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Abstract—Scientists and society increasingly rely on streaming 

data from electronic sensors to assess, model, and forecast envi-

ronmental changes. Because analyses of time-series data require 
uninterrupted data streams or datasets, scientists regularly fill 

gaps in the data by substituting modeled values. As modeling 

increases in complexity, the provenance metadata needed to 

describe and define processes used to model data and create 

derived datasets quickly exceeds the capacity of individual flags 
or groups of flags to annotate individual data values. In theory, 

necessary provenance metadata could be captured in narrative 

form, but the time and effort required to do so are prohibitive. A 

system that can capture provenance metadata automatically and 

allow scientists to query them for useful details is what scientists 
really need. In this paper we describe a system that uses Little-

JIL, a process programming language, to rigorously define mod-

eling and data-derivation processes, and a mathematical graph 

structure – a Data Derivation Graph (DDG) –  that precisely 

describes execution histories. Our system and approach support 
understanding the (potentially) different processes used to create 

data values, reasoning about the soundness of these processes, 

and helping to ensure that the data processing in sensor net-

works is reliable and reproducible. 

Keywords—provenance metadata, scientific workflow, sensor net-

work, Little-JIL 

I.  INTRODUCTION 

Scientists and society increasingly rely on streaming data 

from electronic sensors to assess current environmental states 

and to forecast future environmental changes. Because analys-

es of time-series data require uninterrupted data streams or 

datasets (i.e., there must be a reliable observation for each time 

slot), scientists regularly fill gaps or correct “problems” in data 

streams by substituting modeled values for missing, out-of-

range, or suspect observations. Different scientists substitute, 

model, or gap-fill data differently, and some approaches can 

be inconsistent with subsequent analyses . Such inconsistencies 

can undermine the quality and reduce the reliability of derived 

datasets, but these changes in quality and reliability often are 

invisible to subsequent users of the derived datasets. There-

fore, it is critically important to be able to identify which data 

values represent actual observations and which have been 

modeled, and how modeled values have been computed . Fur-

thermore, even observed values may undergo subsequent revi-

sion; e.g., to compensate for sensor drift that is discovered at a 

later time. Finally, a given data value may have been adjusted 

more than once. All of this suggests that the different data 

items in a dataset should be annotated with information (meta-

data) about exactly how their values were derived. A full h is-

tory of all of the adjustments to a given datum is referred to as 

the data item’s provenance; the annotation is referred to as 

provenance metadata.  

Often scientists “flag” values in a dataset using schemes 

that identify special conditions attendant to the data.  At the 

Harvard Forest Long Term Ecological Research (LTER) site, 

current practice is to flag estimated values (including modeled 

values) with the single letter "E.” But a simple flag (or even 

several flags) is insufficient to answer all of the questions that 

may arise with regard to data provenance. For example, if a  

precipitation datum in a dataset actually originated at another 

site (e.g. due to sensor failure), it may be important to know 

which site was the origin of the datum, especially if it turns out 

that the second site was also experiencing sensor reliability 

problems on that date. Or if measurements are corrected post-

hoc (e.g. to compensate for sensor drift), we may need to know 

how the data were corrected and over what range of dates, in 

order to correctly update derivative data products (e.g. 

monthly or annual summaries). Finally, if a datum was com-

puted (not actually observed) using a model, it is important to 

track software and modeling tools used, as there can be varia-

tion in precision and accuracy, for example, among the differ-

ent versions of the tools and algorithms used in model compu-

tation.  

As data modeling increases in complexity, the provenance 

metadata needed to describe and define the processes, models, 

and associated derived data rapidly exceeds the expressive 

power of modest numbers of individual flags or groups of 

flags.  Provenance metadata can be captured in narrative form, 

but the considerable effort required to capture these metadata 

accurately and then to decipher them correctly renders narra-

tives and their analysis error-prone, especially since narratives 

are rarely machine readable. A system that can capture prove-

nance metadata automatically and allow scientists to query 

them for useful details is what scientists really need. Our solu-

tion is to continually record comprehensive metadata as the 

data are collected and processed so that scientists can 

(re)examine the data, perhaps in ways that were not antic-

ipated, or not possible, init ially.  In this paper we describe our 

experience in treating scientific data values to be the outputs of 
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the execution of a (scientific data processing) process where 

the provenance metadata of the generated data is a summary of 

the execution history of the process . Our work uses Little-JIL, 

a process programming language, to define such processes, 

and a graph structure, called a Data Derivation Graph (DDG), 

to summarize their execution histories. The rigorous defini-

tions and semantics of Little-JIL, and of the derived DDGs, 

support reasoning about the processes used to build data and 

datasets.  This can build confidence in, and ensure the quality 

of, scientific data and derived data products  [1]. 

II. STREAM GAGE EXAMPLE 

Our example is an ongoing study of water movement 

through small forested watersheds at the Harvard Forest. The 

study relies on automated measurements of stream discharge 

(rate of flow) at a series of stream gages . At each gage, a pres-

sure sensor is used to measure the stage or height of the water 

at the gage. A datalogger samples the sensor every 10 seconds, 

then calculates and retains 15-minute averages. The 15-minute 

values are retrieved from the datalogger, checked to see if they 

are within range, and (if they are) used to calculate stream 

discharge based on empirical flow equations for the particular 

gage. The resulting time-stamped 15-minute values of dis-

charge are then posted online (http://harvardforest. 

fas.harvard.edu:8080/exist/xquery/data.xq?id= hf070). 

In this paper we propose an extension of the current ap-

proach that will combine (1) automated processing of real-time 

measurements, along with gap filling for missing or out-of-

range values, and (2) user-initiated post-processing to correct 

for sensor drift and update modeled values using both preced-

ing and subsequent measurements. 

III. PROVENANCE AND LITTLE-JIL 

Little-JIL [2,3,4] is a graphical process programming lan-

guage that supports the representation and execution of 

processes that may involve the interaction of multip le agents 

to accomplish a task (note: our terminology differs somewhat 

from that used in the Open Provenance Model [5]; in particu-

lar, the OPM concept of “process” corresponds more closely to 

the Little-JIL concept of “step”).  Little-JIL processes are de-

fined using a hierarchical decomposition of steps and substeps. 

This hierarchical decomposition allows a process to be viewed 

at various levels of abstraction, with a step’s substep structure 

defining the way in which the step is to be carried out.  A leaf 

step is carried out by assigning it to an “agent”, an entity that 

is responsible for assuring the acceptable performance of the 

step, but in a way that is outside of the direct control of Little-

JIL. Agents may be either humans or automated devices (e.g. 

software systems or sensors).  

Figure 1. Little-JIL diagram for the stream d ischarge process. 



 

 

Artifacts flow through a Little-JIL process by being 

passed as parameters between steps and substeps .  Each edge 

in a Little-JIL diagram carries a specification of the artifacts 

that are being passed between parent and child, along with 

binding information needed to relate the data flowing along an 

edge to the parameter specifications of the steps that are con-

nected by the edge.  Little-JIL edges can also carry cardinality 

information that specifies the number of instances of the subs-

tep that are to be instantiated for execution.  The cardinality 

specification may be an integer or a Boolean expression used 

to determine the circumstances under which the substep is to 

be generated for execution.  To simplify the depiction, the 

Little-JIL diagram does not directly show the artifacts, but a 

user can see this information by clicking on an edge in the 

Little-JIL editor.  

Each step also specifies the resources required for the step 

to execute (the step’s agent is considered to be a resource, but 

additional resources may also be specified), any exceptions 

that may be thrown by the step, and any provisions that the 

step may make for handling exceptions that could be thrown 

by any of the step’s descendants.  

The graphical representation of a Little-JIL step with its 

different badges and possible connections to other steps is 

shown in the key to Figure 1. The interface badge is a circle on 

the top of the step name that connects a step to its parent. The 

interface badge contains the specification of any artifacts that 

are either required for, or generated by, the step's execution as 

well as the type of the agent required to execute the step. Be-

low the circle is the step's name. The icon at the left of the 

black rectangle identifies the sequencing construct that con-

trols how the step’s substeps are executed. There are four pos-

sibilit ies:  sequential (all substeps in order from left to right), 

parallel (all substeps in any order or concurrently), choice 

(choose one substep at runtime), and try (execute substeps 

from left to right until one succeeds). The red X at the right 

edge of the black rectangle attaches a step to its exception 

handlers. Exceptions may be “thrown” by any of the descen-

dants of a step. Control flow then goes to the nearest ancestor 

with a handler for that exception. After completing execution, 

the handler determines where execution should resume. There 

are three possibilities: continue (continue the step following 

the substep that threw the exception), complete (treat the par-

ent step of the handler as having completed its execution and 

continue from there), and rethrow (throw the same exception 

thereby passing the exception up the step hierarchy to the next 

ancestor with a handler for that exception). 

Figure 1 shows the Little-JIL diagram for the stream d is-

charge process. The parallel root step (Get Data) builds and 

updates a database of sensor data through the concurrent oper-

ations of its two substeps, Get Measurement and Do Post 

Processing. Get Measurement collects and processes  sensor 

data in real time  and adds a record to the database for each 

measurement.  Under normal conditions Read Sensor returns a 

measured value, Check Stage checks to see that the value is in 

range, Calculate Discharge calculates  stream discharge, and 

the resulting values are added to the database. Exceptional 

conditions are handled by the corresponding exception hand-

ler. For example, if Check Stage determines that the measured 

value is out of range, the Handle Bad Value step generates a 

modeled discharge value based on preceding measurements 

read from the database.  Similarly, if Read Sensor fails on 

three attempts, the Handle Missing Value step assigns  a value 

of NA to stage and concurrently generates a modeled value for 

discharge.  

Meanwhile Do Post Processing (shown here in abbre-

viated form) runs concurrently with Get Measurement.  In 

contrast to Get Measurement, which runs continuously to 

process streaming data in real-time, Do Post Processing only 

executes infrequently, when a scientist determines that post 

processing is required.  Do Post Processing first gets  input 

from the user (including the range of dates and adjustment and 

modeling parameters), optionally adjusts a block of measure-

ments for sensor drift, and then updates all modeled values in 

that block using both preceding and subsequent data.  

We attach cardinality to substep edges to control the 

number of times that a step is repeated.  In this example, the 

edge to Get Measurement has a cardinality labeled “+”, mean-

ing that the step is done one or more times.   The edge to the 

Do Post Processing step has a cardinality labeled “*”, meaning 

that the step is done zero or more times.  The edge to Adjust 

for Drift has a cardinality label “0..1”, meaning the step is 

done either 0 or 1 times, thereby making this activity optional.  

Finally, the edge to the Read Sensor step is labeled with a car-

dinality of 3, meaning that we will try to read the sensor 3 

times before deciding that the sensor is unreachable.  Due to 

the semantics of the Try step, Get Stage is complete as soon as 

Read Sensor successfully gets a value. If Read Sensor fails 3 

times consecutively, it will throw an exception that will be 

handled by the Handle Missing Value exception handler at-

tached to the Get Discharge step. 

One of the strengths of Little-JIL is the ability to represent 

processes at any desired level of detail or abstraction. In our 

example, each of the leaf steps could be decomposed into its 

constituent substeps to show (for example) the equations used 

to calculate discharge from stage (Calculate Discharge) or the 

more complex series of calculations used to model discharge 

based on recent precipitation and discharge (Model Dis-

charge). At the same time, the entire process shown here might 

be embedded in a much larger process that calculates water 

flux in a watershed by integrating measurements such as pre-

cipitation, evapotranspiration, stream discharge, water content 

of snow pack, soil moisture, and height of the water table. 

The Little-JIL diagram provides a rigorous specification 

of the process but does not tell us what actually happened in 

any particular execution of the process. For that, we need the 

information contained in the DDG that is produced when a 

Little-JIL process is executed.  Figure 2 provides examples, in 

the form of four DDG fragments, of different ways in which 

the process shown in Figure 1 can be executed, leading to the 



 

 

creation of a single stream discharge value. A DDG consists of 

two kinds of nodes and two kinds of edges . In Figure 2, 

rounded nodes represent process steps that have been ex-

ecuted, while rectangular nodes represent values that have 

been used and generated by these steps . Different colors are 

used to denote different kinds of steps and different kinds of 

values. Green edges represent the flow of control between 

steps while red edges show the flow of data that is generated 

by one step and then used as input by others.  

The graphical representations in Figure 2 show the flow 

of data and control under four scenarios: (a) an in-range value 

is returned by the sensor and used to calculate stream dis-

charge, (b) the Check Stage step determines that the sensor 

value is out of range and so a modeled value of stream dis-

charge is generated, (c) the first attempt to read the sensor fails  

so the Read Sensor step is tried again, successfully returning a 

value on the second try, (d) Read Sensor is tried three times 

and fails to return a value on any of the three tries , resulting in 

assignment of a missing value for stage and a modeled value 

for stream discharge. The last three scenarios take advantage 

of Little-JIL’s ability to precisely describe and handle excep-

tions. In each case the DDG shows the exact derivation of the 

final stream discharge value. In particular, the bottom yellow 

oval in each figure represents execution of the step that writes 

the sensor data and discharge data to the archival database. By 

following the red arrows up from this oval, the scientist can 

observe the origin or provenance of each value that is saved in 

the database. In the first and third cases, the observed sensor 

value and corresponding calculated discharge value are saved. 

In the second case, the observed sensor value is saved and a 

modeled discharge value is generated and saved since the ob-

served sensor value is not usable. In the fourth case, a special 

NA (missing) value is recorded for the sensor value along with 

the modeled discharge value.  

Most of the processing demonstrated in this example is 

sequential, leading to a single, straight control flow path 

Figure 2. Four possible DDGs resulting from a single execution of the Get Measurement step: (a) normal sensor reading, (b) out -

of-range value, (c) retry of Read Sensor, (d) missing value after three successive failures of Read Sensor. 



 

 

through the process.  The fourth case, however, demonstrates 

parallel control flow that occurs during the execution of the 

Handle Missing Value step.  Here the recording of NA for the 

stage value happens concurrently with the calculation of the 

Fill Gap step.  Note that the Fill Gap step under Handle Miss-

ing Value is a reference to the same collection of steps that is 

rooted at Fill Gap under the Handle Bad Value exception 

handler.  This ability to refer to steps defined elsewhere in the 

process provides the ability to duplicate the same behavior in 

different contexts throughout a process, where the context is 

determined by the parameter values passed in for use by the 

step. 

IV. RELATED WORK 

Scientific data provenance is receiving increased attention 

[6, 7]. The Open Provenance Model [5] defines a graph repre-

sentation of provenance metadata, similar in many respects to 

the DDGs presented here. One area of future work is to map 

DDGs into OPM to allow interoperability with other prove-

nance repositories. 

One significant difference between Little-JIL and other 

scientific workflow approaches is in exception handling. Ex-

ception handling constructs were introduced into programming 

languages, such as C++ and Java, to help deal with erroneous 

or unlikely situations where the appropriate response is often 

best determined in the calling scope of where the exceptional 

situation arose. In Little-JIL, the hierarchical levels of the 

process definition serve as scopes that are searched upward for 

an exception handler. This provides the benefits that normally  

come from exception handling mechanisms, most importantly, 

the ability to cleanly separate exception handling code from 

code describing the computations to be carried out in nominal 

(usually expected) cases, avoiding the spaghetti code that oth-

erwise frequently arises when code to handle exceptional cases 

is interleaved with the processing of nominal cases. 

Some workflow management systems provide support for 

detecting failures during execution, such as the failure of a 

web service, and offer a limited number of ways to manage 

those failures [8,9]. Kepler [10] provides the ability to anno-

tate a collection with an exception, which an actor can then use 

to filter out collections that contain exceptions . User-defined 

exception handling is just beginning to appear in scientific 

workflow languages [11,12,13].  

In addition to the ability to define complex exception 

handling, the provenance recorded in DDGs distinguishes ex-

ception objects from other types of data. We expect that a 

common concern among scientists is to be able to easily iden-

tify when the execution of a process encountered problems. By  

exp licitly capturing this informat ion in a DDG, it will be easier 

for scientists to perform queries that will identify the problems 

encountered during process execution. In the sample DDGs  

shown in this paper, we distinguish exception nodes by their 

color.  As we develop the query mechanisms to access infor-

mation from DDGs, we plan to give the scientist the ability to 

develop queries that can distinguish exceptional situations 

from expected situations as well.  

Provenance metadata has previously been used to track 

changes made as sensor data is republished [14]. The emphasis 

in that work has been on linking together sites on the Internet 

that are using each other’s data in order to track how the data 

are republished and to control access to the data. Thus, prove-

nance metadata are used to track how sensor data are accessed 

and updated even though they may be distributed widely. The 

focus of our work is on using provenance information to sup-

port reasoning aimed at assuring that processes have the de-

sired properties of correctness, robustness, and access control, 

and also to allow processes to be used directly in computing 

the data itself, as in the post-processing work described earlier. 

V. DISCUSSION AND FUTURE WORK 

Our experience to date suggests that our approach is ef-

fective in  capturing detailed and accurate provenance infor-

mat ion. Moreover, our approach supports  the capture of ex-

ecution details down to low levels, if those low level details 

are incorporated into the Little -JIL process definition. How-

ever, DDGs quickly can become large and unwieldy, as can be 

seen even in our simple example. We are now investigating 

ways to store DDGs using various database technologies that 

support querying and visualizat ion. Such databases will allow 

scientists to focus on particular areas of interest, such as data 

collected from a specific instrument at a specific site on a spe-

cific date. Because many data items follow the same path 

through the process, we are exploring database representations 

that allow us to compress the stored representation considera-

bly, yet allow us to extract provenance metadata of an individ-

ual datum without paying the storage cost of the complete 

DDG. Even in our simple example (e.g. Figure 2d), a repeat-

ing node pattern is easily identified. Other kinds of repetition 

can arise in a DDG that represents identical derivation paths of 

different individual d ischarge values. However, in more co m-

plex processes, individual paths may diverge, especially if 

different data values use different computations, if there is 

parallelis m in computation, or if data values often require spe-

cial error handling. A similar compression approach has been 

pursued by Anand et al. [15]. 

We are also investigating visualization mechanisms  [16, 

17, 18] that build upon queries of the provenance metadata to 

streamline the amount of data presented to the scientist.  As 

mentioned earlier, one of the strengths of Little-JIL is the way 

in which the hierarchical decomposition of processes allows 

processes to be viewed at varying levels of abstraction.  The 

DDGs that we produce capture the complete data flow, via the 

red edges, but also maintain information about the hierarchy 

expressed in the process, via the non-leaf start and finish 

nodes.  We plan to take advantage of this informat ion in visua-

lization, to allow the scientist to zoom in and out on prove-

nance detail, and also allow the scientist to express queries at 

varying levels of abstraction, again as reflected in the process. 

For example, the substeps rooted at Get Discharge could be 



 

 

collapsed into a single node showing only the stage and dis-

charge values output by the step or fully expanded to show 

intervening details (Get Discharge Start to Get Discharge 

Finish, as shown in Figure 2). 
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