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Abstract—Flattening household electricity demand reduces
generation costs, since costs are disproportionately affected by
peak demands. While the vast majority of household electrical
loads, e.g., TVs, microwaves, etc., are interactive and have little
scheduling flexibility, a substantial fraction of home energy
use derives from background loads with some, albeit limited,
flexibility. In this paper, we study the extent to which a
home is able to transparently flatten its electricity demand
by scheduling only these background loads, such as A/Cs,
refrigerators, dehumidifiers, etc. We propose a Least Slack
First (LSF) scheduling algorithm for household loads, inspired
by the well-known Earliest Deadline First algorithm. We then
integrate the algorithm into SmartCap, a system we have built
for monitoring and controlling electric loads in homes. To
evaluate LSF, we collected power data at outlets, panels, and
switches from a real home for the last 82 days. We use the
data to drive simulations, as well as experiment with a real
testbed implementation that uses similar background loads as
our home. Our results indicate that LSF is most useful during
peak usage periods that exhibit “peaky” behavior, where power
deviates frequently and significantly from the average. For
example, LSF decreases the absolute average deviation from
the mean power by over 20% across all 4-hour periods where
the deviation is at least 400W.

I. INTRODUCTION

Recent studies indicate that residential and commercial
buildings account for over 75% of electricity consumption
in the United States [2]. As a result, designing new “green”
buildings and retrofitting existing buildings with green tech-
nologies has become both an important research challenge
and societal need. In the residential sector, many techniques
are available to reduce either a home’s energy footprint or
its energy bill. For instance, smart buildings may use motion
sensors to track occupants and opportunistically disconnect
loads1 in empty rooms [9]. Alternatively, consumers may
participate in automated demand response programs increas-
ingly offered by electric utilities, which automatically turn
off home appliances when the demand for electricity is
high [8]. These intelligent load management schemes reduce
a home’s energy footprint and its bill by automatically
disconnecting loads from power when necessary or conve-
nient. This paper focuses on an intelligent load management
scheme for flattening household electricity usage or demand.

Flattening demand implies reducing the difference be-
tween the peaks and troughs in a home’s electricity usage,
thereby creating a flatter usage pattern that lessens the
deviation from the average usage. Demand flattening has the

1We use the term load throughout the paper to refer to any appliance or
device in the home that draws electricity.

potential to benefit residential consumers as the electric grid
becomes smarter and more efficient, since peak demands
have a disproportionate affect on grid capital and operational
costs, including transmission, generation, and fuel costs. For
instance, demand flattening significantly reduces transmis-
sion and distribution losses, which account for nearly half
(47%) of residential energy consumption [3], since these
losses are proportional to the square of current.

To incentivize demand flattening, utilities are transitioning
from flat pricing models to variable time-of-use or peak-load
models [4], [5], [15]. Since the marginal cost to generate
electricity rises as demand increases, utilities are beginning
to add surcharges to bills based on a consumer’s peak
usage. For example, a utility may determine the bill, in
part, based on a customer’s largest half-hour of electricity
demand within a day, regardless of the total day’s energy
consumption. The new electricity pricing models provide
consumers strong incentives to regulate not only their total
energy consumption, but also their consumption profile. In
particular, these new pricing models incentivize customers
to lower their peak consumption by flattening their usage.

Unfortunately, while conceptually simple—to control its
demand, a home need only decide when to disconnect its
loads—intelligent load management has proven difficult to
implement in practice. One reason is that disconnecting
loads requires active consumer involvement during peak
periods, such as turning off unnecessary lights, program-
ming a thermostat, or postponing washing clothes. Prior
studies have shown that compelling consumers to change
their household routines is challenging [7]. While providing
occupants real-time feedback of their power consumption
may initially incentivize them to reduce their usage, once the
novelty wears off occupants typically revert to their previous
habits. Even for consumers that wish to actively manage
their load, choosing which loads to disconnect and when is
a complex decision that must be continuously re-evaluated
based on information that is constantly changing. To address
the problem, we have designed SmartCap, a system for
automatically monitoring and controlling household loads.

As a key step in SmartCap’s design, this paper studies
the extent to which homes are able to flatten their home
electricity demand without affecting home occupants or
requiring their active involvement. We explore the impact
of modifying background electrical loads that are completely
transparent to home occupants and have no impact on their
perceived comfort. While the vast majority of electrical loads
in homes, e.g., lights, TVs, microwaves, etc., are interactive



and have little scheduling flexibility, a substantial portion
of home electricity demand derives from loads with some,
albeit limited, flexibility. These flexible loads, such as air
conditioners (A/Cs), refrigerators, freezers, dehumidifiers,
heaters, etc., typically operate in the background: while
the result of their power draw is readily apparent, e.g., a
comfortable room temperature and frozen food, the process
of when they draw power and how much is not important.
Note that flattening demand is distinct from, and orthogonal
to, conservation efforts that reduce total energy consumption
over long periods. Instead of reducing total energy usage,
flattening demand redistributes consumption by shifting load
to decrease the demand peaks, while increasing the troughs.
A goal of our work is to quantify when and how much
demand flattening is possible from background loads.

Our hypothesis is that homes are capable of flattening
electricity demand during peak load times by intelligently
scheduling only background loads. To evaluate our hy-
pothesis, we analyze extensive power data gathered from
a real home at outlets, switches, and panels over the last
three months. Our data shows that, while background loads
account for only 7.5% of the total loads on a typical summer
day, they consume nearly 59% of the energy. SmartCap’s
load scheduler flattens demand by scheduling background
loads according to a Least Slack First (LSF) scheduling
policy, inspired by the Earliest Deadline First algorithm
in computing systems, where slack is a measure of how
long each background load is able to remain off without
affecting its objective, e.g., maintaining an environmental
setpoint or fully charging a battery. We evaluate SmartCap
by simulating background load scheduling using data from
our home deployment. We also implement SmartCap in
a smart home testbed we have built, which uses similar
background loads as our home. We leverage our testbed
to experiment with SmartCap using real appliances. As an
example of our results, we show that LSF decreases the
average absolute deviation from the mean power (a measure
of flatness) by over 20% for all 4-hour periods (over the 82
day period) where the deviation is greater than 400W.

II. BACKGROUND AND PROBLEM FORMULATION

The focal point of SmartCap’s architecture is an intelligent
smart home gateway. The home gateway serves as the inter-
face between a smart home and the smart grid. As shown
in Figure 1, the gateway receives information from multiple
potential sources, including real-time electricity prices and
demand-response signals from the grid, generation data
from on-site renewables, and consumption data from each
household load. The gateway’s data sources inform its load
scheduling policy. This policy determines which loads to
power and when by issuing actuation commands to loads.
While we focus on the problem of scheduling background
loads to flatten demand without affecting occupants, our
home gateway is capable of implementing scheduling poli-
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Figure 1. A graphical depiction of a SmartCap-enabled home.

cies with other objectives, such as ensuring home power
demands are always less than supply when using intermittent
on-site renewables [18]. SmartCap’s architecture depends
on loads that expose programmatic control to turn them
on and off. While today’s “dumb” appliances generally
do not expose such remote actuation capabilities, utilities
are currently testing such smart appliances for demand
response initiatives [8]. Moving forward, as appliances begin
to allow remote actuation at finer granularities, advanced
techniques for controlling power will be possible. Given
current standards for remote actuation, connecting loads
to external programmable switches and outlets using home
automation protocols, such as X10 or Insteon, is sufficient
in many cases to provide programmatic load actuation in
today’s appliances. We currently use Insteon-enabled outlets
and switches in our home deployment and testbed [10].

We divide electrical loads into two broad groups: inter-
active and background loads. Household occupants directly
control interactive loads by toggling switches, and actively
observe their behavior; examples include lights, TVs, com-
puters, microwaves, vacuums, etc. The vast majority of
household loads are interactive. Our LSF scheduling policy
assumes that only the occupants are able to control inter-
active loads. In contrast, household occupants do not di-
rectly control background loads, and only passively observe
their behavior; examples include refrigerators, dehumidifiers,
A/Cs, etc. As long as these loads satisfy occupant expec-
tations, e.g., a target temperature or humidity level, when
and how much power they consume is neither important
nor noticeable. SmartCap monitors background loads and
controls when they consume power. We view transparently
flattening demand from background loads as an important
prerequisite in satisfying many other demand-side schedul-
ing objectives. While disconnecting interactive loads may
be necessary at certain times to strictly cap power usage,
scheduling background loads without affecting occupants
should always be the first priority under constraint. Note that
SmartCap’s architecture explicitly does not require electric
utilities to monitor or control household loads, since such
monitoring represents a potential invasion of privacy [13].



Load Peak Average Quantity
Refrigerator 456W 74W 1
Freezer 437W 82W 1
HRV 1129W 24W 1
Dehumidifier 505W 371W 1
Main A/C 1046W 305W 1
Bedroom A/C 1 571W 280W 1
Bedroom A/C 2 571W 141W 1

Background 4715W 1277W 7
Interactive 9963W 887W 85

Table I
IN THE SUMMER, BACKGROUND LOADS IN OUR HOME ACCOUNT FOR

59% OF THE TOTAL ENERGY CONSUMPTION.

III. LOAD ANALYSIS AND OBSERVATIONS

To study the extent to which scheduling background loads
is able to flatten demand, we collect fine-grained power
data from a real home that houses three occupants. We
have collected the home’s aggregate power for the last 12
months and power at each outlet and switch for the past
82 days. Since our monitoring did not affect the occupants’
daily routine, our data reveals realistic home power usage
patterns over the monitoring period. Our home deployment
continuously gathers power usage data for 1) the entire home
every second and 2) 30 outlet loads every few minutes; our
prototype maintains a record of the on-off state of 30 of the
home’s wall switches at every instant in time. SmartCap’s
gateway is also able to remotely (and programmatically)
control the home’s outlets and wall switches. More details
about our home deployment are available in [10].

A. Interactive vs. Background Loads

To quantify the potential benefits of scheduling back-
ground loads, we separate the power consumption of back-
ground loads from that of interactive loads. In our prototype
home, we monitor seven background loads at outlets: a
refrigerator, a freezer, a dehumidifier, three window air
conditioning units (A/Cs), and a heat recovery ventilation
(HRV) system. By contrast, we estimate that the home
used 93 distinct interactive loads over the past year. Thus,
SmartCap does not attempt to schedule the vast majority of
household loads, since it would affect the home’s occupants.

Examples of interactive loads that we do not schedule
include lights, entertainment appliances (e.g., TV, DVR,
cable box, gaming console), computing equipment (e.g.,
DSL modem, router, laptops, desktop computer), kitchen
appliances (e.g., microwave, toaster oven, espresso maker,
garbage disposal), and miscellaneous devices (e.g., alarm
clocks, vacuums, hair dryers). In most cases, disconnecting
any of these loads from power when in use is readily ap-
parent to occupants. We also group clothes dryers, washing
machines, and dishwashers with interactive loads. While we
could schedule the start time of these appliances, we do
not include them because adjusting the start time affects
occupants. To see why, consider that a scheduler may be able
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Figure 2. The power consumption of interactive loads is highly variable
throughout the day. As expected, peak power consumption occurs around
mealtimes in the morning, early afternoon, and early evening.

to decide when an appliance executes, but occupants must
ultimately initialize the appliance, e.g., fill it with clothes
or dishes, before its scheduled start time. Changing the start
time may force occupants to initialize the appliance at an
inopportune time. Further, for clothes dryers and washing
machines, their operation is often pipelined, with households
washing multiple laundry loads back-to-back.

Observation #1: While background loads comprise 7.5%
of the total loads over our monitoring period, they ac-
count for 59% of the average energy consumption. Table I
shows the peak and average power consumption for each
background load we monitor during a representative week
in the summer, as well as the peak and average power
consumption for all background and interactive loads. Dur-
ing this week, background loads consume 209 kWh, while
interactive loads consume 146 kWh. The three window A/C
units significantly increase the fraction of energy consumed
by background loads, since each A/C draws 400W-1kW
when the compressor is on. On hot days, the compressor
may run as much as half the day, depending on the comfort
level the occupants desire. Note that during the winter, the
A/Cs do not run. Since the home uses a gas furnace for
heat, winter background load decreases significantly. In this
case, the duct heater for the HRV system, which heats
incoming air from the outside, dominates background energy
consumption, accounting for 70% of consumption, while
the refrigerator, freezer, and dehumidifier account for the
remaining 30%. Below, we highlight two observations from
our home’s data that influence our approach to scheduling.

B. Interactive Variability

Observation #2: The power consumption of interactive
loads varies due to the actions of occupants throughout the
day, and is not readily predictable. Figure 2 highlights this
point by showing the power consumption of the interactive
loads in isolation on a representative day. Additionally,
Figure 3 shows consumption patterns for four example
interactive loads. Notice that the magnitude of these loads’
power draw varies considerably throughout the day, with
the peak periods occurring, as expected, during the morning
between 6am and 10am and in the early evening between



5pm and 9pm. These time periods coincide with food
preparation and are partially the result of using high-power
kitchen appliances, such as a coffee pot, garbage disposal,
microwave, dishwasher, and toaster oven. During the night,
the minimum steady state power consumption is roughly
200W, while during the morning and evening it frequently
rises above 2kW for frequent short periods

The kitchen appliances tend to induce peaks by using large
amounts of power for relatively short time periods, such as
the coffee pot in Figure 3. Our observation also holds for
meal preparation at breakfast, lunch, and dinner. Accurately
predicting the power consumption of interactive loads at fine
time scales is difficult. While the home’s occupants typically
eat dinner between 4pm and 8pm, if and when they use a
microwave, toaster oven, dishwasher, or garbage disposal is
highly variable during this four hour time window each day.
Additionally, the occupants have flexible work schedules,
and often work from home during the day—on this day one
of the occupants ate lunch at home, which accounts for the
spike in power around noon. Since interactive loads are not
readily predictable our scheduler must be able to react to
drastic and sudden changes in their power consumption.

C. Background Variability

Observation #3: The operating period of background
loads varies due to both environmental conditions and
external events, and is also not readily predictable. Figure 4
highlights the point by graphing the power consumption of
four of the background loads we monitor. Each background
load is clearly periodic: it has a distinct period when it is
on followed by a distinct period when it is off. While it is
possible to design these loads with variable drive controllers,
all the background loads in our prototype use simple on-off
controllers that toggle between an on and off state [16].
In this case, the on-off periodicity is a result of each
background load maintaining an environmental setpoint: in
this example, the refrigerator and freezer maintain their inter-
nal temperature within a fixed guardband, the dehumidifier
maintains a humidity level within a fixed guardband, and the
HRV heats outside air to a pre-specified temperature. The
guardband defines the acceptable maximum and minimum
levels for the load’s target environmental metric. Common
household loads use simple control loops to stay within the
guardband. For example, when the load’s metric reaches a
maximum allowable value the load turns on until the metric
reaches a minimum value, at which point the load turns off.

Since environmental conditions vary, neither the length
nor the magnitude of a load’s on-off period is entirely regu-
lar. To illustrate, the figure shows that the refrigerator (upper-
right) and freezer (upper-left) exhibit longer on periods in
the early evening between 5pm and 9pm, along with some
transient usage spikes. In both cases, the longer on periods
are the result of the occupants opening the refrigerator
and freezer doors, which increases the internal temperature
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Figure 3. Power data for example interactive loads. Occupant behavior,
which is not readily predictable, determines when these loads draw power.

and causes them to turn on their compressors to lower the
temperature. Tasks other than maintaining temperature also
contribute to the transient spikes in power consumption. For
example, both the refrigerator and freezer power multiple
60W incandescent light bulbs when the door is open and also
periodically make ice; the refrigerator also cools a separate
freezer compartment. The refrigerator exhibits a much more
irregular consumption pattern, since it resides in the kitchen
and the occupants open its door more frequently than
the basement freezer. The HRV and dehumidifier exhibit
irregular periods for similar reasons.

The dehumidifier’s operating cycle dictates that it runs
until it reaches a setpoint humidity—in our case 50%—or
until it has run for two consecutive hours, at which point
it remains off for 2 hours to cool down. Thus, on hot
and humid summer days, the dehumidifier will run for 2
hours every 4 hours if it cannot reach its setpoint humidity,
and consume a significant fraction of power (1.8 kWh). On
moderately humid days, the dehumidifer will come on and
off according to its setpoint humidity, causing an irregular
on-off period. On this day, the environmental humidity
was high, so the dehumidifer ran regularly. Similar to the
refrigerator/freezer, the window unit A/Cs exhibit irregular
periods based on changing outdoor temperatures and the
frequency with which exterior doors open and close. While
some environmental factors may be partially predictable,
such as temperature or humidity, interactive events, such
as doors opening and closing also affect the period and
power consumption of background loads. Thus, scheduling
background loads must take into account these difficult to
predict changes in their periodicity.

IV. LOAD SCHEDULER

SmartCap’s background load scheduler leverages the well-
known concept of slack, which quantifies the extent to which
a scheduler is able to advance, defer, raise, or lower a
load’s power consumption without affecting its operational
goal [6], [11], [12], [17]. Before detailing the LSF algo-
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Figure 4. Power signatures for four background loads in our home. The
on-off period varies with environmental conditions, and is not regular.

rithm, we first discuss different types of load controllers to
understand the available dimensions of scheduling freedom.

A. Load Controllers

Simple on-off controllers encompass the vast majority
of controllers found in residential loads, since they are
cheap and reliable. As discussed earlier, on-off controllers
often maintain an environmental metric, e.g., temperature
or humidity, within a specified guardband. For these loads,
slack arises from the fact that the load is able to remain
off until its metric reaches the guardband’s maximum (or
minimum) value, at which point the load must turn on. In
effect, these loads indirectly store power in their contained
environment by increasing (or decreasing) a target metric,
which then slowly decreases (or increases) due to leakage
with the outside environment. On-off controllers are also
commonly driven by timers, which dictate fixed-length on-
off periods. While a scheduler is able to advance or defer
when these loads turn on or off, as long as they do not violate
their guardband or fixed-length on-off period, it is not able
to raise or lower power consumption when the loads are on.

Battery chargers are another example of a load with slack,
since they are capable of raising or lowering their power
consumption by adjusting the charging rate. While most
household batteries are small, e.g., phones, laptops, and
tablets, the emergence of plug-in electric vehicles (EVs) is
poised to introduce a large load with substantial slack to
homes. EVs that plug into standard 120V/15A outlets are
able to charge at a rate of up to 1.8kW, while a dual-pole
240V/30A circuit that uses both legs of a home’s split-phase
input power is able to charge at a rate of up to 7.2kW. In
either case, advanced chargers are capable of varying the rate
of charge up to these maximums. For battery chargers, the
primary scheduling constraint is fully charging the battery
over some duration, or charging to an acceptable capacity,

While not present in our prototype, variable drive con-
trollers are capable of raising and lowering their power
consumption when on. These controllers offer clear benefits
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Figure 5. A depiction of slack in our refrigerator’s simple on-off control
loop. The compressor turns on once the internal temperature reaches an
upper threshold, and turns off once it reaches a lower threshold.

over on-off controllers, but they are typically not found in
household appliances due to cost and reliability issues. As
a result, our experiments do not study their impact.

B. Scheduler

We define a load’s slack at any time t as the remaining
length of time the load can be off, i.e., disconnected from
power, without assuring that it will violate its objective. For
a load that maintains an environmental condition with an
on-off controller, it must turn on when its environmental
metric reaches a guardband boundary. For a battery charger,
it must turn on when only the maximum charging rate over
the remaining plug-in duration is sufficient to fully charge
the battery, or to charge it to an acceptable capacity. We
define slack in units of time, rather than energy as in [17],
only for ease of exposition—slack time is proportional to
slack energy for stable load and environmental conditions.
We assume each load is able to maintain an estimate of its
remaining slack time based on its current power state and by
monitoring the state of its internal and external environment.
As shown in Figure 5, slack estimates may change over time
based on both the load’s power state—when the load is off
slack increases—and environmental conditions, such as a
refrigerator door opening or the humidity increasing. Since
these changes in slack may be unpredictable, our scheduler
is reactive and online, continually adjusting which loads
receive power based on their available slack. Finally, we
assume that our gateway is able to query the slack of each
load at any time using simple models as in [17].

Before describing our scheduler, we first illustrate a sim-
ple example using ideal background loads with well-defined
on and off periods in isolation, and without uncontrollable
interactive loads. The illustration demonstrates how shifting
power usage is able to flatten demand. Figure 6(a) depicts
an extreme example, where the slack for three window A/C
units that draw 1kW when on dictates that they must turn on
for 15 minutes anytime within each hour to maintain their
respective setpoint temperatures. In the worst case, without
any scheduling, these units may be nearly synchronized and
cause power usage to reach 3kW for close to 15 minutes over
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Figure 6. A background load scheduler is capable of flattening demand,
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the hour, while drawing 0W for the remaining 45 minutes.
In the best case, with appropriate scheduling, it is possible
to shift the on periods such that only a single A/C is on
at any given time, resulting in a peak usage of only 1kW
(Figure 6(b)); since the on periods of the A/Cs interleave
with room to spare, we are able to perfectly flatten demand.

To quantify flattening over an interval, we use the average
absolute deviation from the mean power, which is an average
of the absolute difference between power at every time t and
the average power. We use this metric instead of the standard
deviation simply because it is more intuitive; standard de-
viation exhibits the same trends but is greater than or equal
to our metric. The lower the deviation the more flat the
demand and the better the schedule, where the magnitude
of the deviation quantifies how much demand varies. In
our example, the worst-case no scheduling scenario has a
deviation of 1125W from the mean power, while the best-
case scenario has a deviation of 375W due to 15 minutes
of no power consumption at the end of the period. In this
scenario, interleaving the A/Cs results in a 3x reduction in
the deviation and, thus, a significantly flatter demand profile.

As noted in prior work [6], [11], the scheduling problem
for ideal background loads with regular well-known on-off
periods distills to a simple offline optimization problem in
the absence of interactive loads. Figure 6(c) demonstrates
how interactive loads alter scheduling by inserting into our
previous example four 5 to 15 minute peaks of 1000W
during the hour-long period, as could be expected from
heating up food in a microwave to prepare a family dinner.
Even though A/Cs have enough slack within the hour to
defer their power consumption whenever the microwave
turns on (Figure 6(d)), an algorithm that determines the
schedule in advance will not know about, or take into
account, the microwave events. While this is a simple
idealized example, it illustrates that load scheduling in the
presence of unpredictable interactive loads is an online, and
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hence heuristic, process. Sudden and unpredictable changes
to a load’s slack, such as from opening doors or changes
in weather, introduce similar issues that warrant an online
approach. As we discuss in Section VI, and in contrast to
Figure 6(a) and (b), we find that scheduling background
loads is most advantageous during “peaky” periods with
many short, but high power, interactive loads.

SmartCap’s scheduler executes every interval T to de-
termine which background loads receive power (and how
much for the battery charger). In our simulator and testbed,
we choose T ’s length to be significantly less (one minute)
than the typical on-off periods of our background loads; the
setting also ensures that background loads are not quickly
turned on and off, which may degrade their reliability. We
assume that once a load’s slack reaches zero, the scheduler
must provide it the necessary power regardless of the in-
crease in peak usage. We call our basic load scheduling
policy Least Slack First (LSF), since the policy supplies
power to loads in ascending order of their current slack
value. Thus, loads with a lower slack have a higher priority.
LSF is a direct adaption of the Earliest Deadline First
(EDF) scheduling policy common in real-time operating
systems. We combine LSF with a target capacity threshold to
determine how many loads to power, and how much power
to supply to battery chargers. Once the sum of the back-
ground loads’ power usage reaches the capacity threshold,
the scheduler stops powering additional background loads.
Figure 7 depicts how LSF scheduling flattens demand for a
real power signal, assuming three A/Cs turn on near each
other as in Figure 6. As in our example, LSF flattens the
demand profile by interleaving the on periods.

Our experiments use an adaptive threshold based on an
exponentially weighted moving average of the home’s power
consumption over the previous hour. Setting the capacity
threshold presents a trade-off. A threshold too low causes
the scheduler to defer too many loads, resulting in their
slack approaching zero in tandem, and inducing large peaks
by ultimately forcing the scheduler into simultaneously
powering many loads with zero slack. A threshold too high
causes the scheduler to power too many background loads
at a time, resulting in a peak that is higher than necessary.
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V. PROTOTYPE: DESIGN AND IMPLEMENTATION

Our SmartCap home deployment is in an average 3-
bedroom, 2-bath house with 1700 sq. ft. and a total of 8
rooms across three floors, including a basement. Since the
prototype is a real home with three occupants that went
about their daily routines during the monitoring period, our
data reflects real-life home usage patterns. The home does
not have central air, and its furnace and water heater use
natural gas, which removes three potentially large consumers
of electricity. During the summer, the occupants use three
window A/C units to cool the home—one large unit in the
living room and a smaller unit in each upstairs bedroom.

We provide a brief summary of our SmartCap deployment.
A TED 5000 measures power consumption for the entire
home every second using meter-like measurements of the
wires supplying grid power to the home’s main circuit
breaker panel. The TED specification claims accuracy within
2%; in fact, over our monitoring period we found the TED
to be within 1% of the utility company’s power readings.
We use Insteon-enabled switches to monitor and control
loads; Insteon is a common, commercially-available home
automation protocol that uses power line communication. In
particular, we use the Insteon iMeter to monitor power at
background load outlets, and the Insteon ApplianceLinc to
control power to our background loads from our gateway.
Our gateway connects to an Insteon Power Line Modem
(PLM), which is able to inject Insteon commands and listen
for responses over the home’s power lines. The gateway
both polls the iMeters for their power usage and issues
on-off commands to the appliances through the PLM. For
background load scheduling, SmartCap only requires power
data for the whole home and at the seven background loads.
However, our prototype is capable of remotely monitoring
and controlling each outlet and wall switch in the home [10].
To monitor environmental metrics and compute slack, we
deploy eight temperature and humidity sensors inside or near
each background load, as well as outside, using an Oregon
Scientific WMR200A weather station.

In addition to our in-home SmartCap deployment, we
also setup a smart home testbed to mimic our home’s back-
ground loads. The testbed enables us to perform repeatable
experiments, such that we do not disturb home occupants;

it uses the same SmartCap system as our real deployment:
Insteon-enabled power meters and switches to monitor and
control background loads. The background loads include a
humidifier, dehumidifier, multiple electric heaters, a freezer,
and a refrigerator. We use heaters rather than A/Cs, since
our testbed resides within a window-less room and A/Cs
require outside drainage. Since we use external load control
switches that are not integrated with the appliance to connect
and disconnect power, we use appliances that remember
and restart in the same setting after a power outage. For
experiments, we are able to replay traces using our home
data both with and without LSF scheduling.

VI. EVALUATION

We evaluate LSF in simulation and in our smart home
testbed to explore its performance in realistic settings. Our
simulator, written in Java, uses input traces of household
load events to simulate background load scheduling using
LSF. Each load event corresponds to a change in the power
level for a single load. The simulator also associates both a
maximum and minimum slack value with each background
load every period, which includes a single off interval and
its subsequent on interval. At each period boundary, the
simulator assumes the load is at its maximum slack value if
it has just transitioned to the off state, and assumes the load
has zero slack if it has just transitioned to the on state.

The simulator uses a simple linear model for computing
per-period slack: when a load is on its slack increases
linearly, and when it is off it decreases linearly. To always
ensure that the load reaches its maximum slack by the end
of each period, the simulator determines the slope of the
linear increase or decrease in slack using the ratio of the on
and off durations for the current period. Note that, due to
environmental changes, each background load may exhibit
different period durations, as well as per-period on and off
durations, throughout the day. In practice, SmartCap may
use an environmental model to compute slack in real time;
linear models tend to perform well, as Figure 5 demonstrates
for the refrigerator and its inside temperature. Since we
automatically generate input traces from the home’s power
data, our per-period slack computation is an indirect way of
accounting for environmental changes in simulation.



Since our scheduler only controls background loads, our
input traces represent all interactive loads as a single load
with many frequent load events. To get power readings
for the interactive loads, we simply subtract the power
consumption of each background load from the home’s
aggregate power consumption. Note that since we collect ag-
gregate power consumption every second, our trace includes
a new event nearly every second to represent the changing
consumption of the interactive loads.

A. Simulation Results

We first evaluate LSF for flattening peak power usage
in our home deployment. We focus on the last 82 days
during the summer. Flattening is most important during
summer months, since peak demands typically occur in
these months [1]. Figure 8 shows the percentage decrease in
average absolute deviation from the mean power using LSF
scheduling for different periods. Recall from Section 4 that
we use the average absolute deviation to quantify the flatness
of the demand profile. Figure 8(a) plots the percentage
decrease in deviation over each day, and demonstrates that
LSF flattens the profile on over 91% of days, resulting in
a 16% flatter profile on average. LSF does not flatten the
profile on 9% of days, since those days already have a
low deviation without scheduling. On 33% of days, LSF
decrease the deviation by more than 20%. The results are
significant, since each day includes long periods of relatively
little activity, e.g., all night, where the average absolute
deviation is not high since there is not much activity in the
home. Despite the long periods of inactivity that occur each
day, LSF is still able to flatten the day-long demand profile.

We also examine how LSF performs for shorter 4-hour
intervals that correspond to peak usage times, since these are
the periods where demand flattening is most important. We
divide 4-hour periods throughout the summer by the magni-
tude of their average absolute deviation or “peakiness.” We
find that LSF does not provide much improvement (<3%)
for periods that do not exhibit “peaky” behavior, since the
demand profile is already flat. We find that over 69% of the
4-hour periods throughout the 82 days have average devia-
tions less than 400W; these periods generally correspond to
nighttime or when the home is unoccupied. The remaining
31% of the periods exhibit deviations between 400W-1000W
(22%) and over 1000W (9%). Figure 8(b) shows that LSF
works well for the mid-range (400W-1000W) and high-range
(>1000W) 4-hour periods, decreasing the average absolute
deviation by by an average of 23% and 21%, respectively.

The data indicates that many flat 4-hour periods exist
throughout our trace, which suggests that most of LSF’s im-
provement stems from scheduling background loads around
interactive loads that cause brief, but significant, power
peaks. If the background loads themselves interleaved to
cause significant peaks in power, we would expect more
improvement during periods with few interactive loads, e.g.,
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Figure 9. Load duration curves for a typical summer day with and without
scheduling when using an EV.
nighttime. Since our home has many background loads that
operate based on different environmental conditions, they
rarely all turn on simultaneously. Thus, without LSF, these
background loads already exhibit a great deal of statistical
multiplexing, and there is little LSF can do to flatten their
peak usage in isolation. Our results also indicate that LSF
works especially well during “peaky” periods where the
average deviation is high; these periods typically occur
during peak demand periods.

B. Impact of EVs

We also studied the impact of EVs on LSF’s ability to
flatten peaks. Today’s grid was not sized for the increased
power consumption from widespread EV adoption. As a
result, the grid must either add capacity or use better load
scheduling, e.g., through new pricing models, to force EVs
to multiplex their charging over time. For instance, in our
home, charging an EV on a typical summer day increases
the home’s total power consumption by 52%. SmartCap and
LSF represent a possible avenue for flattening demand with
EVs. As in the simulations above, we use data from our
prototype home, but add an EV charger based on the Chevy
Volt, with a battery capacity of 16kWh plugged in at night
between 7pm and 6am that takes 5 hours to charge.

Figure 9 shows the results for an average summer day
by plotting a load duration curve both without scheduling
and using our LSF scheduler. Load duration curves are
a common method for visualizing the flatness of power
distributions. The curve shows the percentage of time on
the x-axis during the day that electricity demand was at
the corresponding power value on the y-axis. An ideal load
duration graph is a completely horizontal line at the average
power usage. On this day, LSF reduces the average absolute
deviation by 22%. In particular, LSF reduces the peak time
periods where demand is highest (on the left side of the
graph) significantly, and shifts their power consumption
across many of the lower power periods throughout the day.

C. Testbed Results

Finally, to demonstrate LSF’s performance in a realistic
setting we use our smart home testbed. Figure 10 shows the
power usage, as measured by our Insteon power meters, for a
representative 4-hour period. We use data from our home on
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Figure 10. Power usage with and without LSF scheduling using using our
smart home testbed with real background loads over a 4-hour period.

June 15th from 2pm to 6pm to replicate the same sequence
of background load on and off periods in our testbed. As
discussed earlier, our gateway sends commands to Insteon
ApplianceLincs to connect and disconnect background loads
from power. The experiment demonstrates how LSF shifts
the power usage of the background loads forward to compen-
sate for the interactive loads early in the period. As a result,
on this day LSF decreases the absolute average deviation
from the mean power by 23%.

VII. RELATED WORK

Increasing the penetration of demand-side load manage-
ment in residential settings is a key goal of smart grids.
Thus, SmartCap’s general architecture, which includes the
home gateway, an array of real-time power meters, and
programmable switches, is similar to other proposed ar-
chitectures for programmatically regulating home electricity
demand [6], [11], [14]. While space constraints preclude a
full survey of prior work, past approaches focus on using
these architectures for a range of load scheduling objec-
tives, such as reducing total energy consumption, reducing
costs based on variable prices, or varying power usage to
match renewable generation. Our work differs in its focus
on flattening demand without affecting occupants by only
scheduling background loads. We do not explore schedul-
ing to satisfy other objectives, since it requires disturbing
occupants by periodically disconnecting interactive loads.

Prior work also recognizes that loads with on-off con-
trollers present a unique scheduling opportunity [6], [11],
[17]. For instance, Taneja et al. [17] present an algorithm for
scheduling a single refrigerator with slack that operates off
wind power. Both Keshav and Rosenberg [11] and Bakker et
al. [6] present offline optimization approaches to scheduling
multiple on-off loads in isolation, assuming that loads with
on-off controllers have well-known and regular periods.
In contrast, our work quantifies the benefits of scheduling
background loads in a real home. Data from our home
reveals that background loads do not exhibit regular periods,
due to environmental changes, while interactive loads are
difficult to predict in advance. As a result, we eschew offline
optimization scheduling algorithms in favor of an online

approach that uses each load’s current slack as a heuristic
to determine its priority at any time.

VIII. CONCLUSION

Demand-side management is challenging, since it often
requires active, and often burdensome, consumer involve-
ment. Forcing people to think about how they use power
is simply not effective in encouraging broader adoption of
demand-side management. Thus, we focus on quantifying
the benefits of scheduling transparent background loads.
We show that LSF is able to flatten household demand
over each day, despite long periods of inactivity at night.
Importantly, we also show that LSF is useful over shorter
(4-hour) peak usage periods, where demand is “peaky” and
deviates frequently and significantly from the average.
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