
A Framework for Transfer Learning in Sequential

Decision-Making

Kimberly Ferguson

University of Massachusetts Amherst
Department of Computer Science

September 21, 2011

Research on transfer in reinforcement learning has used various terminol-
ogy dependent on each author, with little commonality. The term transfer
learning has been used to describe numerous different kinds of situations where
any type of information is reused. The terms knowledge transfer and behavior
transfer have been used interchangeably, and the claim of cross-domain transfer
has shown little consistency. We propose a unified framework with a specific
taxonomy for transfer learning in sequential decision-making, such that the ter-
minology in future work can be clear and specific. We will describe four different
types of information transfer which are dependent upon the kind of information
being transferred: knowledge transfer (k-transfer), value transfer (v-transfer),
behavior transfer (b-transfer), and representation transfer (r-transfer). We will
also describe different transfer situations which are dependent on the difference
between the source and target of transfer: task transfer, and domain transfer.
Each type of information transfer can be combined with each transfer situation.
We continue to use transfer learning as an umbrella term for this subset of
machine learning.

For a concrete example, imagine a graduate student, or other autonomous
agent, exploring a building such as a computer science department. There are
different types of information that the agent can learn in this building which
would be useful to reuse in a new building or new situation. The agent can learn
a concept—a door links a room to another location; reuse of this information
is knowledge transfer. The agent can learn a specific value—a door is eight feet
tall; reuse of this information is value transfer. The agent can learn a skill—
how to move to the door from any location in a room; reuse of this information
is behavior transfer. The agent can learn a representation—doors, hallways,
and rooms are useful features with which to represent a building; reuse of this
information is representation transfer.

We can also reason about different transfer situations. This will encompass

1

both task transfer and domain transfer, for each of which we can specify specific
subtypes. Again, consider the agent learning information for reuse in a building.
The agent may originally learn the information with the intention of exiting the
building, but can reuse the information if the goal changes to finding a certain
room or person; the reuse of information in this situation is goal-task transfer.
The same information can be reused to exit the building even if the student is
now blindfolded and there is a non-zero probability that he will move a different
direction than intended; the reuse of information in this situation is dynamics-
task transfer. Information can also be reused if the student is given a scooter,
and now is able to perform different actions than when just walking; the reuse
of information in this situation is action-task transfer.

If the agent reuses the information in a different domain (i.e. a different
building), then he is performing domain transfer. If the agent moves from a
small square classroom to a large square auditorium, the new building is a dif-
ferent size but the same shape as the original; the reuse of information in this
situation of transfer is scaling-domain transfer. If the agent moves from the
computer science building to the campus dorms, the new building is a different
shape, but the same size as the original; the reuse of information in this sit-
uation of transfer is topological-domain transfer. If there are several identical
classrooms in the building, then the agent can reuse the information learned
from one classroom for all the other classrooms; the reuse of information in this
situation is hierarchical-domain transfer. If the agent moves from a building
to a submarine or an amusement park, the new situation is a different type of
domain (a different type of enclosure or not an enclosure at all); the reuse of
information in this situation of transfer is cross-domain transfer.

1 Types of Information Transfer

The types of information transfer described below encompass many of the types
of information that can be successfully used for transfer learning. This taxonomy
directly speaks to one of the three important aspect of transfer learning: what
to transfer. While these categories are sufficient for our purposes, it is evident
that knowledge transfer may be divided into subtypes, which may be useful in
the long run.

1.1 Knowledge Transfer (k-transfer)

Knowledge transfer (k-transfer) refers to when an agent begins by collecting a
knowledge base of information and then reuses this information, either directly
or with modifications, in a novel situation. Knowledge transfer combines obser-
vation and reasoning, encompassing broad conceptual knowledge. It can include
negations, and multi-level rules. Examples of k-transfer include the transfer of
facts, rules, expert advice, features, analogies, and relational information. For
instance, relational knowledge about a factory manager and factory workers
might be transferred to the novel but analogous situation of an advisor and

2

graduate students. As we have defined it, k-transfer is an extremely large cat-
egory, and we acknowledge that it will likely require being broken into smaller
subcategories.

1.2 Value Transfer (v-transfer)

Value transfer (v-transfer) refers to when specific scalar values are learned in one
situation and then reused, either directly or with modifications, in a novel sit-
uation. Examples of v-transfer include the transfer of value functions, rewards,
weights, parameters, scores, and probabilities. V-transfer, which pertains to
the reuse of specific numerical values, can be viewed as a more specific type
of knowledge transfer that is based on numerical observations only, with no
high-level reasoning.

1.3 Behavior Transfer (b-transfer)

Behavior transfer (b-transfer) refers to when an agent collects a toolkit of one
or more behaviors and then transfers these behaviors, either directly or with
modifications, to a new situation, object, or agent. This information is based
on experience and interactions, not high-level reasoning or knowledge. Within
sequential decision-making, b-transfer encompasses decisions of which the agent
itself has control. Examples include the transfer of actions, skills, options, poli-
cies, and samples.

1.4 Representation Transfer (r-transfer)

Representation transfer (r-transfer) refers to when the underlying representation
of the state space is learned and then reused, either directly or with modifica-
tions, in a novel situation. This information is what is necessary to represent
the structure of the environment. Examples of r-transfer include the transfer
of categories (for supervised learning), basis functions, embeddings, or other
representations of state, action, or state-action space. R-transfer relates to how
we collect, organize, and represent basic information.

For an example from nature, consider the studies that have shown that
there is a specific stage when children become able to correctly represent and
generalize shapes. An experimental example is when researchers have young
children try to fit blocks of different shapes into the correctly shaped slots. This
deals with representations and not knowledge because the fact that this shape
is a rectangle and that shape is a triangle is not the point. The purpose is
to know that Slot 1 represents the same shape as Block 2 and then use that
representation information to generalize that Block 2 fits into Slot 1.

With further investigation, we believe it will become evident that certain
types of information are more usefully transferred in specific kinds of situa-
tions. For example, it is likely that lower-level transfer such as representation
transfer will be explicitly more useful for simpler tasks, such as task transfer and
scaling-domain transfer, but higher-level transfer such as knowledge transfer will

3

be necessary for more complex situations like cross-domain transfer. Since all
remain open problems in A.I., we will concentrate on the fundamental problem
of representation transfer. We will explore representation transfer in a variety
of transfer situations.

2 Transfer Situations

Our taxonomy of transfer situations, namely task transfer and domain transfer,
described below and first discussed in (Ferguson & Mahadevan, 2006), can be
linked to the ideas of agent-space and problem-space respectively, as presented
in (Konidaris, 2006). Each type of information transfer discussed above can
be used for each transfer situation described below. By categorizing the types
of situations in which transfer learning can successfully take place, this taxon-
omy begins to address one of the three important aspects of transfer learning:
when to transfer. The measuring of the similarity between transfer situations is
another important aspect of deciding when to transfer and is still an open prob-
lem. In order to further specify how r-transfer occurs in each transfer situation,
we assume that basis functions are the type of information being transferred.
Specifically, using PVFs in (Ferguson & Mahadevan, 2006) as our basis function
of choice, we will detail the construction of the basis function ΦTarget for the
target domain, from the source basis functions ΦSource.

In the field of psychology, six levels of transfer learning have been defined
based on the degree of similarity between the situations (Haskell, 2000). Level
1, nonspecific transfer, and Level 2, application transfer, are trivial within A.I.,
simply referring to the use of knowledge. Level 3, context transfer, refers to
applying what one has learned in a slightly different situation, which we relate
to task transfer. Level 4, near transfer, refers to when previous knowledge is
transferred to new situations that are closely similar but not identical to previous
situations, which we relate to domain transfer. Level 5, far transfer, refers to
applying learning to situations that are quite dissimilar to the original learning
situation, which we related to the harder types of cross-domain transfer. Level
6, creative transfer, refers to transferring learning in such a way that a newly
discovered similarity creates a new concept, which is beyond what we describe
for A.I. systems, but is the ultimate goal.

2.1 Task Transfer

When an agent reuses information learned in one situation for a new situation
with the same structure, then task transfer is being performed. There are several
ways this can occur. The forms of task transfer we describe below include when
the task is changed by modifying the reward function or the dynamics of the
situation, or changing the action set. Other situations in which information is
reused but the state space does not change are also task transfer. This includes
situations such as when the agent’s start state changes, which is often trivially
performed at the start of each exploration episode.

4

R

(a) 8x8 task and domain trans-
fer source.

R

(b) 8x8 goal-task transfer tar-
get.

R

(c) 8x8 topological-domain
transfer target.

R

(d) 10x10 scaling-domain
transfer target.

R

(e) One possible hierarchical-domain
transfer target.

R

(f) Another possible hierarchical-
domain transfer target.

Figure 1: Transfer Situations: Transfer source and target examples of goal-task
transfer, topological-domain transfer, scaling-domain transfer, and hierarchical-
domain transfer.

5

For a direct example from nature of task transfer situations, we take exam-
ples from a neuroscience study on primates, which showed that a rhesus monkey,
Ivan, was capable of using tools for multiple goals (Veino & Novak, 2003). Ivan
learns to use a rake to retrieve a treat in different locations (goal-task transfer)
and to perform the same task with different tools (action-task transfer). Addi-
tionally, it has been shown that he can maneuver the rake over various barriers
of his cage and even go around a corner to retrieve the treat (topological-task
transfer).

2.1.1 Goal-Task Transfer

Goal-task transfer refers to when the MDP of the sourceMSource = 〈S,A, P,RSource〉
and the MDP of the target MTarget = 〈S,A, P,RTarget〉 differ only in their re-
ward functions. For an example of goal-task transfer, consider the discrete two-
room gridworld domain shown in Figure 1, the reward might be moved from the
corner (Figure 1(a)) to the doorway (Figure 1(b)), or the reward function might
be changed from 0 at the goal state and −1 in all other states to 10 at the goal
state and 0 at all other states. Likewise, consider the continuous control task of
the mountain car where the goal is to reach the top of the hill by oscillating to
build enough momentum. The elevation of the top of the hill (the goal) might
be raised or lowered, the goal might be moved to the other side of the hill, or
given a different numerical value.

2.1.2 Dynamics-Task Transfer

Dynamics-task transfer refers to when the source MDPMSource = 〈S,A,PSource, R〉
and the target MDP MTarget = 〈S,A,PTarget, R〉 differ only in their transition
functions. This will occur when only the dynamics of the situation are changed.
For example, in the discrete two-room gridworld domain, the source task may
be deterministic, where the action an agent selects is always successful, but the
target task may be 10%-stochastic, where 10% of the time the action will fail,
resulting in the agent transitioning (uniformly at random) according to one of
the actions. In the extreme case, a transition P (s′|s, a) may be zeroed out,
for instance if a new wall has been added between two states in the gridworld.
While the set of states S remains the same, the dynamics have changed, which is
why this extreme case is considered topological-domain transfer and is discussed
in Section 2.2.2.

For the goal-task or dynamics-task r-transfer problems, when reward-independent
basis functions such as PVFs are used, the basis functions can be transferred
directly without modification. In this case, the graph Laplacian L = D−

1
2 (D−

A)D−
1
2 of the source graph GSource and target graph GTarget are the same,

since only the reward function or model dynamics have changed, and their ad-
jacency matrix A and valency (or degree matrix) D is the same for both graphs.
Thus the k eigenvectors ΦSource = φi=1...k(L(GSource)) can be reused directly as
ΦTarget. For these types of task transfer, the states and actions of both domains
are the same, so the domain mapping is trivial. This transfer is referred to as

6

literal transfer in psychology literature, since intact information transfers to a
new task. We will examine these cases of goal-task and dynamics-task r-transfer
in our preliminary experiments in Section 4.2 & 4.3, respectively.

2.1.3 Action-Task Transfer

Action-task transfer refers to when the source MDPMSource = 〈S,ASource, PSource, RSource〉
and the target MDP MTarget = 〈S,ATarget, PTarget, RTarget〉 differ in their ac-
tion sets, which will also change P and R as a byproduct, since each are based
on a current state and action. This will occur when the action set is modi-
fied by adding, subtracting, or changing actions. For example, in the discrete
two-room gridworld domain, the source task may only include the directional
actions North, South, East, and West, but the target task may include a don’t
move action, or a pick-up action.

For action-task r-transfer, the change in the action set can cause a difference
in the adjacency matrix of the source ASource and target ATarget, commonly
constructed based on when an action connects two states. The domain mapping
of states is trivial, but an action mapping is also needed. Keeping with our
gridworld example, this may be as simple as mapping: {West → left, East →
right, North → up, South → down}, but may be more complicated should the
number of actions differ. This case will not be part of our focus.

2.2 Domain Transfer

Task transfer differs from all the variations of domain transfer because the state
space in the source and target always remains the same. When the state space
changes, an agent must reuse information learned in one environment to perform
some task in a new environment, and domain transfer is being performed. In
practice, task and domain transfer can be combined, but in our descriptions
we will consider them independently. We define four different types of domain
transfer below.

2.2.1 Scaling-Domain Transfer

Scaling-domain transfer refers to when the source MDPMSource = 〈SSource, A, PSource, RSource〉
and the target MDP MTarget = 〈STarget, A, PTarget, RTarget〉 differ in their
state set such that |SSource| 6= |STarget|, which will also change P and R as a
byproduct since each are based on a current state and action. In particular, the
state space in the target domain is just a scaled version of the source domain. A
classic RL example for scaling-domain transfer would be transferring informa-
tion from an 8× 8 gridworld (Figure 1(a)) to a 10× 10 (Figure 1(d)) or larger
gridworld. The aim is that if an agent has explored a small office with four walls
and a door, much of that situation can be transferred to a new larger lecture
hall. This specific transfer situation has been of particular interest to many
machine learning researchers who would like to be able to train more quickly
in the smaller source domain and transfer that information to the larger target

7

domain with a reduction in training time. A popular example of scaling-domain
transfer in RL is in the robot-soccer domain where an agent might transfer from
3 vs. 2 keep-away to 5 vs. 3 keep-away. Even transfer of information to a smaller
domain can lead to interesting results. For a real-world example consider the
olympic sport of volleyball. Indoor volleyball has 6 players on each team and
is the version that many of us were taught to play. However, beach volleyball
only has 2 players on each team. When trying to modify your play from indoor
volleyball to beach volleyball the transfer is not trivial, but clearly information
can be reused.

The scaling-domain r-transfer problem, focuses on the expansion of the con-
nectivity of the graph GSource, where the pattern of the adjacency graph in
the source ASource is retained in target ATarget, while the sizes of the ma-
trices differ. For this case, we can use various interpolation techniques to
extend the basis functions to the novel states. For PVFs specifically, we ex-
tend the k eigenfunctions ΦSource = φi=1...k(L(GSource)) to each new state
{ṡ ∈ Snew ⊂ STarget|ṡ ∈ STarget, ṡ /∈ SSource} to create ΦTarget. The domain
mapping in this case is not obvious. Results using a trivial mapping are shown
in Section 4.4. Future work will include further investigation of manifold align-
ment techniques that can be used to align and stretch the eigenfunctions of the
source to perform scaling-domain r-transfer.

2.2.2 Topological-Domain Transfer

Topological-domain transfer refers to when the shape of the state space in
the target domain is a modified version of the shape of the state space in
the source domain. This is similar to topological-task transfer, where the
MDP of the source MSource = 〈S,A,PSource, R〉 and the MDP of the tar-
get MTarget = 〈S,A,PTarget, R〉 differ only in their transition functions, but in
topological-domain transfer the state space changes. Topological-domain trans-
fer includes transferring information between differently shaped mazes when the
set of states itself is not changed, only the transitions between them. If the ba-
sic goal is to find a way to the end of the maze, then the fact that the mazes
are shaped differently should not mean the agent has to start learning every-
thing from scratch. A simpler example would be an obstacle gridworld where
the location, shape or size of the obstacle differs from source (Figure 1(a)) to
target (Figure 1(c)) . Only a portion of the situation is different and the rest is
unchanged. Most of the information learned in the source domain can be reused
directly, and methods can be developed to identify and modify the rest. Matrix
perturbation theory (Stewart & Sun, 1990), which has already been applied
to MDPs (Cao, 2003), is one area that may provide ideas for such methods.
A more extreme example of topological-domain transfer is transferring from a
10x10 one-room gridworld, to a 2x50 grid hallway. The set of states is the same,
they have just been rearranged, which greatly changes their transition proba-
bilities. Quantifiable limits for how modified a domain can be while still being
similar enough to avoid negative transfer is related to the open problem of when
to transfer.

8

For the topological-domain r-transfer problem, the connectivity of the graph
GSource is different from that of GTarget and the adjacency matrix of the target
ATarget is the adjacency matrix of the source ASource, perturbed by some matrix
E, i.e. ATarget = ASource + E. Thus, we can view the differences in the
corresponding Laplacians of the source and target, L(GSource) and L(GTarget)
as:

L(GSource) = D
− 1

2
Source(DSource −ASource)D−

1
2

Source

L(GTarget) = D
− 1

2
Target(DSource − [ASource + E])D−

1
2

Target

whereDSource is the valency matrix ofGSource andDTarget is the valency matrix
of GTarget.

Matrix perturbation theory may provide ways to quantify how the eigenval-
ues and eigenvectors ΦTarget = φi...k(L(GTarget)) change based on the pertur-
bation E (e.g., changes in the connectivity of the graph). The theory is that for
quantifiably small enough perturbations, a trivial domain mapping can be used
without modification with no detriment to learning. For larger perturbations,
the domain mapping can help determine which basis functions need modifica-
tion based on which mapped states are different. Beyond that, a measure of
when a state space is perturbed enough to cause negative transfer is necessary.

2.2.3 Hierarchical-Domain Transfer

Hierarchical-domain transfer refers to when the state space of the source domain
is a subset of the larger target domain, which is repeated one or more times. The
MDP of the source MSource = 〈SSource, A, PSource, RSource〉 and the MDP of
the target MTarget = 〈STarget, A, PTarget, RTarget〉 differ in their state set such
that SSource ⊂ STarget, which will also change P and R as a byproduct since
each are based on a current state and action. The section of the target that is
identical to the source can be reused directly, so that only the information from
unique sections of the target need to be learned from scratch. This transfer is
hierarchical, and can be extended to reusing information learned in a section of
the target domain to another part of that domain, if the agent can recognize that
the section is repeated elsewhere. How an agent would autonomously recognize
that a section of a domain is similar to something it has already learned is
another possible application of representation discovery. For a simple example
of hierarchical-domain transfer, consider a 10× 10 gridworld as the source with
the target domain a 20 × 20 4-room world (which is made up of four 10 × 10
rooms with connecting doors). More examples are displayed in Figure 1, where
Figure 1(a) is the source and Figures 1(e) & 1(f) are possible targets. For a more
real-world example, consider an agent whose target domain is a computer science
building. One subset of the building that is repeated often is professors’ offices.
If the agent initially learns information from an office as its source domain, then
much of this information can be reused for each office in the building and should
not need to be repeatedly learned.

9

In the hierarchical-domain r-transfer problem, the state space of the source is
a portion of the state space of the target. The graph GSource and the adjacency
matrix ASource of the source is a portion repeated one or more times within
the graph GTarget and adjacency matrix ATarget of the target. The domain
mapping from the source to the corresponding portion of the target domain is
trivial. Thus, the basis functions only need be calculated on the novel sections
of the target domain, saving time. Future work will include further investigation
into techniques that can be used for hierarchical-domain r-transfer.

2.2.4 Cross-Domain Transfer

Cross-domain transfer may be viewed as the most advanced and difficult of
the transfer situations, and therefore the most interesting and hardest to define.
Cross-domain transfer refers to the case when in addition to the state space, the
actual domain of the source and target is different. One example of cross-domain
transfer in sequential decision-making would be transferring information from
the mountain car domain to the inverted pendulum domain. A stereotypical
real-world example of cross-domain transfer might be transferring information
and strategies learned from playing a chess game to planning a course of action
for army infantry groups. A key factor in successful cross-domain transfer is fig-
uring out when two situations are similar, which is an open problem. It is likely
that if two domains are radically different, higher-level information transfer,
such as k-transfer, will be more useful than lower-level representation transfer.
Yet, a difference in representation may be the main part of the definition of
when two domains are different enough to be considered as cross-domain trans-
fer. In this case, a change of representation will need to be part of the transfer
process.

For example, preliminary work by (Taylor & Stone, 2007) shows that transfer
of information from the source can help to enhance the new representation
in the target domain, resulting in faster learning. The authors learn a new
representation by transferring value functions learned while training one basis to
learn a new basis for the same problem. These initial results could be viewed as
a simplified version of task transfer, where the state space remains the same, but
so does the reward function and the world dynamics. Essentially, all elements
of the MDP stay the same and only the representation is changed. While the
authors call this representation transfer, since the source and target problems
are the same in every way, we will simply refer to it as a change of representation.
This technique is promising in terms of transferring information between various
agents that would need to use different representations. Another application of
this change of representation would be in a cross-domain transfer situation.
Since the domains are different, a new representation might be necessary for
the target domain. Nonetheless, relevant information can still be transferred
from the target to the source domain.

10

3 Domain Mappings

Most transfer techniques require some kind of mapping between the states in
the source and target domain. This may be a mapping between a set of cor-
responding states, an action mapping, or a complete homomorphism, to name
a few. Many domain mappings that have appeared in the literature have been
hand-coded mappings provided a priori. In our proposed work we will focus
on domain mappings that are learned by the agent. Classic work on analogous
learning may also provide additional insights to domain mapping techniques.

4 R-Transfer Experiments in Discrete MDPs

These experiments perform representation transfer—the transfer of a basis. We
use proto-value functions as the basis, which are automatically constructed. For
evaluation purposes we compare experiments where transfer is not used to those
where it is to show that results do not decline. For r-transfer specifically, we
do not expect the success of experiments to increase, instead it is assumed that
time and space is saved since the basis functions are not recomputed. The goal
is to show that representations can be transferred without the learning results
being ill-effected.

4.1 Algorithmic Details

Algorithmic details for representation transfer learning in discrete MDPs are
given in Figure 2. This can be done using any basis. PVFs are a basis on the
function of the state space which are automatically constructed by the agent
based upon what it experiences during exploration. All of our experiments use
PVFs as the information transferred, the construction of which is given in Figure
3. We use the term pure when the PVFs are created from and used for learning
on the same (source) graph, while transfer will refer to the case in which the
PVFs are created on a (source) graph and transferred to be used for learning
on another (target) graph. LSPI (Lagoudakis & Parr, 2003) is used to learn
the control policy, where the underlying subspace for approximating the value
function is spanned by the learned PVFs. The reinforcement learning domain
that we will be experimenting on is the obstacle gridworld—in particular, a two-
room gridworld (see Figure 4). Sometimes we will use the gridworld with no
obstacles, also known as a one-room gridworld. The possible actions are North,
South, East, and West. If an agent tries to move into a wall, it will remain
in the same state. To estimate the value function, we collect samples using a
random walk of a maximum of 200 episodes, each with a maximum of 150 steps
and random start state. Non-goal states have zero reward; the goal has reward
of 100. This is a discrete domain with 144 states.

11

R-transfer Policy Iteration (JSource, JTarget,MSource,MTarget, ε, k):
// JSource: Number of initial random walk trials for source domain sampling
// JTarget: Number of initial random walk trials for target domain sampling
// MSource: Maximum length of each trial for the source domain sampling
// MTarget: Maximum length of each trial for target domain sampling
// ε: Convergence condition for policy iteration
// k: Number of basis functions to use

Sample Collection Phase (Source and Target)

1. Perform a random walk of JSource trials, each of maximum MSource steps
on the source domain, and store the samples in the dataset DSource.

2. Perform a random walk of JTarget trials, each of maximum MTarget steps
on the target domain, and store the samples in the dataset DTarget.

Representation Learning Phase (Source)

3. Create basis functions for the source domain. The basis function matrix
ΦSource, is a N × k matrix, where N is the number of states in the source
domain. The state action bases φ(s, a) where s, a ∈ DSource can be gener-
ated from rows of this matrix by duplicating the state bases φ(s)|A| times,
and setting all the elements of this vector to 0 except for the ones corre-
sponding to the chosen action. (See figure 3 for PVF construction.)

Representation Transfer Phase (Source to Target)

4. Transfer bases from source to target domain. Transfer ΦTarget=ΦSource
either directly or with modification. For each new state {ṡ ∈ Snew ⊂
DTarget|ṡ ∈ DTarget, ṡ /∈ DSource}, the row vector φ(ṡ, a) of ΦTarget is
approximated using a pre-selected interpolation method (not necessary for
task transfer).

Control Learning Phase (Target)

5. Using a standard parameter estimation method (e.g. Q-learning or LSPI),
find an ε-optimal policy π for the target domain that maximizes the action
value function Q̂π = Φwπ within the linear span of the bases ΦTarget using
the samples in DTarget.

6. Return Q̂π as the approximation to the optimal value function for the target
domain.

Figure 2: Pseudo-code of the r-transfer policy iteration (RTPI) algorithm which
incorporates the transferring of basis functions into representation policy itera-
tion.

12

Construction of proto-value functions in discrete RL domain:

1. Build an undirected weighted graph G from collected samples D where
edges are inserted between a pair of points xi and xj if there is an action
that causes a direct transition from xi to xj and all edges have weight 1.
Construct the normalized Laplacian L on graph G as in Equation ??.

2. Compute the k smoothest eigenvectors of L, and collect them as columns
of the basis function matrix Φ, a N × k matrix, where N is the number of
states in the graph.

Figure 3: PVFs as example of basis function construction to be used in Step 2
of the r-transfer algorithm given in Figure 2.

A

B

C

Figure 4: Goal-Task Transfer Example: 12x12 two-room gridworld with various
reward functions.

4.2 Goal-Task R-Transfer Results

These goal-task r-transfer experiments investigate transfer learning using PVFs,
where the state space and basis functions are constant, but the reward function
is varied. Since this method creates basis functions based on the actual topology
of the state space, it is a natural solution to this task r-transfer problem. The
domain mapping is trivial and the basis functions transfer directly.

In Table 1 we see that transferring the basis functions from one grid (Exp
1.a, with reward in the upper right-hand corner) to grids with different reward
functions (Exp 1.b, with reward in the lower left-hand corner and Exp 1.c, with
reward in the middle) does not affect performance. Thus we have shown that
proto-value functions are reward independent. We use a discount of 0.9, 130
PVFs, and allow 20 iterations. We collect samples using a random walk of a
maximum of 200 episodes, each with a maximum of 150 steps and random start
state. During testing, the learned policy is evaluated allowing a maximum of 50
steps, and averaged over 20 runs. The reward function assigns zero reward to
all states except for the goal which has reward of 10. The results in Figures 5
are for r-transfer experiments set up the same as above except for the following:

13

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35
Average number of steps

Number of basis functions

St
ep

s
Reward A (pure)
Reward B (pure)
Reward A transfered to Reward B

(a) Reward Experiment: Number of Steps to goal.

0 20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average probability of success

Number of basis functions

Pr
ob

ab
ilit

y

Reward A (pure)
Reward B (pure)
Reward A transfered to Reward B

(b) Reward Experiment: Percentage of trials that reach
the goal.

Figure 5: Goal-task r-transfer experiments on 12x12 two-room gridworld.

14

Table 1: Results comparison between experiments in which the eigenfunctions
for the current grid are learned and used (pure) versus when the learned eigen-
functions for Exp 1.A are used in grids with different goal location (transfer).

Exp 1.A Exp 1.B Exp 1.B Exp 1.C Exp 1.C
(pure) (pure) (transfer) (pure) (transfer)

Prob. of success 100% 100% 100% 100% 100%

Avg # of steps 14.8± 2.1 13.6± 2.1 14.9± 3.0 7.3± 1.2 7.4± 1.2

Min/Max steps [5, 27] [4, 22] [5, 24] [3, 13] [2, 11]

Avg discounted reward 26.2± 5.6 30.0± 7.1 29.2± 8.8 53.5± 6.5 53.1± 7.3

Iterations to converge 19 16 11 12 12

we use a discount of 0.8, and vary the number of eigenvectors to show how
many PVFs are needed for good accuracy. Transferring the basis functions
learned from a grid with reward in position A to a grid with the reward in
position B retains 100% probability of success. We see that the transferred-task
performance matches, but is no better than the best of the pure experiments.
Results are similar with other reward functions.

4.3 Dynamics-Task R-Transfer Results

These dynamics-task r-transfer experiments investigate transfer learning using
PVFs, where the state space and basis functions are constant, but the dynamics
of the environment is varied. The four directional actions in the gridworld can
be either deterministic or stochastic. If the dynamics are deterministic, an
action is successful 100% of the time. When the dynamics are nondeterministic,
an action is successful with probability β%, which we refer to as (β − 1)%-
stochastic, and a failed action results in the agent transitioning (uniformly at
random) according to one of the other three actions. In these dynamic-task
r-transfer experiments, we modify the percentage of stochasticity. Since this
method creates basis functions based on the actual topology of the state space,
it is a natural solution to this task r-transfer problem. The domain mapping is
trivial and the basis functions transfer directly. The results in Figures 6 are for
transferring the representation of two 12x12 two-room gridworlds with different
dynamics. These experiments use a discount of 0.8, and allow 20 iterations. We
collect samples using a random walk of a maximum of 200 episodes, each with
a maximum of 150 steps and random start state. During testing, the learned
policy is evaluated allowing a maximum of 50 steps, and averaged over 10 runs.
The reward function assigns −1 reward to all states except for the goal (reward
position A) which has reward of 0. Transferring the basis functions learned
from a deterministic grid to a 20%-stochastic grid retains 100% probability of
success when using a sufficient number of PVFs, and vice versa. We see that
the transferred-task performance matches, but is no better than the best of the
pure experiments.

15

0 50 100 150
10

12

14

16

18

20

22

24

26

28

30

Average number of steps

Number of basis functions

S
te

ps
 to

 g
oa

l

deterministic (pure)
20%−stochastic (pure)
deterministic (transfer)
20%−stochastic (transfer)

(a) Dynamics Experiment: Number of Steps to goal.

0 50 100 150
0.4

0.5

0.6

0.7

0.8

0.9

1

Average probability of success

Number of basis functions

P
ro

ba
bi

lit
y

deterministic (pure)
20%−stochastic (pure)
deterministic (transfer)
20%−stochastic (transfer)

(b) Dynamics Experiment: Percentage of trials that reach
the goal.

Figure 6: Dynamics-task r-transfer experiments on 12x12 two-room gridworld.

16

4.4 Scaling-Domain R-Transfer Results

These scaling-domain r-transfer experiments investigate r-transfer using PVFs,
where the size of the state space changes and the the basis functions must
be modified (interpolated) to span a larger state space. For simplicity, the
reward function and state dynamics will remain constant. This is an important
type of transfer learning since the dynamics of a one-room gridworld with no
obstacles are the same regardless of scale; the basic topology is a square, the
actions are North, East, South, West, and the agent cannot walk through the
walls on the border. An agent should be able to transfer the representation it
has learned from one gridworld to another. We will focus on the harder case:
transferring from a smaller domain to a larger domain. In these experiments,
the domain mapping is as it would be for hierarchical-domain transfer—the
smaller source graph is trivially mapped by aligning the first state (lower, left
corner) in both domains. The basis functions for these corresponding states
transfer directly and interpolation is used to estimate the PVFs for the extra
states in the target domain. In these experiments, the Nyström extension is
used to transfer the PVFs from a smaller one-room gridworld to a larger one-
room gridworld. This method interpolates PVFs for new states in the larger
domain by basically averaging the nearby known PVFs taken from the smaller
domain. Even though when considering probability of success, extending the
basis functions to larger state spaces using the Nyström method is working
well (100% for larger magnifications), the learned value functions show that the
interpolation may not be correct (see Figure 7). The transfer works well as long
as the reward is not in the area being extended. It is likely that the Nyström’s
method of averaging is too simple for this problem and another method may be
a better fit.

References

Cao, X. (2003). From perturbation analysis to markov decision processes and
reinforcement learning. Discrete Event Dynamic Systems: Theory and Appli-
cations (pp. 9–39). The Netherlands: Kluwer Academic Publishers.

Ferguson, K., & Mahadevan, S. (2006). Proto-transfer learning in markov deci-
sion processes using spectral methods. ICML Workshop on Structural Knowl-
edge Transfer for Machine Learning.

Haskell, R. E. (2000). Transfer of learning: Cognition, instruction, and reason-
ing. Academic Press.

Konidaris, G. D. (2006). A framework for transfer in reinforcement learning.
Proceedings of the ICML-06 Workshop on Structural Knowledge Transfer for
Machine Learning.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal
of Machine Learning Research, 4, 1107–1149.

17

(a) Learned value function when PVFs are transferred
directly from a 10x10 one-room gridworld to a 12x12 one-
room gridworld.

(b) Learned value function when PVFs are transferred
directly from a 10x10 one-room gridworld to a 20x20 one-
room gridworld.

Figure 7: Scaling-Domain R-Transfer Experiments: Learned value functions
where r-transfer uses the Nyström extension to interpolate PVFs. Reward po-
sition A.

18

Stewart, G. W., & Sun, J. (1990). Matrix perturbation theory. Academic Press.

Taylor, M. E., & Stone, P. (2007). Towards reinforcement learning represen-
tation transfer. The Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems (pp. 683–685).

Veino, C., & Novak, M. (2003). Tool use in juvenile rhesus macaques (macaca
mulatta) (Technical Report). University of Massachusetts, Department of
Neurocience.

19

