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Abstract—Internet-scale distributed systems such as content (CDN, for short) that delivers web content, web and IP-
delivery networks (CDNs) operate hundreds of thousands of pased applications, downloads, and streaming media to end-
servers deployed in thousands of data center locations arod users (i.e.client§ around the world [8]. A large CDN, such
the globe. Since the energy costs of operating such a large IT . . . . -
infrastructure are a significant fraction of the total operating as that of a commercial provider like Ak"’_‘ma" consists of
costs, we argue for redesigning CDNs to incorporate energy hundreds of thousands of servers located in over a thousand
optimizations as a first-order principle. We propose technjues to data centers around the world and account for a significant
turn off CDN servers during periods of low load while seekingto  fraction of the world’s enterprise-quality web and streagni
balance three key design goals: maximize energy reductiomin- e g traffic today [14]. The servers of a CDN are deployed in

imize the impact on client-perceived service availability(SLAS), lust h h clust ists of in a particular
and limit the frequency of on-off server transitions to reduce clusterswhere each cluster ConsISts OF Servers in a particu

wear-and-tear and its impact on hardware reliability. We propose data center in a specific geographic location. The cIusIrHs_ a
an optimal offline algorithm and an online algorithm to extract typically widely deployed on the “edges” of the Internet in

energy savings both at the level of local load balancing wiih a  most major geographies and ISPs around the world so as to
data center and global load balancing across data centers. &V be proximal to clients. Clusters can vary in size from tens

evaluate our algorithms using real production workload traces . . .
from a large commercial CDN. Our results show that it is of servers in a small Tier-3 ISP to thousands of servers in

possible to reduce the energy consumption of a CDN by more & large Tier-1 ISP in a major metro area. A CDN's servers
than 51% while ensuring a high level of availability that meets cooperatively deliver content and applications to opteniz

customer SLA requirements and incurring an average of one on  the availability and performanceexperienced by the clients.
off transition per server per day. Further, we show that keepng Specifically, each client request is routed by the CDId

even 10% of the servers as hot spares helps absorb load spikesb | . tent “soptimal” that th
due to global flash crowds with little impact on availability SLAs. alancing systemo an “optimal” server that can serve the

Finally, we show that redistributing load across proximal data content with high availability and performance. Contentl an
centers can enhance service availability significantly, tthas only —applications can typically be replicated on demand to any

a modest impact on energy savings. server of the CDN. The load balancing system ensures high
availability by routing each client request to an appradgria
server that is botlive and not overloadedFurther, the load
Large Internet-scale distributed systems deploy hundsédsbalancing system ensures good performance by routing each
thousands of servers in thousands of data centers arounddient request to a cluster that goximal to that client. For
world. Such systems currently provide the core distributédstance, a client from a given metro area would be routed to a
infrastructure for many popular Internet applicationg tive server cluster in the same metro area or perhaps even the same
business, e-commerce, entertainment, news, and social het-mile network. The proximity (in a network sense) of the
working. The energy cost of operating an Internet-scaltesys client and the server ensures a communication path with low
is already a significant fraction of the total cost of own@rshlatency and loss. A comprehensive discussion of the rdgona
(TCO) [4]. The environmental implications are equally proand system architecture of CDNSs is available in [14].
found. A large distributed platform with 100,000 serverdl wiProblem Description. In this paper, we focus on reducing
expend roughly 190,000 MWH per year, enough energy the energy consumption of large Internet-scale distribute
sustain more than 10,000 households. In 2005, the total dayatems, specifically CDNs. Energy reduction in CDNs is a
center power consumption was already 1% of the total USulti-faceted problem requiring advances in the power esag
power consumption while causing as much emissions as a maffectiveness (PUE) of data centers, improvements in serve
sized nation such as Argentina. Further, with the deploymerardware to make them more “energy proportional”’ [4], as
of new services and the rapid growth of the Internet, theg@nermwell as advances in the architecture of CDN itself. Our focus
consumption of data centers is expected to grow at a rapsdon the CDN architecture, and more specifically, on its load
pace of more than5% per year in the foreseeable futurebalancing system. Recent work in server energy management
[11]. These factors necessitate a complete rethinking ef thas suggested the technique of utilizing deep-sleep power-
fundamental architecture of Internet-scale systems tdec saving modes or even completely turning off servers during
energy optimization as a first-order principle. periods of low load, thereby saving the energy expended by
An important Internet-scale distributed system to havdle servers [7], [13]. We explore the potential applicapil
evolved in the past decade is the content delivery netwook this technique in the CDN context where it is important to
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understand the interplay of the three objectives below. While we focus on CDNs, our work also applies to other
CDN-like distributed systems that replicate services initind

« Maximize energy reduction.ldle servers often CONSUME - ross server clusters and employ some form of load balanc-
more than 50% of the power of a fully-loaded one [4]. This bloy

rovides the opportunity to save enerav by “rebalancin ing to dynamically route requests to servers. On a different
b PP y gy by %Iimension, it is also important to note that our focus is gper

Sjlfr;inrg;e(tjr;ree?el?r?;irg?rleg rsegrl\ﬁsr; t(;?ffflc onto fewer server ausagereduction rat.her than energ;ost reduction. Note thgt_
. ' . energy cost reduction can be achieved by dynamically shifti
o Satisfy customer SLASContent providers who are the . . . .
) . . .~ .. the server load to locations with lower energy prices withou
CDN's customers would like their content and apphcat'onr?ecessarily decreasing the total energy usage [15]
to be served with a high level of availability and performanc '
to their clients. Availability can be measured as the faacti Research Contributions. Our work is the first to propose
of client requests that are successfully served. A typicahergy-aware mechanisms for load balancing in CDNs with
SLA would require at least “four nines” otnd-to-end @ guantification of the key practical tradeoffs between gyer
availability (i.e., 99.99%). To achieve this end-to-endASL reduction, hardware wear-and-tear due to server transitio
goal, we estimate that any acceptable technique for pog/erif‘and service availability that impacts customer SLAs. Thasllo
off servers should cause no more than a los®).afbasis balancing system of a CDN operates at two levels [14]. The
points of availability in the data center, leading us to ¢rg9lobal load balancingcomponent determines a good cluster
99.999% serveravailability with our techniques. In addition Of the CDN for each request, while tliecal load balancing
to the availability SLA, the content providers also requir€omponent chooses the right server for the request witkin th
good performance. For instance, clients downloading htgssigned cluster. We design mechanisms for energy savings,
content should experience small download times and clief@th from the local and global load-balancing standpoint.
watching media should receive high quality streams witthhig-urther, we evaluate our mechanisms using real production
bandwidth and few freezes. Since turning off servers to say@rkload traces collected over 25 days from 22 geograpical
energy reduces the live server capacity used for serving @hstributed clusters across the US from a large commercial
incoming request load, it is important that any energy savir-DN. Our specific key contributions are as follows.

technlq_u_e minimizes the impact of the decreased capaC|ty.0r|1n the offline context when the complete load sequence for a
availability and performance.

« Minimize server transitionsStudies have shown that fre- cluster is known ahead of time, we derive optimal algorithms

qguently turning an electronic device on and off can impac%hat minimize energy usage by varying the number of live

its overall lifetime and reliability. Consequently, CDN -op SCrvers requl_red o serve the incoming Ioad.. .
o ONn production CDN workloads, our offline algorithm
erators are often concerned about the wear and tear cause

. . —_“achieves a significant system-wide energy reduction of
by excessive on-off server transitions that could potéptia . o . :
e o 59.5%. Further, even if the average transitions is restricted to
decrease the lifetime of the servers. Additionally, when

server is turned off, its state has to be migrated or regitat ab;?%%%glégnsglggh?g: derivggl?;g?;yé ?nnaiir::}lz?r)]/ gicitrjctmn
to a different live server. Mechanisms for replicating @it oo . ° 9y

footprint and migrating long-standing TCP connectionsex reduction can be achieved with minimal server wear-and-tea

) : We propose a load balancing algorithm callHibernate
in the CDNs today [14] as well as in other types of Intemef'that works in an online fashion that makes decisions based

scale services [2], [7]. However, a small degree of client- :
o ) - on past and current load but not future load, much like a real-
visible performance degradation due to server transitions

S . ) ife load balancing systenmtlibernate achieves an energy
inevitable. Consequently an energy saving technique shou : . o . .

. - ; reduction of56%, i.e., within 94% of the offline optimal.
limit on-off server transitions in order to reduce wear and

tear and the impact on client-visible performance « By holding an extral0% of the servers as live spares,
P P ’ Hibernate achieves the sweet spot with respect to all three

The three objectives above are often in conflict. For insanc metrics. Specifically, the algorithm achieves a systemewid
turning off too many servers to maximize energy reductiorenergy reduction 051% and a service availability of at least
can decrease the available live capacity of the CDN. Since five nine’s 09.999%), while incurring an average of at most
takes time to turn on a server and bring it back into servicel transition per server per day. The modest decrease in energy
an unexpected spike in the load can lead to dropped requeseduction due to the extra pool of live servers is well worth
and SLA violations. Likewise, turning servers on and offthe enhanced service availability for the CDN.

frequently in response to load variations could enhanceggnes In a global flash crowd scenario when the load spikes
reduction but incur too many server transitions. Our goabis suddenly across all clusters of the CDNibernate is still
design energy-aware techniques for CDNs that incorpothte aable to provide five nine’s of service availability and maint
three objectives and to understand how much energy reducti@ustomer SLAs as long as the rate at which load increases
is realistically achievable in a CDN. Since CDNs are yet to bés commensurate with the percentage of server capacity that
aggressively optimized for energy usage today, our worlekop the algorithm keeps as live spares.

to guide the future architectural evolution that must itevly « Energy-aware global load balancing can redistribute traffi
incorporate energy as a primary design objective. across clusters but had only a limited impact on energy



reduction. Since load can only be redistributed betweemodel [4] where the power (in Watts) consumed by a server
proximal clusters for reasons of client performance, theserving load\ is

clusters had load patterns that are similar enough to natlent A

a large energy benefit from load redistribution. However, a power(A) = Pigie + (Bpeak — Pidie) A, )

10% to 25% reduction in server transitions can be achieveghere the load) < A\ < 1 is the ratio of the actual load to
by redistributing load across proximal clusters. But, p@h he peak loadP,4. is the power consumed by an idle server,
the key benefit of global load balancing is significantiyng p,,,, is the power consumed by the server under peak
increased service availability. In our simulations, gldbad |oad. We use typical values 62 Watts ands3 Watts for P,
balancing enhanced service availability to almd&b%. In - andp,,,. respectively. Though we use the linear energy model
situations where an unpredictable increase in load WoWl@ove in all our simulations, our algorithmic results hatd f
have exceeded the live capacity of a cluster causing servg}cgy power function that is convex.
disruption, our global load balancing spread the load msge | addition to the energy consumed by live servers that are
to other clusters with available live capacity. serving traffic, we also capture the energy consumed by iserve
In summary, our results show that significant energy reductithat are in transition, i.e., either being turned off or tdirma.
is possible in CDNs if these systems are rearchitected wervers in transition cannot serve load but consume energy;
energy awareness as a first-order principle. Further, ouk wahis energy consumption is due to a number of steps that the
also allays the two primary fears in the mind of CDN operatoSDN must perform during shutdown or startup. When a server
regarding turning off servers for energy savings: the @biliis turned off, the load balancing system first stops sendiyg a
to maintain service availability, especially in the presen new traffic to the server. Further, the CDN must wait until
of a flash crowd, and the impact of server transitions axisting traffic either dies down or is migrated off the serve
the hardware lifetimes and ultimately the capital expands Additionally, the control responsibilities of the servepuwid
associated with operating the CDN. need to be migrated out by performing leader election and
Roadmap. First, we review background information (Secother relevant processes. Once the server has been colyplete
tion 1) on load balancing in CDNs. Next, we study local loadsolated from the rest of the CDN, it can be powered down.
balancing (Section IIl) in an offline setting with the assumpwn/hen a server is turned on, these same steps are executed
tion that the entire traffic load pattern is known in advanda the reverse. In both cases, a server transition takesageve
(Section I1l-A), and then extend it to the more realisticioal minutes and can be done automatically by the CDN software.
situation where future traffic is unknown (Section Ill-Bh@h, To capture the energy spent during a transition, we model
we explore the gains to be had by moving traffic between clug-fixed amount of energy usage afJoules for each server
ters via global load balancing (Section IV). Finally, wedliss  transition, wherex typically corresponds t88 kilo Joules.
related work (Section V) and offer conclusions (Section. VI)Workload Model. The workload entering the load balancing
system is modeled as a discrete sequekgel < t < n,
~where)\; is the average load in th&" time slot. We always
CDN Model. Our work assumes a global content delivergypress load in the normalized unit of actual load divided by
network (CDN) that comprises a very large number of servefgak server capacifyFurther, we assume that each time slot
that are grouped into thousands of clusters. Each clusterig$ seconds long and is large enough for the decisions made
deployed in a single data center and its size can vary frow the load balancing algorithm to take effect. Specificatly
tens to many thousands of servers. We assume that incomipg experiments, we choose a typidavalue of 300 seconds.
requests are forwarded to a particular server in a pamcul@lgorithmic Model for Load Balancing. While a real-life
cluster by the CDN'’s load balancing algorithm. Load balagci |gz9 balancing system is complex [14], we model only those
in a CDN is performed _at two levels: gIob_aI load balancingaspectS of such a system that are critical to energy usage.
where a user request is sent to an “optimum” cluster, aggy simplicity, our load balancing algorithms redistriétthe
local load balancing, where a user request is assignedngoming load rather than explicitly route incoming regses
specific server within the chosen cluster. Load balancimg cgom clients to servers. The major determinant of energgesa
be implemented using many mechanisms such as IP Anycasthe number of servers that need to remain live (i.e., tirne
load balancing switches, or most commonly, the DNS lookugh) at each time slot to effectively serve the incoming load.
mechanism [14]. We do not assume any particular mechanisphe exact manner in which load is distributed to those live
but we do assume that those mechanisms allow load 0 f&vers is less important from an energy standpoint. In fact
arbitrarily re-divided and re-distributed among servéssth  ne jinear energy model described in Equation 1, the precise
within a cluster (local) and across clusters (global). Tisis manner in which load is distributed to the live servers makes

a good assumption for typical web workloads that form g gifference to energy consumptidrin reality, the precise
significant portion of a CDN’s traffic.

Energy Model. Since our goal is to minimize energy usage, For simplicity, we assume that the servers in the CDN are lyamous
we model how servers consume energy as a function v& identical capacities, though our algorithms and rssghn be easily
. . extended to the heterogenous case.
load. Based on our own testing of typlcal off-the-shelf serv 2In the more general model where the power function is corsiisx;ibuting

configurations used by CDNs, we use the standard linasg load evenly among the live servers minimizes energywopson.

Il. BACKGROUND



manner in which the load is distributed to the live serverssdo 5
matter greatly from the perspective of managing footpridt a w0
other server state. However, we view this a complementary

problem to our own and methods exist in the research litezatu 8o
[2], [7] to tackle some of these issues. )
The local load balancing algorithm of a CDN balances load .
between live servers of a given cluster. In each time interva s
t, the algorithm distributes the load, that is incoming to % 5 P

that cluster. Letn; denote the number of live servers in the Time (days)

cluster. Servers are typically not loaded to capacity. Bttier Fig. 1: Average load per server measured every 5 minutes
atarget load threshold\, 0 < A < 1, is set such that the load across22 Akamai clusters in the US ove5 days. Note load
balancing algorithm attempts to keep the load on each servéfiations due to day, night, weekday, weekend, and hadiday
of the CDN to no more than the fractioh of its capacity. (such as low load on day n8, which was Christmas).
Mathematically, ifl; ; is the load assigned to live serveat
time ¢, then Zl my lis = N andl;; < A, forl < i <
m;. In addition to serving the current load, the load balancirgjusters captured in our traces are distributed widely iwithe
algorithm also decides how many additional servers need4& and had 15439 servers in total, i.e., a nontrivial fractio
be turned on or off. The changes in the live server count magdeAkamai’'s US deployments. Our load traces account for a
in time slott is reflected inm,; in the next time slot. peak traffic of 800K requests/second and an aggregate of 950
The global load balancing algorithm works in an analomillion requests delivered to clients. The traces condisd o
gous fashion and distributes the global incoming load to tis@apshot of total load served by each cluster collectedyever
various server clusters. Specifically, the global incomoagd 5-minute interval from Dec 19th 2008 to January 12th 2009,
is partitioned between the server clusters such that ndeclusa time period that includes the busy holiday shopping season
receives more than a fractionof its capacity. Further, clients for e-commerce traffic (Figure 1).
are mapped to proximal clusters to ensure good performance.
Online versus Offline. The load balancing algorithms work in [11. L OCAL LOAD BALANCING
an online fashion where decisions are made at titngithout
any knowledge of the future load,/, ¢’ > ¢. However, our
work also considers the offline scenario where the load lala
ing algorithm knows the entire load sequengel <t < n

We explore energy-aware algorithms for local load balanc-
ing in a CDN. First, we derive optimal offline algorithms
That provably provide the maximum energy reduction that
is_theoretically possible (Section IlI-A). Then, we derive
Oﬁllsacncal online algorithms and evaluate them on reallstid
traces from a CDN (Section I1I-B), paying particular atient
to how well they do in comparison to the theoretical bassline
provided by the offline algorithms .

The offline algorithms provide the theoretically best pblesi
scenario by making future traffic completely predictablieus,
our provably-optimal offline algorithms provide a key basel
to which realistic online algorithms can be compared.
Metr!c Definitions. We are intergsted in.the. i_nterplgy of threeA_ An Optimal Offline Algorithm

metrics: energy reduction, service availability as it tetato

customer SLA’s, and server transitions. The energy redncti Given the entire input load sequence, 1 < ¢ < n, for
achieved by an algorithm that can turn servers on or off equal cluster of M/ servers and a load thresholtd, an offline

the percentage energy saved in comparison to a baseline wi@gorithm produces a sequenge, 1 < ¢ < n, wherem; is

all servers remain turned on for the entire period. Sincetmdge number of servers that need to be live at time sldtote
CDNs today are not aggressively optimized for energy, tfigat given the output schedule, it is straightforward toatee
baseline is representative of the actual energy consumpt® on-off schedule for the servers in the cluster to achieee t
of such systems. A server cluster that receives more loAdmber of live servers required at each time step. The global
than the total capacity of itfive servers cannot serve thatoad balancing algorithm ensures that the input load sezpien
excess load which must be dropped. The client requests thap be feasibly served by the cluster if all servers are live,
correspond to the dropped load experience a denial of serviece., A+ < AM for all 1 < ¢ < n. In turn, an energy-aware
The service availability over a time period is computed dgcal load balancing algorithm orchestrates the numbeivef |
100 * (total served load)/(total input load). Finally, the Serversm, such that load\; can be served byn, servers
server transitions are expressed either as total amoumt owéthout exceeding the target load threshaldi.e., A, < Amy,

the time period, or as an average amount expressed as ffedll 1 <¢ < n. Assuming that load\; is evenly distributed
number of transitions per server per day. among them, live servers, the energy expended in the cluster
Empirical Data from the Akamai Network. To validate our for serving the input load sequence equals

algorithms and to quantify their benefits in a realistic mamn i—n i—n

we used extensive_load traces collected cﬁ{edays from a 5th power (A /my) + O‘Z Imy — my_1),

large set of Akamai clusters (data centers) in the US. Zhe — P
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where the first term is the energy consumption of the live

servers and the second is the total energy for server tiamsit
We develop an optimal offline local load balancing algo-

rithm OPT using dynamic programming. Algorithr@PT

produces a schedulei;,1 < t < n, that can serve the

input load with the smallest energy usage. We construct a

two-dimensional tableE(t,m) that denotes the minimum

energy required to serve the load sequengels,---,\ ,

while ending withm live servers at time. We assume that ° ® 9 energy reduction

the a'go“th'_m begins at “”_‘e zero with all’ servers in live Fig. 2: Optimal Offline Energy Reduction. The median cluster

state. That isE(0,m) = 0, if m = M, and E(0,m) = +o0, . .

if m # M. We inductively compute all the entries in the tablémhleveOI 0% reduction.

using the following formula:
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E(t,m) = oggml}lglM{E(t —1,m") 4+ dm - power(\y/m) 5 jz

+ a-lm=m|}, if A < Am @) 2w

= 400, otherwise éjz

Specifically, if it is feasible to serve the current logdwith m ;‘: :z
servers, we extend the optimal solution for the firstl steps 10 e
to thet'" step using Equation 2. The first term in Equation 2 T T TR

5 35
. . . . A t iti d
is the cost of a previously computed optimal solution for the verage transitions (per server per day)

first t — 1 steps, the second term denotes the energy consunkégl 3: Energy reduction attainable with bounded server-tra
by the live servers in time slat, and the third term denotessitions. About87% of the optimal reduction can be achieved
the energy consumed in transitioning servers at timetslgt with just 1 transition per server per day.

it is infeasible to serve the current load with servers, we set

the optimal costF(t,m) to infinity. Once the table is filled,

the optimal solution corresponds to entfy(n, m) such that For each0 < k < K, the optimal energy attainable
E(n,m) = ming<s<nr E(n,s). The theorem below follows. with at mostk transitions is simplyE(n,m, k) such that

Theorem 1. Algorithm OPT produces an optimal load bal- E(n,m, k) = mino<,<nr E(n, s, k). The theorem follows.

ancing solution with the smallest energy consumption iretinTheorem 2. Algorithm OPT (k) produces the optimal solu-
O(nM?) and spaceD(nM ), wheren is number of time slots tion with the least energy and no more thantotal server
and M is the number of servers in the cluster. transitions.OPT (k) can be computed for all < k£ < K in

. . . . ti M?K) and K).
Since we are also interested in knowing how much energlglneO(n ) and spaced(nm)

reduction is possible if we are only allowed a small bounddgimpirical Results. We ran algorithmOPT with a typical
number of server transitions, we develop algorithT(k) value of the load thresholdA( = 75%) on our CDN load
that minimizes energy while maintaining the total number dfaces that encompag® geographically distributed clusters
server transitions to be at mast To this end, we use a three-of a large CDN over a span df5 days. Figure 2 shows
dimensional table(t,m, k), 0 <t <n, 0 <m < M, and the percentage of clusters that achieved at ledstenergy

0 < k < K. (For simplicity, we assume that all entries ofeduction, for each valué < z < 100. For each of the 22
E(t,m, k) with arguments outside the allowable range equelusters,OPT achieved energy reduction in the rarfg® to
+00.) E(t,m, k) is the optimum energy required to serve th87%. Further, viewing all the clusters of the CDN as a single
input load sequenca;, o, - - - , A, while ending withm live system, the system-wide energy reduction by usiigT in
servers at time: and incurring no more thaw transitions all the clusters was9.5%. This implies that significant gains
in total. Since we start with all servers live at time zerare possible in the offline scenario by optimally orchesttat
EO,m,k) = 0, forall 0 < k < K, providedm = M. the number of live servers in each cluster.

And, E(0,m, k) = o0, forall 0 < k < K, if m # M. The Next, we study how much energy reduction is possible

table is filled inductively using the following formula: if the server transitions are bounded and are required to be
infrequent. Figure 3 shows the optimal system-wide energy
E(t,m,k) = min  {E(t—1,m' k—|m—m'])  reduction for each value of the average transitions that is

—k<m’< k . . .
mohsmsmE allowable. These numbers were obtained by running algarith

+ o OPT(k) for all clusters for a range of values &f As more
+ a-m—m|}, if A < Am (3) transitions are allowed, more energy reduction is possible
= 400, otherwise since there is a greater opportunity to turn servers on and

dm - power(A¢/m)



off in response to load variations. As the transition boundnsufficient to serve the input load. In this case, a load amou
become large the energy reduction asymptotically readies tof A\, — m; is dropped and the rest of the load is served.
maximum reduction possible for the unbounded cas®adi%. « The number of live servers deemed necessary to serve load
The key observation however is that even with a small numbek; is [A\:/A], where A is the target load threshold of the
of transitions, say 1 transition per server per day, one ca@DN. If m; > [)\//A], then the live servers numbered
achieve at leas?8.66% system-wide energy reduction in the [\;/A] 4 1 to m, are marked as “spare”.
offline setting. In other words, with an average of just 4 The spares are managed according to two rules:
transition per server per day one can obta#6% of the , Spare Capacity Rule: Target at leasfrxM ] servers to be
energy reduction benefit possible with unbounded tramstio  kept as spare, whefe< x < 1. Specifically, if the number
Besides system-wide energy reduction, Figure 3 also shtevst  of sparesm, — [A:/A] is smaller than[xM1, then turn
variation in the energy reduction across clusters by pigtthe on them, — [\;/A] — [kM] servers. (The servers turned
first and third quartile values for each transition bound. on in the current time step t will be live and available to
Note that algorithmsOPT and OPT (k) never drop any serve load only in the next time stepr 1.)
load and achieve an SLA dfd0% availability, since they are . Hibernate Rule: If a server was considered spare in each
offline algorithms with complete knowledge of the entiredoa  of the lastr time slots it is a candidate for being turned off,
sequence. After computing the entire sequence of live sgrve  similar to how a laptop hibernates after a specified period

my, 1 < t < n, an offline algorithm ensures that, live of idleness. However, the hibernate rule is applied only to

servers are available at timeby transitioning|m; — m;_| servers in excess of the spare capacity threshold. Specifi-

servers at time — 1. cally, if the number of sparesi; — [A\;/A] is more than
[xM], then examine servers numbeifed/A]+[xM]+1

B. Online Algorithms to m, and turn off any server that was marked as spare in

In contrast to offline algorithms, an online algorithm knows all of the lastr time steps.

only the past and current load but has no knowledge of thdPirical Results. We ran algorithmHibernate on typical
future load. This accurately models any real-life load baiag CDN load traces collected over 25 days and across 22 clusters

system. At timet, an online algorithm does not know load©r Multiple values ofr and two values of: with the results
Ai+1 and must estimate the number of servers to transitionSgmmarized in Figure 4. Note that as the time threshold
the current time step so that they are available to serve th#1Creases, energy reduction and transitions generaliiedee
load att + 1. Achieving a balance between the three metri@1d availability generally increases. The reason is that as
of energy reduction, transitions, and service availabilitat Increases, live servers that are spare are turned off after a
impacts customer SLAs is challenging. If the algorithm keep®nder time period, resulting in fewer transitions. Howeve

a larger number of live servers to serve future load th&f1C€ more servers are leftin an live state, the energy tenilic

is necessary, then the energy consumption is increased iSsmaller, but availability is larger as the addmon_alehv
contrast, if the algorithm keeps too few live servers, theme Servers help absorb more of the unexpected load spikes. The
load might have to be dropped leading to decreased avitjabifradeoff between requiring no spare capacity £ 0) and

and potential customer SLA violations. Our key contribatio"®duiring al0% spare capacity< = 0.1) is also particularly

in this section is algorithriilibernate that achieves the “sweet INteresting. If we fix a typical value af = 2 hours Hibernate

spot” with respect to all three metrics, both for typical CDNProvides an acceptable number of transitioas1( transition
traffic and flash crowds. Whilélibernate only uses the past PE" Server per day) with or without spare capacity. Reqgirin

and current load to make decisions, it is also possible to U870 spare capacity decreases the energy reduction by soughl
workload forecasting techniques to predict the future wazé  10%, Since a pool of spare servers must be kept live at alstime
and use these predictions to enhance the efficatiilofrnate. (Figure 4a). However, the modest decrease in energy rexucti
The design of such a predictive Hibernate is future work. May Well be worth it for most CDNS, since availability is much

Algorithm Hibernate takes two parameters as input, a spafd9her (five nine’s or more) with 10% spare capacity than with
capacity threshold) < x < 1 and a time threshold > 0. NO SPare capacity requirement (Figure 4c).

A key aspect of the algorithm is that it manages a pool yangling typical workload fluctuations key decision for

of live servers that are considered “spare” in the sense thalcpN operator is the target utilizatioh that the system
they are in excess of what is necessary to serve the currgibyd be run at in order to handle typical workload variagio
traffic. Intuitively, spare servers are kept as a buffer Wphetpg yajue ofA is typically kept “sufficiently” smaller tha to
absorb unpredictable traffic surges in the future. For sEpl  rovide some capacity headroom within each server to atcoun
assume that the servers in the cluster are numbered frim o the inability to accurately estimate small load vadas.

M. Further, assume that the first;, servers are live at time |, Figure 5, we quantify the tradeoffs associated witlas it

t, while the rest of the servers are turned off. At each tne pertains to our three metrics. Running the CDN “hotter” by

the algorithm does the following. increasing\ would increase the system capacity and the server

« Serve the current load, using the current set afi, live utilization. Note that as\ increases, the effective capacity
servers. If\; > my, the live capacity of the cluster isof each live server increases, resulting in fewer live sarve
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Fig. 4: The three key metrics for algorithHiibernate on typical CDN load traces.
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Fig. 5: Variation of the three metrics with the target loadetiholdA

being needed to serve the load. This results in increasedyeneny load balancing algorithm in a global flash crowd situatio
reduction (Figure 5a) as well as a smaller number of traorssti and since our actual CDN traces lacked a true global flash
(Figure 5b). However, increasinyy also decreases availabilitycrowd event, we modified the traces to simulate one. To pick
(Figure 5c¢) and potentially increases customer SLA violai a worst-case scenario, we chose a low traffic period in the
The reason is that by utilizing the live servers closer tarthenight when servers are likely to be turned off and introduced
capacity decreases the headroom available to buffer teanypora large spike measuring0% percent of the capacity of the
load spikes resulting in load being dropped. Note also theluster and lasting for & hour period (Figure 6a.) Further,
requiring 10% spares<(= 0.1) allows the CDN operator to to simulate a global event we introduce the same spike at
run the system hotter with a largdrvalue than if there were the same time in all the 22 clusters distributed across the
no sparesK = 0) for the same availability SLA requirementsUS. A critical factor in a flash crowd is thepike ratep at
Thus, there is a relationship between the target loadZatibn  which the load increases (or, decreases) in one time irterva
A and the spares:, since both paramaters permit soméRecall that the time interval models the “reaction time'ttoé
capacity “headroom” to handle workload variations. Thedrot load balancing system which in our case is 300 seconds). We
the system (higheks), the more should be the spare thresholén algorithmHibernate for different settings of the spike
k to achieve the same SLA. rate p and the spare capacity thresholdwith the results
) ) summarized in Figure 6. As increases, more servers need to

Handling Large Flash CrowdsA particular worry of CDN ' pe held live and the energy reduction decreases in a roughly
operators from the standpoint of powering off servers is th@ear fashion in all the simulated scenarios (Figure 6lie T
global f!ash crowd scenario where there is a large unexpec%rage transitions also stayed within the accepted rafige o
load spike across most clusters of the CDN. Note that a 10ggks than 1 transition per server per day in all cases. Haweve
flash crowd scenario that only affects some of the clustess, s; girect relationship was observed between the spike sate
just the northeastern US, is often easier to deal with, singgq spare capacity threshotdwhere a largep was tolerable
the global load balancing system will redistribute somehef t only with a corresponding larger value af to sustain the
traffic outside that local region at some cost to performanq@quired levels of service availability and meeting custom
Global flash croyvds that_ matter to a large CDN are rare bygj ag (Figure 6¢). To absorb a spike rate pfwith at least
do occur from time to time. Some examples include 9/1%ye nine’s of availability 9.999%) a commensurately large

and the. Obama inauguration. Since it is critical from_ th&aiue of » is required (Figure 6d). Since the spike rate can
standpoint of a CDN operator to understand the behavior of



Load

N oW s
S 8 &

% energy reduction
N N ]
5 8 88 833888

——No spike]
p=5

10

15

20

—p=

—p=

—p=

\

Availability %

99.9999%

99.999% =

99.99%| —— No spike]
p=5
—p=10
—p=15
—p=20

20 30
Time (hours)

(a) A simulated load spike in the (b) % Energy reduction decreases(c) More live spares help
increase availability

Ashburn cluster

% energy reduction

New York DC Bay area

(a) % Energy redu

40

5 10 15
Spare capacity threshold (k)

with additional live spares

99 5 10 15

Spare capacity threshold ()
(d) Spares neededx) to absorb a
spike ratep with 99.999% availability

5 10 15
Spare capacity threshold (k)

Fig. 6: The behavior oflibernate during a simulated global flash crowd

Il With GLB
I Without GLB

Texas

ction
day)

I With GLB.
I Without GLB

New York

DC Bay area Texas

key question. Does redistributing load across clustersda
provide equivalent performance further help optimize gper
reduction, transitions, and availability?

To answer the above question empirically using our CDN
trace data, we creatduster set§rom the 22 clusters for which
we have load traces. Each cluster set consists of clustats th
are likely to have roughly equivalent performance so as to
allow global load balancing to redistribute load betweesmih

(b) Average Transitions (per server per To form a cluster set we choose clusters that are located in

the same major metropolitan area, since network proviaers i

Fig. 7: Energy reduction and transitions show only mode8tmajor metro area tend to peer well with each other and
improvements with global load balancing

can likely to provide equivalently good performance to rige
from the same area. For instance, our Bay Area cluster set

Cities With GLB | Without GLB consisted of clusters located in Palo Alto, San Franciseo, S
New York | 100% 99.9993% Jose, and Sunnyvale, our DC metro area cluster set consists
DC 100% 09.9996% of clusters in Ashburn and Sterling, and our New York metro
Bay area | 100% 99.9995% area cluster set consists of clusters in New York and Newark.
Texas 100% 99.9997 % Further, since a large CDN is likely to have more than a dozen

clusters in each major metro area and since we only a have

Fig. 8: Availability improves drastically with global loadace data for a subset of the clusters of a large CDN, we

balancing

simulate eight clusters from each actual cluster by digdip
the traces into eight non-overlapping periods of 3-daysieac
and aligning the 3-day traces by the local time of day. To

be deduced from prior global flash crowds, this gives clegfmjate the baseline scenario with no energy-aware global
guidance to CDN operators on how much spare capacity Mty hajancing, we ran our algorithHibernate individually

be held live at all times to absorb even large flash crowds.

IV. GLOBAL LOAD BALANCING

. . . I
In prior sections, we devised energy-aware schemes for
local load balancing that redistribute load across servers withi

the same clusterA natural question is what can be gained

energy-awarglobal load balancing that can redistribute loa
acrosdifferent cluster®f the CDN. An important requirement
for global load balancing is that each request is served from
a cluster that is “proximal” to the client, so as to ensuré

on each cluster. Note that in this case the incoming load to
a cluster as represented in the traces is served by the same
uster. Now, to simulate energy-aware global load batamci

we viewed each cluster set as a single large cluster with the
pgum total of the capacities of the individual clusters anah su
%/otal of the incoming load. We then raibernate on the

arge cluster. Note that in this case the incoming load can be
redistributed in an arbitrary fashion across the clustetsinv

a Cluster set.

good network performance. However, a large CDN with wide The results of our evaluation are summarized in Figures 7
deployments may have several clusters that can all provigied 8. The additional energy savings due to global load
equivalently good performance to a given client. Thus, globbalancing were modest in th&% to 6% range. The reason
load balancing typically has numerous choices of clusters is that clusters within the same cluster set lar@adly similar
serve a given portion of the incoming load. While there aiia the their load patterns, with the peak and off-peak loads
other considerations such as bandwidth costs[1] that catoe ialmost coinciding in time. Thus, global load balancing is no
play, we focus on energy consumption and ask the followiraple to extract significantly more energy savings by moving



load across clusters (Figure 7a), over and above what a@na CDN by more tharb5% while ensuring a high level
be saved with local load balancing. Howeverl@ to 25% of availability that meets customer SLA requirements with
reduction in the average transitions can be achieved byaglobnly a modest number of on-off transitions per server per day
load balancing, since there are occasions where load sipike§urther, we show that keeping evéd’% of the servers as hot
one cluster can be served with live spare capacity in a éiffier spares helps absorb load spikes due to global flash crowds
cluster by redistributing the load rather than incurringvee with little impact on availability SLAs.
transitions (Figure 7b). But, perhaps the most key benefit ofOur future work will focus on the incorporation of workload
global load balancing is the increased availability (Feg8). prediction techniques into our Hibernate algorithm, ferth
The enhanced availability is due to an “averaging” effecptimizations of the global load balancing algorithm from a
where an unpredictable upward load fluctuation that woukhergy perspective and techniques for managing footyatisk (
have caused some load to be dropped within a single clusséate) of CDN customers while turning servers on and off.
can be rou'_[ed to a different cluster th_at happened to have a ACKNOWLEDGMENT
corresponding downward load fluctuation leaving some spare )
live capacity in that cluster. In fact, in our simulationset | "€ authors would like to acknowledge the support of NSF
availability was nearlyi00% with global load balancing in all awards_CNS-0519894, CNS-0916972, a_nd CNS-1117221. We
cluster sets. would like to thank Rick Weber (Akamai) and Bruce Maggs
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