs—
an abstract computational model as powerful as Turing machines. The halting
problem for abacus programs is thus undecidable. In other words, finding closed-
form applicability conditions, or preconditions for plans with loops of just the
primitive abacus actions is undecidable. Despite this negative result, we show
that closed-form preconditions can be found very efficiently for structurally
restricted classes of abacus programs, and demonstrate that such structures are
sufficient to solve interesting planning problems. In addition to determining the
scope of applicability of existing plans, these methods can also be used during
plan computation for identifying useful loops of actions.

We start with a formal definition of abacus programs in the next section.
This is followed by a study of the problem of finding preconditions of abacus
programs with simple loops (Section 3) and a class of nested loops (Section 4). In
Section 5.1 we study the problem of computing preconditions of abacus programs
in the presence of non-deterministic actions similar to those used in planning.
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Figure 1: A simple abacus machine for the program: while (r1 > 0) { r1 −−;r2 + +}

In this paper, we restrict our attention to abacus programs whose nested loops
satisfy a monotonicity condition; in Section 6, we show that the problem of
determining reachability without this condition becomes undecidable. Finally,
we illustrate how plans with loops can be translated into abacus programs in
Section 7, and conclude with a demonstration of the scope and efficiency of the
presented methods.

2. Abacus Programs

We now introduce the formal framework of abacus programs (Lambek, 1961).
Abacus programs are finite automata whose states are labeled with actions that
increment or decrement a fixed set of registers. Formally,

Definition 1. (Abacus Programs) An abacus program 〈R,S, s0, sh, `〉 consists
of a finite set of registers R, a finite set of states S with special initial and
halting states s0, sh ∈ S and a labeling function ` : S \ {sh} 7→ Act. The set of
actions, Act, consists of actions of the form:

• Inc(r, s): increment r ∈ R; goto s ∈ S, and

• Dec(r, s1, s2): if r = 0 goto s1 ∈ S else decrement r and goto s2 ∈ S

We represent abacus programs as bipartite graphs with edges from nodes
representing states to nodes representing actions and vice-versa. State-nodes
have at most one outgoing edge and action-nodes have at most two outgoing
edges; the two edges out of a decrement action are labeled = 0 and > 0 respec-
tively (see Fig. 1). A more succinct representation that does not use state-nodes
is also possible, but we use state-nodes to improve clarity and maintain a cor-
respondence with planning scenarios (see Section 7).

Given an initial valuation of its registers, the execution of an abacus program
starts at s0. At every step, an action is executed, the corresponding register
is updated, and a new node is reached. An abacus program terminates iff its
execution reaches the halt node. The set of final register values in this case is
called the output of the abacus program.

Abacus programs are equivalent to Minsky Machines (Minsky, 1967), which
are as powerful as Turing machines and thus have an undecidable halting prob-
lem:
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Fact 1. The problem of determining the set of initial register values for which
an abacus program will reach the halt node is undecidable.

Nevertheless, we identify in this paper a general class of loops for which the
halting problem is decidable.

As discussed in the introduction, our approach for determining the utility
and applicability conditions of loops of planning actions is to view them as
abacus programs with the same loop structure. Maintaining the loop struc-
ture while doing this translation is important as it will allow us to selectively
construct plans with the structures that we know can be handled. However,
the abacus program framework is restrictive from this point of view: it does
not include non-deterministic actions. In planning on the other hand, non-
deterministic sensing actions are common and we need a way to translate them
into the abacus framework effectively, without changing the loop structure. For
this purpose, we extend the abacus program framework with the following non-
deterministic action, in the representation of Def. 1:

Definition 2. (Non-deterministic Abacus Programs) Non-deterministic abacus
programs are abacus programs whose set of actions, Act includes, in addition to
the Inc and Dec actions, non-deterministic actions of the form:

• NSet(r, s1, s2): set r to 0 and goto s1 ∈ S or set r to 1 and goto s2 ∈ S.

where S is the set of states of the abacus program and r is a register that is not
used by deterministic actions.

A non-deterministic action thus has two outgoing edges in the graph repre-
sentation, corresponding to the two possible values it can assign to a register
value. Either of these branches may be taken during execution. Although the
original formulation of abacus programs is sufficient to capture any computa-
tion, these actions will allow us to conveniently treat a powerful class of nested
loops (encountered in partially observable planning) as a set of independent
simple loops.

3. Applicability Conditions for Deterministic Simple-Loop Abacus
Programs

We now show that for any simple-loop abacus program, we can efficiently
characterize the exact set of register values that lead not just to termination,
but to any desired “goal” node defined by a given set of register values (Theorem
1). We only consider deterministic actions in this section; the case for simple
loops with non-deterministic actions is analogous and can also be handled as a
special case of the methods presented in Section 5.1 for a more general class of
loops.

We define simple-loop abacus programs as follows:

Definition 3. (Simple-Loop Abacus Programs) A simple loop in a graph is
a strongly connected component consisting of exactly one cycle. A simple-loop
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Figure 2: A simple loop with (right) and without (left) shortcuts

abacus program is one all of whose non-trivial strongly connected components
are simple loops.

Let S1, a1, . . . , Sn, an, S1 be a simple loop (see Fig. 2). We denote register
values at nodes using vectors. For example, R̄0=〈R0

1, R
0
2, . . . , R

0
m〉 denotes the

initial values of registers R1, . . . , Rm at node S1. Let a(i) denote the index of
the register changed by action ai. Since these are abacus actions, if there is
a branch at ai, it will be determined by whether or not the value of Ra(i) is
greater than or equal to 0 at the previous node.

We use subscripts on vectors to project the corresponding registers, so that
the initial count of action ai’s register can be represented as R̄0

a(i). Let ∆i denote
the vector of changes in register values R1, . . . , Rm for action ai corresponding
to its branch along the loop. Let ∆1..i = ∆1 +∆2 + · · ·+∆i denote the register-
change vector due to a sequence of abacus actions a1, . . . , ai. Given a linear
segment of an abacus program, we can easily compute the preconditions for
reaching a particular register value and node combination:

Proposition 1. Suppose S1
a1−→ S2

a2−→ · · ·Sn is a linear segment of an abacus
program where Si are nodes, ai are actions and F̄ is a vector of register values.
A set of necessary and sufficient linear constraints on the initial register values
R̄0 at S1 can be computed under which Sn will be reached with register values
F̄ .

Proof. We know F̄ = R̄0 + ∆1..n. We only need to collect the conditions neces-
sary to take all the correct action branches, keeping us on this path. Since the
sequence of actions is known, register values at each node Si can be represented
in terms of R̄0. These expressions can be used to state the inequality that must
hold for following the desired branch of the next action.

Proposition 2. Suppose we are given a simple loop, S1, a1, . . . , Sn, an, S1, of an
abacus program. Then in O(n) time we can compute a set of linear constraints,
C(R̄0, F̄ , `), that are satisfied by initial and final register tuples, R̄0, F̄ , and
natural number, `, iff starting an execution at S1 with register values R̄0 will
result in ` iterations of the loop, after which we will be in S1 with register values
F̄ .
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Proof. Consider the action a4 in the left loop in Fig. 2. Suppose that the con-
dition that causes us to stay in the loop after action a4 is that Ra(4) > 0. Then
the loop branch is taken during the first iteration starting with fluent-vector
R̄0 if (R̄0 + ∆1..3)a(4) > 0. This branch will be taken in ` subsequent loop
iterations iff (R̄0 + k · ∆1..n + ∆1..3)a(4) > 0, and similar inequalities hold for
every branching action, for all k ∈ {0, . . . , ` − 1}. More precisely, for one full
execution of the loop starting with R̄0 we require, for all i ∈ {1, . . . , n}:

(R̄0 + ∆1..i−1)a(i) ◦ 0

where ◦ is one of {>,=} depending on the branch that lies in the loop; (this
set of inequalities can be simplified by removing constraints that are subsumed
by others). Since the only variable term in this set of inequalities is R̄0, we
represent them as LoopIneq(R̄0). Let R̄` = R̄0 + ` ×∆1..n, the register vector
after ` complete iterations. Thus, for executing the loop completely ` times, the
required conditions are LoopIneq(R̄0) ∧ LoopIneq(R̄`−1). These two sets of con-
ditions ensure that the conditions for execution of intermediate loop iterations
hold, because the changes in register values due to actions are constant, and the
expression for R̄`−1 is linear in them. Note that these conditions are necessary
and sufficient since there is no other way of executing a complete iteration of the
loop except by undergoing all the register changes and satisfying all the branch
conditions.

Hence, the necessary and sufficient conditions for achieving the given register-
value after ` complete iterations are:

C(R̄0, F̄ , `) ≡ LoopIneq(R̄0) ∧ LoopIneq(R̄`−1) ∧ (F̄ = R̄`).

Each loop inequality is constant size because it concerns a single register. The
total length of all the inequalities is O(n) and as described above they can be
computed in a total of O(n) time.

Note that an exit during the first iteration amounts to a linear segment of
actions and is handled by Prop. 1. Further, the vector F̄ can include symbolic
expressions. Initial values R0 can be computed using R` = F ; these expres-
sions for R0 can be used as target values for subsequent applications of Prop. 2.
Therefore, when used in combination with Prop. 1, the method described above
produces the necessary and sufficient conditions for reaching any node and reg-
ister value in an abacus program:

Theorem 1. Let ΠA be a simple-loop abacus program. Let S be any node
in the program, and F̄ a vector of register values. We can then compute a
disjunction of linear constraints on the initial register values that is a necessary
and sufficient condition for reaching S with the register values F̄ .

Proof. Since ΠA is acyclic except for simple loops, it can be decomposed into
a set of segments starting at the common start-node, but consisting only of
linear paths and simple loops (This may require duplication of nodes following
a node where different branches of the plan merge. Thus, in the worst case, the
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total size of the disjunction could be exponential.). By Prop. 1 and 2, necessary
and sufficient conditions for each of these segments can be computed. The
disjunctive union of these conditions gives the overall necessary and sufficient
condition.

4. Nested Loops Due to Shortcuts

Due to the undecidability of the halting problem for abacus programs, it
is impossible to find preconditions of abacus programs with arbitrarily nested
loops. The previous section demonstrates, however, that structurally restricted
classes of abacus programs admit efficient applicability tests.

In this section, we show that methods developed in the previous section can
be extended to a class of graphs representing nested loops obtained by adding
unidirectional paths, or shortcuts to a simple loop. We first define the general
class of non-simple loops as follows:

Definition 4. (Complex Loops) A complex loop in a graph is a non-trivial
strongly connected component that is not a simple loop.

In particular, we will be interested in a special class of complex loops, i.e.,
those obtained by adding “shortcuts” in a simple loop:

Definition 5. (Simple loop with shortcuts) A simple loop with shortcuts is a
strongly connected component C which includes a node S0, designated the start
node, such that removing S0 makes C acyclic.

Intuitively, such a simple loop with shortcuts consists of a simple loop with
all elements, starting at the start node, in increasing linear order. For any pair
of nodes along the loop, a preceeding b, a shortcut from a to b may be added;
different shortcuts may overlap as long as this does not create cycles. (e.g., node
S2 can be designated the start node in Fig. 2).

Simple loops with shortcuts form a very general class of complex loops: graph
theoretically, this is exactly the class of strongly connected components with
cycle rank (Eggan, 1963) 1. Many control flows that are typically understood
as “nested” loops in programming can be represented as simple loops with
shortcuts. In the case of abacus programs, we show in Section 6 that this
class of graphs is powerful enough to express any computation.

The advantage of this class of loops is that we can decompose them into
simple loops; in the definition below, a cycle has no repeated nodes other than
the start and end nodes.

Definition 6. (Loop Decomposition) Let K be a graph in the form of a simple
loop with shortcuts with start node S0. The loop decomposition of K is defined
as the set of all cycles of K beginning with S0.

In the worst case, the size of this decomposition can be exponential in the
number of shortcuts. This construction proves useful because in a simple loop
with shortcuts, every cycle must contain the start node (this is immediate from
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Def. 5). Thus, the execution of a simple loop with shortcuts can be viewed as a
sequence of complete executions of the simple loops in its decomposition. For
instance, we can view the loop with shortcuts in Fig. 2 as consisting of 3 different
simple loops. The order of execution of these loops, and whether a given loop
will be executed at all, will depend on the results of actions a3 and a5.

We now define a special class of simple loops with shortcuts for abacus pro-
grams. In the next section we present efficient methods for finding preconditions
of such programs.

Definition 7. (Monotone simple loops with shortcuts) A simple loop with short-
cuts in an abacus program is monotone iff the sign (positive or negative) of the
net change, if any, in a register’s value is the same for every simple loop in its
decomposition.

In Section 6 we show that removing this restriction can signficiantly increase
the power of abacus programs: any abacus program can be represented as a
program consisting of a simple loop with possibly nonmonotone shortcuts.

5. Applicability Conditions for Monotone Simple Loops with Short-
cuts

We now consider the problem of computing applicability conditions for mono-
tone simple loops with shortcuts. We first present the more general case of
programs which may include non-deterministic actions. We also categorize the
conditions under which these methods provide accurate results. Although the
methods for non-deterministic programs can also be applied to deterministic
programs, we present more accurate methods for deterministic programs in Sec-
tion 5.2

5.1. Non-deterministic Monotone Shortcuts
We first consider the the problem of computing applicability conditions for

abacus programs whose simple loops have monotone shortcuts and include non-
deterministic actions. We will find that the accuracy of the resulting conditions
is determined by order independence (Def. 8), or the extent to which the execu-
tion of different loops in a decomposition can be rearranged without significantly
affecting the overall outcomes. The situation where we have only deterministic
actions can be seen as one of the extreme cases of order dependence. While the
quality of methods presented in this section will suffer in such cases, we present
specialised methods for handling them in the following section (5.2).

Suppose an abacus program Π is a simple loop with shortcuts which can
be decomposed into m simple loops with the start node Sstart. We consider
the case of l complete iterations of Π counted at its start node, with k1, . . . , km

representing the number of times loops 1, . . . ,m are executed, respectively. The
final, partial iteration and the loop exit can be along any of the simple loops
and can be handled as a linear program segment. Then,

k1 + . . . km = l. (1)
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Determining Final Register Values. We denote the loop created by taking the
ith shortcut as loopi. The final register values after the l =

∑m
i=1 ki complete

iterations can be obtained by adding the changes due to each simple loop, with
∆loopi denoting the change vector due to loopi:

F̄ = R̄0 +
m∑

i=1

ki∆loopi (2)

Cumulative Branch Conditions. For computing sufficient conditions on the achiev-
able register values after k1, . . . , km complete iterations of the given loops, our
approach is to treat each loop as a simple loop and determine its preconditions.
Note that every required condition for a loop’s complete iteration stems from
a comparison of a register’s value with zero. We therefore want to determine
the lowest possible value of each register during the k1, . . . km iterations of loops
1, . . . ,m, and constrain that value to be greater than zero.

LetR+,R− be the sets of registers undergoing net non-negative and negative
changes respectively, by any loop. Consider an Rj ∈ R−. Loops with net
zero or negative effects on Rj may include both incrementing and decrementing
actions. Let δi

j be the greatest partial negative change caused on Rj by loopi.
Let min(j) = argminx{δx

j : x ∈ {1, . . . ,m}}.
For Rj ∈ R+, the lowest possible value is R0

j + δ
min(j)
j , since the value of Rj

can only increase after the first iteration. The required constraint on Rj ∈ R+

therefore is R0
j +δmin(j)

j ≥ 0 (“≥” because “>” must hold before the decrement).
The following lemma shows that in order to compute the least value of a

register in R− over all possible executions with k1, . . . km iterations of loops
1, . . . ,m respectively, we only need to consider which loop is executed last:

Lemma 1. Suppose loop1, . . . , loopm form the decomposition of a monotone
simple loop with shortcuts. Then there exists an execution ordering such that
the lowest value (over all possible orderings with ki iterations of loopi for all i)
of Rj ∈ R− is achieved in the last loop to be executed.

Proof. Suppose this is not the case and the lowest possible value ofRj is achieved
in the “middle” of an execution ordering, i.e., during the execution of loopx,
following which other loop iterations will be executed.

We can change the execution ordering so that this iteration of loopx occurs
at the end. In this new ordering, because of monotonicity, we either get a lower
value of Rj during the last iteration of loopx or the same one.

We now compute the lowest value of Rj achieved during the last iteration,
after k1, . . . , km iterations of loops 1, . . . ,m, with loop x being executed the last.
If δx

j 6= ∆x
j , then this may occur after a partial execution of the last iteration of

loopx. We obtain this value by first computing the value of Rj after execution
of all iterations of all the required loops, and then subtracting from it the effect
of one complete iteration of loopx, and adding δx

j , the greatest partial negative
change of loopx:
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R0
j +

m∑
i=1

ki∆i
j −∆loopx

j + δx
j

To obtain the lowest value of this expression over all possible choices for the
last loop, we need to minimize this expression w.r.t x. In most cases encountered
in planning, this can be done effectively by choosing the loop which minimizes
δx
j and using that loop for x (this method was used by Srivastava et al. (2010a)).

In this paper, we use the more general approach by selecting the last loop, ̂, as
follows:

̂ = argminx{δx
j −∆loopx

j : x ∈ {1, . . . ,m}}

This minimization ̂ requires the same number of comparison operations the
minimization over δx

j alone. Now that we can compute the minimum possible
values of all registers, we can state the required constraints as:

∀Rj ∈ R−
{
R0

j +
m∑

i=0

ki∆
loopi
j +δb

j−∆
loopb
j ≥ 0

}
(3*)

∀Rj ∈ R+
{
R0

j + δmin(j) ≥ 0
}

(4*)

Together with Eqs. (1-2), these inequalities provide sufficient conditions
binding reachable register values with the number of loop iterations and the
initial register values. However, the process for deriving them assumed that for
every j, loopb and loopmin(j) will be executed at least once. We can make these
constraints more accurate by using a disjunctive formulation for selecting the
loop causing the greatest negative change among those that are executed at least
once. For register Rj , let 0̂, . . .m̂ be the ordering of loops in decreasing order
of the values δx

j −∆x
j . We will use this ordering for writing the constraints for

registers in R−. Similarly, let 0j, . . . ,mj be the ordering of loops in decreasing
values of δx

j , with the intended purpose of writing constraints for registers in
R+. In each of the following constraints, we will use ki<x = 0 to denote the
constraints {ki = 0 : i < x}, where the ordering is the one being used in that
constraint. We can now write disjunctions of constraints corresponding to the
first loop in these orderings that is executed at least once, as follows:

∀Rj ∈ R−
∨

x=0b,...,mb
{
ki<x = 0; kx 6= 0;

R0
j +

∑
x≤i≤mb ki∆

loopi
j + δx

j −∆loopx
j ≥ 0

}
(3)

∀Rj ∈ R+
∨

x=0j ,...,mj

{
ki<x = 0; kx 6= 0;R0

j + δx
j ≥ 0

}
(4)

Constraints 3 & 4 are derived from 3* and 4* by replacing the argmins ̂
and min(j) by the variable x, which iterates over loops in the order 0̂, . . . ,m̂
for registers in R− and in the order 0j, . . . ,mj for registers in R+.
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Constraint 3 is tighter than 3* only when changing the loop that executes
last will have an impact on the lowest value of at least one register. Otherwise,
δx − ∆loopx

j will be the same for every loop for each register Rj , representing
the situation where the lowest achievable value of register Rj is independent of
which loop’s execution occurs last.

Accuracy of the Computed Conditions. Note that these conditions do not deal
with equality conditions that may have to be satisfied for staying in a loop.
Equality conditions are very constraining, and may constrain the execution of
a loop corresponding to a shortcut to occur exactly once, when the equality
condition holds. However, conditions (1-4) can be extended to include equality
conditions for the first and last iteration of each loop. This will make (1-4)
sufficient conditions for situations where equality branches are required to stay
in the loop (in our experience this is rare in planning domains). However, adding
these constraints may also make (1-4) unsatisfiable if the same register is used
in two different equality constraints corresponding to two different loops caused
by shortcuts.

In order to discuss when conditions (1-4) are accurate we first define order
independence:

Definition 8. (Order Independence) A simple loop with shortcuts is order inde-
pendent if for every initial valuation of the registers at Sstart, the set of register-
values possible at Sstart after any number of iterations does not depend on the
order in which those iterations are taken.

An equality constraint in a loop is considered spurious, if no loop created by
the shortcuts changes the register on which equality is required. During the ex-
ecution of the loop, the truth of such conditions will not change. Consequently,
such equality conditions do not introduce order dependence. In practice, these
conditions can be translated into conditions on register values just prior to en-
tering the loop.

A simple loop with shortcuts will have to be order dependent if one of the
following holds: (1) the lowest value achievable by a register during its execution
depends on the order in which shortcuts are taken. In this case, possible lowest
values will impose different constraints for each ordering; or, (2) a non-spurious
equality condition has to be satisfied to stay in a loop. In the latter case, the
non-deterministic branch leading to the shortcut that has the equality condition
will have to be taken at the precise iteration when equality is satisfied. In fact,
the disjunction of these two conditions is necessary and sufficient for a loop to
be order dependent.

Proposition 3. A simple loop with shortcuts is order-dependent iff either (1)
the lowest value achievable by a register during its execution depends on the
order in which shortcuts are taken or (2) a non-spurious equality condition has
to be satisfied to continue a loop iteration.

Proof. Sufficiency of the condition was discussed above. If the loop is order
dependent, then there is a register value that is reachable only via a “good”
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subset of the possible orderings of shortcuts. Consider an ordering with the same
number of iterations of these shortcuts, not belonging to this subset. During
the execution of this sequence, there must be a first step after which a loop
iteration that could be completed in the good subset, cannot be completed in
the chosen ordering. This has to be either because an inequality > 0 is not
satisfied before a decrement, which implies (1) holds, or because Rj = 0 is
required to continue the iteration; this must have been possible in the good
loop orderings, but Rj > 0 must hold here, which implies case (2) holds.

A naive approach of even expressing the necessary conditions for an order
dependent loop can be exponential in the number of shortcuts, even while con-
sidering just a single iteration of each loop. Deriving better representations for
such conditions is an important direction for future work. However, we can now
see the computation of ̂ as handling a very specific kind of order dependence,
when the lowest value of a register only depends on the last iteration to be
executed.

Example 1. Consider loops l1, l2 created by shortcuts in a larger loop. l1 in-
creases R1 by 5 and R2 by 1. l2 first decreases R1 by 4 and then increases it by 5.
l1, l2 are monotone shortcuts but their combination is order dependent: at Sstart

with R1 = 1, l2 cannot be executed completely before executing l1. Expressing
precise preconditions for reachable register values thus requires a specification of
the order in which the shortcuts have to be taken.

We can now present two results capturing the accuracy of the conditions
(1-4).

Proposition 4. If Π is an order independent simple loop with monotone short-
cuts, then Eqs. (1-4) provide necessary and sufficient conditions on the initial
and achievable register values.

Proof. By construction, the inequalities ensure that none of the register values
drops to zero, so that if a register value satisfies the inequalities, then it will be
reachable. This proves that the conditions are sufficient. Suppose that a regis-
ter value F̄ is reachable from R̄0, after k0, . . . km iterations of loop0, . . . , loopm

respectively. Eq. (2) cannot be violated, because the changes caused due to the
loops are fixed; Eq. (1) will be satisfied trivially. If R̄0, k0, . . . , km don’t satisfy
Eqs. (3-4), the lowest value achieved during the loop iterations will fall below
zero because the loop is order independent. Therefore, (1-4) must be satisfied.

Proposition 5. If Π is a simple loop with monotone shortcuts, then Eqs. (1-
4), together with constraints required for equality branches during the first and
last iterations of the shortcuts containing them give sufficient conditions on the
possible final register values in terms of their initial values.

Proof. By construction, conditions (1-4) and the equality constraints ensure that
every branch required to complete ki iterations of loop i will be satisfied.
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In other words, if we don’t have order independence, the conditions (1-4) are
sufficient, but not necessary. In adversarial formulations however, if the next
simple loop to be executed depends on non-deterministic actions, then we require
exactly the conditions (1-4) which ensure that all the stipulated iterations of
all the loops will be executed. In Section 8 we present several examples of this
scenario.

This leads to the main result of this section, which is analogous to Theorem 1
for simple loops:

Theorem 2. Let Π be an abacus program, all of whose strongly connected com-
ponents are simple loops with monotone shortcuts. Let S be any node in the
program, and F̄ a vector of register values. We can then compute a disjunction
of linear constraints on the initial register values for reaching S with the regis-
ter values F̄ . If all simple loops with shortcuts in Π are order independent, the
obtained precondition is necessary and sufficient.

Proof. Similar to the proof by decomposition for Theorem 1, using proposi-
tions 4 and 5.

Semantics of the Computed Conditions. Since we are working in the setting
where non-deterministic actions are allowed, the variable ki may implicitly
capture the number of times particular outcomes of non-deterministic actions
present in loopi must occur during its ki iterations. This may appear to be
measuring an inherently unpredictable property (non-determinism) and seem
to mitigate the utility of the computed preconditions. However, as we will see
in Section 8, non-deterministic abacus actions may stand for sensing actions;
while we may not be able to predict the outcome of each sensing action, it may
still be possible to know how many times a certain outcome is possible, which
is all that we need to use the conditions above. In addition, if ki’s are used as
parameters, the conditions above capture their tolerable values under which a
desired register value may be achieved.

5.2. Deterministic Monotone Shortcuts
In the previous section we addressed the problem of determining when a

program can reach a certain state with a given register vector by deriving con-
straints between the initial and final register values for a given abacus program.
In order to achieve these results, we used the concept of order independence
to summarily deal with a collection of simple loops and the number of times
each had to be executed. In deterministic programs however, the set of simple
loops obtained by decomposition exhibit two complementary properties. On
one hand, they are highly order dependent, in that every subsequent loop to
be executed will be precisely determined by the initial register value and the
iterations executed so far. On the other hand, as we will see below, the exact
number of iterations of each loop that will be executed can be computed easily.
A naive approach for constructing applicability tests in this case would be to
apply the conditions developed in the previous section directly to this setting.
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From this point of view, deterministic actions can be seen as introducing an
extreme form of order dependence with extensive use of non-spurious equality
conditions. However, we can utilize determinism in this setting to develop a
more precise, but less general applicability test.

We now address the problem of determining if a program will terminate with
a given register vector by designing an algorithm which takes as input an initial
register vector, and provides a yes/no answer. More precisely, the algorithm will
efficiently compute the final register vector for the given initial register vector.
Without loss of generality, we consider this problem in the setting where we
have a single simple loop with shortcuts and the start node for the program is
the start node of this loop.

Our approach relies on the following observations:

1. Because of monotonicity, if a loop is executed for a certain number of
iterations and then exited, flow of control will never return to that loop.

2. For any given configuration of register values at the start node, at most one
of the simple loops in the given loop’s decomposition may be completely
executable. This is because if multiple simple loops can be executed start-
ing from a given register value configuration, then at some action node in
the program, it should be possible for the control to flow along more than
one outgoing edge. However, this is impossible because every action which
has multiple outcomes (a decrementing action) has exactly two branches,
whose conditions are always mutually inconsistent.

As a consequence of the second observation, given such an abacus program
and an initial register vector, we can compute the first loop which will be ex-
ecuted and the number of iterations for which it will be executed (the precise
method for computing this is described below); we can then remove this loop
from consideration because of the first observation and repeat the process. This
can be continued until no loop can be executed completely. When this process
terminates, we get the sequence of loops and the number of iterations of each
that must be executed before exiting the given simple loop with shortcuts.

Taking an initial register valuation as input, Alg. 1 perfoms these computa-
tions. Let ΠA be an abacus program in the form of a simple loop with monotone
shortcuts and only deterministic actions. Alg. 1 works by identifying the unique
loop ` whose LoopIneq` is satisfied by the value R̄ (initialized to R̄0) [steps 5-8],
calculating the number of iterations which will be executed for that loop until
LoopIneq` gets violated [step 9], updating the register values to reflect the effect
of those iterations [step 12] and identifying the next loop to be executed [the
while loop, step 4].

The subroutine FindMaxIterations uses the inequalities in LoopIneq` (see
Prop. 2) to construct the vector equation (R̄ + `max∆` + ∆1..i−1)a(i) ◦ 0 for
every action in loop l. This system of equations consists of an inequality of the
following form for every i corresponding to a decrementing action in the loop:

`max < (R̄a(i) + ∆1..i−1
a(i) )/∆`

a(i)
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Algorithm 1: Reachability for deterministic, monotone shortcuts
Input: Deterministic abacus program in the form of a simple loop with

monotone shortcuts with start node Sstart, an initial register
configuration R̄0

Output: Sequence of (loop id, #iterations) tuples and final value of R̄ at
Sstart.

R̄← R̄01

Iterations ← empty list2

LoopList ← simple loops created by shortcuts3

while LoopList 6= ∅ do4

if no ` ∈ LoopList satisfies LoopIneq`(R̄) then5

Return Iterations6

end
`← id of loop for which LoopIneq`(R̄) holds7

Remove ` from LoopList8

`max ← FindMaxIterations(R̄, `)9

if `max =∞ then10

Return “Non-terminating loop”
end
Iterations.append((`, `max))11

R̄← R̄ + `max∆`
12

end

Return Iterations, R̄13

Since R̄ is always known during the computation, the floor of minimum of
the RHS of these equations for all i yield the largest possible value of `max.
Equality constraints either drop out (if the net change in their register’s value
due to the loop ` is zero and they are satisfied during the first iteration), or
set `max = 1 (if the net change in their register’s value is not zero, but it is
satisfied during the first iteration). Equality constraints will be satisfied when
FindMaxIterations is called because we know that LoopIneq` was satisfied. Note
that if there is any loop which does not decrease any register’s value, it will never
terminate. This will be reflected in our computation by an `max value of∞ [step
11]. Thus, we have:

Theorem 3. Given a deterministic abacus program Π in the form of a simple
loop with monotone shortcuts and start node S, and an initial register vector
R̄0, Alg. 1 returns the number of times each simple loop in Π’s decomposition
will be executed as well as the register vector at S after all these iterations.

Depending on the rest of the abacus program, the final register vector ouput
by Alg. 1 can be used as the initial register vector for determining the reacha-
bility of a subsequent state with a desired register vector.

Complexity Analysis. Let b be the maximum number of branches in a loop in
the decomposition of the given simple loop with shortcuts, and L the total
number of simple loops in the decomposition. The most expensive operation in
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Figure 3: Construction for translating a general abacus program into one with a simple loop
with shortcuts.

this algorithm is step 5, where R̄ is tested on every loop’s inequality (these loop
inequalities only need to be constructed once). Step 5 is executed in O(Lb) time
and step 9 in O(b) time. The entire loop may be executed at most L times,
resulting in a total execution time of O(L2b). On the other hand, if such a
program is directly applied on a problem instance and the program terminates,
then the execution time for the program will be of the order of the largest input
register value, which is unbounded.

6. Relaxing Monotonocity

We now consider the problem of computing the preconditions of an abacus
program with simple loops with shortcuts that need not be monotone. As noted
earlier, in terms of computational expressiveness this class is very powerful. We
show below that any abacus program can effectively be represented as a program
consisting of one simple loop with shortcuts.

Theorem 4. Let Πg be an abacus program with Rg, Ng and Eg as the sets of
registers, nodes and edges respectively. Then there exists an equivalent abacus
program, ΠS with RS(⊇ Rg), NS(⊇ Ng), and ES as the sets of registers, nodes
and edges respectively, such that:

1. ΠS consists of one simple loop with shortcuts.
2. Execution of Πg with an initial register vector R̄init is equivalent to that of

ΠS with an initial vector R̄′init: a node n ∈ Ng is reachable with a register
vector R̄f in Πg iff it is reachable in ΠS with a register vector R̄′f which
matches R̄f on all the registers from Rg.

Proof. In order to construct ΠS , we add a new flag register li for each ni ∈ Ng.
The values of these flag registers will never rise above 1; at any stage during
execution, at most one of the flag registers will be non-zero. We will use these
flags to translate edges from Πg into a set of “case statements” starting with a
common, new start node.
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Construction of ΠS. Let n0 → a0, a0 → n1, a0 → n2 be a set of edges cor-
responding to a single (decrementing) action-node a0 in Πg. We translate this
sequence into a sequence beginning with the action node decrementing l0. The
> 0 branch from this action represents the case that we were at state n0. This
branch will lead to the node for a0; the two branches from a0 lead to actions in-
crementing l1 and l2, corresponding to the branches that lead to n1 and n2. The
construction is illustrated in Fig. 3. The translation is similar for incrementing
actions. To get ΠS , we perform this construction for the edges corresponding to
each action in Πg in this manner and attach the each resulting graph to the = 0
branch of the last flag decrementing action, as shown in Fig. 3. The resulting
abacus program ΠS consists of one simple loop with shortcuts with the new
start node as the common start node for the shortcuts.

Computation of R̄′init. The initial values for all the original registers Rg are
the same as those in R̄init; the flag register corresponding to Πg’s start node is
initialized as 1 and all the other flag registers are initialized as 0.

By construction, executing an action-node on a register vector leads to a
node ni in Πg iff executing that action-node on the extended register vector
with all flag variables zero (note that the flag-testing action also decrements the
only non-zero flag to zero) leads to li, and subsequently, ni in ΠS . By induction
on path lengths, we therefore have the result that a node ni is reachable from
R̄init in Πg iff it is reachable from R̄′init in ΠS .

Simple loops with non-monotone shorcuts are therefore sufficient to capture
the power of Turing machines:

Corollary 1. The class of abacus programs whose strongly connected compo-
nents are simple loops with shortcuts is Turing-complete.

Removing the condition of monotonicity therefore makes the problem of
computing preconditions of abacus programs with simple loops with shortcuts
undecidable. Currently, there are no intermediate characterizations of simple
loops with shortcuts that bridge the gap between monotone shortcuts, where
this paper demonstrates the existence of efficient methods for finding precon-
ditions, and non-monotone loops where the problem becomes undecidable. An
important direction for future work is to identify useful, yet tractable general-
izations of the notion of monotonicity where preconditions can be computed.

7. Transforming Plans into Abacus Programs

The previous sections presented methods for finding preconditions for various
classes of abacus programs. Abacus programs can express any computation,
including plans with PDDL actions. However, a translation of such plans into
abacus programs is unlikely to employ only the kind of loops discussed above.
But, if planning actions can be treated as actions that increment or decrement
counters, the techniques developed above can be directly applied. We have been
developing an approach for planning with abstract states which can yield such a
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Figure 4: A concrete state and its abstraction in a unary formulation of the transport domain.

framework automatically (Srivastava et al., 2010c). In this section, we illustrate
the relevant concepts of this approach with an example.

Consider a restricted version of the transport domain with one truck of
capacity one and two locations, formulated using only unary predicates. The
vocabulary V of this domain consists of the unary predicates obj, atL1, atL2,
inT and the constant truck. obj(x) signifies that x is an object which can be
loaded into the truck; atLi(x) and inT(x) denote that x is at location Li and in
the truck, respectively.

The left part of Fig. 4 shows a state in this domain, represented as a logical
structure (C). C’s universe has 7 elements ({t, o1, o2, o3, o4, o5, o6}) which are
drawn with circles and annotated with the set of predicates that they satisfy and
the constants, if any, that they represent. The structure C therefore represents
a state with 3 objects at each location and the truck at L1. For the purpose
of this illustration, we only need the single action loadT(c), which loads crate c
into the truck.

Overview of canonical abstraction. We now illustrate how state abstraction can
reduce actions on concrete states like C to actions which only increment or
decrement certain counters. The right part of Fig. 4 shows structure S, the result
of applying a state abstraction technique called canonical abstraction (Sagiv
et al., 2002) on C. We first define the role of an element in a structure as the
set of unary predicates that it satisfies and the set of constants that it represents.

Canonical abstraction collapses all elements of a concrete structure that
have the same role into a single collective element called a summary element
of that role. As opposed to singleton elements drawn with circles, we will
use double circles to represent summary elements in diagrams. Thus, element
u1 for instance is a summary element which represents all objects with the
role {obj, atL1} in C (viz., o1, o2, o3). A more formal description of canonical
abstraction which also works for structures with predicates of higher arities is
presented by Sagiv et al. (2002); an overview of this approach in the context of
AI planning was presented in previous work (Srivastava et al., 2010c).

Abstract structures represent sets of concrete structures. A summary ele-
ment of a certain role in an abstract structure denotes that there is at least
one element with that role in all concrete structures represented by the abstract
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structure. In this way, abstract structures like S represent unbounded collec-
tions of concrete structures by introducing uncertainty about the number of
elements of each role: S represents the set of all concrete states with exactly
one truck, at least on object at L1, and at least one object at L2.

Choice operations on abstract structures. For the purpose of applying planning
actions however, we need to extend this technique with a method for selecting in-
dividual action arguments from the summary elements representing them. The
“drawing-out” mechanism developed in our prior work (Srivastava et al., 2010c)
accomplishes this. This mechanism, illustrated in Fig. 5, introduces choice ac-
tions which take an abstract structure S and a role r as arguments. Choice
actions assign a new, “operand” constant to a single member of the set of all
elements with role r represented by S.

A choice operation for selecting a concrete element represented by a sum-
mary element has two possible outcomes due to the imprecision in quantities of
objects represented by summary elements. This is shown in Fig. 5 in structures
S2 and S3. These two cases correspond to whether or not the original summary
element represents exactly one element. For the case where it does, the sum-
mary element is replaced by a singleton and this singleton element is assigned
the operand constant (S3); otherwise, a new element is “drawn-out” from the
summary element and assigned the operand constant (S2), corresponding to the
case where the original summary element represented more than one concrete
elements. Therefore, the outcomes possible on application of a choice operation
on an abstract structure can be categorized in terms of inequalities between the
cardinality of summary elements, or role-counts in the initial abstract structure,
and the constant 1.

Measuring action effects via changes in role-counts. The top row in Fig. 5 shows
the changes in each role-count caused due to action application. In this exam-
ple, the action loadT decreases the role-count of the role {obj, atL1, inT} by 1
and makes a corresponding increase in the role-count of {obj, atL1}. The set
of actions in this domain are therefore similar in function to abacus actions:
increments and decrements in role-counts occur in unit amounts; if an action
may have multiple outcomes, they are categorized in terms of the comparison
of a role-count with the constant 1.

In previous work (Srivastava et al., 2010c) we identified a class of domains
called extended-LL domains1 where actions always take such forms after canon-
ical abstraction. We summarize the relevant properties of extended-LL domains
as follows:

Theorem 5. (Extended-LL Domains) (Srivastava et al., 2010c) Let S0 be a
canonically abstracted state in an extended-LL domain, and let {S1, . . . , Sn} =
a(S0) be the possible results of applying action a on S1. Then:

1As a special case, all representations of PDDL planning domains using only unary predi-
cates qualify as extended-LL domains.
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Figure 5: A sequence of actions in a unary representation of transport domain.

1. For each Si ∈ a(S0), the changes in role-counts due to action a1 can be
listed using a set of increment tuples {(R+

1 , c1), . . . (R+
k , ck)} denoting that

role-count of R+
i is increased by ci and a set of roles that are decremented

by 1, say {R−1 , . . . R−m}.
2. The conditions under which a particular result Si will occur are conjunc-

tions of inequalities between role-counts in S0 and the constant 1.

Moreover, the role-count changes caused due to actions can be efficiently
computed given the action description and the abstract structure on which the
action is applied. Actions on abstract structures in extended-LL domains can
therefore be easily translated into sequences of abacus actions, and vice-versa.
In addition to the transport domain discussed here, further examples of such
domains are presented in the Section 8.

Lemma 2. Let S1
a1−→ S2 be an action operation in an extended-LL domain,

where S2 represents only one of the possible outcomes of action a1 when applied
on S1.

This operation can be translated into a linear abacus program Πa whose start
node is labeled S1 and terminal node is labeled S2.

Proof. Using Theorem 5, the changes in role-counts due to any action a on an
abstract structure S0 in an extended-LL domain can be listed as a set of incre-
ments: {(R+

1 , c1), . . . (R+
k , ck)} and a set of roles decremented by 1 {R−1 , . . . R−m}.

Starting with an initial node for Πa labeled S0, we first add sequences of ci
abacus action nodes for each role Ri that needs to be incremented, with new
intermediate nodes. Let the final state-node obtained after this operation be
nsI .

We then need to add abacus operations simulating role decrements. First,
for each decrement to be conducted we identify the branch (R−i > 1 or R−i =
1) that was taken in the given action operation (this is possible because of
the second part of Theorem 5). Starting at nsI , we add sequences of abacus
operations corresponding to each decrement operation. Since abacus actions
can only conduct comparisons with zero, each of these sequences consists of the
following 3 actions as shown in the figure below: one decrement operation for
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the role, an extra decrement to conduct a comparison with zero instead of with
1, and finally, an increment operation to reverse the extra decrement.

R−−

=0

R++> 0
R−−

(not possible)

? 0

Here, the comparison operation after the second decrement is the the opera-
tion identified in the given example. Chaining such role-decrementing sequences
of operations one after the other, starting at nsI gives us a linear abacus pro-
gram simulating S1

a1−→ S2.

A plan with extended-LL domain actions can therefore be converted into an
Abacus program without changing its structural complexity (its loop structure).
The method for computing preconditions of loops of abacus actions can therefore
be used for plans with simple loops in extended-LL domains.

A similar structure preserving translation can be used to translate abacus ac-
tions into sequences of extended-LL domain actions which use roles as registers.
Note that in extended-LL domains, an action which increases a role-count also
necessarily decrements some other role-count. Therefore, in order to simulate
abacus actions that increment a register without a corresponding decrement,
we add an extra role R∞ from which all the action simulating increments can
delete objects. Thus, we have:

Lemma 3. Linear segments of abacus programs can be simulated by linear seg-
ments of programs in extended-LL domains and vice versa.

Corollary 2. Plans with extended-LL domain actions can simulate Abacus pro-
grams without increasing the loop complexity and vice versa.

Note however, that plans in extended-LL domains tend to be more compact
since a single action can update many role-counts, with increments larger than
1.

Theorem 6. Plans with extended-LL domain actions are Turing complete.

Extended-LL domains thus represent a powerful class of planning domains.
Their action operations, however, are fundamentally simple and can be analyzed
along the lines developed in the previous sections.

The next section shows a range of problems which can be represented in
the form of extended-LL domains, and whose actions can be treated as abacus
actions. As a result, preconditions and termination guarantees of a wide range
of plans with loops in these domains can be computed very efficiently. We
also demonstrate our approach on plans with complex loops created by non-
deterministic sensing actions.
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Figure 6: Solution plan for the transport problem

8. Example Plans and Preconditions

We implemented the algorithm for finding preconditions for simple loops and
order independent nested loops due to shortcuts, and applied it to various plans
with loops that have been discussed in the literature. Existing approaches solve
different subsets of these problems, but almost uniformly without computing
plan preconditions or termination guarantees. For nested loops, our implemen-
tation takes a node in a strongly connected component as an input and computes
an appropriate start node. It then decomposes the component into independent
simple loops and computes the preconditions. Table 1 shows timing results for
10 different plans.

Plan Representation. Figs. 6, 7 and 8 show solution plans for some of the test
problems. In order to make the plans easy to read, we show only action nodes.
The default flow of control continues line by line (semi-colons are used as line-
breaks). Edges are shown when an action may have multiple outcomes and
are labeled with the conditions that must hold prior to action application for
that edge to be taken (as with abacus programs). Only the edges required by
the plan are drawn; the preconditions must ensure that these edges are always
taken. For clarity, in some cases we label only one of the outcomes of an action,
and the others are assumed to have the complement of that label. Actions are
written as “ActionName(args:argument-formula(args))”. Any object satisfying
an action’s argument formula may be chosen for executing the plan. The desired
halt states are indicated with the action “Stop”.

Transport. In the transport problem (Srivastava et al., 2008) two trucks have
to deliver sets of packages through a “Y”-shaped roadmap. Locations D1, D2
and D3 are present at the three terminal points of the Y; location L is at the
intersection of its prongs. Initially, an unknown number of servers and monitors
are present at D1 and D2 respectively; trucks T1 (capacity 1) and T2 (capacity
2) are also at D1 and D2 respectively. The goal is to deliver all objects to D3,
but only in pairs with one of each kind.

The problem is modeled using the predicates {server, monitor, atDi, inTi,
atL, T1, T2}. As discussed in the previous section, role-counts in this represen-
tation can be treated as register values and actions as abacus actions on these
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Figure 7: Solution plan for the conditional version of transport

roles. The plan shown in Fig. 6 first moves a server from D1 to L using T1.
T2 picks up a monitor at D2, moves to L, picks up the server left by T1 and
transports both to D3. The first action, load, uses as its arguments an object s
(satisfying server(s)∧ atD1(s)), and the constant T1 representing the truck T1.
It decrements the count of the role {server, atD1} and consequently has two
outcomes depending on its value. Note that the second load action in the plan
also has two outcomes, but only the one used in the plan is shown. In order
to reach the Stop state with the goal condition, we require that final values of
s1 =#{server, atD1} and m2 =#{monitor, atD2} be zero. Let s3=#{server,
atD3} and m3=#{monitor, atD3}. The changes caused due to one iteration of
the loop are +1 for m3, s3 and −1 for s1,m1. Using the method developed in
proposition 2, the necessary and sufficient condition for reaching the goal after
l iterations of the loop is that there should be equal numbers of objects of both
types initially: m0

2 = l = s01.

Transport Conditional. In the conditional version of the transport problem,
objects left at L may get lost, and servers may be heavy, in which case the
forkLift action has to be used instead of the load action. Fig. 7 shows a solution
plan found by merging togther plans which encountered and dealt with different
non-deterministic action outcomes (Srivastava et al., 2010b). If a server is not
found when T2 reaches L, the plan proceeds by moving T2 to D1, loading a
server, and then proceeding to D3. Note that the shortcut for the “server lost”
has a sub-branch, corresponding to the server being heavy. The plan can be
decomposed into 8 simple loops. Of these, 4, which use the “server lost” branch
use one extra server (loops 0, 5, 6 and 7 in the inequality below). Let role-counts
s2,m2, s3,m3 be as in the previous problem. Then, the obtained applicability
conditions are:
sf
3 = mf

3 =
P7

i=0 ki; mf
2 = m0

2 −
P7

i=0 ki = 0

sf
1 = s0

1 −
P7

i=0 ki − k0 − k5 − k6 − k7 = 0

These conditions show that every possible loop decrements the role-counts s

23



mv(R, b: −empty(b))
#(−empty) = 0

Stop

PickObj(o: in(o,b))

senseType(o)

collect(o,c: forPaper(c)& −full(c)) collect(o,c: forGlass(c)& −full(c))

glasspaper

#(forPaper, −full)>0 #(forGlass, −full)>0

empty(b)

Figure 8: Solution plan for the recycling problem

and m; however, in order to have all objects at D3 the conditions now require
extra servers to be kept at D1, amounting to the number of times a server was
lost.

Recycling. In this problem a recycling agent must inspect a set of bins, and
from each bin, collect paper and glass objects in their respective containers. The
solution plan includes nested loops due to shortcuts (Fig. 8), with the start node
at PickObj. senseType is a sensing action, and the collect actions decrement the
available capacity of each container, represented as the role-count of {forX,
¬full} where X is paper or glass. Let e, fg, fp, p, g denote the role-counts
of non-empty bins, glass container capacity, paper container capacity, paper
objects and glass objects respectively. Let l1 denote the number of iterations of
the topmost loop, l2 of the paper loop and l3 of the glass loop. The applicability
conditions are:

ef = e0 − l1 = 0, fpf = fp0 − l2 ≥ 0,

pf = p0 + l2, fgf = fg0 − l3 ≥ 0, gf = g0 + l3.

Note that the non-negativity constraints guarantee termination of all the loops.

Accumulator. The accumulator problem (Levesque, 2005) consists of two accu-
mulators and two actions: incr acc(i) increments register i by one and test acc(),
tests if the given accumulator’s value matches an input k. Given the goal
acc(2) = 2k − 1 where k is the input, Kplanner computes the following plan:
incr acc(1); repeat {incr acc(1); incr acc(2); incr acc(2)}until test acc(1); incr acc(2).
Although the plan is correct for all k ≥ 1, Kplanner can only determine that
it will work for a user-provided range of values. This problem can be modeled
directly using registers for accumulators and asserting the goal condition on the
final values after l iterations of the loop (even though there are no decrement
operations). We get

acc(1) = l + 1; acc(2) = 2l + 1 = 2k − 1.

This implies that l = k − 1 ≥ 0 iterations are required to reach the goal.
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Problem Time (s) Problem Time(s)

Accumulator 0.01 Prize-A(7) 0.02
Corner-A 0.00 Recycling 0.02
Diagonal 0.01 Striped Tower 0.02
Hall-A 0.01 Transport 0.01
Prize-A(5) 0.01 Transport (conditional) 0.06

Table 1: Timing results for computing preconditions

Further Test Problems and Discussion. We tested our algorithms with many
other plans with loops. Table 1 shows a summary of the timing results. The
runs were conducted on a 2.5GHz AMD dual core system. Problems Hall-A,
Prize-A(5) and Prize-A(7) (Bonet et al., 2009) concern grid world navigation
tasks. In Hall-A the agent must traverse a quadrilateral arrangement of cor-
ridors of rooms; the prize problems require a complete grid traversal of 5 × n
and 7 × n grids, respectively. Note that at least one of the dimensions in the
representation of each of these problems is taken to be unknown and unbounded.
Our implementation computed correct preconditions for plans with simple loops
for solving these problems. In Hall-A, for instance, it correctly determined that
the numbers of rooms in each corridor can be arbitrary and independent of the
other corridors. The Diagonal problem is a more general version of the Corner
problem (Bonet et al., 2009) where the agent must start at an unknown position
in a rectangular grid, reach the north-east corner and then reach the southwest
corner by repeatedly moving one step west and one step south. In this case,
our method correctly determines that the grid must be square for the plan to
succeed. In Striped Tower (Srivastava et al., 2008), our approach correctly de-
termines that an equal number of blocks of each color is needed in order to
create a tower of blocks of alternating colors. In all the problems, termination
of loops is guaranteed by non-negativity constraints such as those above.

9. Related Work

Although various approaches have studied the utility and generation of plans
with loops, very few provide any guarantees of termination or progress for their
solutions. Approaches for cyclic and strong cyclic planning (Cimatti et al.,
2003) attempt to generate plans with loops for achieving temporally extended
goals and for handling actions which may fail. Loops in strong cyclic plans are
assumed to be static, with the same likelihood of a loop exit in every iteration.
The structure of these plans is such that it is always possible–in the sense of
graph connectivity–to exit all loops and reach the goal; termination is there-
fore guaranteed if this can be assumed to occur eventually. Among more recent
work, Kplanner (Levesque, 2005) attempts to find plans with loops that gen-
eralize a single numeric planning parameter. It guarantees that the obtained
solutions will work in a user-specified interval of values of this parameter. Dis-
till (Winner and Veloso, 2007) identifies loops from example traces but does
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not address the problem of preconditions or termination of its learned plans.
Bonet et al. (2009) derive plans for problems with fixed sizes, but the controller
representation that they use can be seen to work across many problem instances.
They also do not address the problem of determining the problem instances on
which their plans will work, or terminate.

Finding preconditions of linear segments of plans has been well studied in
the planning literature. Triangle tables (Fikes et al., 1972) can be viewed as
a compilation of plan segments and their applicability conditions. However,
there has been no concerted effort to find preconditions of plans with loops.
Static analysis of programs deals with similar problems of finding program pre-
conditions. However, these methods typically work with the weaker notion of
partial correctness, where a program is guaranteed to provide correct results if
it terminates. Methods like Terminator (Cook et al., 2006) specifically attempt
to prove termination of loops, but do not provide precise preconditions or the
number of iterations required for termination.

10. Conclusions and Future Work

In this paper we presented an approach for formulating and studying the
problem of determining when a certain loop of actions can be guaranteed to (a)
terminate, and (b) lead to a desired result. We showed how this problem can be
studied effectively as the problem of reachability of desired states in the context
of primitive actions that can only increase, decrease or non-determinitically
change the value of some counters. Although this approach is the first to address
this problem comprehensively, it is very efficient and scalable for commonly
encountered loops of actions in planning. In addition to finding preconditions
of computed plans, it can also be used as a component in the synthesis of plans
with safe loops.

We presented several results about the trade-offs between computational
expressiveness of different classes of plans or programs with such actions and the
tractability of answering the reachability problem. For simple loops of actions,
this problem permits very efficient algorithms; slight extensions to this class
of loops (viz. simple loops with shortcuts), however, were found to be general
enough to capture the full power of Turing machines and therefore had an
undecidable reachability problem (Theorem 4) in general. On the other hand,
the property of monotonicty in this case does permit algorithms for determining
reachability, with their accuracy depending upon the notion of order dependence
(Prop. 4). Order dependence itself is not very restrictive in non-deterministic
situations from an adversarial point of view, where the exact sequence of non-
deterministic outcomes of actions cannot be predicted, and we need to plan for
the worst case.

The presented work increases our understanding of the factors that make
these problems difficult: when order dependence cannot be overcome by conser-
vative approximations, and when the property of monotonicity does not hold.
Although non-monotone simple loops with shortcuts have an undecidable reach-
ability problem in the worst case, in some cases in this setting also, the problems
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of reachability, and at the least termination, can be answered. A greater identi-
fication of tractable classes of non-monotone simple loops with shortcuts is left
for future work. Computation and expression of order-dependent preconditions
are also important directions for future work on pushing the theoretical limits
of solvability of these problems.

We showed one approach for interpreting planning actions as abacus actions
in this paper. The underlying methods for determining reachability in abacus
programs however, can be used whenever actions can be interpreted as incre-
menting or decrementing counters. Development of more general reductions,
for instance by using description logic to construct roles in planning problems
is also an important direction for future work.
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