

Provenance and Quality Control in Sensor Networks

Barbara Lerner
1
, Emery Boose

2
, Leon Osterweil

3
,

Aaron Ellison

2
, Lori Clarke

3

1 Mount Holyoke College
2
 Harvard University

3
 University of Massachusetts Amherst

blerner@mtholyoke.edu, boose@fas.harvard.edu, ljo@cs.umass.edu,

aellison@fas.harvard.edu, clarke@cs.umass.edu

Abstract—Scientists and society increasingly rely on streaming

data from electronic sensors to assess, model, and forecast envi-

ronmental changes. Because analyses of time-series data require
uninterrupted data streams or datasets, scientists regularly fill

gaps in the data by substituting modeled values. As modeling

increases in complexity, the provenance metadata needed to

describe and define processes used to model data and create

derived datasets quickly exceeds the capacity of individual flags
or groups of flags to annotate individual data values. In theory,

necessary provenance metadata could be captured in narrative

form, but the time and effort required to do so are prohibitive. A

system that can capture provenance metadata automatically and

allow scientists to query them for useful details is what scientists
really need. In this paper we describe a system that uses Little-

JIL, a process programming language, to rigorously define mod-

eling and data-derivation processes, and a mathematical graph

structure – a Data Derivation Graph (DDG) – that precisely

describes execution histories. Our system and approach support
understanding the (potentially) different processes used to create

data values, reasoning about the soundness of these processes,

and helping to ensure that the data processing in sensor net-

works is reliable and reproducible.

Keywords—provenance metadata, scientific workflow, sensor net-

work, Little-JIL

I. INTRODUCTION

Scientists and society increasingly rely on streaming data

from electronic sensors to assess current environmental states

and to forecast future environmental changes. Because analys-

es of time-series data require uninterrupted data streams or

datasets (i.e., there must be a reliable observation for each time

slot), scientists regularly fill gaps or correct “problems” in data

streams by substituting modeled values for missing, out-of-

range, or suspect observations. Different scientists substitute,

model, or gap-fill data differently, and some approaches can

be inconsistent with subsequent analyses . Such inconsistencies

can undermine the quality and reduce the reliability of derived

datasets, but these changes in quality and reliability often are

invisible to subsequent users of the derived datasets. There-

fore, it is critically important to be able to identify which data

values represent actual observations and which have been

modeled, and how modeled values have been computed . Fur-

thermore, even observed values may undergo subsequent revi-

sion; e.g., to compensate for sensor drift that is discovered at a

later time. Finally, a given data value may have been adjusted

more than once. All of this suggests that the different data

items in a dataset should be annotated with information (meta-

data) about exactly how their values were derived. A full h is-

tory of all of the adjustments to a given datum is referred to as

the data item’s provenance; the annotation is referred to as

provenance metadata.

Often scientists “flag” values in a dataset using schemes

that identify special conditions attendant to the data. At the

Harvard Forest Long Term Ecological Research (LTER) site,

current practice is to flag estimated values (including modeled

values) with the single letter "E.” But a simple flag (or even

several flags) is insufficient to answer all of the questions that

may arise with regard to data provenance. For example, if a

precipitation datum in a dataset actually originated at another

site (e.g. due to sensor failure), it may be important to know

which site was the origin of the datum, especially if it turns out

that the second site was also experiencing sensor reliability

problems on that date. Or if measurements are corrected post-

hoc (e.g. to compensate for sensor drift), we may need to know

how the data were corrected and over what range of dates, in

order to correctly update derivative data products (e.g.

monthly or annual summaries). Finally, if a datum was com-

puted (not actually observed) using a model, it is important to

track software and modeling tools used, as there can be varia-

tion in precision and accuracy, for example, among the differ-

ent versions of the tools and algorithms used in model compu-

tation.

As data modeling increases in complexity, the provenance

metadata needed to describe and define the processes, models,

and associated derived data rapidly exceeds the expressive

power of modest numbers of individual flags or groups of

flags. Provenance metadata can be captured in narrative form,

but the considerable effort required to capture these metadata

accurately and then to decipher them correctly renders narra-

tives and their analysis error-prone, especially since narratives

are rarely machine readable. A system that can capture prove-

nance metadata automatically and allow scientists to query

them for useful details is what scientists really need. Our solu-

tion is to continually record comprehensive metadata as the

data are collected and processed so that scientists can

(re)examine the data, perhaps in ways that were not antic-

ipated, or not possible, init ially. In this paper we describe our

experience in treating scientific data values to be the outputs of
 This work is licensed under a Creative Commons Attribution

3.0 Unported License (see http://creativecommons.org/licenses/by/3.0).

mailto:blerner@mtholyoke.edu
mailto:boose@fas.harvard.edu
mailto:ljo@cs.umass.edu
mailto:aellison@fas.harvard.edu
mailto:clarke@cs.umass.edu

the execution of a (scientific data processing) process where

the provenance metadata of the generated data is a summary of

the execution history of the process . Our work uses Little-JIL,

a process programming language, to define such processes,

and a graph structure, called a Data Derivation Graph (DDG),

to summarize their execution histories. The rigorous defini-

tions and semantics of Little-JIL, and of the derived DDGs,

support reasoning about the processes used to build data and

datasets. This can build confidence in, and ensure the quality

of, scientific data and derived data products [1].

II. STREAM GAGE EXAMPLE

Our example is an ongoing study of water movement

through small forested watersheds at the Harvard Forest. The

study relies on automated measurements of stream discharge

(rate of flow) at a series of stream gages . At each gage, a pres-

sure sensor is used to measure the stage or height of the water

at the gage. A datalogger samples the sensor every 10 seconds,

then calculates and retains 15-minute averages. The 15-minute

values are retrieved from the datalogger, checked to see if they

are within range, and (if they are) used to calculate stream

discharge based on empirical flow equations for the particular

gage. The resulting time-stamped 15-minute values of dis-

charge are then posted online (http://harvardforest.

fas.harvard.edu:8080/exist/xquery/data.xq?id= hf070).

In this paper we propose an extension of the current ap-

proach that will combine (1) automated processing of real-time

measurements, along with gap filling for missing or out-of-

range values, and (2) user-initiated post-processing to correct

for sensor drift and update modeled values using both preced-

ing and subsequent measurements.

III. PROVENANCE AND LITTLE-JIL

Little-JIL [2,3,4] is a graphical process programming lan-

guage that supports the representation and execution of

processes that may involve the interaction of multip le agents

to accomplish a task (note: our terminology differs somewhat

from that used in the Open Provenance Model [5]; in particu-

lar, the OPM concept of “process” corresponds more closely to

the Little-JIL concept of “step”). Little-JIL processes are de-

fined using a hierarchical decomposition of steps and substeps.

This hierarchical decomposition allows a process to be viewed

at various levels of abstraction, with a step’s substep structure

defining the way in which the step is to be carried out. A leaf

step is carried out by assigning it to an “agent”, an entity that

is responsible for assuring the acceptable performance of the

step, but in a way that is outside of the direct control of Little-

JIL. Agents may be either humans or automated devices (e.g.

software systems or sensors).

Figure 1. Little-JIL diagram for the stream d ischarge process.

Artifacts flow through a Little-JIL process by being

passed as parameters between steps and substeps . Each edge

in a Little-JIL diagram carries a specification of the artifacts

that are being passed between parent and child, along with

binding information needed to relate the data flowing along an

edge to the parameter specifications of the steps that are con-

nected by the edge. Little-JIL edges can also carry cardinality

information that specifies the number of instances of the subs-

tep that are to be instantiated for execution. The cardinality

specification may be an integer or a Boolean expression used

to determine the circumstances under which the substep is to

be generated for execution. To simplify the depiction, the

Little-JIL diagram does not directly show the artifacts, but a

user can see this information by clicking on an edge in the

Little-JIL editor.

Each step also specifies the resources required for the step

to execute (the step’s agent is considered to be a resource, but

additional resources may also be specified), any exceptions

that may be thrown by the step, and any provisions that the

step may make for handling exceptions that could be thrown

by any of the step’s descendants.

The graphical representation of a Little-JIL step with its

different badges and possible connections to other steps is

shown in the key to Figure 1. The interface badge is a circle on

the top of the step name that connects a step to its parent. The

interface badge contains the specification of any artifacts that

are either required for, or generated by, the step's execution as

well as the type of the agent required to execute the step. Be-

low the circle is the step's name. The icon at the left of the

black rectangle identifies the sequencing construct that con-

trols how the step’s substeps are executed. There are four pos-

sibilit ies: sequential (all substeps in order from left to right),

parallel (all substeps in any order or concurrently), choice

(choose one substep at runtime), and try (execute substeps

from left to right until one succeeds). The red X at the right

edge of the black rectangle attaches a step to its exception

handlers. Exceptions may be “thrown” by any of the descen-

dants of a step. Control flow then goes to the nearest ancestor

with a handler for that exception. After completing execution,

the handler determines where execution should resume. There

are three possibilities: continue (continue the step following

the substep that threw the exception), complete (treat the par-

ent step of the handler as having completed its execution and

continue from there), and rethrow (throw the same exception

thereby passing the exception up the step hierarchy to the next

ancestor with a handler for that exception).

Figure 1 shows the Little-JIL diagram for the stream d is-

charge process. The parallel root step (Get Data) builds and

updates a database of sensor data through the concurrent oper-

ations of its two substeps, Get Measurement and Do Post

Processing. Get Measurement collects and processes sensor

data in real time and adds a record to the database for each

measurement. Under normal conditions Read Sensor returns a

measured value, Check Stage checks to see that the value is in

range, Calculate Discharge calculates stream discharge, and

the resulting values are added to the database. Exceptional

conditions are handled by the corresponding exception hand-

ler. For example, if Check Stage determines that the measured

value is out of range, the Handle Bad Value step generates a

modeled discharge value based on preceding measurements

read from the database. Similarly, if Read Sensor fails on

three attempts, the Handle Missing Value step assigns a value

of NA to stage and concurrently generates a modeled value for

discharge.

Meanwhile Do Post Processing (shown here in abbre-

viated form) runs concurrently with Get Measurement. In

contrast to Get Measurement, which runs continuously to

process streaming data in real-time, Do Post Processing only

executes infrequently, when a scientist determines that post

processing is required. Do Post Processing first gets input

from the user (including the range of dates and adjustment and

modeling parameters), optionally adjusts a block of measure-

ments for sensor drift, and then updates all modeled values in

that block using both preceding and subsequent data.

We attach cardinality to substep edges to control the

number of times that a step is repeated. In this example, the

edge to Get Measurement has a cardinality labeled “+”, mean-

ing that the step is done one or more times. The edge to the

Do Post Processing step has a cardinality labeled “*”, meaning

that the step is done zero or more times. The edge to Adjust

for Drift has a cardinality label “0..1”, meaning the step is

done either 0 or 1 times, thereby making this activity optional.

Finally, the edge to the Read Sensor step is labeled with a car-

dinality of 3, meaning that we will try to read the sensor 3

times before deciding that the sensor is unreachable. Due to

the semantics of the Try step, Get Stage is complete as soon as

Read Sensor successfully gets a value. If Read Sensor fails 3

times consecutively, it will throw an exception that will be

handled by the Handle Missing Value exception handler at-

tached to the Get Discharge step.

One of the strengths of Little-JIL is the ability to represent

processes at any desired level of detail or abstraction. In our

example, each of the leaf steps could be decomposed into its

constituent substeps to show (for example) the equations used

to calculate discharge from stage (Calculate Discharge) or the

more complex series of calculations used to model discharge

based on recent precipitation and discharge (Model Dis-

charge). At the same time, the entire process shown here might

be embedded in a much larger process that calculates water

flux in a watershed by integrating measurements such as pre-

cipitation, evapotranspiration, stream discharge, water content

of snow pack, soil moisture, and height of the water table.

The Little-JIL diagram provides a rigorous specification

of the process but does not tell us what actually happened in

any particular execution of the process. For that, we need the

information contained in the DDG that is produced when a

Little-JIL process is executed. Figure 2 provides examples, in

the form of four DDG fragments, of different ways in which

the process shown in Figure 1 can be executed, leading to the

creation of a single stream discharge value. A DDG consists of

two kinds of nodes and two kinds of edges . In Figure 2,

rounded nodes represent process steps that have been ex-

ecuted, while rectangular nodes represent values that have

been used and generated by these steps . Different colors are

used to denote different kinds of steps and different kinds of

values. Green edges represent the flow of control between

steps while red edges show the flow of data that is generated

by one step and then used as input by others.

The graphical representations in Figure 2 show the flow

of data and control under four scenarios: (a) an in-range value

is returned by the sensor and used to calculate stream dis-

charge, (b) the Check Stage step determines that the sensor

value is out of range and so a modeled value of stream dis-

charge is generated, (c) the first attempt to read the sensor fails

so the Read Sensor step is tried again, successfully returning a

value on the second try, (d) Read Sensor is tried three times

and fails to return a value on any of the three tries , resulting in

assignment of a missing value for stage and a modeled value

for stream discharge. The last three scenarios take advantage

of Little-JIL’s ability to precisely describe and handle excep-

tions. In each case the DDG shows the exact derivation of the

final stream discharge value. In particular, the bottom yellow

oval in each figure represents execution of the step that writes

the sensor data and discharge data to the archival database. By

following the red arrows up from this oval, the scientist can

observe the origin or provenance of each value that is saved in

the database. In the first and third cases, the observed sensor

value and corresponding calculated discharge value are saved.

In the second case, the observed sensor value is saved and a

modeled discharge value is generated and saved since the ob-

served sensor value is not usable. In the fourth case, a special

NA (missing) value is recorded for the sensor value along with

the modeled discharge value.

Most of the processing demonstrated in this example is

sequential, leading to a single, straight control flow path

Figure 2. Four possible DDGs resulting from a single execution of the Get Measurement step: (a) normal sensor reading, (b) out -

of-range value, (c) retry of Read Sensor, (d) missing value after three successive failures of Read Sensor.

through the process. The fourth case, however, demonstrates

parallel control flow that occurs during the execution of the

Handle Missing Value step. Here the recording of NA for the

stage value happens concurrently with the calculation of the

Fill Gap step. Note that the Fill Gap step under Handle Miss-

ing Value is a reference to the same collection of steps that is

rooted at Fill Gap under the Handle Bad Value exception

handler. This ability to refer to steps defined elsewhere in the

process provides the ability to duplicate the same behavior in

different contexts throughout a process, where the context is

determined by the parameter values passed in for use by the

step.

IV. RELATED WORK

Scientific data provenance is receiving increased attention

[6, 7]. The Open Provenance Model [5] defines a graph repre-

sentation of provenance metadata, similar in many respects to

the DDGs presented here. One area of future work is to map

DDGs into OPM to allow interoperability with other prove-

nance repositories.

One significant difference between Little-JIL and other

scientific workflow approaches is in exception handling. Ex-

ception handling constructs were introduced into programming

languages, such as C++ and Java, to help deal with erroneous

or unlikely situations where the appropriate response is often

best determined in the calling scope of where the exceptional

situation arose. In Little-JIL, the hierarchical levels of the

process definition serve as scopes that are searched upward for

an exception handler. This provides the benefits that normally

come from exception handling mechanisms, most importantly,

the ability to cleanly separate exception handling code from

code describing the computations to be carried out in nominal

(usually expected) cases, avoiding the spaghetti code that oth-

erwise frequently arises when code to handle exceptional cases

is interleaved with the processing of nominal cases.

Some workflow management systems provide support for

detecting failures during execution, such as the failure of a

web service, and offer a limited number of ways to manage

those failures [8,9]. Kepler [10] provides the ability to anno-

tate a collection with an exception, which an actor can then use

to filter out collections that contain exceptions . User-defined

exception handling is just beginning to appear in scientific

workflow languages [11,12,13].

In addition to the ability to define complex exception

handling, the provenance recorded in DDGs distinguishes ex-

ception objects from other types of data. We expect that a

common concern among scientists is to be able to easily iden-

tify when the execution of a process encountered problems. By

exp licitly capturing this informat ion in a DDG, it will be easier

for scientists to perform queries that will identify the problems

encountered during process execution. In the sample DDGs

shown in this paper, we distinguish exception nodes by their

color. As we develop the query mechanisms to access infor-

mation from DDGs, we plan to give the scientist the ability to

develop queries that can distinguish exceptional situations

from expected situations as well.

Provenance metadata has previously been used to track

changes made as sensor data is republished [14]. The emphasis

in that work has been on linking together sites on the Internet

that are using each other’s data in order to track how the data

are republished and to control access to the data. Thus, prove-

nance metadata are used to track how sensor data are accessed

and updated even though they may be distributed widely. The

focus of our work is on using provenance information to sup-

port reasoning aimed at assuring that processes have the de-

sired properties of correctness, robustness, and access control,

and also to allow processes to be used directly in computing

the data itself, as in the post-processing work described earlier.

V. DISCUSSION AND FUTURE WORK

Our experience to date suggests that our approach is ef-

fective in capturing detailed and accurate provenance infor-

mat ion. Moreover, our approach supports the capture of ex-

ecution details down to low levels, if those low level details

are incorporated into the Little -JIL process definition. How-

ever, DDGs quickly can become large and unwieldy, as can be

seen even in our simple example. We are now investigating

ways to store DDGs using various database technologies that

support querying and visualizat ion. Such databases will allow

scientists to focus on particular areas of interest, such as data

collected from a specific instrument at a specific site on a spe-

cific date. Because many data items follow the same path

through the process, we are exploring database representations

that allow us to compress the stored representation considera-

bly, yet allow us to extract provenance metadata of an individ-

ual datum without paying the storage cost of the complete

DDG. Even in our simple example (e.g. Figure 2d), a repeat-

ing node pattern is easily identified. Other kinds of repetition

can arise in a DDG that represents identical derivation paths of

different individual d ischarge values. However, in more co m-

plex processes, individual paths may diverge, especially if

different data values use different computations, if there is

parallelis m in computation, or if data values often require spe-

cial error handling. A similar compression approach has been

pursued by Anand et al. [15].

We are also investigating visualization mechanisms [16,

17, 18] that build upon queries of the provenance metadata to

streamline the amount of data presented to the scientist. As

mentioned earlier, one of the strengths of Little-JIL is the way

in which the hierarchical decomposition of processes allows

processes to be viewed at varying levels of abstraction. The

DDGs that we produce capture the complete data flow, via the

red edges, but also maintain information about the hierarchy

expressed in the process, via the non-leaf start and finish

nodes. We plan to take advantage of this informat ion in visua-

lization, to allow the scientist to zoom in and out on prove-

nance detail, and also allow the scientist to express queries at

varying levels of abstraction, again as reflected in the process.

For example, the substeps rooted at Get Discharge could be

collapsed into a single node showing only the stage and dis-

charge values output by the step or fully expanded to show

intervening details (Get Discharge Start to Get Discharge

Finish, as shown in Figure 2).

ACKNOWLEDGMENTS

This work was supported by NSF grants DBI-1003938,

CCF-0905530, CCR-0205575 and IIS-0705772, and is a con-

tribution from the Harvard Forest Long-Term Ecological Re-

search (LTER) program. We would like to thank Margo Selt-

zer for her contributions to the preliminary database work. We

would also like to thank the students and programmers who

have contributed to the creation of various versions of the

stream discharge process and who have worked on the devel-

opment of the software to capture DDGs: Alexander Wise,

Cori Teshera-Sterne, Morgan Vig il and Sofiya Taskova.

REFERENCES

[1] E. R. Boose, A. M. Ellison, L. J. Osterweil, R. Podorozhny, L. Clarke,
A. Wise, J. L. Hadley, and D. R. Foster. 2007. Ensuring reliable data-
sets for environmental models and forecasts. Ecological Informatics 2:

237-247.

[2] A. Wise. Little-JIL 1.5 language report. Technical report, Department
of Computer Science, University of Massachusetts, Amherst, MA
01003, October 2006.

[3] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall and L. J. Osterweil,
Using Little-JIL to coordinate agents in software engineering. In Pro-
ceedings of the Automated Software Engineering Conference, pages
155-163, Grenoble, France, September 2000.

[4] B. S. Lerner. Verifying process models built using parameterized state
machines. In 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’04), pages 274–284, Boston,
MA, July 2004.

[5] L. Moreau, B. Plale, S. Miles, C. Goble, P. Missier, R. Barga,
Y. Simmhan, J. Futrelle, R. E. McGrath, J. Myers, P. Paulson,
S. Bowers, B. Ludäscher, N. Kwasnikowska, J. V. den Bussche,

T. Elkvist, J. Freire, and P. Groth. The open provenance model (v1.01,
http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf).

[6] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In Proceedings of the 2008 ACM SIG-

MOD International Conference on Management of Data, pages 1345–

1350, Vancouver, June 2008. ACM.

[7] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data prove-
nance in e-science. SIGMOD Record, 34:31–36, September 2005.

[8] A. Azimi and S. Parsa. A reliable framework for adaptive scientific

workflow management systems based on SOA. In Proceedings of the
13th International Conference on Advanced Communication Technol-
ogy (ICACT 2011), pages 1358–1363, Seoul, 2011.

[9] Q. L, W. Lin, W. Dou, J. Jiang, and J. Chen. A QoS-aware exception
handling method in scientific workflow execution. Concurrency and
Computation: Practice and Experience, 23, in press.

[10] T. M. McPhillips and S. Bowers. An approach for pipelining nested

collections in scientific workflows. SIGMOD Record, 34:12–17, Sep-
tember 2005.

[11] J. Li, Y. Mai, and G. Butler. Implementing exception handling policies
for workflow management system. In Proceedings of the Tenth Asia-

Pacific Software Engineering Conference (APSEC ’03), Los Alami-
tos, CA, USA, 2003. IEEE Computer Society.

[12] R. Tolosana-Calasanz, J. A. Bañares, O. F. Rana, P. Álvarez,
J. Ezpeleta, and A. Hoheisel. Adaptive exception handling for scientif-

ic workflows. Concurrency and Computation: Practice and Expe-
rience.,., 22:617–642, April 2010.

[13] X. Fei and S. Lu. A dataflow-based scientific workflow composition

framework. IEEE Transactions on Services Computing, 99(PrePrints),
2010.[13

[14] U. Park and J. Heidemann. Provenance in sensornet republishing. In
IPAW, pages 280–292, 2008.

[15] M. K. Anand, S. Bowers, T. McPhillips, and B. Ludäscher. Efficient
provenance storage over nested data collections. In Proceedings of the
12th International Conference on Extending Database Technology:
Advances in Database Technology, EDBT ’09, pages 958–969, New

York, NY, USA, 2009. ACM.

[16] M. K. Anand, S. Bowers, and B. Ludäscher. A navigation model for
exploring scientific workflow provenance graphs. In Proceedings of
the 4th Workshop on Workflows in Support of Large-Scale Science,

WORKS ’09, pages 2:1–2:10, New York, NY, USA, 2009. ACM.

[17] P. Macko and M. Seltzer. Provenance Map Orbiter: Interactive
exploration of large provenance graphs. In Proceedings of TaPP ’11,
3rd Usenix Workshop on the Theory and Practice of Provenance,

Crete, Greece, June 2011.

[18] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara.
Querying and managing provenance through user views in scientific
workflows. In ICDE ’08: Proceedings of the 2008 IEEE 24th

International Conference on Data Engineering, pages 1072–1081,
Cancun, Mexico, April 2008. IEEE Computer Society.

