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Abstract—
The modeling of objects as a dynamic Bayesian
network describing relationships between groups of
related action possibilities allows for grasping, manip-
ulation, and multi-body assemblies to all be reasoned
about in the same representation across a large variety
of tasks. We demonstrate the use of this representation
in the context of a re-grasping task with a bimanual
humanoid robot.

I. INTRODUCTION

This investigation extends past work [1] in functional object
models (composed of affordances and their invariant spatial
relationships) to multi-body assemblies and articulated objects.
Functional object models that leverage the invariant spatial
relationships between affordances, common to all rigid body
objects, provide a powerful method for the inference of ex-
istence and locations of temporally co-occurring affordances.
However, because affordances between objects in multi-body
assemblies do not possess these invariant spatial properties,
we propose an extension upon our current representation. We
postulate that the result of each assembly can be described
in a consistent manner with rigid body objects, in terms of
their constituent affordances, as a single articulated object.
In addition, we show that the region of assembly can be
most compactly and intuitively described as an affordance in
the force domain by a proper symmetry group in SE(3). To
ensure quality assemblies, we examine those assemblies that
are statically stable while allowing for the expressiveness of
our models to ensure robust behavior. We demonstrate the
effectiveness of this approach on a re-grasping experiment
involving several different assemblies in a variety of contexts
with more extensive experiments and analysis to be provided
in future investigations.

II. RELATED WORK

Representing knowledge about the world in terms of con-
trollable interactions provides a powerful and computation-
ally efficient way for an agent to encode its experiences.
Psychologist J. J. Gibson introduced the term affordance [2]
as all action possibilities present in the environment that are
objectively measurable in relation to an actor dependent on that
actor’s capabilities. The use of the theory of affordances within
autonomous robotics is mostly confined to behavior-based con-
trol; consequently, its use in deliberation and planning remains
a largely unexplored area. However, there have been several

recent studies that investigate the use of the theory of affor-
dances in modeling and subsequent reasoning about a robot’s
environment. Specifically, Sun [3] reasoned about a mobile
robot’s environment to determine whether or not object’s in
its environment will support a variety of affordances including
push, roll, traverse, support, etc. Their work utilized groups
of perceptual features as a cue for the existence of related
manipulation and locomotion affordances. Similarly, in this
work, we utilize features from actions available to the robot
in its current state to predict the success/failure and location of
related affordances. However, in our representation, we treat
all actions in a homogeneous manner and allow for any type
of action (whether related to perception or manipulation) to
be a cue for not only existence but also the location of related
affordances. Stoytchev [4], [5] and Fitzpatrick [6] showed that
affordance learning can be used to differentiate objects in the
course of interaction with the environment. Stoytchev’s and
Fitzpatrick’s work uses affordance as a higher level concept,
which a developing cognitive agent learns about by interacting
with objects in the environment. Montesano [7] presented
an affordance based model based on Bayesian networks that
linked actions and their effects to object features. In their
work, functional information is stored as a feature set on the
whole object so that it can then be applied in later recognition
or interaction scenarios with the same or similar objects. In
this paper, we concentrate on modeling probable groups of
affordances and the spatial relationships between them. The
modeling of multiple groups of affordances for each object
provides support for robust behavior by allowing for multiple
competing hypotheses about the location and existence of each
affordance on an object while requiring no information about
the pose of the object itself.

Uncertainty is a key issue when determining object and
action parameters. Ek et al. [8] presented a system that is
able to infer the location parameters for a commanded task
and reason about action selection given information derived
from partial observations. In their work, an optimal perceptual
action is defined to be the action that will maximally disam-
biguate (reduce entropy over) the state-space. In Algorithm
1 of this paper, we present an action selection algorithm
that first disambiguates the state of the robot defined over
the equilibrium states of control actions. Following this step,
our algorithm can then plan to a task through simulating the
task by using our model in a generative manner to predict
the sequence of actions and states that will reach the goal



with highest probability. In [9], Dragiev utilizes Gaussian
processes to represent uncertainty for object pose and shape
given sensor data from several different modalities in the
context of reaching and grasping tasks. This representation
results in distributions over pose and shape that are directly
dependent upon observed data without making any simplifying
assumptions other than requiring the pose distribution be
unimodal across sensor input data. Similarly, in our current
work, we use a Dynamic Bayesian Network to represent the
distribution over the state of the robot’s environment that is
described in terms of affordances, the relationships between
them, and their properties in perceptual and motor spaces. In
[10], Hsiao, Kaelbling, and Lozano-Perez developed a decision
theoretic framework for task-driven exploration with POMDPs
in which their system iteratively minimizes uncertainty in
object pose by probing an object. In contrast to this system,
we propose a system that suggests new actions based upon
the expected decrease in uncertainty with respect to a task,
represented by the successful completion of another action.
This formulation is able to exploit past interactions from
multiple objects, environments, and tasks, as well as, reason
about the predicted effects of selected actions.

III. BACKGROUND

A. Affordances in the Control Basis

Primitive control actions in this work, c ≡ φστ , are de-
scribed in the control basis [11]. These actions are closed-
loop feedback controllers constructed by combining potential
functions, φ, with feedback signals, σ, and motor resources,
τ . The sensitivity of the output of the potential function to
changes in the motor variables provides a control gradient that
is used to derive reference motor inputs (uτ ). Events in the
error dynamics of each controller provide a natural discrete
abstraction of the underlying continuous state space. In this
work, we employ a four-valued control state, p(c) ∈ {0, 1},
where ‘0’ indicates the transient control response and ‘1’ de-
notes convergence/quiescence. Given a collection of n distinct
primitive control actions, a discrete state space X can be
formed, where x ∈ X is defined by x = (p1, · · · , pn).

B. Control Programs - SEARCHTRACK

In our representation of actions, we define two classes
of control actions that share potential functions and effector
resources: TRACK and SEARCH. These classes are distin-
guished by their differences in input signals; TRACK actions,
φστ preserve a reference value in the feedback signal e.g.,
the position of a feature on the image plane or the value
of a contact force on a fingertip whereas SEARCH actions,
φσ̃τ , have an input signal, σ̃, that is derived from probabilistic
models describing distributions over effector reference inputs
(uτ ), where TRACKing actions have converged in the past,
p(φστ ) = 1. For example, such a controller can be used to
direct the field of view of a robotic system to look at places on
a table top where a specific signal has been found e.g. the color
blue in an outdoors environment is typically found in the sky,
above an agent. Initially the distribution Pr(uτ |p(φστ ) = 1) is

uniform; however, over the course of many learning episodes,
this distribution reflects the long term statistics of the run-
time environment. The current investigation extends recent
work [1] that improved upon existing signal-specific SEARCH
distributions by developing a more robust object-specific repre-
sentation for SEARCH distributions. In this work, we formalize
these SEARCH distributions in the idea of predictive aspect
models as well as extend this form of modeling to multi-object
interactions.

TABLE I
BASIC SOLIDS AND THEIR CORRESPONDING SYMMETRY GROUPS

Basic Shapes Symmetry Groups
Half Plane Gplane

Prism D2n

Cylinder Gcyl
Sphere SO(3)
Screw Gscrew(p)
Gear D2n

Cone SO(2)
Pyramid Cn

C. Applications of Group Theory to Assembly Planning

Group theory is the standard method for describing sym-
metry in any system. We will use group theory to describe
the space of translations and rotations possible in an assembly
[12]. In this theory a group < S, ∗ > consists of a set S with
an operation ∗ that has the properties of being associative,
containing an identity element, and containing an inverse for
each element of the set S. For instance, the space of real
numbers R with the operation multiplication excluding the
number 0 is a group, 0 must be excluded here because it does
not have an inverse under multiplication. Similarly, a subgroup
< S1, ∗ > is a group that conforms to these same properties
with the additional property that the set S1 defining the group
must be a subset of the set S and use the same operation
∗ from another well defined group < S, ∗ >. The Proper
Euclidean Group E+ is defined as the set of all isometries
(distance preserving mappings) of R3 with the functional
composition of isometries specified as the operation on the
group. A proper symmetry, g ∈ E+, is an isometry (which
preserves handedness) that brings S ⊆ R3 into coincidence
with itself i.e. g(S) = S. This set of isometries contains
all possible translations and rotations in Euclidean space. In
the representation we will present, each assembly is defined
by a symmetry group describing the possible rotations and
translations that will maintain that assembly.

IV. EXPERIMENTS

A. Objects - Aspects Related by Actions

Objects in this representation are modeled as collections of
control affordances (aspects) and the actions that define the
relationships between them. Each aspect defines a coordinate
frame which allows for the spatial relationships between
affordances to be directly specified. However, because the



TABLE II
SYMMETRY GROUPS ON EUCLIDEAN SPACE (E)

Groups Members
Gidentity identity transformations

T1 translations along a line
T2 translations in the plane
T3 translations in Euclidean Space

SO(3) rotations in Euclidean Space
SO(2) rotations about a line in Euclidean Space
SO(1) rotations in a plane in Euclidean Space
Gcyl translation along the axis of the cylinder and rotation about the axis

Gplane translation in the plane and rotation about the normal
Gscrew translation along the axis of the screw and rotation about the axis

of the screw by 2zπ
p

, where z is the amount of rotation about the axis
D2n rotations by 2π

n
and flipping about the normal to these rotations

Cn rotations by 2π
n

E+ rotations and translations in Euclidean Space, excludes reflections

Fig. 1. A dynamic Bayesian network representing object oi at time t as a
spatial distribution over Mi aspects, each represented by Bernoulli random
variable xj . The action taken (whether for perception or manipulation) is
represented by random variable u. An aspect induces a distribution over the
state of controllable interactions (pk) afforded by the object. The random
variables σk and τk model the distributions over signal (e.g., color, force)
and effector (e.g. hand, pan-tilt unit) as gaussian distributions. The gaussian
random variable hk models the position and orientation of the affordance
instance in the object frame.

relationships between aspects are specified in terms of manipu-
lation action, there is no one object frame. We take inspiration
for this type of qualitative modeling of spatial relationships
from work on grounded cognition in the psychology literature
in which it is hypothesized that humans use simulation as a
primary mechanism for reasoning about actions and objects
[13]. Figure 1 shows a graphical model that encodes the
logical dependencies between the variables of the environment
affordance model. An object, oi, at any instant of time affords
a set of controlled interactions with the robot. Each stable
set of spatially distributed interactions define an object aspect
(aj). For each aspect, there exist Nj affordances that have
a non-zero probability of occurring. There can be multiple

instances of each aspect within an object. Each affordance is
represented by a Bernoulli random variable ck describing the
state of each associated SEARCHTRACK action. (ck = 1, if the
action converges, and 0 otherwise.) The difference between
affordances and taking actions is that affordances are passive
control action possibilities. Affordances in this representation
never represent the taking of an action, but they can represent
whether or not an action in the current state of the robot
interacting with the environment has converged (succeeded)
or failed to converge. Each possible affordance is modeled
by its position and orientation (pk) in the object’s frame, the
feature values of the signal (fk), and the shape (sk) defined
by the eigenvalues of the signal. The resulting generative
model describes objects in terms of affordances and the spatial
relationships between them.

Utilizing past experience encoded as a prior, this model is
able to aid in accomplishing a variety of tasks by telling the
robot which affordances are likely to co-occur and where they
occur with objects that are similar to those that have been
previously encountered. However, by introducing a temporal
dependence, we are able to describe how taking actions affect
the existence and location of affordances. For example, if the
robot would like to pick an object up off of a table, then
the state of the model must afford lifting i.e. the robot must
first grasp the object in order to be able control the object
in the direction of lifting. In this case, “grasping” changes
the aspect of the object in a manner that supports the goal
of lifting. We encode the aspect-action dependencies of an
object as a dynamic Bayesian network shown in Figure 1,
where the instance of an aspect being observed is a hidden
variable that the robot can infer from state of the affordances,
P t = {pt1, . . . , ptk} and the actions, ut. This temporal model
consists of a finite number of states (given by the aspect,
xt), a finite number of actions U = {u1, u2, . . . , uk} and
a set of possible observations. For every aspect instance, xt

, the transition probability Pr(xtj |ut−1, xt−1
j ) describing the

probability that an aspect, xt−1
j , transitions to another aspect

instance, xtj , by taking manipulation action, ut−1.



Fig. 2. Above are drawn the three possible symmetry groups for a table and
mallet. (The robotic hand is included to help disambiguate the three cases
due to lack of artistic talent of the authors.) In the first case, at the top of
the figure, the mallet is able to be rotated around the z axis, or moved in
the x-y plane in order to maintain the current assembly. In the middle of the
figure, the mallet is contacting the table along a line that runs the length of
the cylindrical mallet head. In this case, the mallet is able to rotate freely
around this line as well as around the z axis. In the lowest part of the figure,
the cylindrical handle of the mallet is contacting the table at a point. This
frees up the mallet to rotate around this point as well as move in the plane
of the table.

Fig. 3. Above are drawn two possible symmetry groups for a three finger
hand and mallet. In the first case, at the top of the figure, the mallet is not
able to rotate with respect to the hand while maintaining the current assembly
(which expects force in all 6 dimensions of SE(3)∗). In the lower part of the
figure, the cylindrical handle of the mallet is contacting the hand at two points.
This frees up the mallet to rotate around the x axis of the coordinate frame.

B. Assemblies - Collections of Objects (Meta-objects)

Assemblies are modeled in a manner consistent with the
previously mentioned modeling of rigid body objects, see
Figure 1 and Section IV-A. Each object in an assembly is
described by its own aspect, a stable collection of affordances
that co-occur in the same region of space and time. Because
each object in the assembly is denoted by a separate aspect
and each aspect is defined by its own coordinate frame, the
region of assembly is defined twice (once with respect to
each aspect in each object of the assembly). In addition,
for an assembly to be properly defined, there must exists an

Fig. 4. Above are drawn two examples of assemblies composed of three
two-body subassemblies and four objects: subassembly 1, between arm and
hand with no expected force signature i.e. complete freedom of movement,
subassembly 2 between hand and mallet, subassembly 3 between mallet and
table. In each assembly, the symmetry group associated with each subassembly
is given. These groups denote the only permissible actions which will maintain
each subassembly. In addition, the complement of each group, in wrench
space, denotes the set of forces that should be expected at the region of
assembly.

affordance in each aspect whose reference values reside in
the force domain, which is located at the junction of the two
objects. This affordance describes the expected forces which
will occur between the two objects with a signal value that
consist of a symmetry group in SE(3), see Table II for a list
of characteristic symmetry groups. In general, these groups
are derived from the proper Euclidean group, which describes
the space of possible translations and rotations in Euclidean
space. However, as has been done in past work [14], we will
use these signal values both to describe possible motions of
one object with respect to another in an assembly, and also to
describe the dual wrench space of expected force signatures
that are present as a result of the constraints imposed by the
assembly. We are currently working to be able to derive this
force-based affordance for describing assemblies from already
existing affordances on single rigid body objects by taking
the intersection of each separate wrench space, see Mason
and Salisbury [15] and Popplestone, Liu, and Weiss [16] for
examples of using group theory in this manner.

Grasping and manipulation can also be modeled as an
assembly in this representation. As was discussed previously,
each of the objects in an assembly (the robot’s end effector
and a rigid body object in this case) are modeled as separate
aspects of one meta-object. Because each aspect is defined
functionally in terms of affordances, this representation at
first seems ill suited for the modeling of the robot’s end
effector. However, a robot’s end effector can be described by



affordances associated with other sensor and effector modal-
ities (not the force sensors or proprioception that are most
likely a part of the end effector). In addition, when describing
assemblies between the robot’s end effector and rigid body
objects (grasping and manipulation), the robot’s end effector
can be described in terms of the actions that it affords with
respect to the other object that it is interacting with. This
makes most sense when thinking of the object that the robot
is manipulating or grasping as being the object taking action
and the the robot’s end effector being a static rigid body. For
example, when a robot is grasping the head of a mallet with a
palmar grasp, as can be seen in the lower part of Figure 3, the
robot’s hand is fixed and affords the force-domain-based action
that immobilizes the cylindrical head of the mallet associated
with the identity group, Gidentity.

Control motions can be described through thinking of the
end effector of the robot as being in an assembly with some
object that affords no forces i.e. complete freedom to move
and orient in Euclidean space. Therefore, any object that is an
assembly with the end effector will always be described as if
there is one extra virtual object in the assembly. This allows for
the space of possible motion that will maintain each assembly
to be described, see Figure 4.

Algorithm 1 ACTIONSELECTION(ug, Z, U)
1: ug - goal action
2: Z - sequence of observations
3: U - sequence of actions taken
4: repeat
5: Compute Pr(atj |zt, ut−1, at−1

j ) of observation set zt ∈
Z for predictive aspect models atj ∈ A, j = 1, · · · ,Mi

6: if Pr(atj |zt, ut−1, at−1
j ) > Pr(atj |zt, ut−1, at−1

j ) then
7: place atj in set C, candidates
8: end if
9: Infer the pose distribution, Pr(xtg|atj , zt), of goal affor-

dance, ug , for each candidate aspect atj ∈ C.
10: if

∑
j,k:j 6=kDKL(Pr(xtg|atj , zt)||Pr(xtg|atk, zt)) < α

then
11: if goal pose, xtg , is a valid reference for action ug

then
12: execute action ug
13: else
14: CHANGEASPECTTOREACHGOAL(ug, Z, U)
15: end if
16: else
17: DECREASEASPECTUNCERTAINTY(ug, Z, U)
18: end if
19: until p(ag) = 1 {goal action, ug , succeeds}

C. Task-based Action Selection

Reference values for each control action can be sampled
from the Bayesian model. These actions can then be executed
given knowledge of the object’s pose in the world frame. How-
ever, in the presence of partial information, choosing an action

Algorithm 2 CHANGEASPECTTOREACHGOAL(ug, Z, U)
1: ug - goal action
2: Z - sequence of observations
3: U - sequence of actions taken
4: Choose action, ut from the model which changes the

object aspect to one which affords the goal:
5: (This requires backchaining from an aspect that affords

the goal to the current aspect)
6: An =

∑
a∈A Pr(atj |a

t−1
j = a, ut = ug)

7: Ap =
∑
a∈Ag

Pr(at−1
j |ut = ug, a

t
j = a)

8: while Pr(Ap = C) < β do
9: An =

∑
a∈A,u∈U Pr(atj |a

t−1
j = a, ut = u)

10: Ap =
∑
a∈Ap,u∈U Pr(at−1

j |ut = u, atj = a)
11: end while
12: t = t+ 1
13: ut = arg maxut

[∑
ap∈Ap,an∈An

Pr(at−1
j = ap, u, a

t
j = an)

]
14: Gather new evidence, zt

15: Add new evidence and action taken to Z,U
16: ACTIONSELECTION(ut−1, Z, U )

Algorithm 3 DECREASEASPECTUNCERTAINTY(ug, Z, U)
1: ug - goal action
2: Z - sequence of observations
3: U - sequence of actions taken
4: Choose action, ut from the model which maximally re-

duces the uncertainty over aspects:
5: t = t+ 1
6: ut = arg maxut

∑
an,ap∈Ai

H(at+1
n |ut, zt, atp)

7: {for object oi with aspect set Ai}
8: Gather new evidence, zt

9: Add new evidence and action taken to Z,U
10: ACTIONSELECTION(ut−1, Z, U )

given that it may be expensive or destructive (w.r.t. sensor
measurements) requires safeguards to ensure that the robot
chooses the next action that will lead towards successfully
completing its intended task. It is not necessary for a robot
to completely determine the pose of an object before it can
take actions towards achieving its goal, it is only required that
the pose relative to the goal action is completely determined.
The procedure for taking such an action (ug) is described in
Algorithm 1.

Given a task and an object model, the robot first takes action
to reduce its uncertainty with respect to aspect, then attempts
to reach a state in which the goal action can be achieved. The
algorithm begins each iteration by finding the probability of
each aspect given the latest observations of control actions,
zt, the last manipulation action, ut−1, and the last aspect,
at−1
j (Line 5). This is achieved by computing the probability

that each aspect given the evidence can be generated by the
model. If the same evidence is afforded in multiple regions
of the object, a set of candidate aspects, C, are returned
(of which only one is the aspect). Each of the candidate



aspects is combined with relative spatial information from the
object model to produce candidate positions and orientations
of the goal (Line 9). For example, if the goal is to grasp
an object, this relative information is provided by SEARCH
distributions for the arm(s) and hand(s) relative to the object
frame that orient the system appropriately for TRACK-able
forces comprising a grasp. If all the candidate aspects represent
the same set of positions and orientations of the goal in the
world frame i.e. the total KL divergence between all such
distributions is low (Line 10), we say that the candidate goals
are equivalent and unambiguous. Hence, even though there is
uncertainty in the pose of the object, there is none in the goal
affordance. Such cases arise in the case of symmetric objects,
where the pose of the object may remain ambiguous even when
grasping goals are not. If goals are ambiguous, then actions
are selected that reduce the uncertainty over the distribution of
aspects by calling Algorithm 3. In a sense, this algorithm tries
to figure out “where” it is, before it tries to “drive” there. The
action taken is that which maximally reduces the uncertainty
(entropy) over the set of aspects, Ai for object oi, given the
latest observations, zt, and aspects, atp ∈ Ai. This is similar
to the idea of an agent first increasing its belief that it is
in a particular state before trying to achieve a task from the
recent work by Platt, Tedrake, Kaelbling, and Lozano-Perez
[17]. If the model has low uncertainty with respect to its aspect
then Algorithm 2 is called. This algorithm back-chains from
an aspect that affords the goal action until it has reached its
current state. The action taken is then the action, which has the
highest probability of reaching the aspect in which the goal
action can succeed.

D. Quasi-static Multi-body Regrasping Experiments

We apply the representation described in Sections IV-A
and IV-B in the context of a regrasping experiment with
our humanoid robot Dexter. Dexter is a bimanual robot with
two 7-DOF Whole-Arm Manipulators (WAMs) from Barrett
Technologies, two 3-finger 4-DOF Barrett Hands equipped
with one 6-axis force/torque load cell sensor on each fingertip,
a stereo camera pair and a Kinect mounted on a pan/tilt head.

In this set of experiments, we show the efficacy of our
representation for utility-driven action selection in the context
of multi-body grasping and manipulation. Models of objects
were hand-built spatial distributions of blobs (represented in
terms of first and second moments) describing color space,
range image clusters, and search distributions of force space
goals represented in Cartesian space where “pincer grasp”,
“palmar grasp”, and planar affordances can be found. We
require that any objects in the environment maintain quasi-
static stability i.e.

∑
i=1,2,3 Fi = 0 and

∑
i=1,2,3Mi = 0.

Because different parts of the mallet support different assem-
blies with the hand, there are two sets of possible goals for the
hand-mallet assembly. The mallet’s handle and head support a
palmar grasp, whereas the entire body supports a pincer grasp.
In certain regions of the workspace, the object does not afford
haptic aspects, and additional manipulation actions have to be
taken before grasp goals can be achieved. Figure 5 shows the

case when the object is presented in a region where the robot
can grasp successfully. In such a case, Algorithm 1 computes
the aspect of the object by matching observations to the model
and returns the control action sequence necessary to achieve
the grasp action. However, when the goal affordance is out of
reach (and hence the object aspect doesn’t afford the goal -
grasping in this case), the action selection algorithm chooses
a manipulation action that can change the aspect to one that
affords grasping. Figure 6 shows an example where the robot
chooses to pull the object towards itself before executing the
grasp action. Because of our quasi-static requirement, it can
be seen that the robot is required to use the table in order to
maintain force closure of the mallet due to the pincer grasp
being the only achievable grasp.

V. CONCLUSIONS AND FUTURE WORK

We described in this study an example of using this repre-
sentation for a regrasping task in which there were several
different types of assembly both between hand and object
(grasping/manipulation) and between two rigid body objects.
We plan to utilize this framework in the performance of a
larger variety of tasks including several more examples of
assembly from those given in Table II.
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Fig. 5. The robot performing a top grasp on the mallet and placing it on the goal.

Fig. 6. The robot pulling the mallet towards itself before performing a top grasp on the object and placing it on the goal.


